完全平方公式 典型应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完全平方公式的典型应用
题型一、完全平方公式的应用
例1、计算(1)(-
21ab 2-3
2c )2; (2)(x -3y -2)(x +3y -2);
练习1、(1)(x -2y )(x 2-4y 2)(x +2y ); (2)、(a -2b +3c -1)(a +2b -3c -1);
题型二、配完全平方式
1、若k x x ++22是完全平方式,则k =
2、.若x 2-7xy +M 是一个完全平方式,那么M 是
3、如果4a 2-N ·ab +81b 2是一个完全平方式,则N =
4、如果224925y kxy x +-是一个完全平方式,那么k =
题型三、公式的逆用
1.(2x -______)2=____-4xy +y 2. 2.(3m 2+_______)2=_______+12m 2n +________.
3.x 2-xy +________=(x -______)2. 4.49a 2-________+81b 2=(________+9b )2.
5.代数式xy -x 2-
41y 2等于-( )2 题型四、配方思想
1、若a 2+b 2-2a +2b +2=0,则a
2004+b 2005=_____. 2、已知0136422=+-++y x y x ,求y x =_______.
3、已知222450x y x y +--+=,求
21(1)2x xy --=_______. 4、已知x 、y 满足x 2十y 2十4
5=2x 十y ,求代数式y x xy +=_______. 5.已知0146422
22=+-+-++z y x z y x ,则z y x ++= .
6、已知三角形ABC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角
形是什么三角形?
题型五、完全平方公式的变形技巧
1、已知 2
()16,4,a b ab +==求22
3a b +与2()a b -的值。
2、已知2a -b =5,ab =
23,求4a 2+b 2-1的值.
3、0132=++x x ,求(1)221x x +
(2)441x x +
题型六、“整体思想”在整式运算中的运用
例1、已知2083-=
x a ,1883-=x b ,168
3-=x c ,求:代数式bc ac ab c b a ---++222的值。
练习1、已知a=1999x+2000,b =1999x+2001,c =1999x+2002,则多项式a 2+b 2+c 2一ab —bc-ac 的值为
( ). A .0 B .1 C .2 D .3
练习题
1、(2a +3)2+(3a -2)2
2、(s -2t )(-s -2t )-(s -2t )2;
3、(t -3)2(t +3)2(t 2+9)2.
4、已知x 2-5x +1=0,则x 2+
21x =________. 5、已知2246130x y x y ++-+=,,x y 均为有理数,求y x 值
6、已知261
a a a =++,求2421a a a ++的值,
7、已知222450x y x y +--+=,求
21(1)2x xy --的值
8、已知22418x x ++可以写成2(2)(1)a x b x c +--+的形式,求2008()a b c +-的值
9、用简便的办法求2
222009200820092007+200920092
-的值,
10、已知22
()8,()2m n m n -=+=,求22m n +的值
11、已知22
()8x a x x b +=-+,求,a b 的值
12、已知x +
x 1=2,求x 2+21x ,x 4+41x
的值.
13、已知(a -1)(b -2)-a (b -3)=3,求代数式2
2
2b a +-ab 的值.
14、221.234+0.766 2.4680.766+⨯,
15、求222242012P a b a b =++++的最小值