优化建模与LINGO

合集下载

lingo--11

lingo--11
S2
S4 S3
160 690
290
30 S7
160
320
20
70
20
30
70
12110
720
520
88
500 62
420
A14
1100
202
S1
462 S5 10
70
A13
42
10
210
220
20
12
A12
195 31
306
480
300 A11
A10
A9
S1~S7 钢管厂
优化建模与LINDO/LINGO软件
第12章 数学建模竞赛中的部分优化问题
简要提纲
1. CUMCM-1995A: 一个飞行管理问题 2. CUMCM-2000B: 钢管订购与运输 3. CUMCM-2003B:露天矿生产的车辆安排 4. CUMCM-2000D: 空洞探测
1995年全国大学生数学建模竞赛A题
fij(t) 大于等于0肯定成立
fij(t) 大于等于0等价于 fij (Tij ) 0
若0 ti*j Tij
fij(t)
大于等于0等价于
fij
(t* ij
)
0
bi2j 4cij 0,
最后,优化模型为
LINGO求解
一个简化的数学模型 任何一架飞机在区域中停留最长时间
Tmax 2D / v 160 2 / 800 0.283
初始位置
(
xi0
,
yi0
),
0 i
i
0 i
i
时刻t飞机的位置
xit xi0 vt cosi ,
y

优化建模与lingo优化软件

优化建模与lingo优化软件

Teaching Plan on Optimization in Lingo
• 2007年: (A)中国人口增长预测问题 (B)“乘公交,看奥运”问题 (C)“手机套餐”优惠几何问题 (D)体能测试时间的安排问题
Teaching Plan on Optimization in Lingo
• 2008年: (A) 数码相机定位
Teaching Plan on Optimization in Lingo
• 1998年: (A)投资的收益和风险问题 (B)灾情的巡视路线问题(社会问题 即时性)
• 1999年: (A)自动化机床控制管理问题 (B)地质堪探钻井布局问题 (C)煤矸石堆积问题 (D)钻井布局
Teaching Plan on Optimization in Lingo
2003年A题再次体现关注社会热点 问题
Teaching Plan on Optimization in Lingo
• 2004年: (A)奥运会临时超市网点设计问题 (B)电力市场的输电阻塞管理问题 (C)酒后开车问题 (D)公务员的招聘问题 • 2004年5月在上海召开的命题工 作会议
Teaching Plan on Optimization in Lingo
• 2005年: (A)长江水质的评价与预测问题 (B)DVD在线租赁问题 (C) 雨量预报方法的评价问题 (D) DVD在线租赁
Teaching Plan on Optimization in Lingo
• 2006年: (A)出版社的资源管理问题 (B)艾滋病疗法的评价及预测问题 (C)易拉罐形状和尺寸的设计问题 (D)煤矿瓦斯和煤尘的监测与控制 问题
• 重要新闻、重大事件与赛题设计: 2000年6月26日各国新闻机构发布人类 基因组草图绘就的重要消息。顺应这 一世纪科学大事,当年7月组委会构造 与此相关赛题,引导学生关注世界科 技热点,投身科学重大问题的研究, 培养应用能力。

2024年度LINGO软件

2024年度LINGO软件

结果分析
对求解结果进行分析,验证模型的有 效性和可行性。
模型调整
根据结果分析,对模型进行调整和优 化,提高模型的实用性和准确性。
24
05 LINGO软件在各 个领域的应用案 例
2024/3/23
25
生产计划与调度问题
2024/3/23
生产线平衡
LINGO可以用于解决生产线平衡问题,通过优化生产线上 各个工位的任务分配,提高生产效率和资源利用率。
一些学术机构和研究团队也会分享他们的 LINGO使用经验和案例,为学习者提供更多 的学习资源和合作机会。
37
THANKS
感谢观看
2024/3/23
38
LINGO可用于金融市场预测和决策分析,通过建立预测模型和分析工具
,揭示金融市场的运行规律和趋势,为投资决策提供支持。
29
06 LINGO软件与其 他工具的集成与 应用
2024/3/23
30
与Excel的集成与应用
2024/3/23
数据交换
LINGO可以直接从Excel中导入数据,也可以将结果导出到Excel ,实现数据的无缝对接。
2024/3/23
28
金融工程与投资组合优化问题
01
投资组合优化
LINGO可以用于解决投资组合优化问题,通过优化投资组合中各个资产
的配置比例,实现风险和收益的平衡。
02
期权定价与风险管理
利用LINGO建立期权定价模型,可以准确计算期权的价值,为风险管理
提供决策依据。
2024/3/23
03
金融市场预测与决策分析
2024/3/23
整数规划算法
分支定界法、割平面法等适用于整数规划问 题的求解。

优化建模与LINGO第07章

优化建模与LINGO第07章

§7.1.2 指派问题
优化建模
返 回 导 航
例7.3(指派问题)设有n个人, 计划作n项工作, 其 中 c ij 表示第i个人做第j项工作的收益, 现求一种指派方 式,使得每个人完成一项工作,使总收益最大.
例7.3就是指派问题(Assignment Problem).指派 问题也是图论中的重要问题,有相应的求解方法,如 匈牙利算法.从问题的形式来看,指派问题是运输问 题的特例,也可以看成0-1规划问题.
X( 2, 4) 12.00000
0.000000
X( 3, 3) 21.00000
0.000000
Row Slack or Surplus Dual Price
OBJ 161.0000
-1.000000
SUP( 1) 10.00000
0.000000
优化建模
从上述求解过程来看,两种软件的计算结果 是相同的,但由于LINGO软件中采用集、数据段 和循环函数的编写方式,因此更便于程序推广到 一般形式使用.例如,只需修改运输问题中产地 和销地的个数,以及参数a,b,c的值,就可以求解 任何运输问题.所以,从程序通用性的角度来看, 推荐大家采用LINGO软件来求解运输问题.
OBJECTIVE FUNCTION VALUE 1) 161.0000
VARIABLE VALUE REDUCED COST X11 2.000000 0.000000 X12 17.000000 0.000000
优化建模
X13 1.000000 0.000000 X21 13.000000 0.000000 X24 12.000000 0.000000 X33 21.000000 0.000000 ROW SLACK OR SURPLUS DUAL PRICES 3) 0.000000 2.000000 4) 0.000000 5.000000 5) 0.000000 -6.000000 6) 0.000000 -2.000000 7) 0.000000 -6.000000 8) 0.000000 -5.000000

运筹学lingo实验报告(一)

运筹学lingo实验报告(一)

运筹学lingo实验报告(一)运筹学lingo实验报告介绍•运筹学是一门研究在给定资源约束下优化决策的学科,广泛应用于管理、工程、金融等领域。

•LINGO是一种常用的运筹学建模和求解软件,具有丰富的功能和高效的求解算法。

实验目的•了解运筹学的基本原理和应用。

•掌握LINGO软件的使用方法。

•运用LINGO进行优化建模和求解实际问题。

实验内容1.使用LINGO进行线性规划的建模和求解。

2.使用LINGO进行整数规划的建模和求解。

3.使用LINGO进行非线性规划的建模和求解。

4.使用LINGO进行多目标规划的建模和求解。

实验步骤1. 线性规划•确定决策变量、目标函数和约束条件。

•使用LINGO进行建模,设定目标函数和约束条件。

•运行LINGO求解线性规划问题。

2. 整数规划•在线性规划的基础上,将决策变量的取值限制为整数。

•使用LINGO进行整数规划的建模和求解。

3. 非线性规划•确定决策变量、目标函数和约束条件。

•使用LINGO进行非线性规划的建模和求解。

4. 多目标规划•确定多个目标函数和相应的权重。

•使用LINGO进行多目标规划的建模和求解。

实验结果•列举各个实验的结果,包括最优解、最优目标函数值等。

结论•运筹学lingo实验是一种有效的学习运筹学和应用LINGO的方法。

•通过本实验能够提高对运筹学概念和方法的理解,并掌握运用LINGO进行优化建模和求解的技能。

讨论与建议•实验过程中是否遇到困难或问题,可以进行讨论和解决。

•提出对于实验内容或方法的建议和改进方案。

参考资料•提供参考书目、文献、教材、网站等资料,以便学生深入学习和研究。

致谢•对与实验指导、帮助或支持的人员表示感谢,如老师、助教或同学等。

以上为运筹学lingo实验报告的基本框架,根据实际情况进行适当调整和补充。

实验报告应简洁明了,清晰表达实验目的、内容、步骤、结果和结论,同时可以加入必要的讨论和建议,以及参考资料和致谢等信息。

lingo在运筹学中的运用

lingo在运筹学中的运用

lingo在运筹学中的运用
Lingo在运筹学中是一类特别有用的工具,它是一种针对非线性优
化问题的建模语言。

它提供了一种实现复杂求解过程的有效方法,可
以帮助企业创建可衡量的、可控的模型,本质上提高解决难题的能力。

Lingo在运筹学中的应用如下:
一、数据建模
Lingo可以帮助企业更好地利用数据分析,通过数据可视化,实时监测,以及建立超级等式和复合对象,更好地实现数据建模。

这样可以提高
数据管理能力,让企业能够更好地组织、管理、分析及设计数据模型。

二、决策模型
Lingo可以帮助企业构建复杂的决策模型,允许运筹学家在多变量制约
条件下建立决策模型。

Lingo可以在多种应用场景中使用,从传统的精
确方程求解到组合优化多目标问题,从分布式系统的模拟到深度学习
的应用模型,Lingo都有着重要的用途。

三、数学优化
Lingo可以帮助企业有效地实现数学优化目标,在模型本身的表述上,Lingo具有更快的执行速度,并且可以处理大量的数量和变量,可以表
示复杂的最优化目标函数,从而提供最佳的运行数值。

四、机器学习
Lingo在运筹学中也可以应用于机器学习领域,可以用来构建收敛性更
强的机器学习模型,比如基于复杂决策树的模型,或者用Lingo设计的模型来处理视觉捕获和多机实时分析的问题。

总结:Lingo在运筹学中具有重要的作用,它可以帮助企业更加有效地实现数据建模、决策模型、数学优化和机器学习等方面的目标,进而提高企业的解决问题的能力。

优化建模与LINGO第05章

优化建模与LINGO第05章

优化建模
§5.1.3 求解模型
3种解法
的采购量x分解为三个量 第1种解法 将原油 的采购量 分解为三个量,即用 1, 种解法 将原油A的采购量 分解为三个量,即用x x2,x3分别表示以价格 、8、6千元 吨采购的原油 的吨 分别表示以价格10、 、 千元 吨采购的原油A的吨 千元/吨采购的原油 总支出为c(x) = 10x1+8x2+6x3,且 数,总支出为 x = x1 + x2 + x3 (9) 这时目标函数(2)变为线性函数: 这时目标函数( )变为线性函数:
500 y 2 ≤ x1 ≤ 500 y1
500 y 3 ≤ x 2 ≤ 500 y 2 x3 ≤ 500 y 3
(14) (15) (16) (17)
y1,y2,y3 =0或1 或
优化建模
(3)~(10),(13)~(17)构成混合整数线性 10),(13) ),(13 17) 规划模型,将它输入LINDO软件: LINDO软件 规划模型,将它输入LINDO软件:
优化建模
优化建模与LINDO/LINGO软件 优化建模与LINDO/LINGO软件 LINDO/LINGO
第5 章 生产与服务运作管理中的优化问题
优化建模
内容提要
§5.1 生产与销售计划问题 §5.2 有瓶颈设备的多级生产计划问题 §5.3 下料问题 §5.4 面试顺序与消防车调度问题 §5.5 飞机定位和飞行计划问题
优化建模
第2种解法: 种解法: 引入0 变量将(11) 12) 引入0-1变量将(11)和(12)转化为线性约束 分别表示以10千元 令y1=1,y2=1,y3=1分别表示以 千元 吨、8千元 , , 分别表示以 千元/吨 千元 /吨、6千元 吨的价格采购原油 ,则约束(11) 千元/吨的价格采购原油 吨 千元 吨的价格采购原油A,则约束( ) 和(12)可以替换为 )

数学建模Lingo软件简介

数学建模Lingo软件简介

版本类型 总变量数 整数变量数 非线性变量数 约束数
演示版 求解包 高级版 超级版 工业版 扩展版
300 500 2000 8000 32000 无限
30 50 200 800 3200 无限
30 50 200 800 3200 无限
150 250 1000 4000 16000 无限
Lingo(Linear Interactive and General Optimizer),即交互 式的线性和通用优化求解器,可求解线性规划,也可以求解非 线性规划,还可以用于一些线性和非线性方程组的求解等。 Lingo软件的最大特),而且执行速度很快。Lingo实际上还是最 优化问题的一种建模语言,包括许多常用的数学函数共建立优 化模型时调用,并可以接受其它数据文件。
2. 建立LINDO/LINGO优化模型需要注意的几个基本问题
1. 尽量使用实数优化模型,尽量减少证书约束和整数变 量的个数;
2. 尽量使用光滑优化模型,尽量避免使用非光滑函数; 3. 尽量使用线性优化模型,尽量减少非线性约束和非线 性变量的个数; 4. 合理设定变量的上下界,尽可能给出变量的初始值; 5. 模型中使用的单位的数量级要适当。
演示版和正式版的基本功能是类似的,只是试用版能够
求解问题的规模受到严格限制,对于规模稍微大些的问题就不 能求解。即使对于正式版,通常也被分成求解包(solver suite)、 高级版(super)、超级版(hyper)、工业版(industrial)、扩展版 (extended)等不同档次的版本,不同档次的版本的区别也在于 能够求解的问题的规模大小不同,下表给出了不同版本 LINGO程序对求解规模的限制:
LINDO,LINGO,LINDO API 和 What’s Best! 在最优化软件的市场上占有很大的份额,尤其在供微机上使用 的最优化软件的市场上,上述软件产品具有绝对的优势。根据 LINDO公司主页()上提供的信息,位列 全球《财富》杂志500强的企业中一半以上使用上述产品,其 中位列全球《财富》杂志25强企业中有23家使用上述产品。读 者可以从上述主页下载上面4种软件的演示版和大量应用例子。

Lingo与优化建模

Lingo与优化建模

4
➢ 运行状态窗口
Variables(变量数量): 变量总数(Total)、 非线性变量数(Nonlinear)、 整数变量数(Integer)。
Constraints(约束数量): 约束总数(Total)、 非线性约束个数(Nonlinear)。
Nonzeros(非零系数数量): 总数(Total)、 非线性项系数个数(Nonlinear)。
决策变量
x D n
目标函数
约 束 条 件
• 无约束优化(没有约束)与约束优化(有约束) • 可行解(只满足约束)与最优解(取到最优值)
局部最优解与整体最优解
f(x)
* x1
ox2 x
• 局部最优解 (Local Optimal Solution, 如 x1 ) • 整体最优解 (Global Optimal Solution, 如 x2 )
结构设计 资源分配 生产计划 运输方案
➢解决优化问题的手段:
• 经验积累,主观判断 • 作试验,比优劣 • 建立数学模型,求解最优策略
➢数学模型一般形式:
优化问题三要素:决策变量;目标函数;约束条件
min f (x)
s.t. hi (x) 0, i 1,...,m g j (x) 0, j 1,...,l
扩展 的求 解器 (求解 程序) 状态 框
目前为止找到的可行 解的最佳目标函数值
有效步数
目标函数值的界
特殊求解程序当前运行步数: 分枝数(对B-and-B程序); 子问题数(对Global程序); 初始点数(对Multistart程序)
计算结果:
程序语句输入的备注:
•LINGO总是根据“MAX=”或“MIN=”寻找目标函数, 而除注释语句和TITLE(标题)语句外的其他语句都是 约束条件,因此语句的顺序并不重要 。

Lindo 和 Lingo

Lindo 和 Lingo

Lindo 和 Lingo 是美国 Lindo 系统公司开发的一套专门用于求解最优化问题的软件包。

Lindo 用于求解线性规划和二次规划问题,Lingo 除了具有 Lindo 的全部功能外,还可以用于求解非线性规划问题,也可以用于一些线性和非线性方程(组)的求解,等等。

Lindo 和Lingo 软件的最大特色在于可以允许优化模型中的决策变量是整数(即整数规划),而且执行速度很快。

Lingo 实际上还是最优化问题的一种建模语言,包括许多常用的函数可供使用者建立优化模型时调用,并提供与其他数据文件(如文本文件、Excel电子表格文件、数据库文件等)的接口,易于方便地输入、求解和分析大规模最优化问题。

由于这些特点,Lindo系统公司的线性、非线性和整数规划求解程序已经被全世界数千万的公司用来做最大化利润和最小化成本的分析。

应用的范围包含生产线规划、运输、财务金融、投资分配、资本预算、混合排程、库存管理、资源配置等等...Lindo/Lingo 软件作为著名的专业优化软件,其功能比较强、计算效果比较好,与那些包含部分优化功能的非专业软件相比,通常具有明显的优势。

此外, Lindo/Lingo 软件使用起来非常简便,很容易学会,在优化软件(尤其是运行于个人电脑上的优化软件)市场占有很大份额,在国外运筹学类的教科书中也被广泛用做教学软件。

LingoLingo 是使建立和求解线性、非线性和整数最佳化模型更快更简单更有效率的综合工具。

Lingo 提供强大的语言和快速的求解引擎来阐述和求解最佳化模型。

简单的模型表示Lingo 可以将线性、非线性和整数问题迅速得予以公式表示,并且容易阅读、了解和修改。

方便的数据输入和输出选择Lingo 建立的模型可以直接从数据库或工作表获取资料。

同样地,Lingo 可以将求解结果直接输出到数据库或工作表。

强大的求解引擎Lingo 内建的求解引擎有线性、非线性(convex and nonconvex)、二次、二次限制和整数最佳化。

LINGO在数学建模中的应用

LINGO在数学建模中的应用

一、LINGO简介LINGO[1]是美国LINDO系统公司开发的求解数学规划系列软件中你的一个,它的主要功能是求解大型线性、非线性和整数规划问题,LINGO的不同版本对模型的变量总数、非线性变量数目、整型变量数目和约束条件的数量做出不同的限制.LINGO的主要功能特色为:(1)既能求解线性规划问题,也有较强的求解非线性规划问题的能力;(2)输入模型简练直观;(3)运行速度快、计算能力强.(4)置建模语言,提供几十个部函数,从而能以较少语句,较直观的方式描述较大规模的优化模型;(5)将集合的概念引入编程语言,很容易将实际问题转换为LINGO模型;(6)能方便地与EXCEL、数据库等其他软件交换数据.LINGO像其他软件一样,对他的语法有规定,LINGO的语法规定如下:(1)求目标函数的最大值或最小值分别用MAX=…或MIN=…来表示;(2) 每个语句必须以字母开头,由字母、数字和下划线所组成,昌都不超过32个字符,不区分大小写;(3)每个语句必须以分号“;”结束,每行可以有多个语句,语句可以跨行;(4)如果对变量的取值围没有特殊说明,则默认所有决策变量都非负;(5)LINGO模型以语句“MODEL”开头,以语句“END”结束,对于比较简单的模型,这这两个语句可以省略.LINGO提供了五十几个部函数,使用这些函数可以大大减少编程工作量,这些函数都是以字符@开头,下面简单介绍其中的集合操作函数和变量定界函数及用法.集合是LINGO建模语言中最重要的概念,使用集合操作函数能够实现强大的功能,LINGO 提供的常用集合操作函数有@FOR(s:e)、@SUM(s:e)、@MAX(s:e)、@MIN(s:e)等.@FOR(s:e)常用在约束条件中,表示对集合s 中的每个成员都生成一个约束条件表达式,表达式的具体形式由参数e 描述;@SUM(s:e) 表示对集合s 中的每个成员,分别得到表达式e 的值,然后返回所有这些值的和;@MAX(s:e) 表示对集合s 中的每个成员,分别得到表达式e 的值,然后返回所有这些值中的最大值;@MIN(s:e) 表示对集合s 中的每个成员,分别得到表达式e 的值,然后返回所有这些值中的最小值.LINGO 默认变量的取值可以从零到正无穷大,变量定界函数可以改变默认状态,如对整数规划,限定变量取整数,对0-1规划,限定变量取0 1或.LINGO 提供的变量定界函数有:@BIN(X)、@BND(L,X,U)、@GIN(X)、@FREE(X).@BIN(X)限定X 为0或1,在0-1规划中特别有用;@GIN(X)限定X 为整数,在整数规划中特别有用;@BND(L,X,U)限定L <X <U,可用作约束条件;@FREE(X)取消对X 的限定,即X 可以取任意实数.二、LINGO 在线性规划中的应用具有下列三个特征的问题称为线性规划问题(Linear program)[2]简称LP 问题,其数学模型称为线性规划(LP)模型.线性规划问题数学模型的一般形式为:求一组变量(1,2,,)j x j n =L 的值,使其满足1122max(min),n n z c x c x c x =+++L2111122111211222221122***.0,1,2,,,,..n j n n n n nn nn n n x j na x a x a xb a x a x a x b s t a x a x a x b ⎧⎪⎪⎪⎨⎪⎪≥=⎪⎩+++++++++L L L L L式中“*”代表“≥”、“ ≥”或“=”.上述模型可简写为1max(min),nj j j z c x ==∑1*0,1,2,,,1,2,,..nij j j ji a x x j n b i m s t =⎧⎪⎨⎪≥=⎩=∑L L 其中,变量j x 称为决策变量,函数1nj jj z c x==∑称为目标函数,条件1*nj jij c x b =∑称为约束条件,0j x ≥ 称为非负约束.在经济问题中,又称j c 为价值系数,i b 为资源限量. 线性规划在科学决策与经营管理中实效明显[3],但是对于规模较大的线性模型,其求解过程非常繁琐,不易得出结果.而 LINGO 中的部集合函数有@FOR(s:e)、@SUM(s:e)、@MAX(s:e)、@MIN(s:e)等,可以用这些集合函数使程序编程简单可行,下面举例说明.例1 某工厂有两条生产线,分别用来生产M 和P 两种型号的产品,利润分别为200元每个和300元每个,生产线的最大生产能力分别为每日100和120,生产线没生产一个M 产品需要1个劳动日(1个工人工作8小时称为1个劳动日)进行调试、检测等工作,而每个P 产品需要2个劳动日,该工厂每天共计能提供160个劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大?解 设两种产品的生产量分别为1x 和2x ,则该问题的数学模型为:目标函数 12max 200300z x x =+约束条件 1212100,120,160,0,1,2.i x x x x x i ≤⎧⎪≤⎪⎨+≤⎪⎪≥=⎩编写LINGO 程序如下:MODEL:SETS:SHC/1,2 /:A,B,C,X; YF/1,2,3 /:J;ENDSETSDATA:A=1,2 ; B=100,120; C=200,300;ENDDATAMAX=@SUM(SHC:C*X);@FOR(SHC(I):X(I)<B(I)); @SUM(SHC(I):A(I)*X(I))<=160; END程序运行结果如下Global optimal solution found.Objective value: 29000.00 Total solver iterations: 0 Variable Value Reduced CostA( 1) 1.000000 0.000000A( 2) 2.000000 0.000000B( 1) 100.0000 0.000000B( 2) 120.0000 0.000000C( 1) 200.0000 0.000000C( 2) 300.0000 0.000000X( 1) 100.0000 0.000000X( 2) 30.00000 0.000000J( 1) 0.000000 0.000000J( 2) 0.000000 0.000000J( 3) 0.000000 0.000000Row Slack or Surplus Dual Price 1 29000.00 1.000000 2 0.000000 50.00000 3 90.00000 0.000000 4 0.000000 150.0000最优解为12100,30,x x ==最优值为29000.00z =.即每天生产100个M 产品30个P 产品,可获得29000元利润.三、LINGO 在整数规划和0-1规划中的应用1 求解整数规划整数规划[4]分为整数规划和混合整数规划,要求全部变量都为非负整数的数学规划称为纯整数规划,只要求部分变量为非负整数的数学规划称为混合整数规划.下面只讨论约束条件和目标函数均为线性的整数规划问题,即整数线性规划问题(以下简称整数规划,记为ILP),其数学模型的一般形式是()1max min nj j j z c x ==∑,()()11,2,,..01,2,,nij j i j j j a x b i n s t x j n x =⎧≤=⎪⎪⎪≥=⎨⎪⎪⎪⎩∑L L 全为整数或部分为整数。

优化建模与LINGO第07章1

优化建模与LINGO第07章1

表7-5 轿车旳维护费
0
1
2
3
4
车龄/年
费用/万元 2
4
5
9
12
优化建模
表7-6 二手车旳售价
1
2
3
4
5
车龄/年
售价/万元 7
6
2
1
0
分析: 设备更新问题是动态规划 旳一 类 问 题(实际上,最短路问题也是动态规划旳一类问 题),这里借助于最短路措施处理设备更新问题.
解: 用6个点(1,2,3,4,5,6)表达各年 旳开始,各点之间旳边从边表达左端点开始年至 表达右端点结束所花旳费用,这么构成购车消费 旳网络图,如图图7.4所示.
优化建模
7.2 最短路问题和最大流问题
本节内容导航
7.2.1 7.2.2 7.2.3
本节概述 最短路问题 最大流问题 最小费与最大流问题
优化建模
本节内容概述
返 回


最短路问题(Shortest Path Problems)和最大流
问题(Maxiumum Flow Problems)是图论另一类与优
优化建模
§7.2.1 最短路问题
返 回

例7.7 (最短路问题) 在图 7-3中,用点表达城 航
市,既有 A, B1, B2,C1,C2,C3, D 共7个城市.点与点之间旳连线
表达城市间有道路相连.连线旁旳数字表达道路旳长度.
现计划从城市 到城A 市 铺D设一条天然气管道,请设
计出最小价格管道铺设方案.
Global optimal solution found at iteration: 0
Objective value:

数学建模软件LinDoLinGo的简介(修改)

数学建模软件LinDoLinGo的简介(修改)

X——表示变量X可取任意实数值。 GIN X——表示变量X只取非负整数值。 INT X——表示变量X只能取0或1。 SLB X value——表示变量X以value为下界。 SUB X value——表示变量X以value为上界。 FREE m——表示问题的前m个变量为自由变量 GIN m——表示问题前m个变量为非负整数值 INT m——表示问题前m个变量为0-1变量。
LINGO 示例
查看简单例子
LINHGO程序
Lindo模型到Lingo模型的转换
“ST”在Lingo模型中不再需要,所以删除了; 在每个系数与变量之间增加了运算符“*”;
将目标函数的表示方式从“MAX”变成“MAX=”;
每行(目标、约束和说明语句)后面均增加了一
个分号“;”; 约束的名字被放ngo中模型以“Model:”开始,以“END”结束。 对简单模型,这两个语句也可以省略。
LINDO/LINGO软件 使用简介
LinDo/LinGo简介
LINDO(Linear Interactive and Discrete Optimizer),即“交互式的线性和离散优化求解 器”,可以用来求解线性规划(LP)和二次规划 (QP); LINGO(Linear Interactive and General Optimizer),即“交互式的线性和通用优化求解 器”,除了用来求解线性规划(LP)、二次规划 (QP)和非线性规划,还可用于线性和非线性方程 组的求解。 最大的特色:允许决策变量是整数(即整数规划,包 括0-1规划)。
Lindo求解整数规划
Lindo求解整数规划程序
LP OPTIMUM FOUND AT STEP 2 OBJECTIVE VALUE = 998.811951

lingo的语法规则

lingo的语法规则

lingo的语法规则Lingo是一种优化建模语言,它遵循一定的语法规则。

以下是一些Lingo的语法规则:1. 变量声明: 在Lingo中,变量需要在使用之前声明。

变量可以是连续的实数、整数或者集合。

2. 目标函数: 目标函数是Lingo模型的核心部分,用于表示需要优化的目标。

目标函数可以使用MAX或MIN关键字来指定最大化或最小化目标。

3. 约束条件: 约束条件是限制问题解的约束,通常由等式或不等式表示。

约束条件可以包括等式约束、不等式约束和逻辑约束。

4. 集合: Lingo允许使用集合来表示一组变量或一组约束。

集合可以用于定义变量、参数、约束等。

5. 参数: 参数是用于定义模型的数据,可以是数值型或字符型。

参数可以在模型中直接使用,也可以通过集合引用。

6. 运算符: Lingo支持多种运算符,包括算术运算符、逻辑运算符和关系运算符。

运算符的优先级遵循常规的数学规则。

7. 语句格式: Lingo语句通常以分号结尾,每行可以包含多个语句。

语句可以跨行,以提高可读性。

8. 注释: Lingo允许使用注释来解释模型或添加额外信息。

注释以“!”开头,可以出现在模型的任何位置。

9. 标号: Lingo允许给语句添加标号,以便在模型中引用或识别特定语句。

标号以方括号开头和结尾,例如[OBJ]。

10. 模型结构: Lingo模型以“MODEL:”开头,以“END”结束。

在模型中,可以包含多个目标函数、约束条件、参数等。

以上是Lingo的一些基本语法规则,使用这些规则可以帮助你构建有效的优化模型并解决实际问题。

Lingo的基本使用方法解读

Lingo的基本使用方法解读

第二步:在模型窗口中输入模型
model: max = 2*x1+3*x2; 4*x1+3*x2<10; 3*x1+5*x2<12; end
Max 2x1+3x2 St. 4x1+3x2<=10 3x1+5x2<=12
x1≥0 x2≥0
第三步:求解模型
1)选择菜单 LINGO|Solve 或者按工具栏的
常用优化软件
1.LINDO/LINGO软件 2.MATLAB优化工具箱 /mathematica优化程序包 3.EXCEL软件的优化功能 4.SAS(统计分析)软件的优化功能
建模时需要注意的几个基本问题
1、尽量使用实数优化,减少整数约束和整数变量 2、尽量使用光滑优化,减少非光滑约束的个数 如:尽量少使用绝对值、符号函数、多个变量求最大/最小 值、四舍五入、取整函数等
3、尽量使用线性模型,减少非线性约束和非线性变量的个数 (如x/y <5 改为x<5y)
4、合理设定变量上下界,尽可能给出变量初始值
5、模型中使用的参数数量级要适当
(如小于103)
二. LINGO软件的基本使用方法
LINGO软件的求解过程
1. 确定常数
2. 识别类型
LINGO预处理程序
LP QP NLP IP 全局优化(选) 分枝定界管理程序
求解 器 (求 解程 序 )状 态框
解的目标函数值
目前为止的 迭代次数
运行状态窗口
使用的特殊求解程序 : B-and-B (分枝定界算法) Global (全局最优求解程序) Multistart(用多个初始点求解的程序 )
目前为止找到的可行 解的最佳目标函数值 扩展 的求 解器( 求解 程序) 状态 框 目标函数值的界 特殊求解程序当前运行步数: 分枝数(对B-and-B程序); 子问题数(对Global程序); 初始点数(对Multistart程序) 有效步数

优化建模与LINDO,LINGO优化软件

优化建模与LINDO,LINGO优化软件

ROW SLACK OR SURPLUS DUAL PRICES

原料无剩余
2)
0.000000

时间无剩余
3)
0.000000
资 源
加工能力剩余40
4)
40.000000
48.000000 2.000000 0.000000
“资源” 剩余为零的约束为紧约束(有效约束)
结果解释
OBJECTIVE FUNCTION VALUE
1. 优化模型与优化软件简介
优化模型和优化软件的重要意义
(最)优化:在一定条件下,寻求使目标最大(小)的决策
最优化是工程技术、经济管理、科学研究、 社会生活中经常遇到的问题, 如: 结构设计 资源分配 生产计划 运输方案 解决优化问题的手段 • 经验积累,主观判断 • 作试验,比优劣 • 建立数学模型(优化模型),求最优策略(决策) CUMCM赛题:约一半以上与优化有关,需用软件求解
2)
0.000000
48.000000
3)
0.000000
2.000000
4) 40.000000
0.000000
NO. ITERATIONS= 2
reduced cost值表 示当该非基变量 增加一个单位时 (其他非基变量 保持不变)目标 函数减少的量(对 max型问题)
也可理解为:
为了使该非基变 量变成基变量, 目标函数中对应 系数应增加的量
2
50.000000 10.000000
6.666667 90,在允许范
3 480.000000 53.333332
80.000000 围内
4 100.000000 INFINITY 40.000000

lingo与建模

lingo与建模
与LINDO 相比,LINGO 软件主要具有两大优点
1、除具有LINDO 的全部功能外,还可用于求解非线性 规划问题,包括非线性整数规划问题 2、LINGO 包含了内置的建模语言,允许以简练、直观 的方式描述较大规模的优化问题,模型中所需的数据可 以以一定格式保存在独立的文件中
1. LINGO的主要功能特色: (1) 既能求解线性规划问题,也有较强的求解非线性规划 问题的能力; (2) 输入模型简练直观; (3) 运行速度快,计算能力强; (4) 内置建模语言,提供几十个内部函数,从而能以较少 语句,较直观的方式描述较大规模的优化模型; (5) 将集合的概念引入编程语言,很容易将实际问题转换 为LINGO模型; (6) 能方便地与Excel、数据库等其他软件交换数据;
(1) 每个系数与变量间增加了运算符“*”(即 乘号不能省略)
(2) 模型结束标志“END”也被删除了(LINGO
中只有当模型以“MODEL:”开始时才能以 “END” 结束)。 这是LINGO 模型的最基本特征
用LINGO 来解二次规划问题
MAXz 98 x1 277 x2 x12 0.3 x1 x2 2 x2 2 s.t.x1 x2 100 x1 2 x2 x1 , x2 0为整数
(4) 合理设定变量的上下界,尽可能给出变量的初始值;
(5) 模型中使用的单位的数量级要适当(如小于103);
在LINGO中使用LINDO模型
LINGO的界面
• LINGO软件的主窗口(用 户界面),所有其他窗口 都在这个窗口之内。
• 当前光标 的位置 • 模型窗口(Model Window),用于输入 LINGO优化模型(即 LINGO程序)。
Window|Send to Back (Ctrl+B) 窗口后置

lindo和lingo简介

lindo和lingo简介

LINDO和LINGO是美国LINDO系统公司开发的一套专门用于求解最优化问题的软件包。

LINDO 用于求解线性规划和二次规划,LINGO除了具有LINDO的全部功能外,还可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解以及代数方程求根等。

LINDO和LINGO软件的最大特色在于可以允许优化模型中的决策变量是整数(即整数规划),而且执行速度很快。

LINGO实际上还是最优化问题的一种建模语言,包括许多常用的函数可供使用者建立优化模型时调用,并提供与其它数据文件(如文本文件、EXCEL电子表格文件、数据库文件等)的接口,易于方便地输入、求解和分析大规模最优化问题。

由于这些特点,LINDO和LINGO软件在教学、科研和工业、商业、服务等领域得到广泛应用。

1)目标函数及各约束条件之间一定要有“Subject to (ST) ”分开。

2)变量名不能超过8个字符。

3)变量与其系数间可以有空格,单不能有任何运算符号(如乘号“*”等)。

4)要输入<=或>=约束,相应以<或>代替即可。

5)一般LINDO中不能接受括号“()“和逗号“,“,例:400(X1+X2) 需写成400X1+400X2;10,000需写成10000。

6)表达式应当已经过简化。

不能出现 2 X1+3 X2-4 X1,而应写成-2X1+3 X2。

用LINDO求解施工中的线性规划(LP)问题1 引言线性规划是现代化管理的常用工具与方法,在施工过程中,很多实际问题,如配(下)料,运输(土石方调配),施工机具车辆调度,施工场地的合理设点,成品、半成品、原材料的合适库存量规划问题等等,都需要运用线性规划方法求得最优方案。

线性规划一般需要先确定要求的未知变量和目标函数,然后找出所有的约束条件,表示为线性方程或不等式,建立问题的数学模型,对于变量数目和约束条件较少的情况可用手工计算,较多的情况则需运用计算机来求解。

2 LINDO介绍LINDO是Linear INteractive and Discrete Optimizer字首的缩写形式,是由Linus Schrage 于1986年开发的优化计算软件包。

建模软件lingo使用教程

建模软件lingo使用教程

§1
LINGO 快速入门
当你在 windows 下开始运行 LINGO 系统时,会得到类似下面的一个窗口:
外层是主框架窗口, 包含了所有菜单命令和工具条, 其它所有的窗口将被包含在主窗口之下。 在主窗口内的标题为 LINGO Model – LINGO1 的窗口是 LINGO 的默认模型窗口,建立的模型 都都要在该窗口内编码实现。下面举两个例子。 例 1.1 如何在 LINGO 中求解如下的 LP 问题:
共 53 页 3
LINGO 教程
setname/member1..memberN/[: attribute_list]; 这里的 member1 是集的第一个成员名,memberN 是集的最末一个成员名。LINGO 将自动产生 中间的所有成员名。 LINGO 也接受一些特定的首成员名和末成员名, 用于创建一些特殊的集。 列表如下: 隐式成员列表格式 1..n StringM..StringN DayM..DayN MonthM..MonthN MonthYearM..MonthYearN 1..5 Car2..car14 Mon..Fri Oct..Jan Oct2001..Jan2002 示例 1,2,3,4,5 Car2,Car3,Car4,„,Car14 Mon,Tue,Wed,Thu,Fri Oct,Nov,Dec,Jan Oct2001,Nov2001,Dec2001,Jan2002 所产生集成员
注意:该命名规则同样适用于集成员名和属性名等的命名。
Member_list 是集成员列表。如果集成员放在集定义中,那么对它们可采取显式罗列和 隐式罗列两种方式。如果集成员不放在集定义中,那么可以在随后的数据部分定义它们。 ① 当显式罗列成员时, 必须为每个成员输入一个不同的名字, 中间用空格或逗号搁开, 允许混合使用。 例 2.1 可以定义一个名为 students 的原始集,它具有成员 John、Jill、Rose 和 Mike, 属性有 sex 和 age: sets: students/John Jill, Rose Mike/: sex, age; endsets ② 当隐式罗列成员时,不必罗列出每个集成员。可采用如下语法:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 1 2 1
优化建模
2. 运输问题的数学表达式
c
i 1 j 1
m
n
ij
xij .
第 i 个产地的运出量应小于或等于该地的生产量,即:

j 1 n
xij ai .
第 j 个销地的运入量应等于该地的需求量,即:

i 1 m
xij b j .
优化建模
因此,运输问题的数学表达式为:
例7.4(继例7.3) 考虑例7.3中 n 6 的情况,即 6个人做6项工作的最优指派问题,其收益矩阵如 表7-2所示.
优化建模
解:与运输问题一样,先用LINDO软件求解. 给出LINGO程序,程序名exam0704.ltx
! Assignment model ! Maximize valve of assignments max 20x11 + 15x12 + 16x13 + 5x14 + 4x15 + 7x16 + 17x21 + 15x22 + 33x23 + 12x24 + 8x25 + 6x26 + 9x31 + 12x32 + 18x33 + 16x34 + 30x35 + 13x36 + 12x41 + 8x42 + 11x43 + 27x44 + 19x45 + 14x46 - 99x51 + 7x52 + 10x53 + 21x54 + 10x55 + 32x56 - 99x61 - 99x62 - 99x63 + 6x64 + 11x65 + 13x66 subject to
优化建模
7.1
运输问题与转运问题
本节内容导航
7.1.1 7.1.2 7.1.3 运输问题 指派问题 转运问题
优化建模
返 回 导 航
§7.1.1
运输问题
运输问题(Transportation Problem)是图论与 网络中的一个重要问题,也是一个典型的线性 规划问题. 例7.1 (运输问题)
优化建模
优化建模
LINDO软件虽然给出最优解,但上述模型还存在 着缺点,例如,上述方法不便于推广的一般情况,特 别是当产地和销地的个数较多时,情况更为突出. 下面写出求解该问题的LINGO程序,并在程序中 用到在第三章介绍的集与数据段,以及相关的循环函 数. 写出相应的LINGO程序,程序名: exam0702.lg4
优化建模
返 回 导 航
§7.1.2 指派问题
例7.3(指派问题)设有n个人, 计划作n项工作, 其 中 c 表示第i个人做第j项工作的收益, 现求一种指派方 式,使得每个人完成一项工作,使总收益最大. 例7.3就是指派问题(Assignment Problem).指派 问题也是图论中的重要问题,有相应的求解方法,如 匈牙利算法.从问题的形式来看,指派问题是运输问 题的特例,也可以看成0-1规划问题.
j 1 n
xij 1, j 1, 2, , n, (每项工作有一个人去做) (7)
i 1
xij 0或1, j 1, 2, , n.
(8)
优化建模
2. 指派问题的求解过程 分别用LINDO软件和LINGO软件求解指派问 题,并对两种软件的求解方法与各自的优缺点进 行比较.
在上述程序中,第16]表示运输问题中目标函数 (7.1). 第18] ~ 19]行表示约束条件(7.2), 第21] ~ 22]行 表示约束条件(7.3).
优化建模
下面列出LINGO软件的求解结果(仅保留非零变量)
Global optimal solution found at iteration: 6 Objective value: 161.0000 Variable Value Reduced Cost X( 1, 1) 2.000000 0.000000 X( 1, 2) 17.00000 0.000000 X( 1, 3) 1.000000 0.000000 X( 2, 1) 13.00000 0.000000 X( 2, 4) 12.00000 0.000000 X( 3, 3) 21.00000 0.000000 Row Slack or Surplus Dual Price OBJ 161.0000 -1.000000 SUP( 1) 10.00000 0.000000
优化建模
解:从前面的分析来看,运输问题属于线性规划问 题,因此,不论是LINDO软件或LINGO软件都可以对 该问题求解.为了便于比较两种软件的优缺点,以及各 自的特点,我们用两种软件分别求解该运输问题. 首先写出LINDO软件的模型(程序),程序名: exam0702.ltx.
! 3 Warehouse, 4 Customer Transportation Problem ! The objective min 6x11 + 2x12 + 6x13 + 7x14 + 4x21 + 9x22 + 5x23 + 3x24 + 8x31 + 8x32 + x33 + 5x34 subject to
MODEL: 1]! 3 Warehouse, 4 Customer Transportation Problem; 2]sets: 3] Warehouse /1..3/: a; 4] Customer /1..4/: b;
优化建模
5] Routes( Warehouse, Customer) : c, x; 6]endsets 7]! Here are the parameters; 8]data: 9] a = 30, 25, 21 10] b = 15, 17, 22, 12; 11] c = 6, 2, 6, 7, 12] 4, 9, 5, 3, 13] 8, 8, 1, 5; 14]enddata 15]! The objective; 16][OBJ] min = @sum( Routes: c * x);
优化建模

从上述求解过程来看,两种软件的计算结果 是相同的,但由于LINGO软件中采用集、数据段 和循环函数的编写方式,因此更便于程序推广到 一般形式使用.例如,只需修改运输问题中产地 和销地的个数,以及参数a,b,c的值,就可以求解 任何运输问题.所以,从程序通用性的角度来看, 推荐大家采用LINGO软件来求解运输问题.
优化建模
! The supply constraints 2) x11 + x12 + x13 + x14 <= 30 3) x21 + x22 + x23 + x24 <= 25 4) x31 + x32 + x33 + x34 <= 21 ! The demand constraints 5) x11 + x21 + x31 = 15 6) x12 + x22 + x32 = 17 7) x13 + x23 + x33 = 22 8) x14 + x24 + x34 = 12 end
例7.1 就是典型的运输问题,图7-1给出了 m 个产地,n 个销地运输问题的图形.关于它的求 解方法有两类,一类是按照图论的方法求解, 另一类是化成线性规划问题.这里介绍第二类方 法,即用LINDO或LINGO软件求解运输问题. 但为便于后面的叙述,先给出图论中有关图的 部分定义.
图7-1: m个产地,
优化建模
X13 1.000000 0.000000 X21 13.000000 0.000000 X24 12.000000 0.000000 X33 21.000000 0.000000 ROW SLACK OR SURPLUS DUAL PRICES 3) 0.000000 2.000000 4) 0.000000 5.000000 5) 0.000000 -6.000000 6) 0.000000 -2.000000 7) 0.000000 -6.000000 8) 0.000000 -5.000000 NO. ITERATIONS= 6
优化建模
事实上,我们关心更多的是那些非零变量,因此, 可选择LINDO中的命令(具体方法见第二章的2.3节), 只列出非零变量.
OBJECTIVE FUNCTION VALUE 1) 161.0000 VARIABLE VALUE REDUCED COST X11 2.000000 0.000000 X12 17.000000 0.000000
n 个销售地运输问题的图形
优化建模
1. 图的基本定义 从直观上看, 所谓图是由点和边组成的图形, 如 图7-1所示.下面我们给出图的定义.
优化建模
注:通常有向图的边称为弧,由弧构成的集记为 A, 因此,有向图记为 G(V , A) , 而无向图记为 G(V , E ) . 为 方便起见,在后面的论述中,有时也用 G(V , E ) 表示有 向图. 在无向图中, 每条至多有一条边的图称为简单图 (Simple Graph). 若每一对不同的顶点都有一条边相 连的简单图称为完全图(Complete Graph). 若一个图 中的顶点集可以分解为两个子集 V 和 V , 使得任何一 条边都有一个端点在 V 中, 另一个端点在 V 中, 这种图 V 称为二部图或偶图(Bipartite Graph). 运输问题所构成 的图7-1是偶图.
优化建模
欢迎各位同学学习第七章
第 7 章
概述
7.1 7.2 7.3 7.4 运输问题与转运问题 最短路问题和最大流问题 最优连线问题与旅行商问题 计划评审方法和关键路线法 习题 七
相关文档
最新文档