全等三角形辅助线总结讲义1

合集下载

全等三角形辅助线秘籍-中线倍长发(优质讲义)可编辑打印

全等三角形辅助线秘籍-中线倍长发(优质讲义)可编辑打印

全等三角形的辅助线秘籍(一)—中线倍长学生/课程年级学科授课教师日期时段核心内容中线倍长的辅助线添加课型教学目标1.让学生理解中线倍长的思想方法,明确什么时候需要添加此种辅助线.2.让学生掌握中线倍长的特点,构造SAS型全等.重、难点中线倍长辅助线的添加知识导图知识梳理1.中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.2.所谓倍长中线法,就是将三角形的中线(或类中线)延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.3.倍长中线法的过程:延长某某到某点,使某某等于某某,用SAS证全等。

倍长中线最重要的一点,延长中线一倍,完成SAS全等三角形模型的构造。

口诀:遇中线,先倍长;证全等,找关系。

4.利用中线倍长我们通常可以解决:线段的不等关系(结合三角形的三边关系),线段相等,线段倍分。

5.遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.(8字型)△ABC中,AD是BC边中线(1)方式1:延长AD到E,使DE=AD,连接BE(2)延长MD到N,使DN=MD,连接CD导学一:利用中线倍长证明线段的等量关系例 1. 已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF。

我爱展示1. 如图,梯形ABCD中,AD∥BC,E是AB的中点,DE⊥CE.求证:AD+BC=DC.导学二:利用中线倍长证明线段的等量关系例 1. 如图,在△ABC中,点0为BC的中点,点M为AB上一点,ON⊥OM交AC于N.求证:BM+CN>MN.我爱展示1. 如图,△ABC中,D为BC的中点.(1)求证:AB+AC>2AD;(2)若AB=5,AC=3,求AD的取值范围.导学三:利用中线倍长证明线段的倍分关系例 1. 如图.AB=AE,AB⊥AE,AD=AC.AD⊥AC,点M为BC的中点,求证:DE=2AM 。

全等三角形中常见辅助线的作法

全等三角形中常见辅助线的作法

全等三角形中常见辅助线的作法一、倍长中线法。

1. 作法。

- 当遇到三角形中线时,可将中线延长一倍,连接相应顶点,构造全等三角形。

- 例如,在△ABC中,AD是BC边上的中线。

延长AD到E,使DE = AD,然后连接BE。

2. 原因。

- 因为BD = CD(AD是中线),∠BDE = ∠CDA(对顶角相等),DE = AD(所作辅助线),根据SAS(边角边)判定定理,可以证明△BDE≌△CDA。

- 这样做的好处是可以将分散的线段和角集中到新构造的全等三角形中,从而便于解决问题,比如可以将AC边转化为BE边,进而在新的三角形△ABE中研究线段之间的关系。

二、截长补短法。

1. 截长法。

- 作法。

- 在较长的线段上截取一段等于已知的较短线段。

- 例如,在△ABC中,要证明AB = AC + CD(假设AC<AB)。

在AB上截取AE = AC,然后连接DE。

- 原因。

- 截取AE = AC后,我们可以通过证明△ADE≌△ADC(如果有合适的条件,如AD 是角平分线,则可以利用SAS判定),得到DE = CD。

这样就将AB = AC+CD的证明转化为证明BE = DE的问题,将问题简化。

2. 补短法。

- 作法。

- 延长较短的线段,使延长后的线段等于较长的线段。

- 例如,在上述△ABC中,延长AC到F,使CF = CD,然后连接DF。

- 原因。

- 延长AC到F使CF = CD后,如果能证明△ABD≌△AFD(根据具体题目中的条件,可能利用AAS、ASA等判定定理),就可以将AB = AC + CD的证明转化为证明AB = AF的问题,通过构造全等三角形,把线段之间的关系进行转化,从而达到解题目的。

三、作平行线法。

1. 作法。

- 过三角形的一个顶点作某条边的平行线。

- 例如,在△ABC中,D是AB上一点,E是AC上一点,要证明AD/AB = AE/AC。

过D作DF∥AC交BC于F。

2. 原因。

- 因为DF∥AC,根据平行线的性质,可得∠ADF = ∠A,∠AFD = ∠C,∠BDF = ∠B。

全等三角形经典辅助线做法汇总

全等三角形经典辅助线做法汇总

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

角平分线平行线,等腰三角形来添。

线段垂直平分线,常向两端把线连。

三角形中两中点,连接则成中位线。

也可将图对折看,对称以后关系现。

角平分线加垂线,三线合一试试看。

要证线段倍与半,延长缩短可试验。

三角形中有中线,延长中线等中线。

1. 等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中倍长中线,使延长线段与原中线长相等,构造全等三角形3. 角平分线在三种添辅助线4. 垂直平分线联结线段两端5.用“截长法”或“补短法” :遇到有二条线段长之和等于第三条线段的长,6. 图形补全法:有一个角为60 度或120 度的把该角添线后构成等边三角形7.角度数为30 、60 度的作垂线法:遇到三角形中的一个角为30 度或60 度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90 的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8. 计算数值法:遇到等腰直角三角形,正方形时,或30-60-90 的特殊直角三角形,或40-60-80 的特殊直角三角形, 常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法4)(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常是角平分线的性质定理或逆定理.(2 )可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

中考数学第四章 三角形 重难 微专项3 全等三角形中常用的辅助线技巧

中考数学第四章 三角形 重难 微专项3  全等三角形中常用的辅助线技巧
∵AD平分∠BAC,∴∠1=∠2.
= ,
在△ACD和△AED中,ቐ ∠1 = ∠2,
= ,
∴△ACD≌△AED,
∴∠AED=∠C=90°,CD=ED.
重难·微专项3 全等三角形中常用的辅助线技巧
例题
又AC=BC,∴∠B=45°,∴∠EDB=∠B=45°,
∴DE=BE,∴CD=BE.
∴∠DBE=60°,
1
∴BD= BE,
2
∴TF=2BD,即BF-AB=2BD.
重难·微专项3 全等三角形中常用的辅助线技巧
突破点2 旋转
运用旋转的全等变换,可以把分散的条件集中到一个三角形中.
模型1
绕定点旋转60°,构造全等三角形
如图,△ABC为等边三角形,点P在△ABC内,将△ABP绕点A逆时针旋转
明剩下的线段等于另一条短线段.
补短法:延长短线段,使其延长部分等于另一条短线段,然后证明延长
后的线段等于长线段(或延长短线段,使延长后的线段等于长线段,然
后证明延长部分等于另一条短线段).
重难·微专项3 全等三角形中常用的辅助线技巧
例题
例1
如图,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于点D.
60°,得到△ACP',则△ABP≌△ACP',且△APP'为等边三角形.
重难·微专项3 全等三角形中常用的辅助线技巧
例题
例2
如图,在四边形ABCD中,AB=BC,∠ABC=60°,∠ADC=30°,则线段
AD,CD和BD之间的数量关系为 AD2+CD2=BD2 .
重难·微专项3 全等三角形中常用的辅助线技巧
∵BA=BT,∠ABT=60°,

全等三角形(辅助线)

全等三角形(辅助线)

全等三角形类型一、巧引辅助线构造全等三角形(1).倍长中线法:1、已知,如图,△ABC 中,D 是BC 中点,DE ⊥DF,试判断BE +CF 与EF 的大小关系,并证明你的结论. FED C B A(答案与解析)BE +CF >EF ;证明:延长FD 到G ,使DG =DF,连结BG 、EG∵D 是BC 中点∴BD =CD又∵DE ⊥DF在△EDG 和△EDF 中ED ED EDG EDF DG DF =⎧⎪∠=∠⎨⎪=⎩∴△EDG ≌△EDF (SAS )∴EG =EF在△FDC 与△GDB 中⎪⎩⎪⎨⎧=∠=∠=DG DF BD CD 21∴△FDC ≌△GDB(SAS)∴CF =BG∵BG +BE >EG ∴BE +CF >EF(点评)因为D 是BC 的中点,按倍长中线法,倍长过中点的线段DF ,使DG =DF,证明△EDG ≌△EDF ,△FDC≌△GDB,这样就把BE、CF与EF线段转化到了△BEG中,利用两边之和大于第三边可证.有中点的时候作辅助线可考虑倍长中线法(或倍长过中点的线段).举一反三:(变式)已知:如图所示,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.(答案)证明:延长CE至F使EF=CE,连接BF.∵EC为中线,∴AE=BE.在△AEC与△BEF中,,,,AE BEAEC BEFCE EF=⎧⎪∠=∠⎨⎪=⎩∴△AEC≌△BEF(SAS).∴AC=BF,∠A=∠FBE.(全等三角形对应边、角相等)又∵∠ACB=∠ABC,∠DBC=∠ACB+∠A,∠FBC=∠ABC+∠A.∴AC=AB,∠DBC=∠FBC.∴AB=BF.又∵BC为△ADC的中线,∴AB=BD.即BF=BD.在△FCB与△DCB中,,,,BF BDFBC DBCBC BC=⎧⎪∠=∠⎨⎪=⎩∴△FCB≌△DCB(SAS).∴CF=CD.即CD=2CE.(2).作以角平分线为对称轴的翻折变换构造全等三角形2、已知:如图所示,在△ABC中,∠C=2∠B,∠1=∠2.求证:AB=AC+CD.(答案与解析)证明:在AB上截取AE=AC.在△AED 与△ACD 中,()12()()AE AC AD AD =⎧⎪∠=∠⎨⎪=⎩已作,已知,公用边,∴ △AED ≌△ACD (SAS ).∴ ∠AED =∠C(全等三角形对应边、角相等).又∵ ∠C =2∠B ∴∠AED =2∠B .由图可知:∠AED =∠B +∠EDB ,∴ 2∠B =∠B +∠EDB .∴ ∠B =∠EDB .∴ BE =ED .即BE =CD .∴ AB =AE +BE =AC +CD(等量代换).(点评)本题图形简单,结论复杂,看似无从下手,结合图形发现AB >AC .故用截长补短法.在AB 上截取AE =AC .这样AB 就变成了AE +BE ,而AE =AC .只需证BE =CD 即可.从而把AB =AC +CD 转化为证两线段相等的问题.举一反三:(变式)如图,AD 是ABC ∆的角平分线,H ,G 分别在AC ,AB 上,且HD =BD.(1)求证:∠B 与∠AHD 互补;(2)若∠B +2∠DGA =180°,请探究线段AG 与线段AH 、HD 之间满足的等量关系,并加以证明.(答案)证明:(1)在AB 上取一点M, 使得AM =AH, 连接DM.∵ ∠CAD =∠BAD, AD =AD, ∴ △AHD ≌△AMD. ∴ HD =MD, ∠AHD =∠AMD.∵ HD =DB, ∴ DB = MD. ∴ ∠DMB =∠B. ∵ ∠AMD +∠DMB =180︒,∴ ∠AHD +∠B =180︒. 即 ∠B 与∠AHD 互补.(2)由(1)∠AHD =∠AMD, HD =MD, ∠AHD +∠B =180︒.∵ ∠B +2∠DGA =180︒,∴ ∠AHD =2∠DGA.∴ ∠AMD =2∠DGM.∵ ∠AMD =∠DGM +∠GDM. ∴ 2∠DGM =∠DGM +∠GDM.∴ ∠DGM =∠GDM. ∴ MD =MG.∴ HD = MG.∵ AG = AM +MG, ∴ AG = AH +HD.(3).利用截长(或补短)法作构造全等三角形:M G H D CB A3、如图所示,已知△ABC 中AB >AC ,AD 是∠BAC 的平分线,M 是AD 上任意一点,求证:MB -MC <AB -AC .(答案与解析)证明:因为AB >AC ,则在AB 上截取AE =AC ,连接ME .在△MBE 中,MB -ME <BE (三角形两边之差小于第三边).在△AMC 和△AME 中,()()()AC AE CAM EAM AM AM =⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边,∴ △AMC ≌△AME (SAS ).∴ MC =ME (全等三角形的对应边相等).又∵ BE =AB -AE ,∴ BE =AB -AC ,∴ MB -MC <AB -AC .(点评)因为AB >AC ,所以可在AB 上截取线段AE =AC ,这时BE =AB -AC ,如果连接EM ,在△BME中,显然有MB -ME <BE .这表明只要证明ME =MC ,则结论成立.充分利用角平分线的对称性,截长补短是关键.举一反三:(变式)如图,AD 是△ABC 的角平分线,AB >AC,求证:AB -AC >BD -DC(答案)证明:在AB 上截取AE =AC,连结DE∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD⎪⎩⎪⎨⎧=∠=∠=AD AD CAD BAD AC AE 在△AED 与△ACD 中∴△AED ≌△ADC (SAS )∴DE =DC 在△BED 中,BE >BD -DC即AB -AE >BD -DC ∴AB -AC >BD -DCE DC B A(4).在角的平分线上取一点向角的两边作垂线段.4、如图所示,已知E 为正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE=∠FAE .求证:AF =AD +CF .(答案与解析)证明: 作ME ⊥AF 于M ,连接EF .∵ 四边形ABCD 为正方形,∴ ∠C =∠D =∠EMA =90°.又∵ ∠DAE =∠FAE ,∴ AE 为∠FAD 的平分线,∴ ME =DE .在Rt △AME 与Rt △ADE 中,()()AE AE DE ME =⎧⎨=⎩公用边,已证, ∴ Rt △AME ≌Rt △ADE(HL).∴ AD =AM(全等三角形对应边相等).又∵ E 为CD 中点,∴ DE =EC .∴ ME =EC .在Rt △EMF 与Rt △ECF 中,()(ME CE EF EF =⎧⎨=⎩已证,公用边), ∴ Rt △EMF ≌Rt △ECF(HL).∴ MF =FC(全等三角形对应边相等).由图可知:AF =AM +MF ,∴ AF =AD +FC(等量代换).(点评)与角平分线有关的辅助线: 在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段. 四边形ABCD 为正方形,则∠D =90°.而∠DAE =∠FAE 说明AE 为∠FAD 的平分线,按常规过角平分线上的点作出到角两边的距离,而E 到AD 的距离已有,只需作E 到AF 的距离EM 即可,由角平分线性质可知ME =DE .AE =AE .Rt △AME 与Rt △ADE全等有AD =AM .而题中要证AF =AD +CF .根据图知AF =AM +MF .故只需证MF =FC 即可.从而把证AF =AD +CF 转化为证两条线段相等的问题.5、如图所示,在△ABC 中,AC=BC ,∠ACB=90°,D 是AC 上一点,且AE 垂直BD 的延长线于E ,12AE BD ,求证:BD 是∠ABC 的平分线. (答案与解析)证明:延长AE 和BC ,交于点F ,∵AC ⊥BC ,BE ⊥AE ,∠ADE=∠BDC (对顶角相等),∴∠EAD+∠ADE=∠CBD+∠BDC .即∠EAD=∠CBD . 在Rt △ACF 和Rt △BCD 中.所以Rt △ACF ≌Rt △BCD (ASA ).则AF=BD (全等三角形对应边相等).∵AE=BD ,∴AE=AF ,即AE=EF . 在Rt △BEA 和Rt △BEF 中,则Rt △BEA ≌Rt △BEF (SAS ).所以∠ABE=∠FBE (全等三角形对应角相等),即BD 是∠ABC 的平分线.(点评)如果由题目已知无法直接得到三角形全等,不妨试着添加辅助线构造出三角形全等的条件,使问题得以解决.平时练习中多积累一些辅助线的添加方法.类型二、全等三角形动态型问题6、在△ABC 中,∠ACB =90°,AC =BC ,直线l 经过顶点C ,过A ,B 两点分别作l 的垂线AE ,BF ,垂足分别为E ,F 。

全等三角形证明之辅助线,附练习题含答案

全等三角形证明之辅助线,附练习题含答案

全等三角形证明之辅助线讲义➢ 知识与方法梳理1. 为了解决几何问题,在原图的基础上另外添加的直线或线段称为辅助线.辅助线通常画成虚线.辅助线的原则:添加辅助线,构造新图形,形成新关系,建立已知和未知之间的桥梁,把问题转化成自己已经会解的情况. 辅助线的作用:①把分散的条件转为集中; ②把复杂的图形转化为基本图形.添加辅助线的注意事项:明确目的,多次尝试.2. 要证明边相等(或角相等),可以考虑证明它们所在的三角形全等;要证全等,需要找3组条件. ➢ 例题示范例:已知:如图,在△ABC 中,∠C =90°,D 是AB 边上一点,AD =AC ,过点D 作DE ⊥AB ,交BC 于点E . 求证:CE =DE . 【思路分析】 ① 读题标注:② 梳理思路:要证CE =DE ,考虑把这两条线段放在两个三角形中证全等,利用全等三角形对应边相等来证明.观察图形,发现不存在全等的三角形.结合条件,AC =AD ,∠C =∠ADE =90°,考虑连接AE ,证明△ACE ≌△ADE . 【过程书写】 证明:如图,连接AE ∵DE ⊥AB ∴∠ADE =90° ∵∠C =90° ∴∠C =∠ADE在Rt △ACE 和Rt △ADE 中AE AE AC AD=⎧⎨=⎩(公共边)(已知)∴Rt △ACE ≌Rt △ADE (HL ) ∴CE =DE (全等三角形对应边相等)EDC AEDBAEDBCA➢练习题BFEAC D7. 已知:如图,BD ,CE 是△ABC 的高,点P 在BD 的延长线上,BP =AC ,点Q 在CE 上,CQ =AB .判断线段AP 和AQ 的数量和位置关系,并加以证明.8. 已知:如图,∠B =∠D ,AB =CD ,AD ∥BC ,E ,F 分别是AD ,BC 的中点.求证:AF =CE .9. 已知:如图,B ,C ,F ,E 在同一条直线上,AB ,DE 相交于点G ,且BC =EF ,GB =GE ,∠A =∠D .求证:DC =AF .10. 已知:如图,∠C =∠F ,AB =DE ,DC =AF ,BC =EF .求证:AB ∥DE .11. 已知:如图,AB ∥CD ,AD ∥BC ,E ,F 分别是AD ,BC 的中点.求证:BE =DF .QPEDCBACAEF B DDGC AB EFFEBAD CF E B A DC12. 已知:如图,在正方形ABCD 中,AD =AB ,∠DAB =∠B =90°,点E ,F 分别在AB ,BC 上,且AE =BF ,AF 交DE 于点G . 求证:DE ⊥AF .连接BM ,交CN 于点F .有下列结论:①∠AMB =∠ANB ;②△ACE ≌△MCF ;③CE =CF ;④EN =FB .其中正确结论的序号是_________________.【参考答案】1. 证明:如图,连接AD在△ABD 和△DCA 中AB DCBD CAAD DA =⎧⎪=⎨⎪=⎩(已知)(已知)(公共边) ∴△ABD ≌△DCA (SSS )∴∠ABO=∠DCO (全等三角形对应角相等) 2. 证明:如图,连接AC∵AB ∥CDGFEDCBANM EB AFC∴∠CAB =∠ACD ∵AD ∥BC ∴∠DAC =∠BCA 在△ABC 和△CDA 中CAB ACDAC CABCA DAC ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证)(公共边)(已证) ∴△ABC ≌△CDA (ASA )∴AB =CD ,BC =DA (全等三角形对应边相等) 3. 证明:如图,连接AC ,AD在△ABC 和△AED 中,AB AE B EBC ED =⎧⎪∠=∠⎨⎪=⎩(已知)(已知)(已知) ∴△ABC ≌△AED (SAS )∴AC =AD (全等三角形对应边相等) ∵F 是CD 的中点 ∴CF =DF在△ACF 和△ADF 中,AC AD AF AFCF DF =⎧⎪=⎨⎪=⎩(已证)(公共边)(已证) ∴△ACF ≌△ADF (SSS )∴∠CFA =∠DFA (全等三角形对应角相等) ∵∠CFA +∠DFA =180° ∴∠CFA =90° ∴AF ⊥CD4. 证明:如图,过点A 作AD ⊥BC 于点D∵AD ⊥BC∴∠ADB =∠ADC=90° 在△ADB 和△ADC 中,B CADB ADCAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(公共边) ∴△ADB ≌△ADC (AAS )∴AB =AC (全等三角形对应边相等) 5. 证明:如图,过点B 作BF ⊥AC 于点FA DBCFCBEDAAD B C6. ∵BC ⊥AD∴∠ACE =∠BCD =90° 在Rt △ACE 和Rt △BCD 中AE BD CE CD =⎧⎨=⎩(已知)(已知)∴Rt △ACE ≌Rt △BCD (HL )∴∠CAE =∠CBD (全等三角形对应角相等) ∵∠ACE =90° ∴∠CAE +∠AEC =90° ∵∠AEC =∠BEF ∴∠CBD +∠BEF =90° ∴∠BFE =90° ∴AF ⊥BD7. 解:AP =AQ 且AP ⊥AQ ,理由如下:如图,∵BD ⊥AC ,CE ⊥AB ∴∠BEQ =∠BDC =∠ADP =90° ∴∠1+∠3=90° ∠2+∠4=90° ∵∠3=∠4 ∴∠1=∠2在△ABP 和△QCA 中54321QCB PE DA1 2 AB QC BP CA =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已知) ∴△ABP ≌△QCA (SAS )∴AP =AQ (全等三角形对应边相等) ∠P =∠5(全等三角形对应角相等) ∵∠ADP =90° ∴∠P +∠PAD =90° ∴∠5+∠PAD =90° 即∠QAP =90° ∴AP =AQ 且AP ⊥AQ 8. 证明:如图,连接AC∵AD ∥BC ∴∠DAC =∠BCA 在△ABC 和△CDA 中,∴△ABC ≌△CDA (AAS )∴BC =DA (全等三角形对应边相等) ∵E ,F 分别是AD ,BC 的中点 ∴1122BF BC DE AD ==, ∴BF =DE在△ABF 和△CDE 中,∴△ABF ≌△CDE (SAS )∴AF =CE (全等三角形对应边相等)9. 证明:如图,过点G 作GH ⊥BE 于点H∵GH ⊥BE∴∠GHB =∠GHE =90° 在Rt △GHB 和Rt △GHE 中,BCA DAC B DAB CD (已证)(已知)(公共边)∠=∠⎧⎪∠=∠⎨⎪=⎩AB CD B DBF DE (已知)(已知)(公共边)=⎧⎪∠=∠⎨⎪=⎩H FBA C GDGB GEGH GH=⎧⎨=⎩(已知)(公共边) ∴Rt △GHB ≌Rt △GHE (HL )∴∠B =∠E (全等三角形对应角相等) ∵BC =EF ∴BC +CF =EF +CF 即BF =EC在△ABF 和△DEC 中,A DB EBF EC ∠=∠⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已证) ∴△ABF ≌△DEC (AAS ) ∴DC =AF10. 证明:如图,连接BE在△AEF 和△DBC 中,AF DCF CEF BC =⎧⎪∠=∠⎨⎪=⎩(已知)(已知)(已知) ∴△AEF ≌△DBC (SAS )∴AE =DB (全等三角形对应边相等) 在△ABE 和△DEB 中,AE DB AB DEEB BE =⎧⎪=⎨⎪=⎩(已证)(已知)(公共边) ∴△ABE ≌△DEB (SSS )∴∠ABE =∠DEB (全等三角形对应角相等) ∴AB ∥DE11. 证明:如图,连接BDCD ABE F∵AB ∥CD ,AD ∥BC∴∠ABD =∠CDB ,∠ADB =∠CBD 在△ABD 和△CDB 中,ABD CDBBD DBADB CBD ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证)(公共边)(已证) ∴△ABD ≌△CDB (ASA )∴AD =CB (全等三角形对应边相等) ∵E ,F 分别是AD ,BC 的中点 ∴DE =BF在△BED 和△DFB 中,DE BF ADB CBDBD DB =⎧⎪∠=∠⎨⎪=⎩(已证)(已证)(公共边) ∴△BED ≌△DFB (SAS )∴BE =DF (全等三角形对应边相等) 12. 证明:如图,在△DAE 和△ABF 中AD BA DAE B AE BF =⎧⎪=⎨⎪=⎩(已知)∠∠(已知)(已知) ∴△DAE ≌△ABF (SAS )∴∠1=∠2(全等三角形对应角相等) ∵∠DAB =90° ∴∠2+∠3=90° ∴∠1+∠3=90° ∴∠AGD =90° ∴DE ⊥AF 13. B 14. ②③④CDA B E F ABCDEF G第7题图312。

(完整版)全等三角形经典题型——辅助线问题

(完整版)全等三角形经典题型——辅助线问题

全等三角形问题中常见的辅助线的作法(含答案) 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,D C BAED F CB A利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

人教版八年级上 册第十二章全等三角形辅助线系列之一---角平分线类辅助线作法大全

人教版八年级上 册第十二章全等三角形辅助线系列之一---角平分线类辅助线作法大全

全等三角形辅助线系列之一 与角平分线有关的辅助线作法大全一、角平分线类辅助线作法角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等.对于有角平分线的辅助线的作法,一般有以下四种.1、角分线上点向角两边作垂线构全等:过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题; 2、截取构全等利用对称性,在角的两边截取相等的线段,构造全等三角形; 3、延长垂线段题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形; 4、做平行线:以角分线上一点做角的另一边的平行线,构造等腰三角形有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形.或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形.通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形.至于选取哪种方法,要结合题目图形和已知条件.图四图三图二图一QPONMPONM BAAB MNOP PONM BA典型例题精讲【例1】 如图所示,BN 平分∠ABC ,P 为BN 上的一点,并且PD ⊥BC 于D ,2AB BC BD =+.求证:180BAP BCP ∠∠=︒+.【解析】过点P 作PE ⊥AB 于点E .∵PE ⊥AB ,PD ⊥BC ,BN 平分∠ABC ,∴PE PD =. 在Rt △PBE 和Rt △PBC 中, BP BPPE PD =⎧⎨=⎩, ∴Rt △PBE ≌Rt △PBC (HL ),∴BE BD =.∵2AB BC BD +=,BC CD BD =+,AB BE AE =-,∴AE CD =. ∵PE ⊥AB ,PD ⊥BC ,∴90PEB PDB ∠=∠=︒. 在△P AE 和Rt △PCD 中, ∵PE PD PEB PDC AE DC =⎧⎪∠=∠⎨⎪=⎩, ∴△P AE ≌Rt △PCD ,∴PCB EAP ∠=∠.∵180BAP EAP ∠+∠=︒,∴180BAP BCP ∠+∠=︒.【答案】见解析.【例2】 如图,已知:90A ∠=︒,AD ∥BC ,P 是AB 的中点,PD 平分∠ADC ,求证:CP 平分∠DCB .【解析】因为已知PD 平分∠ADC ,所以我们过P 点作PE ⊥CD ,垂足为E ,则PA PE =,由P 是AB的中点,得PB PE =,即CP 平分∠DCB .【答案】作PE ⊥CD ,垂足为E ,∴90PEC A ∠=∠=︒,∵PD 平分∠ADC ,∴PA PE =, 又∵90B PEC ∠=∠=︒,∴PB PE =, ∴点P 在∠DCB 的平分线上, ∴CP 平分∠DCB .【例3】 已知:90AOB ∠=︒,OM 是∠AOB 的平分线,将三角板的直角顶点P 在射线OM 上滑动,两直角边分别与OA 、OB 交于C 、D .(1)PC 和PD 有怎样的数量关系是__________. (2)请你证明(1)得出的结论.PDCBA A BCDPE【解析】(1)PC PD =.(2)过P 分别作PE ⊥OB 于E ,PF ⊥OA 于F , ∴90CFP DEP ∠=∠=︒,∵OM 是∠AOB 的平分线,∴PE PF =,∵190FPD ∠+∠=︒,且90AOB ∠=︒,∴90FPE ∠=︒, ∴290FPD ∠+∠=︒,∴12∠=∠, 在△CFP 和△DEP 中12CPF DEPPF PE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CFP ≌△DEP ,∴PC PD =. 【答案】见解析.【例4】 如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,60B ∠=︒,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ,请你判断并写出FE 与FD 之间的数量关系(不需证明); (2)如图③,在△ABC 中,60B ∠=︒,请问,在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【解析】如图①所示;(1)FE FD =.(2)如图,过点F 作FG ⊥AB 于G ,作FH ⊥BC 于H ,作FK ⊥AC 于K , ∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,∴FG FH FK ==, 在四边形BGFH 中,36060902120GFH ∠=︒-︒-︒⨯=︒, ∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,60B ∠=︒, ∴()118060602FAC FCA ∠+∠=︒-︒=︒. 在△AFC 中, ()180********AFC FAC FCA ∠=︒-∠+∠=︒-︒=︒, ∴120EFD AFC ∠=∠=︒,∴EFG DFH ∠=∠, 在△EFG 和△DFH 中,EFG DFH EGF DHF FG FH ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EFG ≌△DFH ,∴FE FD = 【答案】见解析.【例5】 已知120MAN ∠=︒,AC 平分∠MAN ,点B 、D 分别在AN 、AM 上.(1)如图1,若90ABC ADC ∠=∠=︒,请你探索线段AD 、AB 、AC 之间的数量关系,并证明之;(2)如图2,若180ABC ADC ∠+∠=︒,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.【解析】(1)得到30ACD ACB ∠=∠=︒后再可以证得12AD AB AC ==,从而,证得结论; (2)过点C 分别作AM 、AN 的垂线,垂足分别为E 、F ,证得△CED ≌△CFB后即可得到AD AB AE ED AF FB AE AF +=-++=+,从而证得结论.【答案】(1)关系是:AD AB AC +=.证明:∵AC 平分∠MAN ,120MAN ∠=︒ ∴60CAD CAB ∠=∠=︒ 又90ADC ABC ∠=∠=︒, ∴30ACD ACB ∠=∠=︒ 则12AD AB AC ==(直角三角形一锐角为30°,则它所对直角边为斜边一半) ∴AD AB AC +=; (2)仍成立.证明:过点C 分别作AM 、AN 的垂线,垂足分别为E 、F ∵AC 平分∠MAN∴CE CF =(角平分线上点到角两边距离相等) ∵180ABC ADC ∠+∠=︒,180ADC CDE ∠+∠=︒ ∴CDE ABC ∠=∠ 又90CED CFB ∠=∠=︒, ∴△CED ≌△CFB (AAS ) ∵ED FB =,∴AD AB AE ED AF FB AE AF +=-++=+ 由(1)知AE AF AC +=, ∴AD AB AC +=.【例6】 如图,在△ABC 中,2C B ∠=∠,AD 平分∠BAC ,求证:AB AC CD -=.【解析】在AB 上截取点E ,使得AE AC =.∵AD 平分∠BAC ,∴EAD CAD ∠=∠,∴△ADE ≌△ADC (SAS ).∴AED C ∠=∠,ED CD =. ∵2C B ∠=∠,∴=2AED B ∠∠.∵AED B EDB ∠=∠+∠,∴B EDB ∠=∠,∴BE DE =. ∴CD BE AB AE AB AC ==-=-.【答案】见解析.【例7】 如图,△ABC 中,AB AC =,108A ∠=︒,BD 平分ABC ∠交AC 于D 点.求证:BC AC CD =+.【解析】在BC 上截取E 点使BE BA =,连结DE .∵BD 平分ABC ∠,∴ABD EBD ∠=∠. 在ABD ∆与EBD ∆中∵AB EB =,ABD EBD ∠=∠,BD BD = ∴ABD EBD ∆∆≌,∴A DEB ∠=∠∵AB AE =, ∴BAD BED ∠=∠,∴72DEC ∠=︒. 又∵361854ADB ∠=︒+︒=︒,∴72CDE ∠=︒ABCDE DCBAAB CD∴CDE DEC ∠=∠,∴CD CE = ∵BC BE EC =+,∴BC AC CD =+【答案】见解析.【例8】 已知ABC ∆中,60A ∠=︒,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【解析】在BC 上截取一点F 使得BF BE =,易证BOE BOF ∆∆≌,在根据120BOC ∠=︒推出60BOE COF ∠=∠=︒,再证明OCF OCD ∆∆≌即可.【答案】BC BE CD =+.【例9】 如图:已知AD 为△ABC 的中线,且12∠=∠,34∠=∠,求证:BE CF EF +>.【解析】在DA 上截取DN DB =,连接NE ,NF ,则DN DC =,在△DBE 和△DNE 中:E DCB AOED CBAFOED CBA∵12DN DB ED ED =⎧⎪∠=∠⎨⎪=⎩∴△DBE ≌△DNE (SAS ),∴BE NE = 同理可得:CF NF =在△EFN 中,EN FN EF +>(三角形两边之和大于第三边) ∴BE CF EF +>.【答案】见解析.【例10】 已知:在四边形ABCD 中,BC BA >,180A C ∠+∠=︒,且60C ∠=︒,BD 平分∠ABC ,求证:BC AB DC =+.【解析】在BC 上截取BE BA =,∵BD 平分∠ABC ,∴ABD EBD ∠=∠, 在△BAD 和△BED 中, BA BE ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△BED ,∴AD DE =,A BED ∠=∠. ∵180BED DEC ∠+∠=︒,180A C ∠+∠=︒. ∴C DEC ∠=∠,∴DE DC =.∴DC AD =.∵60∠=︒,∴△CDE是等边三角形,C∴DE CD CE=+=+.==,∴BC BE CE AB CD【答案】见解析.【例11】观察、猜想、探究:在△ABC中,2∠=∠.ACB B(1)如图①,当90=+;C∠=︒,AD为∠BAC的角平分线时,求证:AB AC CD (2)如图②,当90∠≠︒,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量C关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【解析】(1)过D作DE⊥AB,交AB于点E,理由角平分线性质得到ED=CD,利用HL得到直角三角形AED与直角三角形ACD全等,由全等三角形的对应边相等,对应角相等,得到AE AC=,A CB B∠=∠,利用等量代换及外角性质得到一对角相等,利用等角对等∠=∠,由2AED ACB边得到BE DE=+,等量代换即可得证;=,由AB AE EB(2)AB CD AC=+,理由为:在AB上截取AG AC=,如图2所示,由角平分线定义得到=,利用SAS得到三角形AGD与三角形ACD全等,接下来同(1)一对角相等,再由AD AD即可得证;(3)AB CD AC=,如图3所示,同(2)即可得证.=-,理由为:在AF上截取AG AC【答案】(1)过D作DE⊥AB,交AB于点E,如图1所示,∵AD为∠BAC的平分线,DC⊥AC,DE⊥AB,∴DE DC=,在Rt △ACD 和Rt △AED 中,AD AD =,DE DC =, ∴Rt △ACD ≌Rt △AED (HL ),∴AC AE =,ACB AED ∠=∠, ∵2ACB B ∠=∠,∴2AED B ∠=∠, 又∵AED B EDB ∠=∠+∠,∴B EDB ∠=∠, ∴BE DE DC ==,则AB BE AE CD AC =+=+; (2)AB CD AC =+,理由为: 在AB 上截取AG AC =,如图2所示, ∵AD 为∠BAC 的平分线,∴GAD CAD ∠=∠, ∵在△ADG 和△ADC 中,AG ACGAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADG ≌△ADC (SAS ),∴CD CG =,AGD ACB ∠=∠, ∵2ACB B ∠=∠,∴2AGD B ∠=∠, 又∵AGD B GDB ∠=∠+∠,∴B GDB ∠=∠, ∴BE DG DC ==,则AB BG AG CD AC =+=+; (3)AB CD AC =-,理由为: 在AF 上截取AG AC =,如图3所示, ∵AD 为∠F AC 的平分线,∴GAD CAD ∠=∠, ∵在△ADG 和△ADC 中,AG AC GAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△ADC (SAS ), ∴CD GD =,AGD ACD ∠=∠,即ACB FGD ∠=∠,∵2ACB B ∠=∠,∴2FGD B ∠=∠,又∵FGD B GDB ∠=∠+∠,∴B GDB ∠=∠, ∴BG DG DC ==,则AB BG AG CD AC =-=-.【例12】 如图所示,在△ABC 中,3ABC C ∠=∠,AD 是∠BAC 的平分线,BE ⊥AD 于F .求证:()12BE AC AB =-.【解析】延长BE 交AC 于点F .则AD 为∠BAC 的对称轴,∵BE ⊥AD 于F ,∴点B 和点F 关于AD 对称, ∴12BE EF BF ==,AB AF =,ABF AFB ∠=∠. ∵3ABF FBC ABC C ∠∠=∠=∠+,ABF AFB FBC C ∠=∠=∠∠+, ∴3FBC C FBC C ∠∠∠=∠++, ∴FBC C ∠=∠,∴FB FC =,∴()()111222BE FC AC AF AC AB ==-=-,∴()12BE AC AB =-. 【答案】见解析.【例13】 如图,已知:△ABC 中AD 垂直于∠C 的平分线于D ,DE ∥BC 交AB 于E .求证:EA EB =.【解析】由AD 垂直于∠C 的平分线于D ,可以想到等腰三角形中的三线合一,于是延长AD 交BC 与点F ,得D 是AF 的中点,又因为DE ∥BC ,由三角形中位线定理得EA EB =.【答案】延长AD 交BC 与点F ,∵CD 平分∠ACF ,∴12∠=∠,又AD ⊥CD , ∴ΔADC ≌ΔFDC ,∴AD FD =, 又∵DE ∥BC ,∴EA EB =.【例14】 已知:如图,在△ABC 中,3ABC C ∠=∠,12∠=∠,BE ⊥AE .求证:2AC AB BE -=.【解析】延长BE 交AC 于M ,∵BE ⊥AE ,∴90AEB AEM ∠=∠=︒ 在△ABE 中,∵13180AEB ∠+∠+∠=︒, ∴3901∠=︒-∠ 同理,4902∠=︒-∠∵12∠=∠,∴34∠=∠,∴AB AM =∵BE ⊥AE ,∴2BM BE =, ∴AC AB AC AM CM -=-=, ∵∠4是△BCM 的外角,∴45C ∠=∠+∠ ∵3ABC C ∠=∠,∴3545ABC ∠=∠+∠=∠+∠ ∴34525C C ∠=∠+∠=∠+∠,∴5C ∠=∠ ∴CM BM =,∴2AC AB BM BE -==【答案】见解析.【例15】 如图,已知AB AC =,90BAC ∠=︒,BD 为∠ABC 的平分线,CE ⊥BE ,求证:2BD CE =.【解析】延长CE ,交BA 的延长线于点F .∵BD 为∠ABC 的平分线,CE ⊥BE , ∴△BEF ≌△BEC ,∴BC BF =,CE FE =. ∵90BAC ∠=︒,CE ⊥BE ,∴ABD ACF ∠=∠,又∵AB AC =,∴△ABD ≌△ACF ,∴BD CF =.∴2BD CE =.【答案】见解析.EDCBAFEDCBA课后复习【作业1】如图所示,在△ABC 中,BP 、CP 分别是∠ABC 的外角的平分线,求证:点P 在∠A 的平分线上.【解析】过点P 作PE ⊥AB 于点E ,PG ⊥AC 于点G ,PF ⊥BC 于点F .因为P 在∠EBC 的平分线上,PE ⊥AB ,PH ⊥BC ,所以PE PF =. 同理可证PF PG =. 所以PG PE =,又PE ⊥AB ,PG ⊥AC ,所以P 在∠A 的平分线上,【答案】见解析.【作业2】已知:如图,2AB AC =,BAD CAD ∠=∠,DA DB =,求证:DC ⊥AC .PCBAPABCD【解析】在AB 上取中点E ,连接DE ,则12AE BE AB ==. ∵DA DB =,∴DE ⊥AB ,90AED ∠=︒. 又∵2AB AC =,∴AE AC =.∵BAD CAD ∠=∠,∴△ADE ≌△ADC (SAS ). ∴90AED ACD ∠=∠=︒,即DC ⊥AC .【答案】见解析.【作业3】已知等腰ABC ∆,100A ∠=︒,ABC ∠的平分线交AC 于D ,则BD AD BC +=.【解析】如图,在BC 上截取BE BD =,连接DE ,过D 作DF BC ∥,交AB 于F ,于是32∠=∠,ADF ECD ∠=∠. 又∵12∠=∠,∴13∠=∠,故DF BF =.显然FBCD 是等腰梯形. ∴BF DC =,DF DC =.∵()111218010020222ABC ∠=∠=⨯︒-︒=︒,()11802802BED BDE ∠=∠=︒-∠=︒, ∴180100DEC BED ∠=︒-∠=︒,∴100FAD DEC ∠=∠=︒,∴AFD EDC ∆∆≌,AD EC =. 又∵BE BD =,∴BC BD EC BD AD =+=+.【答案】见解析.EDCBAABCD【作业4】如图,已知在△ABC 中,AD 、AE 分别为△ABC 的内、外角平分线,过顶点B 作BF ⊥AD ,交AD 的延长线于F ,连接FC 并延长交AE 于M .求证:AM ME =.【解析】延长AC ,交BF 的延长线于点N .∵AD 平分∠BAC ,BF ⊥AD ,∴△AFB ≌△AFN ,∴BF NF =. ∵AD 、AE 分别为△ABC 的内、外角平分线,∴EA ⊥F A . ∵BF ⊥AF ,∴BF ∥AE .∴::BF ME CF CM =,::FN AM CF CM =. ∵BF NF =,∴AM ME =.【答案】见解析.ECMF EDCBAN MFEDCBA。

全等三角形六种辅助线方法及例题

全等三角形六种辅助线方法及例题

全等三角形六种辅助线方法及例题全等三角形是初中数学中一个非常重要的概念,掌握全等三角形的判定方法和辅助线方法对于解题至关重要。

本文将介绍全等三角形的六种辅助线方法,并结合例题进行详细讲解。

一、辅助线法1.等角分线法:将三角形内角的平分线相互交点构成的点与三角形的另外一个顶点相连,得到一条辅助线。

这条辅助线将三角形分成两个等角的小三角形,从而得到相似或全等三角形。

2.中线法:将三角形任意两边的中点相连,得到三角形的中线。

相等的中线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。

3.高线法:将三角形内任意一条边的垂线向另外两边引出,得到三角形的高线。

相等的高线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。

4.角平分线法:将三角形内角的平分线相互交点构成的点相连,得到三角形的角平分线。

相等的角平分线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。

5.角平分线中垂线法:将三角形内角的平分线的中垂线相互交点构成的点相连,得到三角形的角平分线中垂线。

相等的角平分线中垂线将三角形分成两个面积相等的小三角形,从而得到相似或全等三角形。

6.外心连线法:将三角形外接圆心与三角形三个顶点分别相连,得到三条辅助线。

这三条辅助线相等,将三角形分成三个面积相等的小三角形,从而得到相似或全等三角形。

二、例题解析1.已知△ABC,点D,E分别为BC,AB边上的中点,连接AD,BE相交于点F,求证:△DEF≌△ABC。

解析:由题意可知,△ABC是由两个等腰三角形组成的,因此可使用中线法证明两个三角形的全等。

由于D,E分别是BC,AB边上的中点,因此DE是AC中线,即DE=1/2AC;同理,AE是BC中线,AF=1/2BC。

因此,△ADB和△AEC是等腰三角形,且AD=EC,AB=AB,∠BAC=∠BAC,因此△ADB≌△AEC。

又因为DE是AC中线,BF是AE中线,因此DE=1/2AC,BF=1/2AE。

三角形全等中的辅助线讲义

三角形全等中的辅助线讲义

全等三角形之辅助线(讲义)_____________________________________________________________________ _____________________________________________________________________ ______________________________【参考答案】1.证明:如图,连接AD.在△ABD和△DCA中,AB ODAB DCBD CAAD DA =⎧⎪=⎨⎪=⎩(已知)(已知)(公共边) ∴△ABD ≌△DCA (SSS )∴∠B=∠C (全等三角形对应角相等) 2. 证明:如图,连接AC .∵AB ∥CD∴∠CAB =∠ACD ∵AD ∥BC ∴∠DAC =∠BCA 在△ABC 和△CDA 中,CAB ACDAC CABCA DAC ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证)(公共边)(已证) ∴△ABC ≌△CDA (ASA )∴AB =CD ,BC =DA (全等三角形对应边相等) 3. 证明:如图,连接AC ,AD .在△ABC 和△AED 中,AB AEB EBC ED =⎧⎪∠=∠⎨⎪=⎩(已知)(已知)(已知) ∴△ABC ≌△AED (SAS )∴AC =AD (全等三角形对应边相等) ∵F 是CD 的中点 ∴CF =DF在△ACF 和△ADF 中,AC AD AF AFCF DF =⎧⎪=⎨⎪=⎩(已证)(公共边)(已证) ∴△ACF ≌△ADF (SSS )∴∠CFA =∠DFA (全等三角形对应角相等) ∵∠CFA +∠DFA =180° ∴∠CFA =90°∴AF ⊥CD4. 证明:如图,过点A 作AD ⊥BC 于D .ADBCFCBEDA∵AD ⊥BC∴∠ADB =∠ADC=90° 在△ADB 和△ADC 中,B CADB ADCAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(已知)(已知)(公共边) ∴△ADB ≌△ADC (AAS )∴AB =AC (全等三角形对应边相等)∵BE =CF ∴BE +EF =CF +EF 即BF =CE在△ABF 和△DCE 中,AB DC B CBF CE =⎧⎪∠=∠⎨⎪=⎩(已知)(已知)(已证) ∴△ABF ≌△DCE (SAS )∴∠AFB =∠DEC (全等三角形对应角相等) AF =DE (全等三角形对应边相等) ∵OG ⊥EF∴∠OGE =∠OGF =90°AD B C在△OEG 和△OFG 中,AFB DECOGE OGFOG OG ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证)(已证)(公共边) ∴△OEG ≌△OFG (AAS )∴OE =OF (全等三角形对应边相等) ∴AF -OF =DE -OE即OA =OD∴△AFD ≌△AED (AAS ) ∴DF =DE ,AF =AE (全等三角形对应边相等)在Rt △BFD 和Rt △CED 中,DF DEBD CD=⎧⎨=⎩(已证)(已知) ∴Rt △BFD ≌Rt △CED (HL ) ∴BF =CE (全等三角形对应边相等) ∴AF +BF =AE +CE 即AB =AC全等三角形之辅助线(随堂测试)1. 已知:如图,AB =CD ,∠A =∠D .求证:∠ABC =∠DCB .DCB A【参考答案】1. 证明:如图,连接AC ,BD .在△ABD 和△DCA 中,AB CD DAB ADCAD DA =⎧⎪∠=∠⎨⎪=⎩(已知)(已知)(公共边) ∴△ABD ≌△DCA (SAS ) ∴BD =CA (全等三角形对应边相等)在△ABC 和△DCB 中,AB DC CA BDBC CB =⎧⎪=⎨⎪=⎩(已知)(已证)(公共边) ∴△ABC ≌△DCB (SSS )∴∠ABC =∠DCB (全等三角形对应角相等)DA B C全等三角形之辅助线(作业)2. 已知:如图,∠C =∠F ,AB =DE ,DC =AF ,BC =EF .求证:AB ∥DE .FE BAD C3. 已知:如图,AB ∥CD ,AD ∥BC ,E ,F 分别是AD ,BC 的中点.求证:BE =DF .F EB ADC5. 如图,点C 为线段AB 上一点,△MAC 和△NBC 均是等边三角形,连接AN 交CM 于点E ,连接BM 交CN 于点F .有如下结论:①△ACE ≌△MCF ;②CE =CF ;③∠AMB =∠ANB ;④EN =FB .其中正确结论的序号有________________.【参考答案】1. 证明:如图,过点G 作GH ⊥BE 于H .∵GH ⊥BE∴∠GHB =∠GHE =90° 在Rt △GHB 和Rt △GHE 中,GB GEGH GH=⎧⎨=⎩(已知)(公共边) ∴Rt △GHB ≌Rt △GHE (HL )∴∠B =∠E (全等三角形对应角相等) ∵BC =EF ∴BC +CF =EF +CF 即BF =EC在△ABF 和△DEC 中,A DB EBF EC ∠=∠⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(已证) ∴△ABF ≌△DEC (AAS ) ∴DC =AF2. 证明:如图,连接BE .在△AEF 和△DBC 中,AF DC F CEF BC =⎧⎪∠=∠⎨⎪=⎩(已知)(已知)(已知) ∴△AEF ≌△DBC (SAS )∴AE =BD (全等三角形对应边相等) 在△ABE 和△DEB 中,AE BD AB DEEB BE =⎧⎪=⎨⎪=⎩(已证)(已知)(公共边) H FB AC GD CD ABE F∴△ABE ≌△DEB (SSS )∴∠ABE =∠DEB (全等三角形对应角相等) ∴AB ∥DE3. 证明:如图,连接BD .∵AB ∥CD ,AD ∥BC∴∠ABD =∠CDB ,∠ADB =∠CBD 在△ABD 和△CDB 中,ABD CDBBD DBADB CBD ∠=∠⎧⎪=⎨⎪∠=∠⎩(已证)(公共边)(已证) ∴△ABD ≌△CDB (ASA )∴AD =CB (全等三角形对应边相等) ∵E ,F 分别为AD ,BC 的中点, ∴DE =BF在△BED 和△DFB 中,DE BF ADB CBDBD DB =⎧⎪∠=∠⎨⎪=⎩(已证)(已证)(公共边) ∴△BED ≌△DFB (SAS )∴BE =DF (全等三角形对应边相等) 4. B 5. ①②④CDA B E F。

全等三角形中做辅助线总结

全等三角形中做辅助线总结

全等三角形中做辅助线技巧要点大汇总口诀:三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

一、由角平分线想到的辅助线口诀:图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。

对于有角平分线的辅助线的作法,一般有两种。

①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。

通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。

至于选取哪种方法,要结合题目图形和已知条件。

与角有关的辅助线(一)、截取构全等如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。

如图1-2,ABAC 。

3.已知:如图2-5, ∠BAC=∠CAD,AB>AD ,CE ⊥AB ,AE=21(AB+AD ).求证:∠D+∠B=180 。

图1-1BDBCB图2-1C图2-34.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC 上的点,∠FAE=∠DAE 。

求证:AF=AD+CF 。

例1. 已知:如图2-7,在R t △ABC 中,∠ACB =90 ,CD ⊥AB ,垂足为D ,AE 平分∠CAB 交CD 于F ,过F 作FH 21证:BD=2CE 。

例3.已知:如图3-3在△ABC 中,AD 、AE 分别∠BAC 的内、外角平分线,过顶点B 作BFA D ,交AD 的延长线于F ,连结FC 并延长交AE 于M 。

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法

完整版)全等三角形常用辅助线做法证明三角形全等时,有时需要添加辅助线,对于初学几何证明的学生来说,这往往是一个难点。

下面介绍证明全等时常见的五种辅助线,供同学们研究时参考。

一、截长补短当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法。

具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法适用于证明线段的和、差、倍、分等类的题目。

例如,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB。

要证明AC=AE+CD,因为AE、CD不在同一直线上,所以在AC上截取AF=AE,只要证明CF=CD即可。

具体证明过程为:在AC上截取AF=AE,连接OF。

由于AD、CE分别平分∠BAC、∠ACB,∠ABC=60°,因此∠1+∠2=60°,∠4=∠6=∠1+∠2=60°。

显然,△AEO≌△AFO,因此∠5=∠4=60°,∠7=180°-(∠4+∠5)=60°。

在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC,因此△DOC≌△FOC,CF=CD,所以XXX。

另一个例子是在图甲中,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。

要证明CD=AD+BC。

因为结论是CD=AD+BC,可以考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证明DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。

具体证明过程为:在CD上截取CF=BC,如图乙,因此△XXX≌△BCE(SAS),∴∠2=∠1.又因为AD∥BC,∴∠ADC+∠BCD=180°,∴∠DCE+∠XXX°,∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4.在△FDE与△ADE中,∴△XXX≌△ADE(ASA),∴DF=DA,因此CD=DF+CF,∴XXX。

全等三角形辅助线添加方法总结

全等三角形辅助线添加方法总结

1、辅助线构造全等技巧:一边一角,再做一边或一角构造全等1、.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C2、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC (辅助线)3、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24、已知:如图所示,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证:AE =AF 。

B ACDF21 EDCB A FE2、中线倍长法技巧:利用中线作倍长,构造全等,将边角关系换位。

1、 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD (中线倍长)3、三线合一法技巧:遇到角平分线做双垂,或者利用等腰三角形三线合一证相等。

1、 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C2、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE (利用三线合一)3、如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .CD B AD B CFED C B AAP D A CB4、P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB (利用好角平分线性质辅助线延长AB=AC 即可)4、一线三等角(K 字形)1、如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.2、已知:如图, AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC =AE .若AB = 5 ,求AD 的长?A CE D B3、在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.。

全等三角形问题中常见的辅助线的作法(教师版)

全等三角形问题中常见的辅助线的作法(教师版)

全等三角形问题中常见的辅助线的作法(教师版)常见的辅助线的作法(教师版)全等三角形问题常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长线:倍长线,使延长线段与原线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换的“对折”法构造全等三角形.2)遇到三角形的线,倍长线,使延长线段与原线长相等,构造全等三角形,利用的思维模式是全等变换的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

(3)可以在该角的两边上,距离角的顶点相等长度的位置CCBA上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。

解题方法突破 构造辅助线 第一讲 全等三角形的辅助线(上)

解题方法突破 构造辅助线 第一讲 全等三角形的辅助线(上)
F
例2.(2013年广东珠海9分)如图,在Rt△ABC中,∠C=90°,点P为AC边上的一点,将线段AP绕点A 顺时针方向旋转(点P对应点P′),当AP旋转至AP′⊥AB时,点B、P、P′恰好在同一直线上,此时作 P′E⊥AC于点E. (1)求证:∠CBP =∠ABP;(2)求证:AE=CP;
D
小试身手
1第一遍知道大概说了什么就行;
2第二遍知道哪块是重点;
3第三遍可以做出一些判断。
高效学习逻辑 思维
事实知识(know--what):知道是什么的知识, 主要叙述事实方面的知识; 原理知识(know--why):知道为什么的知识, 主 要是自然原理和规律方面的知识; 技能知识(know--how):知道怎么做的知识, 主要是对某些事物的技能和能力; 人力知识(know--who):知道是谁的知识, 主 要是谁知道以及谁知道如何做某些事的能力;
小作业
3、结合本节课所学的“场景法”“身体法”和“故事法”,优化自己 的记忆方法,帮助自己更加轻松学习(可参考工具卡《超级记忆法》)。 4、结合所学的“费曼学习法 ”和“学习技巧”,进一步帮助自己通过 高效学习方法让学习效果事半功倍(可参考《费曼学习法》)。
THANKS
青春的道路不长不短 学霸的陪伴 让你一路不慌不忙
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。
超级记忆法-记忆 规律
TIP1:我们可以选择恰当的记忆数量——7组之内! TIP2:很多我们觉得比较容易背的古诗词,大多不超过七个字,很大程度上也 是因 为在“魔力之七”范围内的缘故。我们可以把要记忆的内容拆解组合控制 在7组之 内(每一组不代表只有一个字哦,这7组中的每一组容量可适当加大)。 TIP3:比 如我们记忆一个手机号码18820568803,如果一个一组的记忆,我 们就要记11组,而如果我们拆解一下,按照188-2056-8803,我们就只需要 记忆3 组就可以了,记忆效率也会大大提高。

初中数学 第1章全等三角形辅助线技巧苏科版八年级上册

初中数学 第1章全等三角形辅助线技巧苏科版八年级上册

全等三角形全等三角形的基本判定方法:①边边边(SSS)②边角边(SAS)③角边角(ASA)④角角边(AAS)⑤HL(Rt△)对于基本的判定方法,书上都有介绍,老师都会详细讲解,在初步学习阶段,一定要理解全等的基本原理,为什么满足这样条件的两个三角形就是全等三角形了,一般的我们通过如何才能画出一个唯一的三角形来理解全等条件的定义。

唯一认知:全等的必要条件就是要有线段相等。

从全等的证明方法中我们不难发现,想要证明两个三角形全等,则必须至少有一条线段相等才行。

实战运用:当题目中给出两条线段相等的条件,就要去考虑这两条线段所在的三角形是否全等。

一、有线段相等就要考虑全等的存在例1.如图,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD、CE交于点H,已知EH=EB=3,AE=4,求CH的长二、倍长中线构造全等三角形所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.例2.如图,△ABC中,AD是BC边中线,若AB=5,AC=3,求中线AD的取值范围。

D AB CE DA解:如图所示,延长AD 至点E ,使AD=DE∵AD 是中线∴BD=CD (中线的性质) 在△ADC 和△EDB 中⎪⎩⎪⎨⎧=∠=∠=(已知)对顶角相等已知CD BD EDB ADC ED AD )()( ∴△ADC ≌△EDB (SAS ) ∴BE=AC=3,AD=AE在△ABE 中:AB-BE<AE<AB+BE ∴2<AE<8 ∵AE=2AD ∴1<AD<4 练习题:1.已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF.2.如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⟂AC 于E ,Q 为BC 延长线上一点,当PA=CQ 时,连接PQ 交AC 于点D ,求DE 的长.FEBC三、平行线+中点,X型全等例1. 如图,在四边形ABCD中,AB∥CD,AD∥BC,AD=2AB,F是AD的中点,作CE⟂AB,垂足E在线段AB上,连接EF、CF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D C B
A
E
D F C
B A
全等三角形常用辅助线
常见辅助线的作法有以下几种:
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变
换中的“对折”.
2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用
的思维模式是全等变换中的“旋转”.
3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三
角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.
4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的
“平移”或“翻转折叠”
5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某
条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.
特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.
一、倍长中线(线段)造全等
1:(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.
2:如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.
3:如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.
E
D
A
E D C
B
A
中考应用
(09崇文二模)以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.
(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;
(2)将图①中的等腰Rt ABD
∆绕点A 沿逆时针方向旋转︒
θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.
二、截长补短
1.如图,A B C ∆中,AB=2AC ,AD 平分B A C ∠,且AD=BD ,求证:CD ⊥AC
2、如图,AC ∥BD ,EA,EB 分别平分∠CAB,∠DBA ,CD 过点E ,求证;AB =AC+BD
C
D
B
A
D
C B
A
P
2 1
D C
B
A
P
Q
C
B
A
3:如图,已知在A B C
内,0
60
BAC
∠=,0
40
C
∠=,P,Q分别在BC,CA上,并且AP,BQ分别是B A C
∠,A B C
∠的角平分线。

求证:BQ+AQ=AB+BP
4:如图,在四边形ABCD中,BC>BA,AD=CD,BD平分ABC
∠,求证:0
180
=

+
∠C
A
5:如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证;AB-AC>PB-PC
中考应用
(08海淀一模)
O
E
D
C
B
A
三、平移变换
1.AD 为△ABC 的角平分线,直线MN ⊥AD 于A.E 为MN 上一点,△ABC 周长记为A P ,△EBC 周长记为B P .求证B P >A P .
2、如图,在△ABC 的边上取两点D 、E ,且BD=CE ,求证:AB+AC>AD+AE.
E
D C
B A
四、借助角平分线造全等
1:如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD
F
D A
2、(06郑州市中考题)如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F. (1)说明BE=CF 的理由;(2)如果AB=a ,AC=b ,求AE 、BE 的长.
中考应用
(06北京中考)如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线
为对称轴的全等三角形。

请你参考这个作全等三角形的方法,解答下列问题: (1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F 。

请你判断并写出FE 与FD 之间的数量关系;
(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你
在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。

五、旋转
1:正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.
E D
G
F
C B
A
O
P A
M
N
E
B C
D F
A
C
E
F
B
D
图①
图② 图③
N
M
E F
A
C B
A
2:D 为等腰R t A B C ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F 。

(1) 当M D N ∠绕点D 转动时,求证DE=DF 。

(2) 若AB=2,求四边形DECF 的面积。

3.如图,A B C ∆是边长为3的等边三角形,B D C ∆是等腰三角形,且0120BDC ∠=,以D 为顶点做一个060角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则AMN ∆的周长为 ;
B
C
D
N
M
A
中考应用
(07佳木斯)已知四边形A B C D 中,A B A D ⊥,BC C D ⊥,A B B C =,120ABC =
∠,
60MBN =
∠,M B N ∠绕B 点旋转,它的两边分别交A D D C ,(或它们的延长线)于
E F ,.
当M B N ∠绕B 点旋转到A E C F =时(如图1),易证AE C F EF +=.
当M B N ∠绕B 点旋转到A E C F ≠时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段A E C F ,,E F 又有怎样的数量关系?请写出你的猜想,不需证明.
A
B
C
D
E
F
M
A B
C
D
E F
M
A
B C
D
F
(西城09年一模)已知:PA=2
,PB=4,以AB 为一边作正方形ABCD,使P 、D 两点落在直线AB
的两侧.
(1)如图,当∠APB=45°时,求AB 及PD 的长;
(2)当∠APB 变化,且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.
(09崇文一模)在等边ABC ∆的两边AB 、AC 所在直线上分别有两点M 、N ,D 为A B C 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.
图1 图2 图3
(I )如图1,当点M 、N 边AB 、AC 上,且DM=DN 时,BM 、NC 、MN 之间的数量关系是 ; 此时
=L
Q ;
(II )如图2,点M 、N 边AB 、AC 上,且当DM ≠DN 时,猜想(I )问的两个结论还
成立吗?写出你的猜想并加以证明;
(III)如图3,当M、N分别在边AB、CA的延长线上时,若AN=x,则Q= (用x、L表示).。

相关文档
最新文档