2013年江苏省高考数学试卷 学生版(2)
2013年高考理数真题试卷(江苏卷)及解析
第1页,总14页…………装…………○…___________姓名:___________班级…………装…………○…2013年高考理数真题试卷(江苏卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明第II 卷(非选择题)请点击修改第II 卷的文字说明一、填空题(题型注释)1.函数y=3sin (2x+ π4 )的最小正周期为 .2.设z=(2﹣i )2(i 为虚数单位),则复数z 的模为 .3.双曲线 x 216−y 29=1 的两条渐近线方程为 .则成绩较为稳定(方差较小)的那位运动员成绩的方差为 .5.现在某类病毒记作X m Y n , 其中正整数m ,n (m≤7,n≤9)可以任意选取,则m ,n 都取到奇数的概率为 .6.如图,在三棱柱A 1B 1C 1﹣ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F ﹣ADE 的体积为V 1 , 三棱柱A 1B 1C 1﹣ABC 的体积为V 2 , 则V 1:V 2= .7.抛物线y=x 2在x=1处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点P (x ,y )是区域D 内的任意一点,则x+2y 的取值范围是 .8.设D ,E 分别是△ABC 的边AB ,BC上的点,AD= 12 AB ,BE= 23BC ,若 DE → =λ1 AB → +λ2AC →(λ1 , λ2为实数),则λ1+λ2的值为 .9.在平面直角坐标系xOy 中,椭圆C 的标准方程为 x 2a 2+y 2b 2=1 (a >b >0),右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为d 1 , F 到l 的距离为d 2 , 若d 2= √6d 1 ,则椭圆C 的离心率为 .答案第2页,总14页装…………○………※要※※在※※装※※订※※线※装…………○………10.在平面直角坐标系xOy 中,设定点A (a ,a ),P 是函数y= 1x (x >0)图象上一动点,若点P ,A 之间的最短距离为2 √2 ,则满足条件的实数a 的所有值为 . 11.在正项等比数列{a n }中, a 5=12 ,a 6+a 7=3,则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为 .二、解答题(题型注释)12.设{a n }是首项为a ,公差为d 的等差数列(d≠0),S n 是其前n 项和.记b n = nSnn 2+c ,n∈N * ,其中c 为实数.(1)若c=0,且b 1 , b 2 , b 4成等比数列,证明:S nk =n 2S k (k ,n∈N *); (2)若{b n }是等差数列,证明:c=0.13.设函数f (x )=lnx ﹣ax ,g (x )=e x ﹣ax ,其中a 为实数.(1)若f (x )在(1,+∞)上是单调减函数,且g (x )在(1,+∞)上有最小值,求a 的取值范围;(2)若g (x )在(﹣1,+∞)上是单调增函数,试求f (x )的零点个数,并证明你的结论.14.如图,AB 和BC 分别与圆O 相切于点D 、C ,AC 经过圆心O ,且BC=2OC . 求证:AC=2AD .15.已知矩阵A= [−1002] ,B= [126] ,求矩阵A ﹣1B . 16.在平面直角坐标系xOy 中,直线l 的参数方程为 {x =t +1y =2t( 为参数),曲线C 的参数方程为 {x =2t 2y =2t(t 为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.17.已知a≥b>0,求证:2a 3﹣b 3≥2ab 2﹣a 2b .第3页,总14页○…………线…………○…_○…………线…………○…18.如图,在直三棱柱A 1B 1C 1﹣ABC 中,AB⊥AC,AB=AC=2,AA 1=4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与ABA 1所成二面角的正弦值.19.设数列{a n }:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…, (−1)k−1k,⋯,(−1)k−1k ︷k 个 ,…,即当(k−1)k 2 <n≤ (k+1)k 2(k∈N *)时, a n =(−1)k−1k .记S n =a 1+a 2+…+a n (n∈N ∗).对于l∈N ∗ , 定义集合P l =﹛n|S n 为a n 的整数倍,n∈N ∗ , 且1≤n≤l}(1)求P 11中元素个数;(2)求集合P 2000中元素个数.答案第4页,总14页参数答案1.π【解析】1.解:∵函数表达式为y=3sin (2x+ π4 ), ∴ω=2,可得最小正周期T=| 2πω |=| 2π2 |=π 所以答案是:π 2.5【解析】2.解:z=(2﹣i )2=4﹣4i+i 2=3﹣4i . 所以,|z|= √32+(−4)2=5. 所以答案是5. 3.y =±34x【解析】3.解:∵双曲线 x 216−y 29=1 的a=4,b=3,焦点在x 轴上而双曲线 x 2a 2−y 2b2=1 的渐近线方程为y=± ba x ∴双曲线 x 216−y 29=1 的渐近线方程为 y =±34x所以答案是: y =±34x4.2【解析】4.解:由图表得到甲乙两位射击运动员的数据分别为: 甲:87,91,90,89,93; 乙:89,90,91,88,92;x 甲¯=87+91+90+89+935=90 , x 乙¯=89+90+91+88+925=90 .方差 S 甲2=(87−90)2+(91−90)2+(90−90)2+(89−90)2+(93−90)25=4 =4.S 乙2=(89−90)2+(90−90)2+(91−90)2+(88−90)2+(92−90)25=2 =2.所以乙运动员的成绩较稳定,方差为2. 所以答案是2.【考点精析】解答此题的关键在于理解极差、方差与标准差的相关知识,掌握标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差.第5页,总14页…○…………外…………○…………装…………○……学校:___________姓名:___________班级:__…○…………内…………○…………装…………○…… 5.2063【解析】5.解:m 取小于等于7的正整数,n 取小于等于9的正整数,共有7×9=63种取法. m 取到奇数的有1,3,5,7共4种情况;n 取到奇数的有1,3,5,7,9共5种情况, 则m ,n 都取到奇数的方法种数为4×5=20种. 所以m ,n 都取到奇数的概率为 4×57×9=2063 . 所以答案是 2063 .6.1:24【解析】6.解:因为D ,E ,分别是AB ,AC 的中点,所以S △ADE :S △ABC =1:4, 又F 是AA 1的中点,所以A 1到底面的距离H 为F 到底面距离h 的2倍. 即三棱柱A 1B 1C 1﹣ABC 的高是三棱锥F ﹣ADE 高的2倍. 所以V 1:V 2= 13S △ADE ⋅ℎS△ABC ⋅H=124 =1:24.所以答案是1:24. 7.[﹣2, 12 ]【解析】7.解:由y=x 2得,y′=2x,所以y′|x=1=2,则抛物线y=x 2在x=1处的切线方程为y=2x ﹣1.令z=x+2y ,则 y =−12x =z2.画出可行域如图,所以当直线 y =−12x =z2过点(0,﹣1)时,z min =﹣2.过点( 12,0 )时, z max =12 . 所以答案是[﹣2, 12 ].答案第6页,总14页……○…………订…………○…………线※※装※※订※※线※※内※※答※※题※※……○…………订…………○…………线【考点精析】根据题目的已知条件,利用基本求导法则的相关知识可以得到问题的答案,需要掌握若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导. 8.12【解析】8.解:由题意结合向量的运算可得 DE →= DB →+BE →= 12AB →+23BC →=12AB →+23(BA→+AC →)= 12AB→−23AB→+23AC →=−16AB→+23AC →又由题意可知若 DE →=λ1 AB →+λ2 AC →, 故可得λ1= −16 ,λ2= 23 ,所以λ1+λ2= 12所以答案是: 12【考点精析】本题主要考查了平面向量的基本定理及其意义的相关知识点,需要掌握如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使才能正确解答此题.9.√33【解析】9.解:如图,准线l :x= a 2c ,d 2= a 2c−c =b 2c, 由面积法得:d 1= bca , 若d 2= √6d 1 ,则 b 2c=√6×bca ,整理得 √6a 2﹣ab ﹣ √6b 2 =0,两边同除以a 2, 得 √6 (b a )2 +( ba )﹣ √6=0,解得b a =√63.∴e= √1−(b a )2= √33 .第7页,总14页○…………外…………○………装…………○…………订…………………线…………○…学__________姓名:___________班级:___________考号:_________○…………内…………○………装…………○…………订…………………线…………○…所以答案是: √33.10.﹣1或 √10【解析】10.解:设点P (x,1x )(x >0) ,则|PA|===,令 t =x +1x ,∵x>0,∴t≥2,令g (t )=t 2﹣2at+2a 2﹣2=(t ﹣a )2+a 2﹣2,①当a≤2时,t=2时g (t )取得最小值g (2)=2﹣4a+2a 2= (2√2)2,解得a=﹣1; ②当a >2时,g (t )在区间[2,a )上单调递减,在(a ,+∞)单调递增,∴t=a,g (t )取得最小值g (a )=a 2﹣2,∴a 2﹣2= (2√2)2,解得a= √10 . 综上可知:a=﹣1或 √10 . 所以答案是﹣1或 √10 .11.12【解析】11.解:设正项等比数列{a n }首项为a 1 , 公比为q ,由题意可得,解之可得:a 1= 132 ,q=2,故其通项公式为a n = 132×2n−1=2n ﹣6 .记T n =a 1+a 2+…+a n =132(1−2n )1−2=2n −125,S n =a 1a 2…a n =2﹣5×2﹣4…×2n ﹣6=2﹣5﹣4+…+n﹣6= 2(n−11)n2 .答案第8页,总14页……订…………○…………线…………○线※※内※※答※※题※※……订…………○…………线…………○由题意可得T n >S n , 即 2n −125> 2(n−11)n2 ,化简得:2n﹣1> 212n 2−112n+5 ,即2n﹣ 212n 2−112n+5 >1,因此只须n > 12n 2−112n +5 ,即n 2﹣13n+10<0解得13−√1292 <n < 13+√1292, 由于n 为正整数,因此n 最大为 13+√1292的整数部分,也就是12.所以答案是:12【考点精析】关于本题考查的解一元二次不等式和等差数列的前n 项和公式,需要了解求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边;前n 项和公式:才能得出正确答案.12. (1)证明:若c=0,则a n =a 1+(n ﹣1)d , S n =n[(n−1)d+2a]2, b n=nS n n 2=(n−1)d+2a2. 当b 1,b 2,b 4成等比数列时,则 b 22=b 1b 4 ,即: (a+d 2)2=a(a +3d2) ,得:d 2=2ad ,又d≠0,故d=2a .因此: S n =n 2a , S nk =(nk)2a =n 2k 2a , n 2S k =n 2k 2a . 故: S nk =n 2S (k ,n∈N*).(2) 证明: b n =nS n n 2+c=n 2(n−1)d+2a2n 2+c=n 2(n−1)d+2a 2+c (n−1)d+2a 2−c (n−1)d+2a2n 2+c= (n−1)d+2a 2−c (n−1)d+2a2n 2+c. ①若{b n }是等差数列,则{b n }的通项公式是b n =A n +B 型. 观察①式后一项,分子幂低于分母幂, 故有:c(n−1)d+2a2n 2+c,即 c(n−1)d+2a2,而(n−1)d+2a2≠0 ,故c=0.经检验,当c=0时{b n }是等差数列.第9页,总14页…○…………线…………____…○…………线…………【解析】12.(1)写出等差数列的通项公式,前n 项和公式,由b 1 , b 2 , b 4成等比数列得到首项和公差的关系,代入前n 项和公式得到S n , 在前n 项和公式中取n=nk 可证结论; (2)把S n 代入 b n =nS nn 2+c中整理得到b n = (n−1)d+2a 2−c (n−1)d+2a2n 2+c,由等差数列的通项公式是a n =An+B 的形式,说明c(n−1)d+2a2n 2+c=0 ,由此可得到c=0.【考点精析】本题主要考查了等差数列的前n 项和公式和等比关系的确定的相关知识点,需要掌握前n 项和公式:;等比数列可以通过定义法、中项法、通项公式法、前n 项和法进行判断才能正确解答此题.13.(1)解:求导数可得f′(x )= 1x ﹣a∵f(x )在(1,+∞)上是单调减函数,∴ 1x ﹣a≤0在(1,+∞)上恒成立, ∴a≥ 1x ,x∈(1,+∞).∴a≥1.令g′(x )=e x ﹣a=0,得x=lna .当x <lna 时,g′(x )<0;当x >lna 时,g′(x )>0. 又g (x )在(1,+∞)上有最小值,所以lna >1,即a >e . 故a 的取值范围为:a >e .(2)解:当a≤0时,g (x )必为单调函数;当a >0时,令g′(x )=e x ﹣a >0,解得a <e x ,即x >lna ,因为g (x )在(﹣1,+∞)上是单调增函数,类似(1)有lna≤﹣1,即0< a ≤1e .结合上述两种情况,有 a ≤1e.①当a=0时,由f (1)=0以及f′(x )= 1x >0,得f (x )存在唯一的零点;②当a <0时,由于f (e a )=a ﹣ae a =a (1﹣e a )<0,f (1)=﹣a >0,且函数f (x )在[e a ,1]上的图象不间断,所以f (x )在(e a ,1)上存在零点.另外,当x >0时,f′(x )= 1x ﹣a >0,故f (x )在(0,+∞)上是单调增函数,所以f (x )只有一个零点.③当0<a≤ 1e 时,令f′(x )= 1x ﹣a=0,解得x= 1a .当0<x < 1a 时,f′(x )>0,当x > 1a 时,f′(x )<0,所以,x= 1a 是f (x )的最大值点,且最大值为f ( 1a )=﹣lna ﹣1. (i )当﹣lna ﹣1=0,即a= 1e 时,f (x )有一个零点x=e ;答案第10页,总14页……外…………○……※※请※……内…………○……(ii )当﹣lna ﹣1>0,即0<a < 1e 时,f (x )有两个零点;实际上,对于0<a < 1e ,由于f ( 1e )=﹣1﹣ ae <0,f ( 1a )>0,且函数f (x )在[ 1e ,1a ]上的图象不间断,所以f (x )在( 1e ,1a )上存在零点.另外,当0<x < 1a 时,f′(x )= 1x ﹣a >0,故f (x )在(0, 1a )上时单调增函数,所以f (x )在(0, 1a )上只有一个零点. 下面考虑f (x )在( 1a ,+∞)上的情况,先证明f ( 1e a )=a ( 1a 2−e1a )<0.为此,我们要证明:当x >e 时,e x >x 2.设h (x )=e x ﹣x 2,则h′(x )=e x ﹣2x ,再设l (x )=h′(x )=e x ﹣2x ,则l′(x )=e x ﹣2.当x >1时,l′(x )=e x ﹣2>e ﹣2>0,所以l (x )=h′(x )在(1,+∞)上时单调增函数;故当x >2时,h′(x )=e x ﹣2x >h′(2)=e 2﹣4>0,从而h (x )在(2,+∞)上是单调增函数,进而当x >e 时,h (x )=e x ﹣x 2>h (e )=e e ﹣e 2>0,即当x >e 时,e x >x 2 当0<a < 1e ,即 1a >e时,f ( 1e a )= 1a −ae 1a =a ( 1a 2−e1a )<0,又f ( 1a )>0,且函数f (x )在[ 1a , 1e a ]上的图象不间断,所以f (x )在( 1a , 1e a )上存在零点. 又当x > 1a 时,f′(x )= 1x ﹣a <0,故f (x )在( 1a ,+∞)上是单调减函数,所以f (x )在( 1a ,+∞)上只有一个零点.综合(i )(ii )(iii ),当a≤0或a= 1e 时,f (x )的零点个数为1,当0<a < 1e 时,f (x )的零点个数为2.【解析】13.(1)求导数,利用f (x )在(1,+∞)上是单调减函数,转化为 1x ﹣a≤0在(1,+∞)上恒成立,利用g (x )在(1,+∞)上有最小值,结合导数知识,即可求得结论;(2)先确定a 的范围,再分类讨论,确定f (x )的单调性,从而可得f (x )的零点个数.【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减).14.证明:连接OD .因为AB 和BC 分别与圆O 相切于点D ,C ,所以ADO=∠ACB=90° 又因为∠A=∠A,所以Rt△ADO∽Rt△ACB,………外……………………装…………○…………订………○…………线…………○…校:___________姓名:___________班级:___________考号:_______………内……………………装…………○…………订………○…………线…………○…所以 ,因为BC=2OC=2OD . 所以AC=2AD .【解析】14.证明Rt△ADO∽Rt△ACB,可得 BCOD =ACAD ,结合BC=2OC=2OD ,即可证明结论.15.解:设矩阵A 的逆矩阵为 ,则 = ,即 = ,故a=﹣1,b=0,c=0,d= ,从而A ﹣1= ,∴A ﹣1B= = .【解析】15.设矩阵A ﹣1= [abc d] ,通过AA ﹣1为单位矩阵可得A ﹣1 , 进而可得结论. 16.解:直线l 的参数方程为( 为参数),由x=t+1可得t=x ﹣1,代入y=2t , 可得直线l 的普通方程:2x ﹣y ﹣2=0.曲线C 的参数方程为 (t 为参数),化为y 2=2x ,答案第12页,总14页………外…………○…………线…………○※※请※………内…………○…………线…………○联立 ,解得 , ,于是交点为(2,2), .【解析】16.运用代入法,可将直线l 和曲线C 的参数方程化为普通方程,联立直线方程和抛物线方程,解方程可得它们的交点坐标.17.证明:2a 3﹣b 3﹣2ab 2+a 2b=2a (a 2﹣b 2)+b (a 2﹣b 2)=(a ﹣b )(a+b )(2a+b ), ∵a≥b>0,∴a﹣b≥0,a+b >0,2a+b >0, 从而:(a ﹣b )(a+b )(2a+b )≥0, ∴2a 3﹣b 3≥2ab 2﹣a 2b .【解析】17.直接利用作差法,然后分析证明即可.【考点精析】本题主要考查了不等式的证明的相关知识点,需要掌握不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等才能正确解答此题. 18.(1)解:以{ AB →,AC,→AA 1→}为单位正交基底建立空间直角坐标系A ﹣xyz , 则由题意知A (0,0,0),B (2,0,0),C (0,2,0), A 1(0,0,4),D (1,1,0),C 1(0,2,4), ∴ A 1B →=(2,0,−4) , C 1D →=(1,﹣1,﹣4), ∴cos< A 1B →,C 1D →>=A 1B →⋅C 1D→|A 1B →|⋅|C 1D →|= √20⋅√18 = 3√1010 ,∴异面直线A 1B 与C 1D 所成角的余弦值为3√1010.(2)解: AC →=(0,2,0) 是平面ABA 1的一个法向量,设平面ADC 1的法向量为 m →=(x,y,z) , ∵ AD →=(1,1,0),AC 1→=(0,2,4) , ∴ {m →⋅AD →=x +y =0m →⋅AC 1→=2y +4z =0,取z=1,得y=﹣2,x=2,∴平面ADC 1的法向量为 m →=(2,−2,1) , 设平面ADC 1与ABA 1所成二面角为θ, ∴cosθ=|cos< AC →,m →>|=| 2×√9 |= 23 ,∴sinθ= √1−(23)2= √53 .∴平面ADC 1与ABA 1所成二面角的正弦值为 √53 .【解析】18.(1)以{ AB →,AC,→AA 1→}为单位正交基底建立空间直角坐标系A ﹣xyz ,利用向量法能求出异面直线A 1B 与C 1D 所成角的余弦值.(2)分别求出平面ABA 1的法向量和平面ADC 1的法向量,利用向量法能求出平面ADC 1与ABA 1所成二面角的余弦值,再由三角函数知识能求出平面ADC 1与ABA 1所成二面角的正弦值.【考点精析】掌握异面直线及其所成的角是解答本题的根本,需要知道异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系. 19. (1)解:由数列{a n }的定义得a 1=1,a 2=﹣2,a 3=﹣2,a 4=3, a 5=3,a 6=3,a 7=﹣4,a 8=﹣4,a 9=﹣4,a 10=﹣4,a 11=5, 所以S 1=1,S 2=﹣1,S 3=﹣3,S 4=0,S 5=3,S 6=6,S 7=2, S 8=﹣2,S 9=﹣6,S 10=﹣10,S 11=﹣5,从而S 1=a 1,S 4=0•a 4,S 5=a 5,S 6=2a 6,S 11=﹣a 11, 所以集合P 11中元素的个数为5;(2)解:先证:S i (2i+1)=﹣i (2i+1)(i∈N*).事实上,①当i=1时,S i (2i+1)=S 3=﹣3,﹣i (2i+1)=﹣3,故原等式成立; ②假设i=m 时成立,即S m (2m+1)=﹣m (2m+1),则i=m+1时, S (m+1)(2m+3)=S m (2m+1)+(2m+1)2﹣(2m+2)2=﹣m (2m+1)﹣4m ﹣3 =﹣(2m 2+5m+3)=﹣(m+1)(2m+3).综合①②可得S i (2i+1)=﹣i (2i+1).于是S (i+1)(2i+1)=S i (2i+1)+(2i+1)2 =﹣i (2i+1)+(2i+1)2=(2i+1)(i+1).由上可知S i (2i+1)是2i+1的倍数,而a i (2i+1)+j=2i+1(j=1,2,…,2i+1),答案第14页,总14页又S (i+1)(2i+1)=(i+1)•(2i+1)不是2i+2的倍数, 而a (i+1)(2i+1)+j=﹣(2i+2)(j=1,2,…,2i+2),所以S (i+1)(2i+1)+j=S (i+1)(2i+1)+j (2i+2)=(2i+1)(i+1)﹣j (2i+2) 不是a (i+1)(2i+1)+j (j=1,2,…,2i+2)的倍数,故当l=i (2i+1)时,集合P l 中元素的个数为1+3+…+(2i ﹣1)=i 2,于是,当l=i (2i+1)+j (1≤j≤2i+1)时,集合P l 中元素的个数为i 2+j . 又2000=31×(2×31+1)+47,故集合P 2 000中元素的个数为312+47=1008.【解析】19.(1)由数列{a n }的定义,可得前11项,进而得到前11项和,再由定义集合P l , 即可得到元素个数;(2)运用数学归纳法证明S i (2i+1)=﹣i (2i+1)(i∈N*).再结合定义,运用等差数列的求和公式,即可得到所求.【考点精析】通过灵活运用数学归纳法的定义,掌握 数学归纳法是证明关于正整数n 的命题的一种方法即可以解答此题.。
da2013年高考数学试卷答案 江苏
2013年普通高等学校统一考试试题(江苏卷)答案一、填空题1、π2、53、34y x =±4、85、46、27、2063 8、1249、1[2,]2-10、1211、(5,0)(5,)-⋃+∞12 13、1,3- 14、12二、解答题15、(1)略 (2)5,66ππαβ==16、证:(1)SA BA =,AF SB ⊥,SF BF ∴=,由题SE EA =,//EF AB ∴,EF ⊄平面ABCAB ⊂平面ABC ,//EF ∴平面ABC ,同理//EG 平面ABC ,EF 与EG 为平面EFG 内的两条相交直线,∴平面//EFG 平面ABC ,(2)平面⊥SAB 平面SBC 于SB ,AF ⊂平面SAB ,AF ∴⊥平面SBC ,AF BC ∴⊥, 又BC AB ⊥且AB 与AF 为平面SAB 内的两条相交直线,BC SA ∴⊥。
17、解:(1)由题设点(,24)C a a -,又C 也在直线1-=x y 上,241,3a a a ∴-=-∴= 22:(3)(2)1C x y ∴-+-=,由题,过A 点切线方程可设为3y kx =+,即30kx y -+=,1=,解得:30,4k =-,∴所求切线为3y =或334y x =-+(2)设点(,24)C a a -,00(,)M x y ,2MA MO =,)3,0(A ,(0,0)O ,22220000(3)4()x y x y ∴+-=+,即2200032x y y +=-,又点M 在圆C 上,2200()(24)1x a y a ∴-+-+=,两式相减得2005(23)(89)02a ax a y a +---+=,由题以上两式有公共点,21≤整理得:25|63|2a a -+≤,即222(5126)4(5129)a a a a -+≤-+,令25126t a a =-+,则24(3)t t ≤+,解得:26t -≤≤,2251266a a ∴-≤-+≤,解得:1205a ≤≤. 18、解:(1)在ABC ∆中,1312cos =A ,53cos =C ,5sin 13A ∴=,4sin 5C =, 63sin sin()sin cos cos sin 65B A C A C A C ∴=+=+=,sin sin AB ACC B=,5651260463AB ⨯∴=, 1040AB ∴=.答:索道AB 的长为1040m .(2)设乙出发min t 到点P ,则甲出发(2)min t +到点Q ,130AP t =,50(2)AQ t =+,在APQ ∆中,222222122cos (130)50(2)213050(2)13PQ AP AQ APAQ A t t t t =+-=++-⨯⨯+⨯, 2222222100[(13)5(2)120(2)]100[16925(2)120(2)]PQ t t t t t t t t ∴=++-+=++-+ 22100(74140100)PQ t t ∴=-+,当且仅当35min 37t =时,PQ 最小. 答:乙出发3537分钟后,乙在缆车上与甲的距离最短. (3)甲走完长为m 1260的山路AC ,共需126025.250=分钟,设乙总用时为min t ,乙步行的速度为/min vm ,则22.228.2t ≤≤,由题104021130BCt v=+++,在ABC ∆中,由正弦定理求得500BC =,50011[22.2,28.2]t v ∴=+∈,500[11.2,17.2]v ∴∈,11[,]50017.211.2v ∴∈,500500[,]17.211.2v ∴∈,500500[,]17.211.2v ∴∈,50005000[,]172112v ∴∈,50005000[,]172112v ∴∈,39[29,44]4314v ∴∈答:为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制329/min43m 到944/min 14m 内.19、证明:(1)若0=c ,则n n S b n =,*N n ∈,又由题(1)2n n n dS na -=+,12n n S n b a d n -∴==+,112n n b b d +∴-=,{}n b ∴是等差数列,首项为a ,公差为2d,)0(≠d ,又421b b b ,,成等比数列, 2214b b b ∴=,23()()22d da a a ∴+=+,23()42d d ad a ∴+=,0d ≠,2d a ∴=,2n S n a ∴=,222222(),nk k S nk a n k a n S n k a ∴===,2nk k S n S ∴=(*,N n k ∈). (2)由题c n nS b n n +=2,*N n ∈,22[2(1)]2()n n a n d b n c +-=+,若}{n b 是等差数列,则可设n b x yn =+,,x y 是常数,22[2(1)]2()n a n d x yn n c +-=++关于*N n ∈恒成立.整理得:32(2)(22)220d y n a d x n cyn cx -+----=关于*N n ∈恒成立.20,220,20,20d y a d x cy cx ∴-=--===,20,22,0,0d y a x d cy cx ∴=≠-===0c ∴=。
2013年江苏省高考数学试卷及答案(最全版)
2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
1、函数)42sin(3π+=x y 的最小正周期为 ▲2、设2)2(i z -=(i 为虚数单位),则复数z 的模为 ▲3、双曲线191622=-y x 的两条渐近线的方程为 ▲4、集合}1,0,1{-共有 ▲ 个子集5、右图是一个算法的流程图,则输出的n 的值是 ▲ (流程图暂缺)6、抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:运动员 第一次 第二次 第三次 第四次 第五次甲 87 91 90 89 93乙 89 90 91 88 92则成绩较为稳定(方程较小)的那位运动员成绩的方差为 ▲7、现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为 ▲8、如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,, 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体 积为2V ,则=21:V V ▲ 9、抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界)。
若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 ▲ 10、设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 ▲ 11、已知)(x f 是定义在R 上的奇函数。
当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 ▲12、在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d , 若126d d =,则椭圆C 的离心率为 ▲13、在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数x y 1=(0>x )图象上一动点,若点A P ,之间的最短距离为22,则满足条件的实数a 的所有值为 ▲14、在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为 ▲A BC1ADE F 1B 1C二、解答题:本大题共6小题,共计90分。
13年高考真题——数学(江苏卷)
2013年普通高等学校招生全国统一考试(江苏)卷数学一.填空题(本大题共14小题,每小题5分,共70分。
请把答案填写在答题卡相应位置上)1.函数3sin 24y x π⎛⎫=+⎪⎝⎭的最小正周期为 。
2.设()22z i =-(i 为虚数单位),则复数z 的模为 。
3.双曲线191622=-y x 的两条渐近线的方程为 。
4.集合{}1,0,1-共有 个子集。
5.右图是一个算法的流程图,则输出的n 的值是 。
6.抽样统计甲、乙两位设计运动员的5次训练成绩(单位:环),结果如右表所示。
则成绩较为稳定(方差较小)的那位运动员成绩的方差为 。
7.现在某类病毒记作n m Y X ,其中正整数(),7,9m n m n ≤≤可以任意选取,则,m n 都取到奇数的概率为 。
8.如图,在三棱柱ABC C B A -111中,,,D E F 分别是1,,AB AC AA 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V 。
9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界)。
若点(),P x y 是区域D 内的任意一点,则y x 2+的取值范围是 。
10.设,D E 分别是ABC ∆的边,AB BC 上的点,AB AD 21=,BC BE 32=, 若()1212,DE AB AC R λλλλ=+∈,则21λλ+的值为 。
11.已知()f x 是定义在R 上的奇函数。
当0>x 时,()24f x x x =-,则不等式()f x x>的解集用区间表示为 。
12.在平面直角坐标系xOy 中,椭圆C 的标准方程为()222210x y a b a b+=>>,右焦点为ABC 1AD E F 1B 1CF ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 。
【真题】2013年江苏省高考数学试题(含附加题+答案)
绝密★启用前2013年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题-第20题,共20题)。
本卷满分为160分。
考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前请务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘,写清楚,线条,符号等须加黑加粗。
参考公式:样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。
棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高。
棱柱的体积公式:V Sh =,其中S 是柱体的底面积,h 为高。
一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应位置上.........。
二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明或演算步骤.15、(本小题满分14分) 已知向量(cos ,sin ),(cos ,sin ),0a b ααβββαπ==<<< 。
(1)若||a b -= a b ⊥ ;(2)设(0,1)c = ,若a b c += ,求βα,的值。
16、(本小题满分14分) 如图,在三棱锥S-ABC 中,平面⊥SAB 平面SBC,BC AB ⊥,AS=AB 。
过A 作SB AF ⊥,垂足为F ,点E 、G 分别为线段SA 、SC 的中点。
求证:(1)平面EFG//平面ABC ;(2)BC SA ⊥。
17、(本小题满分14分)如图,在平面直角坐标系xoy 中,点A(0,3),直线42:-=x y l ,设圆C 的半径为1,圆心在直线l 上。
2013江苏高考数学含答案
2013江苏高考数学含答案D【解析】抛物线2x y =在1=x 处的切线易得为y =2x—1,令z =y x 2+,y =—12 x +z2.画出可行域如下,易得过点(0,—1)时,z min =—2,过点(12 ,0)时,z max =12.10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 . 【答案】12【解析】)(32213221++=+=+= ACAB AC AB 213261λλ+=+-=所以,611-=λ,322=λ,=+21λλ12.yxl B F O c b a 11.已知)(x f 是定义在R 上的奇函数。
当0>x 时,xx x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为 . 【答案】(﹣5,0) ∪(5,﹢∞) 【解析】做出xxx f 4)(2-= (0>x )的图像,如下图所示。
由于)(x f 是定义在R 上的奇函数,利用奇函数图像关于原点对称做出x <0的图像。
不等式xx f >)(,表示函数y =)(x f 的图像在y =x 的上方,观察图像易得:解集为(﹣5,0) ∪(5,﹢∞)。
12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d=,则椭圆C 的离心率为 .【答案】33xy yy =x 2P (Q (﹣【解析】如图,l :x =c a 2,2d =c a 2-c =cb 2,由等面积得:1d =abc 。
若126d d=,则cb 2=6abc ,整理得:06622=--b ab a ,两边同除以:2a ,得:0662=+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛a b a b ,解之得:ab =36,所以,离心率为:331e 2=⎪⎭⎫⎝⎛-=a b .13.在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点, 若点A P ,之间的最短距离为22,则满足条件的实数a 的所有值为 . 【答案】1或10【解析】14.在正项等比数列}{na 中,215=a,376=+a a,则满足nn a a a a aa 2121>+++的最大正整数n 的值为 . 【答案】12【解析】设正项等比数列}{na 首项为a 1,公比为q ,则:⎪⎩⎪⎨⎧=+=3)1(215141q q a q a ,得:a 1=132,q =2,a n =26-n .记521212-=+++=n n n a a a T ,2)1(212nn n na a a -==∏.nnT∏>,则2)1(52212n n n ->-,化简得:5211212212+->-n n n,当5211212+->n nn 时,12212113≈+=n .当n =12时,1212∏>T,当n =13时,1313∏<T ,故n max =12.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0. (1)若2||=-b a ,求证:b a ⊥;(2)设)1,0(=c ,若c b a =+,求βα,的值. 解:(1)a -b =(cosα-cosβ,sin α-sin β),|a -b |2=(cosα-cosβ)2+(sin α-sin β)2=2-2(cosα·cosβ+sin α·sin β)=2, 所以,cosα·cosβ+sin α·sin β=0, 所以,b a ⊥.(2)⎩⎨⎧=+=+②1sin sin ①0cos cos βαβα,①2+②2得:cos(α-β)=-12.所以,α-β=π32,α=π32+β,带入②得:sin(π32+β)+sin β=23cosβ+12sin β=sin(3π+β)=1, 所以,3π+β=2π. 所以,α=65π,β=6π. 16.(本小题满分14分)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BCAB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点GE ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.证:(1)因为SA =AB 且AF ⊥SB ,所以F 为SB 的中点.又E ,G 分别为SA ,SC 的中点,所以,EF ∥AB ,EG ∥AC .又AB ∩AC =A ,AB ⊂面SBC ,AC ⊂面ABC ,所以,平面//EFG 平面ABC .(2)因为平面SAB ⊥平面SBC ,平面SAB ∩平面SBC =BC ,A BCS GFEAF ⊂平面ASB ,AF ⊥SB . 所以,AF ⊥平面SBC . 又BC ⊂平面SBC , 所以,AF ⊥BC .又AB ⊥BC ,AF ∩AB =A , 所以,BC ⊥平面SAB . 又SA ⊂平面SAB , 所以,SA BC ⊥.17.(本小题满分14分) 如图,在平面直角坐标系xOy 中,点线42:-=x y l .设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线1-=x y 上,的切线,求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围.解:(1)联立:⎩⎨⎧-=-=421x y x y ,得圆心为:C (3,2). 设切线为:3+=kx y , d =11|233|2==+-+r kk ,得:430-==k or k .故所求切线为:343+-==x y ory . (2)设点M (x ,y ),由MOMA 2=,知:22222)3(y x y x +=-+,化简得:4)1(22=++y x,即:点M 的轨迹为以(0,1)为圆心,2为半径的圆,可记为圆D .又因为点M 在圆C 上,故圆C 圆D 的关系为相交或相切. 故:1≤|CD |≤3,其中22)32(-+=a a CD .解之得:0≤a ≤125.18.(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C处有两种路径。
2013年江苏省高考数学试卷及答案(Word版)
2013 年一般高等学校招生全国一致考试(江苏卷)数学 Ⅰ 注意事项绝密 ★启用前考生在答题前请仔细阅读本注意事项及各题答题要求: 1.本试卷共4 页,均为非选择题 (第 1 题~第 20 题,共 20 题).本卷满分为160 分.考试时间为 120分钟 .考试结束后,请将本试卷和答题卡一并交回 .2.答题前,请您务势必自己的姓名、考试证号用 0.5 毫米黑色墨水的署名笔填写在试卷及答题卡的规定地点 .3.请仔细查对监考员在答题卡上所粘贴的条形码上的姓名、准考据号与您自己能否符合.4.作答试题一定用 5.如需作图,须用0.5 毫米黑色墨水的署名笔在答题卡的指定地点作答,2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.在其余地点作答一律无效.一、填空题:本大题共 14 小题,每题5 分,共 70 分.请把答案直接填写在答题卡相应地点上.........1.函数 y3sin(2x) 的最小正周期为 ▲.4分析: T=2=22.设 z (2 i)2 (i 为虚数单位 ),则复数 z 的模为▲.分析: Z 3 4i , Z 3224 =53.双曲线x 2y 2 的两条渐近线的方程为▲.1619 分析: y=3 x44.会合1,0,1 共有▲个子集 .开始分析: 238 (个)n1, a2n n 15.右图是一个算法的流程图,则输出的n 的值是▲a 20Ya 3a 2分析:经过了两次循环, n 值变成 3N输出 n结束(第 5题)6.抽样统计甲,乙两位射击运动员的 5 次训练成绩 (单位:环 ),结果以下:运动员第 1 次第 2 次第 3 次第 4 次第 5 次甲87 91 90 89 93乙89 90 91 88 92则成绩较为稳固(方差较小 )的那位运动员成绩的方差为▲.解析:易知均值都是90,乙方差较小,s2 1nn21 2 2 2 2 2x x 92 9089 90 90 90 91 90 88 90 2i5i 17.现有某类病毒记作X m Y n,此中正整数m,n(m 7, n 9) 能够随意选用,则m, n 都取到奇数的概率为▲.分析:m 能够取的值有:1,2,3,4,5,6,7 共7 个n 能够取的值有:1,2,3,4,5,6,7,8,9 共 9 个因此总合有 7 9 63 种可能切合题意的 m 能够取1,3,5,7 共 4 个切合题意的 n 能够取1,3,5,7,9共 5 个因此总合有 4 5 20 种可能切合题意因此切合题意的概率为20638.如图,在三棱柱A1 B1C1 ABC 中,D , E, F分别是 AB, AC, AA1的中点,设三棱锥 F ADE 的体积为 V1,三棱柱 A1 B1C1 ABC 的体积为 V2,则 V1 :V2 ▲.分析:V1 1S ADE h1 11S ABC1h21V2 C13 34 2 24B1因此 V1 :V2 124 A1F CE BA D。
2013年江苏省高考数学试卷附送答案
2013年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)函数y=3sin(2x +)的最小正周期为.2.(5分)设z=(2﹣i)2(i为虚数单位),则复数z的模为.3.(5分)双曲线的两条渐近线方程为.4.(5分)集合{﹣1,0,1}共有个子集.5.(5分)如图是一个算法的流程图,则输出的n的值是.6.(5分)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第一次第二次第三次第四次第五次甲8791908993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为.7.(5分)现在某类病毒记作X m Y n,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为.8.(5分)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2=.9.(5分)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是.10.(5分)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.11.(5分)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为.12.(5分)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d 1,F到l的距离为d2,若d2=,则椭圆C的离心率为.13.(5分)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为.14.(5分)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n 的最大正整数n的值为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.16.(14分)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(14分)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.18.(16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19.(16分)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项和.记b n=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*);(2)若{b n}是等差数列,证明:c=0.20.(16分)设函数f(x)=lnx﹣ax,g(x)=e x﹣ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.<P style="MARGIN: 0cm 0cm 0pt" class=MsoNormal><?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" /><v:shapetype id=_x0000_t75 stroked="f" filled="f" path="m@4@5l@4@11@9@11@9@5xe" o:preferrelative="t" o:spt="75" coordsize="21600,21600"><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path o:connecttype="rect" gradientshapeok="t" o:extrusionok="f"></v:path><?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /><o:lock aspectratio="t" v:ext="edit"></o:lock></v:shapetype><v:shape style="Z-INDEX: 251660288; POSITION: absolute; TEXT-ALIGN: left; MARGIN-TOP: 31.05pt; WIDTH: 75.35pt;HEIGHT: 94.6pt; MARGIN-LEFT: 381.6pt; LEFT: 0px" id=_x0000_s1026 type="#_x0000_t75"><v:imagedata o:title="" src="file:///C:\Users\adminb\AppData\Local\Temp\msohtmlclip1\01\clip_image0 01.png"></v:imagedata><?xml:namespace prefix = w ns = "urn:schemas-microsoft-com:office:word" /><w:wrap type="square"></w:wrap></v:shape><SPAN><FONT face="Times New Roman">[</FONT>选做题<FONT face="Times New Roman">]</FONT>本题包括<FONT face="Times New Roman">A</FONT>、<FONT face="Times New Roman">B</FONT>、<FONT face="Times New Roman">C</FONT>、<FONT face="Times New Roman">D</FONT>四小题,<SPAN style="font-emphasize: dot">请选定其中两题,并在相应的答题区域内作答</SPAN>.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.<SPAN style="mso-font-width: 95%; font-emphasize: dot" lang=EN-US><o:p></o:p></SPAN></SPAN></P>A.[选修4-1:几何证明选讲](本小题满分10分)21.(10分)如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC.求证:AC=2AD.B.[选修4-2:矩阵与变换](本小题满分10分)22.(10分)已知矩阵A=,B=,求矩阵A﹣1B.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.D.[选修4-5:不等式选讲](本小题满分0分)24.已知a≥b>0,求证:2a3﹣b3≥2ab2﹣a2b.第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.(10分)如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.26.(10分)设数列{a n}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…,,…,即当<n≤(k∈N*)时,.记S n=a1+a2+…+a n(n∈N∗).对于l∈N∗,定义集合P l=﹛n|S n为a n的整数倍,n∈N∗,且1≤n≤l}(1)求P11中元素个数;(2)求集合P2000中元素个数.2013年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)(2013•江苏)函数y=3sin(2x+)的最小正周期为π.【分析】将题中的函数表达式与函数y=Asin(ωx+φ)进行对照,可得ω=2,由此结合三角函数的周期公式加以计算,即可得到函数的最小正周期.【解答】解:∵函数表达式为y=3sin(2x+),∴ω=2,可得最小正周期T=||=||=π故答案为:π2.(5分)(2013•江苏)设z=(2﹣i)2(i为虚数单位),则复数z的模为5.【分析】把给出的复数展开化为a+bi(a,b∈R)的形式,然后直接利用模的公式计算.【解答】解:z=(2﹣i)2=4﹣4i+i2=3﹣4i.所以,|z|==5.故答案为5.3.(5分)(2013•江苏)双曲线的两条渐近线方程为.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=4,b=3,焦点在x轴上而双曲线的渐近线方程为y=±x∴双曲线的渐近线方程为故答案为:4.(5分)(2013•江苏)集合{﹣1,0,1}共有8个子集.【分析】集合P={1,2,3}的子集是指属于集合的部分或所有元素组成的集合,包括空集.【解答】解:因为集合{﹣1,0,1},所以集合{﹣1,0,1}的子集有:{﹣1},{0},{1},{﹣1,0},{﹣1,1},{0,1},{﹣1,0,1},∅,共8个.故答案为:8.5.(5分)(2013•江苏)如图是一个算法的流程图,则输出的n的值是3.【分析】由已知的程序框图可知,该程序的功能是利用循环计算a值,并输出满足a≥20的最小n值,模拟程序的运行过程可得答案.【解答】解:当n=1,a=2时,满足进行循环的条件,执行循环后,a=8,n=2;当n=2,a=8时,满足进行循环的条件,执行循环后,a=26,n=3;当n=3,a=26时,不满足进行循环的条件,退出循环故输出n值为3故答案为:36.(5分)(2013•江苏)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第一次第二次第三第四次第五次次甲8791908993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为2.【分析】直接由图表得出两组数据,求出它们的平均数,求出方差,则答案可求.【解答】解:由图表得到甲乙两位射击运动员的数据分别为:甲:87,91,90,89,93;乙:89,90,91,88,92;,.方差=4.=2.所以乙运动员的成绩较稳定,方差为2.故答案为2.7.(5分)(2013•江苏)现在某类病毒记作X m Y n,其中正整数m,n(m≤7,n ≤9)可以任意选取,则m,n都取到奇数的概率为.【分析】求出m取小于等于7的正整数,n取小于等于9的正整数,m取到奇数,n取到奇数的方法种数,直接由古典概型的概率计算公式求解.【解答】解:m取小于等于7的正整数,n取小于等于9的正整数,共有7×9=63种取法.m取到奇数的有1,3,5,7共4种情况;n取到奇数的有1,3,5,7,9共5种情况,则m,n都取到奇数的方法种数为4×5=20种.所以m,n都取到奇数的概率为.故答案为.8.(5分)(2013•江苏)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2=1:24.【分析】由三角形的相似比等于面积比的平方得到棱锥和棱柱的底面积的比值,由题意棱柱的高是棱锥的高的2倍,然后直接由体积公式可得比值.【解答】解:因为D,E,分别是AB,AC的中点,所以S△ADE :S△ABC=1:4,又F是AA1的中点,所以A1到底面的距离H为F到底面距离h的2倍.即三棱柱A1B1C1﹣ABC的高是三棱锥F﹣ADE高的2倍.所以V1:V2==1:24.故答案为1:24.9.(5分)(2013•江苏)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y 的取值范围是[﹣2,] .【分析】利用导数求出抛物线在x=1处的切线方程,画出可行域,找出最优解,则x+2y的取值范围可求.【解答】解:由y=x2得,y′=2x,所以y′|x=1=2,则抛物线y=x2在x=1处的切线方程为y=2x﹣1.令z=x+2y,则.画出可行域如图,所以当直线过点(0,﹣1)时,z min=﹣2.过点()时,.故答案为.10.(5分)(2013•江苏)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.【分析】由题意和向量的运算可得=,结合=λ1+λ2,可得λ1,λ2的值,求和即可.【解答】解:由题意结合向量的运算可得=====,又由题意可知若=λ1+λ2,故可得λ1=,λ2=,所以λ1+λ2=故答案为:11.(5分)(2013•江苏)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为(﹣5,0)∪(5,﹢∞).【分析】作出x大于0时,f(x)的图象,根据f(x)为定义在R上的奇函数,利用奇函数的图象关于原点对称作出x小于0的图象,所求不等式即为函数y=f (x)图象在y=x上方,利用图形即可求出解集.【解答】解:作出f(x)=x2﹣4x(x>0)的图象,如图所示,∵f(x)是定义在R上的奇函数,∴利用奇函数图象关于原点对称作出x<0的图象,不等式f(x)>x表示函数y=f(x)图象在y=x上方,∵f(x)图象与y=x图象交于P(5,5),Q(﹣5,﹣5),则由图象可得不等式f(x)>x的解集为(﹣5,0)∪(5,+∞).故答案为:(﹣5,0)∪(5,+∞)12.(5分)(2013•江苏)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF 的距离为d 1,F到l的距离为d2,若d2=,则椭圆C的离心率为.【分析】根据“d 2=”结合椭圆的半焦距,短半轴,长半轴构成直角三角形,再由等面积法可得d1=,从而得到a与b的关系,可求得,从而求出离心率.【解答】解:如图,准线l:x=,d2=,由面积法得:d1=,若d 2=,则,整理得a2﹣ab﹣=0,两边同除以a2,得+()﹣=0,解得.∴e==.故答案为:.13.(5分)(2013•江苏)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为﹣1或.【分析】设点P,利用两点间的距离公式可得|PA|,利用基本不等式和二次函数的单调性即可得出a的值.【解答】解:设点P,则|PA|===,令,∵x>0,∴t≥2,令g(t)=t2﹣2at+2a2﹣2=(t﹣a)2+a2﹣2,①当a≤2时,t=2时g(t)取得最小值g(2)=2﹣4a+2a2=,解得a=﹣1;②当a>2时,g(t)在区间[2,a)上单调递减,在(a,+∞)单调递增,∴t=a,g(t)取得最小值g(a)=a2﹣2,∴a2﹣2=,解得a=.综上可知:a=﹣1或.故答案为﹣1或.14.(5分)(2013•江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n >a1a2…a n的最大正整数n的值为12.【分析】设正项等比数列{a n}首项为a1,公比为q,由题意可得关于这两个量的方程组,解之可得数列的通项公式和a1+a2+…+a n及a1a2…a n的表达式,化简可得关于n的不等式,解之可得n的范围,取上限的整数部分即可得答案.【解答】解:设正项等比数列{a n}首项为a1,公比为q,由题意可得,解之可得:a1=,q=2,故其通项公式为a n==2n﹣6.记T n=a1+a2+…+a n==,S n=a1a2…a n=2﹣5×2﹣4…×2n﹣6=2﹣5﹣4+…+n﹣6=.由题意可得T n>S n,即>,化简得:2n﹣1>,即2n﹣>1,因此只须n>,即n2﹣13n+10<0解得<n<,由于n为正整数,因此n最大为的整数部分,也就是12.故答案为:12二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2013•江苏)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.【分析】(1)由给出的向量的坐标,求出的坐标,由模等于列式得到cosαcosβ+sinαsinβ=0,由此得到结论;(2)由向量坐标的加法运算求出+,由+=(0,1)列式整理得到,结合给出的角的范围即可求得α,β的值.【解答】解:(1)由=(cosα,sinα),=(cosβ,sinβ),则=(cosα﹣co sβ,sinα﹣sinβ),由=2﹣2(cosαcosβ+sinαsinβ)=2,得cosαcosβ+sinαsinβ=0.所以.即;(2)由得,①2+②2得:.因为0<β<α<π,所以0<α﹣β<π.所以,,代入②得:.因为.所以.所以,.16.(14分)(2013•江苏)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB ⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.【分析】(1)根据等腰三角形的“三线合一”,证出F为SB的中点.从而得到△SAB和△SAC中,EF∥AB且EG∥AC,利用线面平行的判定定理,证出EF∥平面ABC且EG∥平面ABC.因为EF、EG是平面EFG内的相交直线,所以平面EFG∥平面ABC;(2)由面面垂直的性质定理证出AF⊥平面SBC,从而得到AF⊥BC.结合AF、AB是平面SAB内的相交直线且AB⊥BC,可得BC⊥平面SAB,从而证出BC⊥SA.【解答】解:(1)∵△ASB中,SA=AB且AF⊥SB,∴F为SB的中点.∵E、G分别为SA、SC的中点,∴EF、EG分别是△SAB、△SAC的中位线,可得EF∥AB且EG∥AC.∵EF⊄平面ABC,AB⊂平面ABC,∴EF∥平面ABC,同理可得EG∥平面ABC又∵EF、EG是平面EFG内的相交直线,∴平面EFG∥平面ABC;(2)∵平面SAB⊥平面SBC,平面SAB∩平面SBC=SB,AF⊂平面ASB,AF⊥SB.∴AF⊥平面SBC.又∵BC⊂平面SBC,∴AF⊥BC.∵AB⊥BC,AF∩AB=A,∴BC⊥平面SAB.又∵SA⊂平面SAB,∴BC⊥SA.17.(14分)(2013•江苏)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.【分析】(1)联立直线l与直线y=x﹣1解析式,求出方程组的解得到圆心C坐标,根据A坐标设出切线的方程,由圆心到切线的距离等于圆的半径,列出关于k的方程,求出方程的解得到k的值,确定出切线方程即可;(2)设M(x,y),由MA=2MO,利用两点间的距离公式列出关系式,整理后得到点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,由M在圆C上,得到圆C与圆D相交或相切,根据两圆的半径长,得出两圆心间的距离范围,利用两点间的距离公式列出不等式,求出不等式的解集,即可得到a 的范围.【解答】解:(1)联立得:,解得:,∴圆心C(3,2).若k不存在,不合题意;若k存在,设切线为:y=kx+3,可得圆心到切线的距离d=r,即=1,解得:k=0或k=﹣,则所求切线为y=3或y=﹣x+3;(2)设点M(x,y),由MA=2MO,知:=2,化简得:x2+(y+1)2=4,∴点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,又∵点M在圆C上,C(a,2a﹣4),∴圆C与圆D的关系为相交或相切,∴1≤|CD|≤3,其中|CD|=,∴1≤≤3,解得:0≤a≤.18.(16分)(2013•江苏)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?【分析】(1)根据正弦定理即可确定出AB的长;(2)设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,由余弦定理可得;(3)设乙步行的速度为v m/min,从而求出v的取值范围.【解答】解:(1)在△ABC中,因为cosA=,cosC=,所以sinA=,sinC=,从而sinB=sin[π﹣(A+C)]=sin(A+C)=sinAcosC+cosAsinC==由正弦定理,得AB===1040m.所以索道AB的长为1040m.(2)假设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130t m,所以由余弦定理得d2=(100+50t)2+(130t)2﹣2×130t×(100+50t)×=200(37t2﹣70t+50)=200[37(t﹣)2+],因0≤t≤,即0≤t≤8,故当t=min时,甲、乙两游客距离最短.(3)由正弦定理,得BC===500m,乙从B出发时,甲已经走了50×(2+8+1)=550m,还需走710m才能到达C.设乙步行的速度为v m/min,由题意得﹣3≤≤3,解得,所以为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在[]范围内.19.(16分)(2013•江苏)设{a n}是首项为a,公差为d的等差数列(d≠0),S n 是其前n项和.记b n=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*);(2)若{b n}是等差数列,证明:c=0.【分析】(1)写出等差数列的通项公式,前n项和公式,由b1,b2,b4成等比数列得到首项和公差的关系,代入前n项和公式得到S n,在前n项和公式中取n=nk 可证结论;(2)把S n代入中整理得到b n=,由等差数列的通项公式是a n=An+B的形式,说明,由此可得到c=0.【解答】证明:(1)若c=0,则a n=a1+(n﹣1)d,,.当b1,b2,b4成等比数列时,则,即:,得:d2=2ad,又d≠0,故d=2a.因此:,,.故:(k,n∈N*).(2)==.①若{b n}是等差数列,则{b n}的通项公式是b n=A n+B型.观察①式后一项,分子幂低于分母幂,故有:,即,而,故c=0.经检验,当c=0时{b n}是等差数列.20.(16分)(2013•江苏)设函数f(x)=lnx﹣ax,g(x)=e x﹣ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.【分析】(1)求导数,利用f(x)在(1,+∞)上是单调减函数,转化为﹣a≤0在(1,+∞)上恒成立,利用g(x)在(1,+∞)上有最小值,结合导数知识,即可求得结论;(2)先确定a的范围,再分类讨论,确定f(x)的单调性,从而可得f(x)的零点个数.【解答】解:(1)求导数可得f′(x)=﹣a∵f(x)在(1,+∞)上是单调减函数,∴﹣a≤0在(1,+∞)上恒成立,∴a≥,x∈(1,+∞).∴a≥1.令g′(x)=e x﹣a=0,得x=lna.当x<lna时,g′(x)<0;当x>lna时,g′(x)>0.又g(x)在(1,+∞)上有最小值,所以lna>1,即a>e.故a的取值范围为:a>e.(2)当a≤0时,g(x)必为单调函数;当a>0时,令g′(x)=e x﹣a>0,解得a<e x,即x>lna,因为g(x)在(﹣1,+∞)上是单调增函数,类似(1)有lna≤﹣1,即0<.结合上述两种情况,有.①当a=0时,由f(1)=0以及f′(x)=>0,得f(x)存在唯一的零点;②当a<0时,由于f(e a)=a﹣ae a=a(1﹣e a)<0,f(1)=﹣a>0,且函数f (x)在[e a,1]上的图象不间断,所以f(x)在(e a,1)上存在零点.另外,当x>0时,f′(x)=﹣a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)只有一个零点.③当0<a≤时,令f′(x)=﹣a=0,解得x=.当0<x<时,f′(x)>0,当x>时,f′(x)<0,所以,x=是f(x)的最大值点,且最大值为f()=﹣lna﹣1.(i)当﹣lna﹣1=0,即a=时,f(x)有一个零点x=e;(ii)当﹣lna﹣1>0,即0<a<时,f(x)有两个零点;实际上,对于0<a<,由于f()=﹣1﹣<0,f()>0,且函数f(x)在[]上的图象不间断,所以f(x)在()上存在零点.另外,当0<x<时,f′(x)=﹣a>0,故f(x)在(0,)上时单调增函数,所以f(x)在(0,)上只有一个零点.下面考虑f(x)在(,+∞)上的情况,先证明f()=a()<0.为此,我们要证明:当x>e时,e x>x2.设h(x)=e x﹣x2,则h′(x)=e x﹣2x,再设l(x)=h′(x)=e x﹣2x,则l′(x)=e x﹣2.当x>1时,l′(x)=e x﹣2>e﹣2>0,所以l(x)=h′(x)在(1,+∞)上时单调增函数;故当x>2时,h′(x)=e x﹣2x>h′(2)=e2﹣4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h(x)=e x﹣x2>h(e)=e e﹣e2>0,即当x>e 时,e x>x2当0<a<,即>e时,f()==a()<0,又f()>0,且函数f(x)在[,]上的图象不间断,所以f(x)在(,)上存在零点.又当x>时,f′(x)=﹣a<0,故f(x)在(,+∞)上是单调减函数,所以f(x)在(,+∞)上只有一个零点.综合(i)(ii)(iii),当a≤0或a=时,f(x)的零点个数为1,当0<a<时,f(x)的零点个数为2.<P style="MARGIN: 0cm 0cm 0pt" class=MsoNormal><?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" /><v:shapetype id=_x0000_t75 stroked="f" filled="f" path="m@4@5l@4@11@9@11@9@5xe" o:preferrelative="t"o:spt="75" coordsize="21600,21600"><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path o:connecttype="rect" gradientshapeok="t" o:extrusionok="f"></v:path><?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /><o:lock aspectratio="t" v:ext="edit"></o:lock></v:shapetype><v:shape style="Z-INDEX: 251660288; POSITION: absolute; TEXT-ALIGN: left; MARGIN-TOP: 31.05pt; WIDTH: 75.35pt; HEIGHT: 94.6pt; MARGIN-LEFT: 381.6pt; LEFT: 0px" id=_x0000_s1026 type="#_x0000_t75"><v:imagedata o:title="" src="file:///C:\Users\adminb\AppData\Local\Temp\msohtmlclip1\01\clip_image0 01.png"></v:imagedata><?xml:namespace prefix = w ns = "urn:schemas-microsoft-com:office:word" /><w:wrap type="square"></w:wrap></v:shape><SPAN><FONT face="Times New Roman">[</FONT>选做题<FONT face="Times New Roman">]</FONT>本题包括<FONT face="Times New Roman">A</FONT>、<FONT face="Times New Roman">B</FONT>、<FONT face="Times New Roman">C</FONT>、<FONT face="Times New Roman">D</FONT>四小题,<SPAN style="font-emphasize: dot">请选定其中两题,并在相应的答题区域内作答</SPAN>.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.<SPAN style="mso-font-width: 95%; font-emphasize: dot" lang=EN-US><o:p></o:p></SPAN></SPAN></P>A.[选修4-1:几何证明选讲](本小题满分10分)21.(10分)(2013•江苏)如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC.求证:AC=2AD.【分析】证明Rt△ADO∽Rt△ACB,可得,结合BC=2OC=2OD,即可证明结论.【解答】证明:连接OD.因为AB和BC分别与圆O相切于点D,C,所以ADO=∠ACB=90°又因为∠A=∠A,所以Rt△ADO∽Rt△ACB,所以,因为BC=2OC=2OD.所以AC=2AD.B.[选修4-2:矩阵与变换](本小题满分10分)22.(10分)(2013•江苏)已知矩阵A=,B=,求矩阵A﹣1B.【分析】设矩阵A﹣1=,通过AA﹣1为单位矩阵可得A﹣1,进而可得结论.【解答】解:设矩阵A的逆矩阵为,则=,即=,故a=﹣1,b=0,c=0,d=,从而A﹣1=,∴A﹣1B==.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.(2013•江苏)在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.【分析】运用代入法,可将直线l和曲线C的参数方程化为普通方程,联立直线方程和抛物线方程,解方程可得它们的交点坐标.【解答】解:直线l的参数方程为(为参数),由x=t+1可得t=x﹣1,代入y=2t,可得直线l的普通方程:2x﹣y﹣2=0.曲线C的参数方程为(t为参数),化为y2=2x,联立,解得,,于是交点为(2,2),.D.[选修4-5:不等式选讲](本小题满分0分)24.(2013•江苏)已知a≥b>0,求证:2a3﹣b3≥2ab2﹣a2b.【分析】直接利用作差法,然后分析证明即可.【解答】证明:2a3﹣b3﹣2ab2+a2b=2a(a2﹣b2)+b(a2﹣b2)=(a﹣b)(a+b)(2a+b),∵a≥b>0,∴a﹣b≥0,a+b>0,2a+b>0,从而:(a﹣b)(a+b)(2a+b)≥0,∴2a3﹣b3≥2ab2﹣a2b.第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.(10分)(2013•江苏)如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.【分析】(1)以{}为单位正交基底建立空间直角坐标系A﹣xyz,利用向量法能求出异面直线A1B与C1D所成角的余弦值.(2)分别求出平面ABA1的法向量和平面ADC1的法向量,利用向量法能求出平面ADC1与ABA1所成二面角的余弦值,再由三角函数知识能求出平面ADC1与ABA1所成二面角的正弦值.【解答】解:(1)以{}为单位正交基底建立空间直角坐标系A﹣xyz,则由题意知A(0,0,0),B(2,0,0),C(0,2,0),A1(0,0,4),D(1,1,0),C1(0,2,4),∴,=(1,﹣1,﹣4),∴cos<>===,∴异面直线A1B与C1D所成角的余弦值为.(2)是平面ABA1的一个法向量,设平面ADC1的法向量为,∵,∴,取z=1,得y=﹣2,x=2,∴平面ADC1的法向量为,设平面ADC1与ABA1所成二面角为θ,∴cosθ=|cos<>|=||=,∴sinθ==.∴平面ADC1与ABA1所成二面角的正弦值为.26.(10分)(2013•江苏)设数列{a n}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…,,…,即当<n≤(k ∈N*)时,.记S n=a1+a2+…+a n(n∈N∗).对于l∈N∗,定义集合P l=﹛n|S n为a n的整数倍,n∈N∗,且1≤n≤l}(1)求P11中元素个数;(2)求集合P2000中元素个数.【分析】(1)由数列{a n}的定义,可得前11项,进而得到前11项和,再由定义集合P l,即可得到元素个数;(2)运用数学归纳法证明S i=﹣i(2i+1)(i∈N*).再结合定义,运用等差(2i+1)数列的求和公式,即可得到所求.【解答】解:(1)由数列{a n}的定义得a1=1,a2=﹣2,a3=﹣2,a4=3,a5=3,a6=3,a7=﹣4,a8=﹣4,a9=﹣4,a10=﹣4,a11=5,所以S1=1,S2=﹣1,S3=﹣3,S4=0,S5=3,S6=6,S7=2,S8=﹣2,S9=﹣6,S10=﹣10,S11=﹣5,从而S1=a1,S4=0•a4,S5=a5,S6=2a6,S11=﹣a11,所以集合P11中元素的个数为5;(2)先证:S i(2i+1)=﹣i(2i+1)(i∈N*).事实上,①当i=1时,S i(2i+1)=S3=﹣3,﹣i(2i+1)=﹣3,故原等式成立;②假设i=m时成立,即S m(2m+1)=﹣m(2m+1),则i=m+1时,S(m+1)(2m+3)=S m(2m+1)+(2m+1)2﹣(2m+2)2=﹣m(2m+1)﹣4m﹣3=﹣(2m2+5m+3)=﹣(m+1)(2m+3).综合①②可得S i(2i+1)=﹣i(2i+1).于是S(i+1)(2i+1)=S i(2i+1)+(2i+1)2=﹣i(2i+1)+(2i+1)2=(2i+1)(i+1).由上可知S i(2i+1)是2i+1的倍数,而a i(2i+1)+j=2i+1(j=1,2,…,2i+1),所以S i(2i+1)+j=S i(2i+1)+j(2i+1)是a i(2i+1)+j(j=1,2,…,2i+1)的倍数.又S(i+1)(2i+1)=(i+1)•(2i+1)不是2i+2的倍数,而a(i+1)(2i+1)+j=﹣(2i+2)(j=1,2,…,2i+2),所以S(i+1)(2i+1)+j=S(i+1)(2i+1)﹣j(2i+2)=(2i+1)(i+1)﹣j(2i+2)不是a(i+1)(2i+1)+j(j=1,2,…,2i+2)的倍数,故当l=i(2i+1)时,集合P l中元素的个数为1+3+…+(2i﹣1)=i2,于是,当l=i(2i+1)+j(1≤j≤2i+1)时,集合P l中元素的个数为i2+j.又2000=31×(2×31+1)+47,故集合P2 000中元素的个数为312+47=1008.。
2013年江苏省高考数学试卷及答案(Word解析版)
普通高等学校统一考试试题一、填空题:本大题共14小题,每小题5分,共计70分。
请把答案填写在答题卡相印位置上。
1.函数)42sin(3π+=x y 的最小正周期为 .【答案】π【解析】T =|2πω |=|2π2 |=π.2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 . 【答案】5【解析】z =3-4i ,i 2=-1,| z |==5.3.双曲线191622=-y x 的两条渐近线的方程为 . 【答案】x y 43±= 【解析】令:091622=-y x ,得x x y 431692±=±=. 4.集合}1,0,1{-共有 个子集.【答案】8【解析】23=8.5.右图是一个算法的流程图,则输出的n 的值是 . 【答案】3【解析】n =1,a =2,a =4,n =2;a =10,n =3;a =28,n =4. 6则成绩较为稳定(方差较小)的那位运动员成绩的方差为 . 【答案】2【解析】易得乙较为稳定,乙的平均值为:9059288919089=++++=x .方差为:25)9092()9088()9091()9090()9089(222222=-+-+-+-+-=S . 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m , 都取到奇数的概率为 .【答案】6320 【解析】m 取到奇数的有1,3,5,7共4种情况;n 取到奇数的有1,3,5,7,9共5种情况,则n m ,都取到奇数的概率为63209754=⨯⨯. 8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .【答案】1:24【解析】三棱锥ADE F -与三棱锥ABC A -1的相似比为1:2,故体积之比为1:8.又因三棱锥ABC A -1与三棱柱ABC C B A -111的体积之比为1:3.所以,三棱锥ADE F -与三棱柱ABC C B A -111的体积之比为1:24.9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 . 【答案】[—2,12 ]【解析】抛物线2x y =在1=x 处的切线易得为y =2x —1,令z =y x 2+,y =—12 x +z 2 . 画出可行域如下,易得过点(0,—1)时,z min =—2,过点(12 ,0)时,z max =12 .10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 . 【答案】12xAB C1ADE F1B1C【解析】)(32213221AC BA AB BC AB BE DB DE ++=+=+= AC AB AC AB 213261λλ+=+-=所以,611-=λ,322=λ,=+21λλ12 . 11.已知)(x f 是定义在R 上的奇函数。
2013江苏高考数学试卷含答案(校正精确版)
2013江苏一、 填空题1.函数y =3sin(2x +π4)的最小正周期为 .【解】利用函数y =A sin(ωx +φ)的周期公式求解.函数y =3sin(2x +π4)的最小正周期为T =2π2=π.2.设z =(2-i)2(i 为虚数单位),则复数z 的模为 .【解】z =3-4i ,|z |=53.双曲线x 216-y 29=1的两条渐近线的方程为 .【解】y =±34x4.集合{-1,0,1}共有 个子集.【解】23=8(个)5.右图是一个算法的流程图,则输出的n 的值是 ▲【解】经过了两次循环,n 值变为36.抽样统计甲,乙两位射击运动员的5次训练成绩(单位:环),结果如下: 运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ .【解】易知均值都是90,乙方差较小,2222222111()[(8990)(9090)(9190)(8890)(9290)]25n i i s x x n ==-=-+-+-+-+-=∑7.现有某类病毒记作n m Y X ,其中正整数)9,7(,≤≤n m n m 可以任意选取,则n m ,都取到奇数的概率为 ▲ .【解】m 可以取的值有:1,2,3,4,5,6,7共7个,n 可以取的值有:1,2,3,4,5,6,7,8,9共9个,故总共有7×9=63种可能,符合题意的m 可以取1,3,5,7共4个,符合题意的n 可以取1,3,5,7,9共5个,故总共有4×5=20种可能符合题意,故符合题意的概率为2063. 8.如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2= .【解】设三棱柱A 1B 1C 1-ABC 的高为h ,底面三角形ABC 的面积为S ,则V 1=13×14S ×12h =124Sh =124V 2,即V 1∶V 2=1∶24.9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 ▲ .【解】易知切线方程为:y =2x -1,故与两坐标轴围成的三角形区域三个点为(0,0)A ,(0.5,0)B ,(0,1)C -,易知过C 点时有最小值-2,过B 点时有最大值0.510.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE ―→=λ1AB ―→+λ2AC ―→(λ1,λ2为实数),则λ1+λ2的值为 .【解】DE ―→=DB ―→+BE ―→=12AB ―→+23BC ―→=12AB ―→+23(BA ―→+AC ―→)=-16AB ―→+23AC ―→,所以λ1=-16,λ2=23,即λ1+λ2=12. 11.已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为 ▲ .【解】由于f (x )为R 上的奇函数,所以当x =0时,f (0)=0;当x <0时,-x >0,所以f (-x )=x 2+4x =-f (x ),即f (x )=-x 2-4x ,所以f (x )=⎩⎪⎨⎪⎧x 2-4x ,x >0,0,x =0,-x 2-4x ,x <0.由f (x )>x ,可得⎩⎨⎧x 2-4x >x ,x >0或⎩⎨⎧-x 2-4x >x ,x <0,解得x >5或-5<x <0,所以原不等式的解集为(-5,0)∪(5,+∞). 12.在平面直角坐标系xOy 中,椭圆C 的标准方程为x 2a 2+y 2b2=1(a >b >0),右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d .若126d d =,则椭圆的离心率为 ▲ .【解】由题意知2212,bc a b d d c a c c ==-=,故有2b c =,两边平方得到2246a b c =,即42246a a c c -=,两边同除以4a 得到2416e e -=,解得213e =,即e =ABC1ADE F1B1C13.平面直角坐标系xOy 中,设定点),(a a A ,P 是函数)0(1>=x xy 图像上一动点,若点A P ,之间最短距离为22,则满足条件的实数a 的所有值为 ▲ .【解】由题意设0001(,)(0)P x x x >,则有22220002000111()()2(+)PA x a a x a x x x x =-+-=+-+2220000112(+)2(+)22a x a x a x x =-+-,令001(2)x t t x +=≥,则222()222(2)PA f t t at a t ==-+-≥,对称轴t a =,1.2a ≤时,222min (2)242,2428PA f a a a a ==-+∴-+=,1a =-,3a =(舍去) 2.2a >时,222min()2,28PAf a a a ==-∴-=,a =,a =(舍去)综上1a =-或a =14.在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n的值为 .【解】a 5=12,a 6+a 7=3,故a 5q +a 5q 2=3,q 2+q -6=0,q >0,故q =2,故a n =2n -6,因a 1+a 2+…+a n >a 1a 2…a n ,故2n -5-2-5>2n 2-11n2,2n -5-2n 2-11n2>2-5>0,n -5>12(n 2-11n ),故13-1292<n <13+1292,因n ∈N *,故1≤n ≤12,n ∈N *,又n =12时符合题意,故n 的最大值为12.设数列{a n }的公比为q (q >0),由已知得,12q +12q 2=3,即q 2+q -6=0,解得q =2,或q =-3(舍去),a n =a 5q n -5=12×2n -5=2n -6,a 1+a 2+…+a n =132(2n -1),a 1a 2…a n =2-52-42-3…2n -6=2n 2-11n 2,由a 1+a 2+…+a n >a 1a 2…a n ,可知2n -5-2-5>2n 2-11n2,由2n -5-2-5>2n 2-11n2,可求得n 的最大值为12,而当n =13时,28-2-5<213,故n 的最大值为12. 二、解答题15.已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. ⑴.若|a -b |=2,求证:a ⊥b ;⑵.设c =(0,1),若a +b =c ,求α,β的值.【解】⑴.由题意得|a -b |2=2,即(a -b )2=a 2-2a ·b +b 2=2.又a 2=b 2=|a |2=|b |2=1,所以2-2a ·b =2,即a ·b =0,故a ⊥b ;⑵.因为a +b =(cos α+cos β,sin α+sin β)=(0,1),所以⎩⎪⎨⎪⎧cos α+cos β=0,sin α+sin β=1,由此得cos α=cos(π-β).由0<β<π,得0<π-β<π,又0<α<π,故α=π-β.代入sin α+sin β=1,可得sin β=12.∴sin α=12,而α>β,所以α=5π6,β=π6.16.如图,在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =.过A 作AF SB ⊥,垂足为F ,点E ,G 分别是侧棱SA ,SC 的中点.求证:⑴.平面EFG //平面ABC ; ⑵.BC SA ⊥.【解】⑴.,E G Q 分别是侧棱,SA SC 的中点,EG AC ∴∥,AC Q 在平面ABC 中,EG 在平面外,EG ∴∥平面ABC ,,AS AB AF SB =Q ⊥,F ∴为SB 中点,EF AB ∴∥,Q AB 在平面ABC 中,EF 在平面外,EF ∴∥平面ABC ,Q EF 与EG 相交于E ,,EF EG 在平面EFG 中,∴平面EFG //平面ABC⑵.Q 平面SAB ⊥平面SBC ,SB 为交线,Q AF 在SAB 中,AF SB ⊥,AF ∴⊥平面SBC ,AF BC ∴⊥,BC AB Q ⊥,AF 与AB 相交于A ,,AF AB 在平面SAB 中,BC ∴⊥平面SAB ,BC SA ∴⊥17.如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.⑴.若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; ⑵.若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.【解】⑴.由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3,由题意,得|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0.⑵.因为圆心在直线y =2x -4上,故圆C 的方程为(x -a )2+[y -2(a -2)]2=1.设点M (x ,y ),因为MA =2MO ,故x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,故点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,故圆C 与圆D 有公共点,则|2-1|≤CD ≤2+1,即1≤a 2+(2a -3)2≤3.整理得-8≤5a 2-12a ≤0.由5a 2-12a +8≥0,得a ∈R ;由5a 2-12a ≤0,得0≤a ≤125.故点C 的横坐标a 的取值范围是⎣⎡⎦⎤0,125. 18.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min .在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35.⑴.求索道AB 的长;⑵.问乙出发多少分钟后,乙在缆车上与甲的距离最短?⑶.为使两位游客在C 处相互等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 【解】(1)在△ABC 中,因为cos A =1213,cos C =35,故sin A =513,sin C =45.从而sin B =sin[π-(A+C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由正弦定理AB sin C =ACsin B ,得AB =AC sin B ·sin C =1 2606365×45=1 040(m).故索道AB 的长为1 040 m . (2)设乙出发t min 后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,故由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),因0≤t ≤1 040130,即0≤t ≤8,故当t =3537(min)时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =AC sin B ,得BC =AC sin B ·sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,故为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514(单位:m/min)范围内.19.设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS nn 2+c,n ∈N *,其中c 为实数.⑴.若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *); ⑵.若{b n }是等差数列,证明:c =0.【解】⑴.由题设,S n =na +n (n -1)2d .(1)由c =0,得b n =S n n =a +n -12d .又b 1,b 2,b 4成等比数列,故b 22=b 1b 4,即⎝⎛⎭⎫a +d 22=a ⎝⎛⎭⎫a +32d ,化简得d 2-2ad =0.因为d ≠0,故d =2a .因此,对于所有的m ∈N *,有S m =m 2a .从而对于所有的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .⑵.设数列{b n }的公差为d 1,则b n =b 1+(n -1)d 1,即nS nn 2+c =b 1+(n -1)d 1,n ∈N *,代入S n 的表达式,整理得,对于所有的n ∈N *,有⎝⎛⎭⎫d 1-12d n 3+(b 1-d 1-a +12d )n 2+cd 1n =c (d 1-b 1).令A =d 1-12d ,B =b 1-d 1-a +12d ,D =c (d 1-b 1),则对于所有的n ∈N *,有An 3+Bn 2+cd 1n =D (*).在(*)式中分别取n =1,2,3,4,得A +B +cd 1=8A +4B +2cd 1=27A +9B +3cd 1=64A +16B +4cd 1,从而有⎩⎪⎨⎪⎧7A +3B +cd 1=0,①19A +5B +cd 1=0,②21A +5B +cd 1=0,③由②,③得A =0,cd 1=-5B ,代入方程①,得B =0,从而cd 1=0.即d 1-12d =0,b 1-d 1-a +12d =0,cd 1=0.若d 1=0,则由d 1-12d =0,得d =0,与题设矛盾,故d 1≠0.又cd 1=0,故c =0.20.设函数f (x )=ln x -ax ,g (x )=e x -ax ,其中a 为实数.⑴.若f (x )在(1,+∞)上是单调减函数,且g (x )在(1,+∞)上有最小值,求a 的取值范围; ⑵.若g (x )在(-1,+∞)上是单调增函数,试求f (x )的零点个数,并证明你的结论.【解】⑴.令f ′(x )=1x -a =1-ax x <0,考虑到f (x )的定义域为(0,+∞),故a >0,进而解得x >a -1,即f (x )在(1a ,+∞)上是单调减函数.同理,f (x )在(0,a -1)上是单调增函数.由于f (x )在(1,+∞)上是单调减函数,故(1,+∞)⊆(1a ,+∞),从而1a ≤1,即a ≥1.令g ′(x )=e x -a =0,得x =ln a .当x<ln a 时,g ′(x )<0;当x >ln a 时,g ′(x )>0.又g (x )在(1,+∞)上有最小值,故ln a >1,即a >e .综上,a 的取值范围为(e ,+∞).⑵.当a ≤0时,g (x )必为单调增函数;当a >0时,令g ′(x )=e x -a >0,解得a <e x ,即x >ln a ,因为g (x )在(-1,+∞)上是单调增函数,类似(1)有ln a ≤-1,即0<a ≤1e.综合上述两种情况,有a ≤1e.(ⅰ)当a =0时,由f (1)=0以及f ′(x )=1x>0,得f (x )存在唯一的零点.(ⅱ)当a <0时,由于f (e a )=a -a e a =a (1-e a )<0,f (1)=-a >0,且函数f (x )在[e a ,1]上的图像不间断,故f (x )在(e a ,1)上存在零点.另外,当x >0时,f ′(x )=1x -a >0,故f (x )在(0,+∞)上是单调增函数,故f (x )只有一个零点.(ⅲ)当0<a ≤1e 时,令f ′(x )=1x -a =0,解得x =1a .当0<x <1a 时,f ′(x )>0,当x >1a 时,f ′(x )<0,故,x =1a 是f (x )的最大值点,且最大值为f (1a)=-1-ln a .①.当-1-ln a =0,即a =1e 时,f (x )有一个零点x =e .②.当-1-ln a >0,即0<a <1e时,f (x )有两个零点.实际上,对于0<a <1e ,由于f (1e )=-1-a e <0,f (1a )>0,且函数f (x )在[1e ,1a ]上的图像不间断,故f (x )在(1e ,1a )上存在零点.另外,当x ∈(0,1a )时,f ′(x )=1x -a >0,故f (x )在(0,1a )上是单调增函数,故f (x )在(0,1a)上只有一个零点.下面考虑f (x )在(1a ,+∞)上的情况.先证f (e 1a )=a (1a2-e 1a )<0.为此,我们要证明:当x >e 时,e x >x 2.设h (x )=e x -x 2,则h ′(x )=e x -2x ,再设l (x )=h ′(x )=e x -2x ,则l ′(x )=e x -2.当x >1时,l ′(x )=e x -2>e -2>0,故l (x )=h ′(x )在(1,+∞)上是单调增函数.故当x >2时,h ′(x )=e x -2x >h ′(2)=e 2-4>0,从而h (x )在(2,+∞)上是单调增函数,进而当x >e 时,h (x )=e x -x 2>h (e)=e e -e 2>0,即当x >e 时,ex>x 2.当0<a <1e ,即1a >e 时,f (e 1a )=a (1a 2-e 1a )<0,又f (1a)>0,且函数f (x )在[1a ,e 1a ]上的图像不间断,故f (x )在(1a ,e 1a )上存在零点.又当x >1a 时,f ′(x )=1x -a <0,故f (x )在(1a ,+∞)上是单调减函数,故f (x )在(1a,+∞)上只有一个零点. 综合(ⅰ)(ⅱ)(ⅲ),当a ≤0或a =1e 时,f (x )的零点个数为1,当0<a <1e 时,f (x )的零点个数为2.B .已知矩阵A =⎣⎢⎡⎦⎥⎤-10 0 2,B =⎣⎢⎡⎦⎥⎤1 20 6,求矩阵A -1B .【解】设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤-1 0 02⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1001,故a =-1,b =0,c =0,d =12,从而A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-10 012,故A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-10 0 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -2 0 3.C .在平面直角坐标系xoy 中,直线l 的参数方程为12x t y t =+⎧⎨=⎩(t 为参数),曲线C 的参数方程为22tan 2tan x y θθ⎧=⎨=⎩(θ为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标. 解:因为直线l 的参数方程为12x t y t =+⎧⎨=⎩(t 为参数),由1x t =+得,1t x =-,代入2y t =得,直线l 的普通方程为220x y --=,同理得曲线C 的普通方程为22y x =,联立方程组22(1),2y x y x =-⎧⎨=⎩,解得公共点的坐标为(2,2),1(,1)2-.22.如图,在直三棱柱A 1B 1C 1-ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点. ⑴.求异面直线A 1B 与C 1D 所成角的余弦值; ⑵.求平面ADC 1与平面ABA 1所成二面角的正弦值.解:⑴.以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B ―→=(2,0,-4),C 1D ―→=(1,-1,-4).因为cos 〈A 1B ―→,C 1D ―→〉=A 1B ―→·C 1D ―→| A 1B ―→||C 1D ―→|=1820×18=31010,所以异面直线A 1B 与C 1D 所成角的余弦值为31010; ⑵.设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD ―→=(1,1,0),AC 1―→=(0,2,4),所以n 1·AD ―→=0,n 1·AC 1―→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面ABA 1的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=|n 1·n 2||n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53. 23.设数列{a n }:1,-2,-2,3,3,3,-4,-4,-4,-4,…,11(1)(1)k k k k k 644474448---,,-,,个……即当(k -1)k 2<n ≤k (k +1)2(k ∈N *)时,a n =(-1)k -1k ,记S n =a 1+a 2+…+a n (n ∈N *).对于l ∈N *,定义集合P l ={n |S n 是a n 的整数倍,n ∈N *,且1≤n ≤l }. (1)求集合P 11中元素的个数; (2)求集合P 2000中元素的个数.解 (1)由数列{a n }的定义得a 1=1,a 2=-2,a 3=-2,a 4=3,a 5=3,a 6=3,a 7=-4,a 8=-4,a 9=-4,a 10=-4,a 11=5,所以S 1=1,S 2=-1,S 3=-3,S 4=0,S 5=3,S 6=6,S 7=2,S 8=-2,S 9=-6,S 10=-10,S 11=-5,从而S 1=a 1,S 4=0×a 4,S 5=a 5,S 6=2a 6,S 11=-a 11,所以集合P 11中元素的个数为5.(2)先证:S i (2i +1)=-i (2i +1)(i ∈N *).事实上,①当i =1时,S i (2i +1)=S 3=-3,-i (2i +1)=-3,故原等式成立;②假设i=m时成立,即S m(2m+1)=-m(2m+1),则i=m+1时,S(m+1)(2m+3)=S m(2m+1)+(2m+1)2-(2m+2)2=-m(2m+1)-4m-3=-(2m2+5m+3)=-(m+1)(2m+3).综合①②可得S i(2i+1)=-i(2i+1).于是S(i+1)(2i+1)=S i(2i+1)+(2i+1)2=-i(2i+1)+(2i+1)2=(2i+1)(i+1).由上可知S i(2i+1)是2i+1的倍数,而a i(2i+1)+j=2i+1(j=1,2,…,2i+1),所以S i(2i+1)+j=S i(2i+1)+j(2i+1)是a i(2i+1)+j(j=1,2,…,2i+1)的倍数.又S(i+1)(2i+1)=(i+1)(2i+1)不是2i+2的倍数,而a(i+=-(2i+2)(j=1,2,…,2i+2),所以S(i+1)(2i+1)+j=S(i+1)(2i+1)-j(2i+2)=(2i+1)(i+1)-j(2i+1)(2i+1)+j2)不是a(i+1)(2i+1)+j(j=1,2,…,2i+2)的倍数,故当l=i(2i+1)时,集合P l中元素的个数为1+3+…+(2i-1)=i2,于是,当l=i(2i+1)+j(1≤j≤2i+1)时,集合P l中元素的个数为i2+j.又2000=31×(2×31+1)+47,故集合P2000中元素的个数为312+47=1008.。
2013年江苏高考数学试题和答案(含理科附加)
1∑(x-x)2,其中x= n 1∑x。
n一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应...4)的最小正周期为2013年普通高等学校招生全国统一考试(江苏卷)参考公式:样本数据x,x,L,x的方差s2=12nni=1ini=1i棱锥的体积公式:V=1Sh,其中S是锥体的底面积,h为高。
3棱柱的体积公式:V=Sh,其中S是柱体的底面积,h为高。
......位置上。
1、函数y=3sin(2x+π▲。
2、设z=(2-i)2(i为虚数单位),则复数z的模为▲。
3、双曲线x2y2-=1的两条渐近线的方程为▲。
1694、集合{-1,0,1}共有▲个子集。
5、右图是一个算法的流程图,则输出的n的值是▲。
6、抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第1次第2次第3次第4次第5次甲乙87899190909189889392则成绩较为稳定(方差较小)的那位运动员成绩的方差为▲。
7、现有某类病毒记作为X Y,其中正整数m,n(m≤7,n≤9)可以任意选m n取,则m,n都取到奇数的概率为▲。
8、如图,在三棱柱A1B1C1-ABC中,D、E、F分别为AB、AC、A A1的中点,uuur uuur uuur2 F }中, a = , a + a =3 ,则满足a + a + L + a > a a L a 的2二、解答题:本大题共 6 小题,共计 90 分,请在答题卡指定区域内作答,解答时应写出文字说设三棱锥 F -ADE 的体积为V 1 ,三棱柱 A 1B 1C 1 -ABC 的体积为V 2 ,则V 1 : V 2 =▲。
9、抛物线 y = x 2 在 x = 1 处的切线与坐标轴围成三角形区域为 D(包含三角形内部与边界)。
若点 P(x ,y)是区域 D 内的任意一点,则 x + 2 y 的取值范围是▲。
1 210 、 设 D 、 E 分 别 是 △ ABC 的 边 AB 、 BC 上 的 点 , 且 AD = AB, BE = BC 。
2013江苏省高考数学真题(含答案)
2013 年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14 小题,每小题 5 分,共计70 分。
请把答案填写在答题卡相印位置上。
1.函数 y 3sin( 2x ) 的最小正周期为.4 开始2.设2z (2i)(i 为虚数单位),则复数z 的模为.n 1,a22 y2x3.双曲线 116 9的两条渐近线的方程为.n n 1Ya 20a 3a 2 4.集合 { 1, 0,1} 共有个子集.N输出 n 5.右图是一个算法的流程图,则输出的n 的值是.结束(第 5 题) 6.抽样统计甲、乙两位设计运动员的 5 此训练成绩(单位:环),结果如下:运动员第一次第二次第三次第四次第五次甲87 91 90 89 93乙89 90 91 88 92则成绩较为稳定(方差较小)的那位运动员成绩的方差为.2 2 2 2 2(89 90) (90 90) (91 90) (88 90) (92 90)2方差为: 2S .57.现在某类病毒记作X m Y n ,其中正整数m ,n (m7,n9)可以任意选取,则m,n 都取到奇数的概率为.8 .如图,在三棱柱A1B1C1 ABC 中,D,E,F 分别是C1B1AB,AC,AA 的中点,设三棱锥 F ADE 的体积为V1 ,三棱柱1 A1A1B1C1 ABC 的体积为V2 ,则 V1 :V2 .FCE BA D9.抛物线2y x 在x1处的切线与两坐标轴围成三角形区域为 D (包含三角形内部和边界) .若点P( x, y) 是区域D 内的任意一点,则x 2y 的取值范围是.1 10.设D,E 分别是ABC的边AB,BC 上的点,AD AB22,BE BC3,若 DE AB AC1 (1,2 为实数),则 1 2 的值为.22 11.已知 f (x) 是定义在R 上的奇函数。
当x 0时,f (x) x 4x ,则不等式 f (x) x 的解集用区间表示为.2 2x y12.在平面直角坐标系xOy 中,椭圆C 的标准方程为1(a 0,b 0)2 2a b ,右焦点为F ,右准线为l ,短轴的一个端点为 B ,设原点到直线BF 的距离为d1 ,F 到l 的距离为d2 ,若 d2 6d1,则椭圆C 的离心率为.13.在平面直角坐标系xOy 中,设定点A(a, a) , P 是函数y1x( x 0)图象上一动点,若点P,A 之间的最短距离为 2 2 ,则满足条件的实数 a 的所有值为.14.在正项等比数列{a n} 中,最大正整数n 的值为.1a ,a6 a7 3 ,则满足a1 a2 a n a1a2 a n 的52二、解答题:本大题共 6 小题,共计90 分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14 分)已知a=(cos , sin ),b (cos , sin ) ,0 .(1)若| a b | 2 ,求证:a b ;(2)设c ( 0,1) ,若a b c,求, 的值.16.(本小题满分14 分)如图,在三棱锥S ABC 中,平面SAB 平面SBC ,AB BC ,A S AB ,过A 作AF SB,垂足为F ,点E,G 分别是棱SA,SC的中点.求证:(1)平面EFG // 平面A BC ;S(2)B C SA.GEFCAB17.(本小题满分14 分)y 如图,在平面直角坐标系xOy 中,点 A (0,3) ,直线 l : y 2x 4.lA 设圆C的半径为1,圆心在l 上.(1)若圆心 C 也在直线y x 1上,过点A作圆 C 的切线,O x 求切线的方程;(2)若圆C上存在点M ,使M A 2MO ,求圆心C 的横坐标 a 的取值范围.18.(本小题满分16 分)如图,游客从某旅游景区的景点 A 处下山至C 处有两种路径。
2013年江苏高考数学试题及答案解析
高考频道全体预祝所有考生梦想成真,考试顺利!
为了给您在高考填报志愿有所帮助我们精心收集到江苏高考真题供您参考出国留学网高考频道在考后快速为您揭晓2013江苏高考数学真题答案
2013年江苏高考数学试题及答案解析
为了给您在高考填报Байду номын сангаас愿有所帮助,我们精心收集到江苏高考真题供您参考,高考频道在考后快速为您揭晓2013江苏高考数学真题答案。一旦高考真题及答案发布,将在此表页的头条显示,记得按crtl+F5刷新哦。预祝您考个好的成绩。
2013年江苏省高考数学试卷
2013年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)函数y=3sin(2x +)的最小正周期为.2.(5分)设z=(2﹣i)2(i为虚数单位),则复数z的模为.3.(5分)双曲线的两条渐近线方程为.4.(5分)集合{﹣1,0,1}共有个子集.5.(5分)如图是一个算法的流程图,则输出的n的值为.6.(5分)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为.7.(5分)现在某类病毒记作X m Y n,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为.8.(5分)如图,在三棱柱A1B 1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2=.9.(5分)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是.10.(5分)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.11.(5分)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为.12.(5分)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d 1,F到l的距离为d2,若d2=,则椭圆C的离心率为.13.(5分)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为.14.(5分)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n 的最大正整数n的值为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.16.(14分)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(14分)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C 的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣3上,过点A作圆C的切线,求切线方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标的取值范围.18.(16分)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19.(16分)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项和.记b n=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*);(2)若{b n}是等差数列,证明:c=0.20.(16分)设函数f(x)=lnx﹣ax,g(x)=e x﹣ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-1:几何证明选讲](本小题满分10分)21.(10分)如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC.求证:AC=2AD.B.[选修4-2:矩阵与变换](本小题满分10分)22.(10分)已知矩阵A=,B=,求矩阵A﹣1B.C.[选修4-4:坐标系与参数方程](本小题满分0分)23.在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.D.[选修4-5:不等式选讲](本小题满分0分)。
2013年江苏省高考数学试卷 学生版2
2013年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)(2013?江苏)函数y=3sin(2x+)的最小正周期为.22.(5分)(2013?江苏)设z=(2﹣i)(i为虚数单位),则复数z的模为..的两条渐近线方程为江苏)双曲线2013?3.(5分)(个子集.,01}共有(4.(5分)2013?江苏)集合{﹣1,.(5分)(2013?江苏)如图是一个算法的流程图,则输出的n的值为5.(单位:次训练成绩乙两位射击运动员的5(2013?江苏)抽样统计甲、.6(5分),结果如下:环)第五次第三次第四次运动员第一次第二次9387919089甲9290918988乙则成绩较为稳定(方差较小)的那位运动员成绩的方差为.7.(5分)(2013?江苏)现在某类病毒记作XY,其中正整数m,n(m≤7,n nm ≤9)可以任意选取,则m,n都取到奇数的概率为.8.(5分)(2013?江苏)如图,在三棱柱ABC﹣ABC中,D,E,F分别是AB,111AC,AA的中点,设三棱锥F﹣ADE的体积为V,三棱柱ABC的体积ABC﹣11111.为V,则V:V=.2212处的切线与两坐标轴围成三角形区域y=xx=1在(5分)(2013?江苏)抛物线9.内的任意一点,则D,y)是区域(包含三角形内部和边界).若点P(x为D.x+2y 的取值范围是,AB上的点,AD=ABC的边AB,BC(5分)(2013?江苏)设D,E分别是△.10.λ的值为(λ,λ为实数),则λ+BE=BC,若=λ+λ212121)(x>0时,f江苏)已知f(x)是定义在R上的奇函数.当x分)11.(5(2013?2.的解集用区间表示为4x,则不等式f(x)>=xx﹣的标准方程为中,椭圆C2013?江苏)在平面直角坐标系xOy12.(5分)(,设B),右焦点为F,右准线为l,短轴的一个端点为(a>b>0的离d=,则椭圆Cl原点到直线BF的距离为d,F到的距离为d,若221.心率为是函P),xOy(2013?江苏)在平面直角坐标系中,设定点A(a,a13.(5分),则满足条0x>)图象上一动点,若点P,A之间的最短距离为2数y=(.a的所有值为件的实数,则满足+a=3江苏)在正项等比数列.(5分)(2013?{a}中,,a147n6.的最大正整数a…+>aa…an的值为+a+a n1n221分.请在答题卡指定区域内作答,解答90二、解答题:本大题共6小题,共计时应写出文字说明、证明过程或演算步骤.<<<,sinβcosβ=,sinαcosα=江苏)已知(14.15(分)2013?(,)(,)0βα.π;⊥)若|﹣|=,求证:(1的值.β,=,求α)设(2=(0,1),若+AB,中,平面SAB⊥平面SBC16.(14分)(2013?江苏)如图,在三棱锥S﹣ABC 求,SC的中点.,AF⊥SB垂足为F,点E,G分别是棱SAAS=AB⊥BC,,过A作证:;∥平面ABC(1)平面EFG.⊥SA(2)BCy=2x:,直线l0,3)江苏)14分)(2013?在平面直角坐标系xOy中,点A(17.(上.,圆心在l,设圆4C的半径为1﹣的切线,求切线方程;作圆C﹣3上,过点A(1)若圆心C也在直线y=x的横坐标的取值范围.CMO|,求圆心=2M,使|MA||)若圆(2C上存在点处有两C江苏)如图,游客从某旅游景区的景点A处下山至(16分)(2013?18.然,沿索道乘缆车到B沿直线步行到C,另一种是先从A种路径.一种是从A匀速步行,甲沿AC现有甲、乙两位游客从A处下山,后从B沿直线步行到C.1min处停留B,在B后,乙从速度为50m/min.在甲出发2minA乘缆车到,山路130m/minC.假设缆车匀速直线运动的速度为后,再从B匀速步行到,1260m,经测量,cosA=cosC=长为AC的长;)求索道1AB()问乙出发多少分钟后,乙在缆车上与甲的距离最短?(2分钟,乙步行的速度应控制C)为使两位游客在(33处互相等待的时间不超过在什么范围内?S),的等差数列(d≠0江苏)设{a}是首项为a,公差为d.19(16分)(2013?nn *为实数.,其中cnn项和.记b=,∈N是其前n*2;),S(kn∈,(1)若c=0,且bb,b成等比数列,证明:S=nN k42nk1.是等差数列,证明:c=0(2)若{b}nx为实=ea﹣ax,其中﹣(x)=lnxax,g(x)(20.(16分)2013?江苏)设函数f数.∞)上有最小,x)在(1+(x)在(1,+∞)上是单调减函数,且g((1)若f 的取值范围;值,求a)的零点个数,并证f(x+g(x)在(﹣1,∞)上是单调增函数,试求2()若明你的结论.四小题,请选定其中两题,并在相应的答题区域、DB]本题包括A、、C[选做题内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过分)(本小题满分10程或演算步骤.[选修4-1:几何证明选讲]经过、DC,AC江苏)如图,分)(2013?AB和BC分别与圆O相切于点1021.(.圆心O,且BC=2OC.求证:AC=2AD分)(本小题满分104-2.[选修:矩阵与变换]B1A,求矩阵,B=﹣.江苏)已知矩阵(10.22(分)2013?A=BC.[选修4-4:坐标系与参数方程](本小题满分0分)23.(2013?江苏)在平面直角坐标系xOy中,直线l的参数方程为(为(t为参数)参数),曲线C的参数方程为.试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.D.[选修4-5:不等式选讲](本小题满分0分)3322ba2ab,求证:2a.﹣b﹣≥b24.(2013?江苏)已知a≥>0第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.(10分)(2013?江苏)如图,在直三棱柱ABC﹣ABC中,AB⊥AC,AB=AC=2,111AA=4,点D是BC的中点.1(1)求异面直线AB与CD所成角的余弦值;11(2)求平面ADC与ABA所成二面角的正弦值.11,﹣,﹣4,3,﹣4,﹣2,﹣2,3,3{26.(10分)(2013?江苏)设数列a}:1n 个︷,,∈≤,﹣4,…,k,…,即当(<n4??*S.记,定义集合l∈Na(n∈NN)时,).对于…+=aa++n2n1?}l≤n≤n 为n{|Sa的整数倍,∈N,且1=P nln中元素个数;)求P(111中元素个数.)求集合P2(2000。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年江苏省高考数学试卷
一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答
题卡相印位置上.
1.(5分)(2013•江苏)函数y=3sin(2x+)的最小正周期为.
2.(5分)(2013•江苏)设z=(2﹣i)2(i为虚数单位),则复数z的模为.3.(5分)(2013•江苏)双曲线的两条渐近线方程为.4.(5分)(2013•江苏)集合{﹣1,0,1}共有个子集.
5.(5分)(2013•江苏)如图是一个算法的流程图,则输出的n的值为.
6.(5分)(2013•江苏)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:
则成绩较为稳定(方差较小)的那位运动员成绩的方差为.
7.(5分)(2013•江苏)现在某类病毒记作X m Y n,其中正整数m,n(m≤7,n ≤9)可以任意选取,则m,n都取到奇数的概率为.
8.(5分)(2013•江苏)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积
为V2,则V1:V2=.
9.(5分)(2013•江苏)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是.
10.(5分)(2013•江苏)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.11.(5分)(2013•江苏)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x的解集用区间表示为.
12.(5分)(2013•江苏)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d1,F到l的距离为d2,若d2=,则椭圆C的离心率为.
13.(5分)(2013•江苏)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为.
14.(5分)(2013•江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为.
二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答
时应写出文字说明、证明过程或演算步骤.
15.(14分)(2013•江苏)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.
(1)若|﹣|=,求证:⊥;
(2)设=(0,1),若+=,求α,β的值.
16.(14分)(2013•江苏)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB ⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:
(1)平面EFG∥平面ABC;
(2)BC⊥SA.
17.(14分)(2013•江苏)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x ﹣4,设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x﹣3上,过点A作圆C的切线,求切线方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标的取值范围.18.(16分)(2013•江苏)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min 后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=
(1)求索道AB的长;
(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?
19.(16分)(2013•江苏)设{a n}是首项为a,公差为d的等差数列(d≠0),S n 是其前n项和.记b n=,n∈N*,其中c为实数.
(1)若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*);
(2)若{b n}是等差数列,证明:c=0.
20.(16分)(2013•江苏)设函数f(x)=lnx﹣ax,g(x)=e x﹣ax,其中a为实数.
(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;
(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.
[选做题]本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-1:几何证明选讲](本小题满分10分)
21.(10分)(2013•江苏)如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC.
求证:AC=2AD.
B.[选修4-2:矩阵与变换](本小题满分10分)
22.(10分)(2013•江苏)已知矩阵A=,B=,求矩阵A﹣1B.
C .[选修4-4:坐标系与参数方程](本小题满分0分)
23.(2013•江苏)在平面直角坐标系xOy 中,直线l 的参数方程为 ( 为
参数),曲线C 的参数方程为
(t 为参数).试求直线l 和曲线C 的普通方程,并求出它们的公共点的坐标.
D .[选修4-5:不等式选讲](本小题满分0分)
24.(2013•江苏)已知a ≥b >0,求证:2a 3﹣b 3≥2ab 2﹣a 2b .
第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
25.(10分)(2013•江苏)如图,在直三棱柱A 1B 1C 1﹣ABC 中,AB ⊥AC ,AB=AC=2,AA 1=4,点D 是BC 的中点.
(1)求异面直线A 1B 与C 1D 所成角的余弦值;
(2)求平面ADC 1与ABA 1所成二面角的正弦值.
26.(10分)(2013•江苏)设数列{a n }:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣
4,﹣4,…, , , ︷
个
,…,即当 <n ≤
(k ∈N *)时, .记S n =a 1+a 2+…+a n (n ∈N ∗).对于l ∈N ∗,定义集合P l ={n |S n 为a n 的整数倍,n ∈N ∗,且1≤n ≤l }
(1)求P 11中元素个数;
(2)求集合P 2000中元素个数.。