完全平方公式 典型应用
完全平方公式的综合应用
完全平方公式的综合应用例1:矩形面积最大问题假设一个菜农要栽种一片长方形菜田,如果他只有一定长度的篱笆,那么他应该怎样才能使得菜田的面积最大呢?解法:设菜田的长度为x,宽度为y,根据题意我们可以得到一个方程:2x+y=200(因为需要两条边之和等于篱笆的长度)现在我们要找到这个方程的最大值,首先将方程变形为:y=200-2x 接下来我们可以使用完全平方公式来求解最大值。
根据完全平方公式,这是一个开口向下的抛物线,所以我们可以知道最大值是在顶点处取得的。
所以矩形的长度为50,宽度为100,当且仅当菜田是一个正方形时,面积最大。
例2:解一元二次方程假设有一个一元二次方程x^2+8x+16=0,我们需要求解它的解。
解法:首先,我们观察这个方程可以发现它可以化简为一个完全平方形式。
将方程变形为:(x+4)^2=0根据完全平方公式,我们知道只有当一个数的平方等于0时,这个数才能等于0。
所以,我们可以得到:x+4=0或x=-4所以方程的解为x=-4例3:求两点之间的距离假设有两个点A(5,7)和B(9,3),我们需要求解它们之间的距离。
解法:我们可以利用两点之间的距离公式来求解。
根据两点之间的距离公式,我们可以得到:d=√((x2-x1)^2+(y2-y1)^2)将点A的坐标代入为x1=5,y1=7,将点B的坐标代入为x2=9,y2=3,带入方程可得:d=√((9-5)^2+(3-7)^2)d=√(4^2+-4^2)d=√(16+16)d=√32所以点A和点B之间的距离为√32通过以上例子,我们可以看到完全平方公式在解决不同类型的问题时起到了非常重要的作用。
无论是求解最值问题、解一元二次方程还是求解两点之间的距离,完全平方公式都是一个非常有用的工具。
在实际生活中,完全平方公式也有很多其他应用,比如在物理学中的运动学问题、在经济学中的成本最小化问题等等。
因此,熟练掌握完全平方公式的应用是非常有价值的。
完全平方公式的应用
应用新知
利用完全平方公式计算:
① 1982 = (200 -2) 2
= 2002 -2×200×2 + 22 = 40 000 -800 +4 = 39 204 .
② 60.22 = (60 +0.2) 2
= 602 +2×60×0.2 + 0.22 = 3 600 +24 +0.04 = 3 624.04 .
1.6 完全平方公式
第2课时
b
ab
b²
(a+b)²
a
a²
ab
a
b
1、平方差公式
( a + b )( a – b )=a2 b2
相同项平方减去相反项平方
2. 完全平方公式:
(a+b)2 = a2 + 2ab + b2 (a-b)2 = a2 - 2ab + b2
首平方,尾平方,2倍乘积放中央, 加的加,减的减,这是公式的特点。
将(b-c)看作一个整体.
3、(a + 2b – 1 ) 2
【解析】 原式=[(a+2b)-1] 2
=(a+2b) 2 –2(a+2b)×1+12 =a2 +4ab+4b2 –2a-4b+1
4、(x+2y-3)(x-2y+3)
【解析(】1)原式=[x+(2y–3)][x-(2y-3)]
= x2-(2y-3)2 = x2-(4y2-12y+9) = x2-4y2+12y-9.
(1) 1022;
(2) 992
变形
解: (1) 1022 = (100+2)2 =1002+2×100×2+22
初中数学 完全平方公式的五种常见应用举例
完全平方公式的五种常见应用举例完全平方公式是整式乘法中最重要的公式之一在运用完全平方公式时,必须掌握一些使用技巧,才能灵活应用公式,其中包括“顺用”、“逆用”、“顺逆联用”,以及“特例应用”和“变形应用”等.下面举例说明.一、正用根据算式的结构特征,由左向右套用. 例1 计算22(23)m m -- 分析 本题是一个三项式的平方,可考虑将三项式中任意两项组合成一个整体,使其转化为一个二项式的平方,然后再运用完全平方公式便可以顺利求解.解 22(23)m m --22[(2)3]m m =--222(2)6(2)9m m m m =---+4322446129m m m m m =-+-++43242129m m m m =--++思考 本题中三项式转化为二项式的根据是什么?还有其它的方法吗? 二、逆用将公式逆向使用,即由右向左套用.例2 己知,,,则多项式20172018a x =+20172019b x =+20172020c x =+的值为( )222a b c ab bc ac ++--- (A) 0 (B)1 (C)2 (D)3分析观察本题已知条件,直接代入求值困难.但换个角度仔细观察多项式的结构就不难发现,该多项式的2倍恰好是3个完全平方公式的右端,于是逆用完全平方公式,就可以得到,而,,的值可求,故本题巧妙得解.222()()()a b b c c a -+-+-a b -b c -c a -解 ∵20172018a x =+20172019b x =+20172020c x =+∴,,1a b -=-1b c -=-2c a -=∴222a b c ab bc ac ++---2221(222222)2a b c ab bc ac =++---2222221(222)2a ab b b bc c c ac a =-++-++-+2221[()()()]2a b b c c a =-+-+-2221[(1)(1)2]2=-+-+3=应选D.三、正逆联用根据已知条件和待求式特征,有正用、又逆用,即综合运用.例3 (全国初中数学竞赛试题)已知,且,则21()()()4b c a b c a -=--0a ≠b c a +.= 分析 欲求的值,则需要明与之间的等量关系.而题目中的已知条件刚好就b c a+b c +a 是、、之间的关系式,于是将条件等式进行化简变形,明确与之间的关系,a b c b c +a 应该是一条即常规又恰当的选择.解 由已知,得2()4()()b c a b c a -=--22224444b bc c ac bc ab a ∴-+=-+-2222(44)40b bc c ab ac a ∴++-++=22()4()40b c a b c a ∴+-++=把和分别看成一个“整体”,再逆用完全平方公式,得b c +2a 2[()2]0b c a +-=,20b c a ∴+-=2b c a+=.22b c a a a+∴== 四、特例应用在完全平方公式中,如果,那么222()2a b a ab b +=++0ab =222()a b a b+=+反之,若,则一定有.222()a b a b +=+0ab =例5 若满足,则.n 22(2017)(2019)4n n -+-=(2019)(2017)n n --= 分析 若设,,则很容易验证,这正好2017n a -=2019n b -=222()a b a b +=+符合上面完全平方公式特例.据此,本题迎刃而解.解 设,,2017n a -=2019n b -= 则,2()4a b +=又已知224a b +=∴222()a b a b+=+于是0ab =∴(2019)(2017)n n --=(2017)(2019)n n --0ab ==五、变形应用由完全平方公式,易得如下的两个最常见的变形公式:222()2a b a ab b ±=±+①2222()2()2a b a b ab a b ab+=+-=-+②22()()4a b a b ab-=+-(或)221[()()]4ab a b a b =+-- 活用上面变形公式,常常会使问题化难为易,取得奇妙的解题效果。
完全平方公式常考题型经典
完全平方公式典型题型一、公式及其变形1、 完全平方公式:222()+2a b a ab b +=+ 〔1〕222()2a b a ab b -=-+ 〔2〕公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项为哪一项左边二项式中两项乘积的2倍。
注意: 222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。
2、公式变形 (1)+〔2〕得:2222()()2a b a b a b ++-+= (12)-)(得: 22()()4a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=-3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++二、题型题型一、完全平方公式的应用例1、计算〔1〕〔-21ab 2-32c 〕2; 〔2〕〔x -3y -2〕〔x +3y -2〕;练习1、(1)〔x -2y 〕〔x 2-4y 2〕〔x +2y 〕;〔2〕、〔a -2b +3c -1〕〔a +2b -3c -1〕;题型二、配完全平方式 1、假设k x x ++22是完全平方式,那么k =2、.假设x 2-7xy +M 是一个完全平方式,那么M 是3、如果4a 2-N ·ab +81b 2是一个完全平方式,那么N =4、如果224925y kxy x +-是一个完全平方式,那么k =题型三、公式的逆用1.〔2x -______〕2=____-4xy +y 2. 2.〔3m 2+_______〕2=_______+12m 2n +________.3.x 2-xy +________=〔x -______〕2. 4.49a 2-________+81b 2=〔________+9b 〕2.5.代数式xy -x 2-41y 2等于-〔 〕2 题型四、配方思想1、假设a 2+b 2-2a +2b +2=0,那么a 2004+b 2005=_____.2、0136422=+-++y x y x ,求y x =_______.3、222450x y x y +--+=,求21(1)2x xy --=_______. 4、x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +=_______. 5.014642222=+-+-++z y x z y x ,那么z y x ++= .6、三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?题型五、完全平方公式的变形技巧1、 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式的变形及其应用
完全平方公式的变形及其应用完全平方公式的变形及其应用多项式乘法的完全平方公式的变形形式很多,且应用广泛。
下面结合例题,介绍完全平方公式的变形及其应用。
一、变式1:$a^2+b^2=(a+b)^2-2ab$这是因为:由$(a+b)=a^2+b^2+2ab$,移项,得$a^2+b^2=(a+b)^2-2ab$。
例1:已知$x+y=5$,$xy=2$,求下列各式的值:(1)$x^2+y^2$;(2)$x^4+y^4$。
解:由变式1,得(1)$x^2+y^2=(x+y)^2-2xy=5^2-2\times2=21$;(2)$x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=21^2-2\times4=433$。
二、变式2:$a^2+b^2=(a-b)^2+2ab$这是因为:由$(a-b)=a^2-2ab+b^2$,移项,得$a^2+b^2=(a-b)^2+2ab$。
例2:已知$a-\sqrt{11}=5$,求$a^2+11$的值。
解:由变式2,得$a^2+11=\left(a-\sqrt{11}\right)^2+2\sqrt{11}=5^2+2\sqrt{11}=27$。
三、变式3:$ab=\dfrac{1}{2}\left(2a+b-\sqrt{a^2+b^2}\right)$这是因为:由$(a+b)=a^2+b^2+2ab$,得$2ab=(a+b)-\left(a^2+b^2\right)$,两边同除以2,得$ab=\dfrac{1}{2}\left(2a+b-\sqrt{a^2+b^2}\right)$。
例3:已知$a+b=7$,$a^2+b^2=29$,求$ab$的值。
解:由变式3,得$ab=\dfrac{1}{2}\left(2a+b-\sqrt{a^2+b^2}\right)=\dfrac{1}{2}\left(2a+b-\sqrt{7^2-29}\right)=10$。
完全平方公式的综合应用(习题及答案)
完全平方公式的综合应用(习题) 例题示范例1:已知x = 2,求x2 ^2,x4•丄的值.x x x【思路分析】观察题目特征(已知两数之差和两数之积1x 1,所求为两数的平方和),x判断此类题目为“知二求二”问题;1“x”即为公式中的a,“ - ”即为公式中的b,根据他们之间的关系可得:x2 1x —x1将X-— =2,x 2 2x 丄;xi 1 )=X —x1x - =1代入求解即可;x同理,X4•[二x2x4I即可求解.【过程书写】-2x2•丄,将所求的X2•厶的值及x2 x例2: 若x2 -2x + y2 +6y +10 =0,贝U x= _____ ,y= _______ .【思路分析】此题考查完全平方公式的结构,“首平方,尾平方,二倍乘积放中央”.观察等式左边,x2 -2x以及y2 6y均符合完全平方式结构,只需补全即可,根据“由两边定中间,由中间凑两边”可配成完全平方式,得到(x-1)2• (y • 3)2 = 0 . 根据平方的非负性可知:(x -1)2 =0且(y 3)^0,从而得到x=1,厂-3 .巩固练习1.若(a—2b)2=5,ab =1,则a2+4b2 =________ ,(a + 2b)2= ____ .2.已知x • y =3,xy =2,求x2 y2,x4 y4的值.1 13. 已知a2 -3a •仁0,求a2•盲,a^ —的值.a a4. (1)若x2+mxy + 9y2是完全平方式,则m= _________ .(2)若9x2-kxy+16y2是完全平方式,则k= __________ .5. 多项式4x2 4加上一个单项式后,能使它成为一个整式的平方,则可以加上的单项式共有_______ ,分别是____________2 2 a6. 若a +4b -6a-4b+10 = 0 ,贝U b = _________ .7. 当a为何值时,a2 -8a 14取得最小值,最小值为多少?8. 求x2 4y^4x 4y 8 的最值.思考小结1. 两个整数a,b (a z b)的“平均数的平方”与他们“平方数的平均数”相等吗?若不相等,相差多少?2. 阅读理解题: 若x 满足(210 _x)(x_200) =一204,试求(210 _x)2 (x — 200)2的值. 解:设210-x=a, x-200=b,则ab=- 204,且 a b = (210 _x) (x 一200) =10 ,由(a b)2 = a2 2ab b2得,a2 b2 =(a b)2 -2ab = 102 -2 (-204) =508 ,即(210 -x)2 (x-200)2的值为508.根据以上材料,请解答下题:若x满足(2015 -x)2 (2 013-x)2=4032,贝U (2 015 - x)(2 013 —x) = ____ .【参考答案】例题示范1例 1 .解:•/ x 2x --x丿=4 224 2X 2X 2 =34 1.913 2. 517 3. 747 4. ±i24 5. 52 -4x -4 8x -8x 6. 8 例2: 1 巩固练习 x 4 7. a =4时取得最小值,最小值为-28. 最小值为3思考小结1. (a -b)2 -3=36= 36-222. 2 0144。
完全平方公式的应用
完全平方公式是多项式乘法中非常重要的一个公式。
掌握其变形特点并灵活运用,可以巧妙地解决很多问题。
一. 完全平方公式常见的变形有a 2+b 2=(a+b )2-2a b,a 2+b 2=(a -b )2+2ab,(a+b)2-(a-b )2=4ab,a 2+b 2+c2=(a+b+c )2-2(ab+ac+bc)二. 乘法公式变形的应用例1: 已知:x2+y2+4x-6y+13=0,x、y 均为有理数,求x y 的值。
分析:逆用完全乘方公式,将x2+y2+4x -6y+13化为两个完全平方式的和,利用完全平方式的非负性求出x 与y的值即可。
解:∵x 2+y2+4x-6y+13=0,(x2+4x+4)+(y 2-6y+9)=0,即(x+2)2+(y-3)2=0。
∴x +2=0,y =3=0。
即x=-2,y=3。
∴xy=(-2)3=-8。
例已知,试求的值。
21612242a a a a a a ++=++分析:本题巧妙地利用a a a aa a a a a a a a aa a a a a a a a a 222222422222112160161111561111111156136113311+=+-++=≠=++=++∴+=-∴++=++=+-=--=-=-()()()进行运算。
解:由,可知,因此可得,。
例3 已知:a +b=8,ab=16+c 2,求(a -b+c)2002的值。
分析:由已知条件无法直接求得(a-b+c)2002的值,可利用(a-b)2=(a +b )2-4ab 确定a-b 与c的关系,再计算(a-b+c)2002的值。
解:(a-b)2=(a+b)2-4ab=82-4(16+c 2)=-4c 2。
即:(a-b )2+4c 2=0。
∴a-b=0,c=0。
∴(a-b+c)2002=0。
例4 已知:a、b 、c 、d 为正有理数,且满足a 4+b 4+C 4+D 4=4ab cd 。
完全平方公式的运用
完全平方公式的运用完全平方公式是指一个二次方程中,如果其形式为ax^2 + bx + c = 0,那么其解可表示为 x = (-b ± √(b^2 - 4ac))/2a。
这个公式被广泛应用于解决与二次方程相关的问题。
下面将详细讨论完全平方公式的运用。
1.求解根最常见的运用完全平方公式是求解一个二次方程的根。
给定一个二次方程 ax^2 + bx + c = 0,我们可以直接将其参数代入公式,求出 x 的值。
需要注意的是,根的个数可以通过判别式来确定。
判别式 D = b^2 - 4ac 表示方程的解的性质,可以有以下三种情况:-当D>0时,方程有两个不同实数根。
-当D=0时,方程有两个相等的实数根。
-当D<0时,方程没有实数根,解为复数。
例如,对于方程3x^2+4x-2=0,我们可以使用完全平方公式来求解。
根据公式,我们可以得到:x = (-b ± √(b^2 - 4ac))/(2a)=(-4±√(4^2-4*3*(-2)))/(2*3)=(-4±√(16+24))/(6)=(-4±√(40))/6=(-4±2√10)/6所以,该方程的解为x=(-2±√10)/32.求解其中一边长根据矩形的面积公式A=a*b,我们可以得到二次方程a*b-A=0。
将其转化为解a的二次方程,则有a=(A/b)。
将此代入原方程,我们得到:b^2-A=0这是一个关于b的二次方程。
可以使用完全平方公式求解,得到b=±√A。
因为b作为一个长度,所以b的值应该是正数,因此b=√A。
这就解出了原问题,即给定矩形的面积,求解另一边长。
3.求解最值f(x)=a(x-h)^2+k其中h和k分别代表顶点的横坐标和纵坐标。
通过完全平方公式,我们可以得到:f(x) = a(x^2 - 2hx + h^2) + k= ax^2 - 2ahx + ah^2 + k通过比较系数,我们可以得到顶点的坐标为(h,k)=(-b/2a,f(-b/2a))。
完全平方公式的应用
完全平方公式的应用首先,让我们回顾一下完全平方公式的表达方式。
对于一个一元二次方程ax^2+bx+c=0,其中a、b、c为实数并且a ≠ 0,我们可以使用完全平方公式来求解它的根。
完全平方公式的表达式如下所示:x = (-b±√(b^2-4ac))/(2a)这个公式由两个解构成,分别对应于二次方程的两个根。
正号表示一个解,负号表示另一个解。
首先是代数方面的应用。
我们可以使用完全平方公式来解决一元二次方程的根的问题。
例如,假设我们有一个方程x^2+3x+2=0,我们可以使用完全平方公式来求解它的根。
根据完全平方公式,我们可以计算出x的值为-2和-1、因此,这个方程的根为x=-2和x=-1除了求解一元二次方程的根之外,完全平方公式还可以帮助我们解决其他类型的数学问题。
例如,我们可以使用完全平方公式来解决关于面积和周长的问题。
假设我们有一个正方形的周长为12个单位,我们可以使用完全平方公式来计算出正方形的面积。
由于正方形的周长等于4a(其中a为正方形的边长),我们可以得到方程4a=12、通过解方程,我们可以得到正方形的边长为3个单位。
然后,我们可以使用完全平方公式来计算正方形的面积,即3^2=9、因此,这个正方形的面积为9个单位。
在几何方面,完全平方公式也有重要的应用。
例如,我们可以使用完全平方公式来求解直角三角形的斜边长度。
考虑一个直角三角形,其中两条边的长度分别为a和b,斜边的长度为c。
根据勾股定理,我们可以得到a^2+b^2=c^2、如果我们已知a和b的值,我们可以使用完全平方公式来求解c的值。
例如,如果a=3和b=4,我们可以计算出c=√(3^2+4^2)=5在物理方面,完全平方公式也有一些应用。
例如,根据牛顿第二定律F=ma(其中F为力,m为质量,a为加速度),我们可以得到a=F/m。
假设我们想要计算物体的加速度,但是我们只知道物体的质量和施加在它上面的力。
在这种情况下,我们可以使用完全平方公式来解决这个问题。
完全平方公式的五种常见应用举例
完全平方公式的五种常见应用举例完全平方公式的五种常见应用举例完全平方公式是整式乘法中最重要的公式之一在运用完全平方公式时,必须掌握一些使用技巧,才能灵活应用公式,其中包括“顺用”、“逆用”、“顺逆联用”,以及“特例应用”和“变形应用”等.下面举例说明.一、正用根据算式的结构特征,由左向右套用.例1 计算22(23)m m --分析本题是一个三项式的平方,可考虑将三项式中任意两项组合成一个整体,使其转化为一个二项式的平方,然后再运用完全平方公式便可以顺利求解. 解 22(23)m m --22[(2)3]m m =--222(2)6(2)9mm m m =---+ 4322446129m m m m m =-+-++43242129m m m m =--++思考本题中三项式转化为二项式的根据是什么?还有其它的方法吗?二、逆用将公式逆向使用,即由右向左套用.例 2 己知20172018a x =+,20172019b x =+,20172020c x =+,则多项式222a b c a b b c a c ++---的值为( ) (A) 0 (B)1 (C)2 (D)3分析观察本题已知条件,直接代入求值困难.但换个角度仔细观察多项式的结构就不难发现,该多项式的2倍恰好是3个完全平方公式的右端,于是逆用完全平方公式,就可以得到222()()()a b b c c a -+-+-,而a b -,b c -,c a -的值可求,故本题巧妙得解. 解∵20172018a x =+20172019b x =+20172020c x =+∴1a b -=-,1b c -=-,2c a -=∴222a b c a b b c a c ++---2221(222222)2a b c a b b c a c =++--- 2222221(222)2a a b b b b c c c a c a =-++-++-+ 2221[()()()]2a b b c c a =-+-+- 2221[(1)(1)2]2=-+-+3=应选D.三、正逆联用根据已知条件和待求式特征,有正用、又逆用,即综合运用. 例3 (全国初中数学竞赛试题)已知21()()()4b c a b c a -=--,且0a ≠,则b c a += . 分析欲求b c a +的值,则需要明b c +与a 之间的等量关系.而题目中的已知条件刚好就是a 、b 、c 之间的关系式,于是将条件等式进行化简变形,明确b c +与a 之间的关系,应该是一条即常规又恰当的选择.解由已知,得2()4()()b c a b c a -=-- 22224444b b c ca cbc a b a ∴-+=-+- 2222(44)40b b c c a b a c a∴++-++= 22()4()40b c a b c a ∴+-++=把b c +和2a 分别看成一个“整体”,再逆用完全平方公式,得2[()2]0b c a +-= 20b c a ∴+-=,2b c a +=22b caa a +∴==.四、特例应用在完全平方公式222()2a b a a b b +=++中,如果0a b =,那么222()a b a b +=+反之,若222()a b a b +=+,则一定有0a b =.例5 若n 满足22(2017)(2019)4n n -+-=,则(2019)(2017)n n --= . 分析若设2017n a -=,2019n b -=,则很容易验证222()a b a b +=+,这正好符合上面完全平方公式特例.据此,本题迎刃而解.解设2017n a -=,2019n b -=,则2()4a b +=,又已知224a b +=∴222()a b a b +=+于是0a b =∴(2019)(2017)n n --=(2017)(2019)n n --0a b ==五、变形应用由完全平方公式222()2a b a a b b ±=±+,易得如下的两个最常见的变形公式:①2222()2()2a b a b a b a b a b +=+-=-+②22()()4a b a b a b -=+-(或)221[()()]4a b a b a b =+--活用上面变形公式,常常会使问题化难为易,取得奇妙的解题效果。
完全平方公式的几种常见用法
完全平方公式的几种常见用法作者:刁一建来源:《新高考·升学考试》2018年第02期我们熟悉的完全平方公式是:(a±b)2=a2±2ab+b2.它在乘法运算和因式分解中起到重要的作用,是初中数学中一个常用公式,也是中考的必备计算工具.下面就完全平方公式的运用归纳几种常见用法.一、超过两项的多项式的平方展开例1. 计算:(x-2y-3z)2.分析:完全平方公式(a±b)2=a2±2ab+b2的展开式本质上是:多项式每一项分别平方+每两项积的2倍,由此可以引申出:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.解:(x-2y-3z)2=x2+(-2y)2+(-3z)2+2x(-2y)+2x(-3z)+2(-2y)(-3z)=x2+4y2+9z2-4xy-6xz+12yz.小结:在(x-2y-3z)2中,多项式x-2y-3z三项分别为x、-2y、-3z,展开(x-2y-3z)2时,先将三项分别平方,然后每两项相乘再乘2倍.类似地,当遇到诸如:(a-2b-c+d)2的展开时,也可以使用此方法.二、利用完全平方公式的变形公式求值例2. (1)若a+b=-3,ab=2,則a2+b2= ,a-b2= .(2)已知x2-3x+1=0,求:① x2+1x2,②(x-1x)2.分析:完全平方公式常见变形为: a2+b2=(a+b)2-2ab=(a-b)2+2ab;(a-b)2 =(a+b)2-4ab;(a+b)2 =(a-b)2+4ab.第(1)题可以直接利用变形公式求解;第(2)题由条件同除以x可得:x+1x=3.解:(1)a2+b2=(a+b)2-2ab= 9-4=5,(a-b)2 =(a+b)2-4ab=9-8=1.(2)由x2-3x+1=0,得x+1x=3.① x2+1x2=x+1x2-2=7;② x-1x2=x+1x2-4=5.小结:变形公式要求同学们理解完全平方公式的结构,具备整体意识,同时不能忽视互为倒数的两数之积为1的性质.三、确定完全平方式中的系数例3.如果多项式x2+(m-1)x+16是一个完全平方式,则m的值是多少?分析:多项式中首末两项是x和4的平方,那么中间项就为加上或减去x和4的乘积的2倍.解:∵x2+(m-1)x+16是一个完全平方式,∴(m-1)x=2×4x或(m-1)x=-2×4x,∴m=9或m=-7.小结:有些同学解决本题时可能会只求出一个答案9,缺少-7.在完全平方式中,平方项系数恒为正数,而中间项的系数可以为正负两种情况,不可漏解.例如:若4x2-mxy+25y2 是一个完全平方式,求m的值.此时可以运用同样的方法求解.四、利用因式分解求值例4.已知a+b=1,求12a2+ab+12b2的值.分析:由于只有一个已知条件要具体求出a,b的值是不可能的,而运用完全平方公式,将结论因式分解为12(a+b)2,就可以轻松求出结果.解:∵12a2+ab+12b2=12(a2+2ab+b2)=12(a+b)2,∴原式=12×12=12.小结:因式分解本质上就是将公式进行逆用.本题还可以对条件变形求解:∵a+b=1,∴a=1-b,再代入12a2+ab+12b2,就可以得到12(1-b)2+b(1-b)+12b2,展开即可求出结果,但是这样做相对比较复杂.五、利用配方法进行求值例5.若4m2+n2-6n+4m+10=0,求m2-n2的值.分析:计算代数式的值,求出m,n的值是关键.当一个等式有两个未知数时,可以联想构造完全平方公式再利用非负性求解.解:∵4m2+n2-6n+4m+10=0,∴ 4m2+4m+1+n2-6n+9=0,∴(2m+1)2+(n-3)2=0,∴ 2m+1=0, n-3=0,∴ m=-12,n=3.原式=(-12)2-32=-354.小结:本题考查了非负性的运用和拆项法构造完全平方公式,解答时将常数10拆成9和1是难点.六、利用配方法进行证明例6. 已知a,b,c为三角形的三边,且a2+b2+c2-ab-bc-ac=0.求证:△ABC为等边三角形.分析:可将题目所给的关于a,b,c的等量关系进行适当变形,转换为几个完全平方式,然后根据非负数的性质求出a,b,c三边的数量关系,进而就可以判断△ABC的形状.解:∵a2+b2+c2-ab-bc-ac=0,∴2a2+2b2+2c2-2ab-2bc-2ac=0,∴(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)=0,∴(a-b)2+(b-c)2+(c-a)2=0,∴a-b=0,b-c=0,c-a=0,∴a=b=c,∴△ABC是等边三角形.小结:本题运用配方法构造完全平方公式,将已知转化为平方和,再由非负性求解.【结束语】完全平方公式的运用需要对公式本身深入理解,其应用范围相当广泛,是学习的一个难点,特别是配方法对能力要求比较高,它是我们后续学习一元二次方程和二次函数的基础,只有通过理解、分析并不断熟悉几种变形,完全平方的使用才能得心应手.。
完全平方公式20道例题
完全平方公式20道例题完全平方公式是一种数学公式,可以用来解决相关的一元多项式方程。
它是一种比较容易理解的数学概念,可以帮助学生更好地理解一元多项式的概念。
为了帮助学生更好地理解完全平方公式,我们将给出20个典型的实例题例。
1.:设ax2+bx+c=0解得x1=(-b+√(b2-4ac))/2a, x2=(-b-√(b2-4ac))/2a2.:设ax2+bx+c=0解得x1=(-b+√(b2-4ac))/2a, x2=(-b-√(b2-4ac))/2a3.:设ax2+bx+c=0解得x1=(-b+√(b2-4ac))/2a, x2=(-b-√(b2-4ac))/2a4.:设ax2+bx+c=0解得x1=(-b+√(b2-4ac))/2a, x2=(-b-√(b2-4ac))/2a5.:设ax2+bx+c=0解得x1=(-b+√(b2-4ac))/2a, x2=(-b-√(b2-4ac))/2a6.:设ax2+bx+c=0解得x1=(-b+√(b2-4ac))/2a, x2=(-b-√(b2-4ac))/2a7.:设ax2+bx+c=0解得x1=(-b+√(b2-4ac))/2a, x2=(-b-√(b2-4ac))/2a8.:设ax2+bx+c=0解得x1=(-b+√(b2-4ac))/2a, x2=(-b-√(b2-4ac))/2a9.:设ax2+bx+c=0解得x1=(-b+√(b2-4ac))/2a, x2=(-b-√(b2-4ac))/2a10.:设ax2+bx+c=0解得x1=(-b+√(b2-4ac))/2a, x2=(-b-√(b2-4ac))/2a11.:当a=2, b=3, c=1时,x1= -0.5,x2= -212.:当a=1, b=4, c=4时,x1= -2,x2= -213.:当a=2, b=-5, c=-3时,x1= 0.5,x2= -314.:当a=5, b=-14, c=21时,x1= 3,x2= -715.:当a=2, b=-2, c=12时,x1= 3,x2= -216.:当a=3, b=8, c=-15时,x1= -3,x2= 517.:当a=4, b=-22, c=24时,x1= 3,x2= -318.:当a=4, b=4, c=-4时,x1= -1,x2= 119.:当a=2, b=-4, c=2时,x1= 1,x2= -120.:当a=3, b=3, c=-6时,x1= -2,x2= 1以上就是本文涉及的20个例子,希望能够帮助同学们更好地理解完全平方公式,掌握此公式的应用。
完全平方公式在数学运算中的作用
完全平方公式在数学运算中的作用
完全平方公式是一种数学运算,它可以用来解决一元二次方程的根。
它的公式是:ax2 +
bx + c = 0,其中a、b、c是常数,x是未知数。
它的解法是:x = -b ± √(b2 - 4ac) / 2a。
完全平方公式可以用来解决一元二次方程,这是一种常见的数学问题,它可以用来解决各
种科学、工程和经济问题。
例如,它可以用来解决物理学中的力学问题,如求解物体的运动轨迹;它也可以用来解决经济学中的问题,如求解投资收益率等。
此外,完全平方公式还可以用来解决几何学中的问题,如求解圆的面积、椭圆的面积等。
它还可以用来解决概率论中的问题,如求解概率分布的参数等。
总之,完全平方公式是一种重要的数学运算,它可以用来解决各种科学、工程和经济问题,为科学研究和工程应用提供了重要的支持。
完全平方公式的几种用法
完全平方公式的几种用法
完全平方公式可以为我们提供许多极其实用的计算能力,而它的用法也是多种
多样的。
首先,完全平方公式可以帮助我们解决一元二次方程组的求解问题,这是完全
平方公式最常用的一种用法。
一元二次方程可以分解为两个完全平方式,再使用完全平方公式即可将其解决。
其次,完全平方公式可以用来计算几何图形的面积和体积,尤其是一些较为复
杂的几何图形。
它可以通过把此形状分解成几个独立的部分,然后再用完全平方公式计算出其面积和体积。
再者,完全平方公式也可以用来解决数学问题,例如它可以处理一些最大数值
问题,比如求得多个数中的最大或最小值,这当中也可以使用完全平方公式来解决。
最后,完全平方公式也可以实现数字预测,这是最近非常流行的一种数学算法,它通过收集历史数据并拟合出模型,然后使用完全平方公式对未来的变化趋势进行预测。
总的来说,完全平方公式拥有无限的可能,它可以被用于许多众多的数学算法中,从求解一元二次方程到预测数字,它每一种用法都可以帮助我们提高效率,提供有力的支持。
完全平方公式常考题型(经典)
完全平方公式典型题型一、公式及其变形1、 完全平方公式:222()+2a b a ab b +=+ (1)222()2a b a ab b -=-+ (2)公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。
注意: 222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+- 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。
2、公式变形 (1)+(2)得:2222()()2a b a b a b ++-+= (12)-)(得: 22()()4a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=-3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++二、题型题型一、完全平方公式的应用例1、计算(1)(-21ab 2-32c )2; (2)(x -3y -2)(x +3y -2);练习1、(1)(x -2y )(x 2-4y 2)(x +2y );(2)、(a -2b +3c -1)(a +2b -3c -1);题型二、配完全平方式 1、若k x x ++22是完全平方式,则k =2、.若x 2-7xy +M 是一个完全平方式,那么M 是3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N =4、如果224925y kxy x +-是一个完全平方式,那么k =题型三、公式的逆用1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2.5.代数式xy -x 2-41y 2等于-( )2题型四、配方思想1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____.2、已知0136422=+-++y x y x ,求y x =_______.3、已知222450x y x y +--+=,求21(1)2x xy --=_______.4、已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy+=_______.5.已知014642222=+-+-++z y x z y x ,则z y x ++= . 6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?题型五、完全平方公式的变形技巧1、已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方公式常考题型
完全平方公式常考题型(经典)(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--完全平方公式典型题型一、公式及其变形1、 完全平方公式:222()+2a b a ab b +=+ (1)222()2a b a ab b -=-+ (2)公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。
注意:222)()]([)(b a b a b a +=+-=-- 222)()]([)(b a b a b a -=--=+-完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。
2、公式变形 (1)+(2)得:2222()()2a b a b a b ++-+= (12)-)(得: 22()()4a b a b ab +--= ab b a ab b a b a 2)(2)(2222-+=-+=+,ab b a b a 4)()(22-+=-3、三项式的完全平方公式:bc ac ab c b a c b a 222)(2222+++++=++二、题型题型一、完全平方公式的应用例1、计算(1)(-21ab 2-32c )2; (2)(x -3y -2)(x +3y -2);练习1、(1)(x -2y )(x 2-4y 2)(x +2y );(2)、(a -2b +3c -1)(a +2b-3c -1);题型二、配完全平方式1、若k x x ++22是完全平方式,则k =2、.若x 2-7xy +M 是一个完全平方式,那么M 是3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N =4、如果224925y kxy x +-是一个完全平方式,那么k =题型三、公式的逆用1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2.5.代数式xy -x 2-41y 2等于-( )2 题型四、配方思想1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=_____.2、已知0136422=+-++y x y x ,求y x =_______.3、已知222450x y x y +--+=,求21(1)2x xy --=_______. 4、已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式yx xy +=_______. 5.已知014642222=+-+-++z y x z y x ,则z y x ++= .6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形题型五、完全平方公式的变形技巧1、已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
《完全平方公式》
《完全平方公式》完全平方公式的定义是:任意一个整数的平方都可以表示为之前的一个连续整数的平方的和减去另一个连续整数的平方的形式。
即对于任意整数a来说,有以下等式成立:a²=(a-1)²+2*(a-1)+1a²=a²可以看出,左边的a²是完全平方,而右边的(a-1)²+2*(a-1)+1也是完全平方。
这个完全平方公式在数学中应用广泛,可以用于求解两个平方数之和或之差的式子。
例如,我们可以利用完全平方公式来推导关于n和n+1的任何两个完全平方数之间的关系。
以n²和(n+1)²为例,我们可以将(n+1)²写成n²+2n+1的形式。
这样,n²和(n+1)²的关系就可以表示为:(n+1)²=n²+2n+1n²和(n+1)²之间的关系是通过完全平方公式来得到的,它可以大大简化数学问题的解答过程。
利用完全平方公式还可以求解两个完全平方数之差的式子。
例如,我们可以计算出(n+2)²和n²的差值。
(n+2)²-n²=(n²+4n+4)-n²=4n+4所以,(n+2)²和n²的差值为4n+4完全平方公式的应用还可以延伸到求解一些实际问题。
例如,我们可以通过完全平方公式来求解对角线长度为整数的平行四边形的边长问题。
设平行四边形的一条边长为a,对角线长度为d。
根据完全平方公式,我们可以得到以下等式:d²=a²+a²即d²=2a²根据完全平方公式的定义,左边的d²是完全平方数,而右边的2a²也是完全平方数。
因此,我们可以通过求解d²=2a²的整数解来得到满足条件的平行四边形的边长。
完全平方公式在数论、代数和几何等数学分支中都有重要应用。
完全平方公式经典题型
完全平方公式经典题型完全平方公式是一种常用的数学公式,可以用来求两数和或差的平方。
具体公式为:(a±b)² = a²±2ab+b²。
这个公式可以用口诀“首平方加尾平方,乘积二倍在中央”来记忆。
其中,a和b可以是数字、单项式或多项式,称为二次项,均为正项;2ab为中间项,符号由括号里的符号确定。
扩展公式为:(ax±by)² = a²x²±2abxy+b²y²,其中a、b为x、y系数,展开式的中间项系数为2ab。
举例来说,对于表达式1.9a-12ab+4b,可以进行如下操作:2.4a-4ab+b,这个表达式中,a和b均为二次项,2ab为中间项。
同样地,对于表达式(2x-3)²,可以展开为4x²-12x+9,其中a=2x,b=-3,2ab=-12.需要注意的是,展开式的系数需要根据公式逆用来判断。
在运用完全平方公式时,还可以利用加减变形来求解。
例如,已知a+b=5,ab=3,可以求得a和b的值,再利用(a-b)² =a²-2ab+b²求得(a-b)的值。
同样地,已知x+y=8,xy=12,可以求得x和y的值,再求出x+y的值。
还可以根据已知条件求解xy的值,例如已知(x+y)=16,(x-y)=8,求xy的值。
需要注意的是,在运用公式时,需要对题目进行适当的加减变形,以便于求解。
7.已知 $2a-b=5$,求 $ab$。
解:将 $2a-b=5$ 移项得 $b=2a-5$,代入 $ab$ 得$ab=a(2a-5)=2a^2-5a$。
8.已知 $\frac{x}{x-3}=6$,求$\frac{x^2}{2}+\frac{1}{2x^2}$。
解:将 $\frac{x}{x-3}=6$ 化简得 $x=9$,代入$\frac{x^2}{2}+\frac{1}{2x^2}$ 得$\frac{729}{2}+\frac{1}{162}=\frac{}{162}$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完全平方公式的典型应用
题型一、完全平方公式的应用
例1、计算(1)(-
21ab 2-3
2c )2; (2)(x -3y -2)(x +3y -2);
练习1、(1)(x -2y )(x 2-4y 2)(x +2y ); (2)、(a -2b +3c -1)(a +2b -3c -1);
题型二、配完全平方式
1、若k x x ++22是完全平方式,则k =
2、.若x 2-7xy +M 是一个完全平方式,那么M 是
3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N =
4、如果224925y kxy x +-是一个完全平方式,那么k =
题型三、公式的逆用
1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.
3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2.
5.代数式xy -x 2-
41y 2等于-( )2 题型四、配方思想
1、若a 2+b 2-2a +2b +2=0,则a
2004+b 2005=_____. 2、已知0136422=+-++y x y x ,求y x =_______.
3、已知222450x y x y +--+=,求
21(1)2x xy --=_______. 4、已知x 、y 满足x 2十y 2十4
5=2x 十y ,求代数式y x xy +=_______. 5.已知0146422
22=+-+-++z y x z y x ,则z y x ++= .
6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角
形是什么三角形?
题型五、完全平方公式的变形技巧
1、已知 2
()16,4,a b ab +==求22
3a b +与2()a b -的值。
2、已知2a -b =5,ab =
23,求4a 2+b 2-1的值.
3、0132=++x x ,求(1)221x x +
(2)441x x +
题型六、“整体思想”在整式运算中的运用
例1、已知2083-=
x a ,1883-=x b ,168
3-=x c ,求:代数式bc ac ab c b a ---++222的值。
练习1、已知a=1999x+2000,b =1999x+2001,c =1999x+2002,则多项式a 2+b 2+c 2一ab —bc-ac 的值为
( ). A .0 B .1 C .2 D .3
练习题
1、(2a +3)2+(3a -2)2
2、(s -2t )(-s -2t )-(s -2t )2;
3、(t -3)2(t +3)2(t 2+9)2.
4、已知x 2-5x +1=0,则x 2+
21x =________. 5、已知2246130x y x y ++-+=,,x y 均为有理数,求y x 值
6、已知261
a a a =++,求2421a a a ++的值,
7、已知222450x y x y +--+=,求
21(1)2x xy --的值
8、已知22418x x ++可以写成2(2)(1)a x b x c +--+的形式,求2008()a b c +-的值
9、用简便的办法求2
222009200820092007+200920092
-的值,
10、已知22
()8,()2m n m n -=+=,求22m n +的值
11、已知22
()8x a x x b +=-+,求,a b 的值
12、已知x +
x 1=2,求x 2+21x ,x 4+41x
的值.
13、已知(a -1)(b -2)-a (b -3)=3,求代数式2
2
2b a +-ab 的值.
14、221.234+0.766 2.4680.766+⨯,
15、求222242012P a b a b =++++的最小值。