理论力学:4-13动量矩定理
理论力学基础 动量矩定理3
(习题12-14) 习题 - )
鞍山科技大学机械工程与自动化学院工程力学系
理论力学 例题十七
第 六 节 平 面 运 动 微 分 方 程
第十二章 动量矩定理
A:m1下降,鼓轮:r、R、m2,ρ。求A的加速度。 下降,鼓轮: 的加速度。 。 的加速度
α=a/(R+r)
S S’ a aC=aR/(R+r) m1g
CHale Waihona Puke 例题十九 如图所示,板的质量为 1,受水平力 如图所示,板的质量为m
α
F ar ′ F2 F1 FN1 ′ FN2 m1g
鞍山科技大学机械工程与自动化学院工程力学系
C
m2g
aC FN2 F2
a F
理论力学
第十二章 动量矩定理
例题二十 均质圆柱体 和B的质量均为 ,半 均质圆柱体A和 的质量均为 的质量均为m,
(习题11-3) 习题 - )
鞍山科技大学机械工程与自动化学院工程力学系
理论力学
第 五 节 质 点 系 相 对 于 质 心 的 动 量 矩 定 理
第十二章 动量矩定理
二、质点系相对于质心的动量矩定理
dLO d = (rC × mvC + LC ) = ∑ r i × Fi(e) dt dt
drC dLC d (e) ′i × Fi(e) × mvC + rC × mvC + = ∑ r C × Fi + ∑ r dt dt dt
鞍山科技大学机械工程与自动化学院工程力学系
理论力学 例题十八
第 六 节 平 面 运 动 微 分 方 程
第十二章 动量矩定理
摩擦系数: , 轮:m,R,A:m1,摩擦系数:f,求加速度及 , , BC段绳的拉力。 段绳的拉力。 段绳的拉力
第十三章动量矩定理_理论力学
式中
分别为作用于质点上的内力和外力。求 n 个方程的矢量和有
式中
,
于 点的主矩。交换左端求和及求导的次序,有
为作用于系统上的外力系对
令 (13-3)
为质系中各质点的动量对 点之矩的矢量和,或质系动量对于 点的主矩,称为质系对 点的动量矩。由此得
(13-4) 式(13-4)为质系动量矩定理,即:质系对固定点 的动量矩对于时间的一阶导数等于外力 系对同一点的主矩。
设 Q 为体积流量, 为密度, 和 分别为水流进口处和出口处的绝对速度, 和 分别为涡轮外圆和内圆的半径, 为 与涡轮外圆切线的夹角, 为 与涡轮内圆切线的
夹角,则
由动量矩定理 得
为叶片作用于水流上的力矩。若水涡轮共有 个叶片,则水流作用于涡轮的转动力矩为
方向与图示方向相反。 §13-2 刚体绕定轴转动微分方程
解:取两叶片间的水流为研究对象(图 13-4 中的兰色部分)。作用于质系上的的外力有 重力和叶片的约束力,重力平行于 z 轴,对转动轴之矩为零。所以外力主矩为叶片对水流
的约束力对 z 轴之矩 。
计算 时间间隔内动量矩的增量 。设 t 瞬时占据 ABCD 的水流,经过 时间间隔
后,运动至占据
,设流动是稳定的,则
有
式中
得
(13-8)
或
(13-9)
此式称为刚体绕定轴转动的微分方程。
为刚体绕定轴转动的角加速度,所以上式
可写为
(13-10)
1.由于约束力对 z 轴的力矩为零,所以方程中只需考虑主动力的矩。 2.比较刚体绕定轴转动微分方程与刚体平动微分方程,即
与
形式相似,求解问题的方法和步骤也相似。 转动惯量与质量都是刚体惯性的度量,转动惯量在刚体转动时起作用,质量在刚体平动
动量矩定理
动量矩定理蜻蜓、飞机和直升机儿时的我很爱雨后捉蜻蜓。
夏天一场大雨过后,街道上和低洼处到处是水坑。
许多蜻蜓在水面上下飞舞,并不时用尾巴尖端表演“蜻蜓点水”的特技。
我们就用长竿端部的网兜捕捉蜻蜓,捉到后用细线拴住它的腰部,看它在我的掌握之中乱飞,快乐异常。
长大后对蜻蜓的兴趣转为对飞机的热爱,考大学选了飞机设计专业。
飞机(为了与直升机区别,可称其为“平飞飞机”,这里是按它们的飞行状态来区分的)的机翼与蜻蜓的翅膀极为相似,可是它在天空只能不停地往前飞行,不能停止。
蜻蜓就有这个本事。
直升机克服了平飞飞机(下文中仍简称为飞机)不能在空中悬停的缺点,它依靠旋转的翅膀(正确术语为旋翼)能在空中悬停,并可将重物吊起或降下,所以它在反潜、救灾、反恐、反海盗任务中有独特的优势。
直升机的先祖,至少可追朔到中国明代就出现的竹蜻蜓,直到如今仍是许多孩童的好玩具。
现代人又把它叫做“飞螺旋”和“中国陀螺”。
它用旋转叶片产生升力,使竹蜻蜓飞起来。
直升机和飞机的主要区别在于它们产生升力的机理不同。
飞机靠机身两侧的形似蜻蜓翅膀(见图1)的平直机翼提供升力,前进的动力是由机头的螺旋桨或尾部喷管(即尾喷管)的喷气来提供;而直升机则是借助旋转的机翼(旋翼)产生升力。
直升机的旋翼和飞机的螺旋桨都是用旋转的叶片推动空气产生作用力的。
飞机的螺旋桨基本不提供升力,只起克服空气阻力使飞机前进的作用;而直升机的旋翼,主要提供升力;在需要前进时,倾斜旋转轴,从而造成水平分力,使直升机前进。
一般而言,直升机旋翼叶片的尺寸(长宽和面积)要比飞机螺旋桨叶片大得多。
直升机旋翼的种类为了讨论直升机的动力学问题,先对直升机的类别进行简介。
按照旋翼的数目与配置以及叶片数目来区分,直升机有如下几种:01单旋翼直升机顾名思义,单旋翼直升机就是它只有一个旋翼。
一般它必须带一个尾桨负责抵消旋翼产生的反转矩。
例如,欧洲直升机公司制造的EC-135直升机。
图2就是一个带尾桨的单旋翼直升机图片。
理论力学-动量矩定理
d rC d vC vC , aC , dt dt
n d LC ri Fi e dt i
vC vC 0 ,
m a C Fie
n dLC M C (Fie ) dt i
相对质心的动量矩定理
质点系相对质心的动量矩定理
n n d LC e e ri Fi M C ( Fi ) i dt i
m v
i
i
m vC
LO rC m vC LC
相对质心的动量矩定理
质点系相对质心的动量矩定理
根据上式和质点系对固定点的动量矩定理,
n d LO d ( rC m vC LC ) ri Fi e dt dt i
ri rC rr
n n d rC d vC d LC e rC Fi ri Fi e m vC rC m dt dt dt i i
即有
LC ri mi vir
相对质心的动量矩定理
质点系相对质心的动量矩
质点系相对固定点的动量矩与质点系相对质心的动量矩 之间存在确定的关系。 质点系相对固定点的动量矩为
LO ri mi vi
i
因为 所以有 因为 所以有
ri rC rr
LO rC mi v i ri mi v i
刚体定轴转动微分方程
例 题 1
图示钟摆简化模型中,已知均质细杆 和均质圆盘的质量分别为m1 、m2 ,杆 长为l,圆盘直径为d。
ϕ
试求:钟摆作小摆动时的周期。 解:摆绕O轴作定轴转动。设ϕ 为任意 时刻转过的角度,规定逆时针为正。根 据定轴转动的微分方程
J z M z
理论力学之动力学普遍定理
分方程得:
O
l
A
T sin=0.366
2clos=0.931
A´
BAB
P
N
P
T
P g
aCy
N
P
(T N )l cos 1 P (2l)2 12 g
联立解得: T = 0.846P N = 0.654P
25
阅读材料和作业
• 1.阅读材料 – (1)P164---P170
O
l
A
2l
A´
B´
B
P
21
解:取杆AB为研究对象进行运动分析.
O
l T
A
OB = 1.732l A´B = 0.732l
当绳索OA运动到铅垂位置时,
N
2l
杆AB作瞬时平动.
B´
vA = vB = v
A´
B
P
对杆AB进行受力分析.
约束力T和N不作功, P是有势力,系统机械能守恒.
0.866 Pl 0.366 Pl 1 P v2 v gl
(3)
联立(1)(2)(3)式解得:
O
m1 ( R
m1g(R r) r)2 m2 (R2
O2 )
aA
(R
r)O
m1(R
m1g(R r)2 r)2 m2 (R2
O2 )
D A
aA
28
O
13-31解.分别取木板和圆柱O为研究对 象画受力图.
aO
O
F Ff FO m1a
=1500.24(1- sin30o)
+600.12(1-sin30o)
理论力学10动量矩定理
J11 (J 22 m2v2 R2 ) m3v3R2
v3
v2
R2 2
1 2
R11
LO
(
J1 R2 2
J2 R2 2
m2
m3 )R2v3
轮B滚而不滑,有瞬心
17
对于一个定轴转动刚体 Lz J z
代入质点系动量矩定理,有
d dt
(J
z)
M
(e) z
Jz
M
( e) z
或
Jz
d 2
dt 2
M
(e) z
—刚体定轴转动微分方程
解决两类问题: 已知作用在刚体的外力矩,求刚体的转动规律。 已知刚体的转动规律,求作用于刚体的外力(矩)。
但不能求出轴承处的约束反力,需用质心运动定理求解。
18
特殊情况:
n
若M z(e) M z (Fi(e) ) 0 ,则 0, 恒量,刚体作匀速转动或 i1 保持静止。
mT
mT ymdm 0
mT
刚体对z轴的转动惯量
JZ
r2dm
mT
(x2 y2 )dm
mT
mT [( xC xm )2 ( yC ym )2 ]dm
mT (xm2 ym2 )dm
mT (xC2 yC2 )dm 2xC
mT
xmdm
2 yC
mT
ymdm
J Z JC mT d 2
0
0 24
复杂形状刚体的转动惯量 按定义,有:
JZ
理论力学 动量矩定律
MO (mv) 恒矢量
作用于质点的力对某定轴的矩恒为零,则质点对该轴的动量矩 保持不变,即
M z (mv ) 恒量
以上结论称为质点动量矩守恒定律 2)质点系动量矩守恒定理 当外力对某定点(或某定轴)的主矩等于零时,质点系对 于该点(或该轴)的动量矩保持不变,这就是质点系动量矩 守恒定律。 15 另外,质点系的内力不能改变质点系的动量矩。
24
动力学 2. 回转半径 定义:
转动惯量
z
Jz m
则
J z m z
2
即物体转动惯量等于该物体质量与回转半径平方的乘
积; 对于均质物体,仅与几何形状有关,与密度无关。
对于几何形状相同而材料不同(密度不同)的均质刚 体,其回转半径是相同的。
25
动力学
转动惯量
3. 平行移轴定理 刚体对于某轴的转动惯量,等于刚体对于过质心、并与该轴平 行的轴的转动惯量,加上刚体质量与轴距平方的乘积,即
LC LC
这样刚体作平面运动时,对过质心C且垂直于平面图形的 轴的动量矩为
J C LC LC
12
动力学
质点系动量矩定理
2.质点系的动量矩定理
n个质点,由质点动量矩定理有
d M O (mi vi ) M O ( Fi ( i ) ) M O ( Fi ( e ) ) dt
n d (e) Lx M x ( Fi ) dt i 1 n d Ly M y ( Fi ( e ) ) dt i 1 n d Lz M z ( Fi ( e ) ) dt i 1
14
动力学
质点系动量矩定理
3.动量矩守恒定理 1)质点动量矩守恒定理 如果作用于质点的力对某定点O的矩恒为零,则质点对该 点的动量矩保持不变,即
13动量矩定理
O
r1
M
B
m2 g
mg
A
m1 g
理论力学 第二节 动量矩定理
第十三章
动量矩定理
解:取系统为研究对象进行受力分析和运动分析 1、受力分析
2、运动分析
Foy
FN
B
v1 r1
v2 r2
v2
M
r2
O
r1
系统对O轴的动量矩和外力矩:
LO J O m1r12 m2 r22
F1 F1
解得主动轮与从动轮的角加速度分别为:
MR 2 1 J1 R 2 J 2 r 2
MRr 2 J1 R 2 J 2 r 2
理论力学 第十三章 动量矩定理
第十三章
动量矩定理
第四节 刚体的平面运动微分方程
理论力学
第十三章
动量矩定理
第四节 刚体的平面运动微分方程
若平面运动刚体具有质量对称平面,且其运动平 面与该质量对称平面平行,则有:
第十三章
动量矩定理
三、质点系的动量矩定理
设质点系中有n个质点,其中第 i 个质点: d [M z mi vi ] = M z Fi e M z Fi i dt
n n d e [M z mi vi ] M z Fi M z Fi i dt i 1 i 1 i 1 n
O
A
B
理论力学 第二节 动量矩定理
第十三章
动量矩定理
FO y
O
解: 取整个系统为研究对象,
受力分析如图示。 运动分析: v =r
FO x
M F m gr m gr
e z i 1 2
理论力学:动量矩定理
y’
2020/12/9
Fe maA aA mg
B
A
FN 1
F1
FN 2
x’
F2
10
理论力学
§6-2 动量矩定理
例:滑块A可在光滑水平面上滑动,为使AB杆以匀角速度 绕
铰链A转动,求作用在AB杆上的力偶M。设:m1 m2 m, AB L
y
FN
解:1、取滑块A和小球B为研究对象
2、受力分析与运动分析
m1 m2
2020/12/9
11
理论力学
§6-2 动量矩定理
y FAy
A
o
FAx aA xA x
3、研究AB杆和小球B,受力分析 4、应用相对动轴A的动量矩定理
dLrA
dt
n
M A (Fi(e) )
i1
rAC (maA )
A
M
杆相对A轴的动量矩
LrA m2L2
B m2xA 外力对A轴之矩
问题:若滑块不脱离地面,试确定AB杆的最大角速度。
2020/12/9
13
理论力学
§6-2 动量矩定理
2020/12/9
14
理论力学
§6-2 动量矩定理
思考题:图示系统中,系统结 构不同,求解方法是否相同?
m1 A
M
m1 A
M
m2
B
2020/12/9
m1 A
M
m2
R
m3 B
m2 B
15
理论力学
§6-2 动量矩定理
mg
B
AB L
2020/12/9
§6-2 动量矩定理
L
3(g 2
理论力学(大学)课件22.2 动量矩定理
动量矩定理2、动量矩定理动量矩定理动量矩守恒定律若 则 常量。
(e)()0z M F ∑≡ z L =有心力:力作用线始终通过某固定点, 该点称力心. ()0O M F = ()M mv r mv =×= 常矢量若 (e)()0O M F ∑≡ O L = 则 常矢量,面积速度定理:质点在有心力作用下其面积速度守恒.(1) 与 必在一固定平面内,即点M 的运动轨迹是平面曲线.r v d (2)d r r mv r m b t×=×== 常量d d rr t ×=即 常量d 2d r r A×= d d A t=因此, 常量 人造卫星绕地球运动动量矩定理(e)sin OMM mg Rθ=−⋅R mg M mvR J t⋅−=+θωsin ][d d22sin mRJ mgR MR a +−=θRv m J L O +=ω解: R v =ωa tv =d d 由 ,得例1求:小车的加速度a 。
取小车和鼓轮为研究对象,受力如图所示。
高炉运送矿石的卷扬机如图所示。
已知鼓轮的半径为R ,转动惯量为J ,作用在鼓轮上的力偶矩为M 。
小车和矿石的总质量为m ,轨道的倾角为 。
设绳的质量和各处摩擦不计。
θ动量矩定理已知: , , , , , ,不计摩擦. m O J 1m 2m 1r 2r α求:(1)NF (2)O 处约束力 (3)绳索张力, 1T F 2T F例2动量矩定理)(222211r m r m J O ++=ω(e)1122()()O M F m r m r g∑=− 2222112211)(d d r m r m J g r m r m t O ++−==ωα 由 ,得(e)d ()d OO L M F t=∑ 222111r v m r v m J L O O ++=ω解:(1)分析系统,受力如图所示。
(2)由质心运动定理Cya m m m g m m m F )()(2121N ++=++−212211212211)(m m m r m r m m m m a m a m m y m y a ii i C Cy+++−=+++−=∑∑==αα1111T 11r m a m F g m ==−)(11T 1αr g m F −=)()(221121N r m r m g m m m F +−+++=α(3)研究1m α22222T 2r m a m g m F ==−2m(4) 研究求:剪断绳后, 角时的 。
理论力学第1节 动量矩定理
d Lx dt
n
M
x
( Fi ( e )
)
i 1
dM y dt
n
M
y
( Fi ( e )
)
i 1
dLz dt
n
M
z
( Fi ( e )
)
i 1
质点系对某轴的动量矩对时间的导数等于作用于 质点系上的外力对该轴之矩的矢量和。
• 质点系对固定点的动量矩守恒:当作用在质点系的 外力对某固定点之矩的矢量和为零,质点系对该点 的动量矩保持不变。
记 J z miri2
称刚体对z轴 的转动惯量
• 质量连续分布刚体的转动惯量公式
说明
Jz M r2dm
刚体对轴的转动惯量取决于刚体质量的大小、质量 的分布情况及转轴的位置,而与其运动状态无关。
对形状不规则物体的转动惯量常用实验方法测得。
冰上芭蕾 舞演员旋转 时,通过张 开、收拢两 臂来改变自 身质量对垂 直轴的转动 惯量,以达 到改变转动 速度的目的
r O
M
设 v 为物体A、B的瞬时速度,
为圆盘的角速度,两者的关系为:
v r
系统对O轴的动量矩:
LO mAvr mBvr JO 其中
B AJOΒιβλιοθήκη 1 2Mr 2
LO
mA vr
mBvr
1 2
Mr 2
mA
vr
mB
vr
1 2
Mrv
系统外力对O轴的力矩为:
M O mA gr mBgr
质点对 O 点动量矩的矢量和
C mi
理论力学第13章动量矩定理
mi
rC x′
C
y′ y
mi vi mvC
LC ri mi vi
x
LO rC mvC LC
LO rC mvC LC
dLO d (e) (rC mvC LC ) r i Fi dt dt
r i rC ri
drC dLC d (e) i Fi ( e ) mvC rC mvC r C Fi r dt dt dt
v R
应用动量矩定理
O
FOx
mg
M
(e)
WR
dLO (e ) M dt
WR 2 a W 2 (JO R ) g
P
v
JO W dv ( R) WR R g dt
W
z
例 题3
z
求:此时系统的角速度 解:取系统为研究对象
M
A
(e ) z
0
A
B
a l
a
B
Lz 恒量
l
由质心坐标公式,有
z
vi z′ ri r′ i rC x′
C
mi
y′ y
O
mi ri mrC 0
x
LC ri mi vir
§13-6 刚体的平面运动微分方程
LC J C
由质心运动定理和相对于质 心的动量矩定理,有:
y
Fn
y′
D
F2 F1
maC Fi ( e ) d (e) J C J C M C ( Fi ) dt
用于质点系的外力对质心的主矩 ,这就是质点系相对于质心(平移
系)的动量矩定理。
理论力学之动量矩定理
证明 过固定点O建立固定坐标系 Oxyz,以质点系的质心 C为
z
原点,取平动坐标系Cx y z ,它以质心的速度vC 运动。
ri rc rri 质心的性质 vi vc vri
z' A vr v vC vC y y'
mi ri mi rri rc rc 0 M M 定系 动系 Mvc mi vi mi vri 0
rC
C
x'
rr
O
质点系内任一质点 A的绝对速度 v=ve+vr=vc+vr , 则质点系对固定点O的动量矩
x
(r
LO
C
mi vi )
(r m v ) [(r
i
(r
i i
C
rri ) mi vi ]
ri mi v C )
(r
ri mi v ri )
d M O (mv ) M O ( F ) dt
质点对固定点的动量矩对时间的一阶导数等 于作用于质点上的力对同一点的力矩。
B 固定轴
d M O (mv ) M O ( F ) dt
(将上式两边分别向坐标轴投影,再利用对点和 对轴动量矩公式可得): d M x (mv ) M x ( F ) dt d M y (mv) M y (F ) dt d M z (mv) M z (F ) dt 质点对某固定轴的动量矩对时间的导数,等于作用 于该质点的所有力对于同一轴之矩的代数和。 质点对定点的动量矩定理在三个坐 标轴的投影方程不独立
O
A
mivi
ri
LO =∑ MO(mivi) = ∑(miri )×vC 又因为 (∑mi )rC = ∑miri 所以 LO = ∑mi rC ×vC=rC× (∑mi )vC
理论力学第十三章 动量定理和动量矩定理
冲量是矢量,它与力F的方向一致。在国际单位制中,冲量的单位是N·s, 它与动量的单位相同
§13-1 动量定理
动量定理
I. 质点的动量定理
(1) 动量定理的微分形式
质点动量的微分等于作用于该质点上的各力元冲量的矢量和。
(2)动量定理的积分形式
质点动量在任一时间间隔内的变化,等于作用于该质点上各力在同一时间 间隔内的冲量的矢量和。
若作用于质点系的外力的矢量和恒等于零.则该质点系的动 量保持不变。 若作用于质点系的外力在轴x上投影的代数和等于零,即∑F(xe)=0,可得
若作用于质点系的外力在某轴上的投影代数和恒等于零,则 该质点系的动量在该轴上的投影保持不变。
§13-1 动量定理
例13-1 质量为75kg的跳伞运动员,从飞机中跳出
解鼓轮作平面运动其受力如图所示建立鼓轮平面运动微分方程为123因鼓轮沿平直轨道作无滑动的滚动故有如下关系将上述关系和代入式34将式4与式1联立求解得轮心0的加速度为由此得到使鼓轮作无滑动滚动时的摩擦力为135动力学普遍定理的综合应用一般方法11首先判断是否是某种运动守恒问题如动量守恒质心运动守恒动量矩守恒或相对于质心的动量矩守恒等
(1)判定给定问题是否可用动量定理或质心运动定理求解。求约束反力、速 度和加速度时可用动量定理或质心运动定理;求质心速度、质心位置或质点 系内部质点速度的改变时多用动量守恒定律或质心运动守恒定律。
(2)根据题意选择研究对象。研究对象可以是单个质点、质点系内部部分质 点或整个质点系。
(3)受力分析。受力图中只画外力,不画内力。分析作用在研究对象上的外力 主矢或外力在某轴上投影的代数和是否为零,若为零可选择动量守恒或质心 运动守恒定律求解。
大学本科理论力学课程第13章 动量矩定理--纯理论
第十三章 动量矩定理
第十三章 动量矩定理
1、质点的动量矩
M O (mv ) ro mv,矢量
MO ((mv)oxy) M z (mv),代数量
2、质点系的动量矩
n
LO M O (mivi ) i 1
n
Lz M z (mivi ) i 1
3、刚体动量矩计算:
(1)平动刚体
d dt
M
O
(mv
)
M
O
(F
)
d dt
M ox或oy或oz
(mv
)
M ox或oy或oz
(F
)
5、 质点系动量矩定理
d dt
Lox
n i 1
M ox (Fi (e) ),
d dt
d dt Loy
n
LO M O (Fi (e) )
n
i 1
M oy (Fi (e) ),
i 1
d dt
Loz
n i 1
LO M O (mvC ) rOC mvC LOz M Oz (mvC )
(2)定轴转动刚体对转轴动量矩 (3) 平面运动刚体
LOz JOz
LO M O (mvC ) JC LCzr JCz
LOz M Oz (mvC ) JCz
理论力学电子教程
第十三章 动量矩定理
4、 质点动量矩定理
理论力学电子教程
第十三章 动量矩定理
若刚体做定轴转动,由动量定理知,当质心为固定轴上一 点时,vC=0,其动量恒为零,质心无运动, 但此时刚体受外力的作用而转动。
动量定理揭示了质点和质点系动量变化与外力的关系; 质心运动定理揭示了质心运动与外力的关系。
理论力学10动量矩定理
在更高维度的空间中,动量矩定理可以通过向量的外积和叉积进行推广,适用于描述更复杂系统的动量矩变化。
n维空间推广
定理在更高维度空间的应用
多体系统
动量矩定理可以应用于多体系统,描述多个刚体之间的相互作用和运动关系,为多体动力学提供了基础。
非惯性参考系
在非惯性参考系中,动量矩定理需要考虑科里奥利力和离心力等因素的影响,以准确描述系统的动量矩变化。
定理证明的思路
在证明过程中,需要引入质点的质量、速度、位置矢量等概念,以及力、力矩等物理量。
引入相关概念
根据物理定律和数学公式,进行详细的数学推导,包括向量的点乘、叉乘等运算。
进行数学推导
经过推导,得出动量矩定理的结论,即质点系的动量矩等于外力矩对时间的积分。
得出结论Βιβλιοθήκη 定理证明的过程通过证明,得出的动量矩定理表述为:质点系的动量矩等于外力矩对时间的积分。
力矩的作用
力矩是描述力对物体运动轴的转动效应的物理量。在动量矩定理中,力矩的作用是改变物体的动量,即改变物体的运动状态。
时间和空间的影响
动量矩定理不仅涉及到物体的运动状态(动量和速度),还涉及到时间的变化率(即加速度),以及力作用的空间效应(即力矩)。因此,这个定理全面地描述了物体在空间和时间中的运动规律。
定理的物理意义
02
CHAPTER
定理的证明
首先明确动量矩定理的定义和意义,即对于一个质点系,其动量矩与外力矩之间的关系。
引入动量矩定理
建立证明框架
推导定理的表达式
根据定理的证明需求,建立证明的框架,包括定义、假设、推导和结论等部分。
根据牛顿第二定律和动量定理,推导出动量矩定理的表达式。
03
动量矩定理
LO = (LOx
LOy
pky
pk = ( pkx
pkz )
LOz )
T
T
rk = (xk
yk
zk )
T
4
矢量动力学基础/动量矩定理/对定点的动量矩
• 平动刚体对定点的动量矩 r r 平动刚体 质心 vk = vC
n n r r r r r LO = ∑ rk × mk vk = ∑ rk × mk vC k =1
12
矢量动力学基础/动量矩定理/对定点的动量矩定理/解 系统对z轴的动量矩 系统对 轴的动量矩
& LOz = m R2 + m2r2 + JOz ϕ 1
主动力的对点O主矩 主动力的对点 主矩
(
)
rb y
r FAy
r y
rb x
ϕ
r r FOx x
(m R
1
M Oz = m1 gR − m2 gr . L Oz = M Oz
r3 x
ϕ
r r FOx x
定义正向 & ω =ϕ & 对z轴动量矩 L3Oz = JOzω = JOzϕ 轴动量矩 重物m 重物 1与m2平动 v1 = ωR v2 = ωr z轴动量矩 对z轴动量矩
L1Oz = m v1R = m1ωR 1 L2Oz = m2v2r = m2ωr2
2
B1
r v1 r m1 g
2011年6月7日 理论力学CAI 矢量动力学基础 5
矢量动力学基础/动量矩定理/对定点的动量矩
• 定轴转动刚体对该轴动量矩 r r ω = ωz 定轴转动刚体
r z
P k
r rk
ρ kz
ω
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章
动量矩定理
即:
外力矢量和质心运动定理
C
(外力系的主矢)
v p c m =0
=p
随质心平动
相对于质心转动
动量定理
动量矩
定点(或定轴)或质心
动量矩定理
质点系的动量矩定理和刚体平面运动
第13章动量矩定理主要内容:
谁最先到达顶点
直升飞机如果没有尾翼将发生什么现象
航天器是怎样实现姿态控制的
为什么二者转动方向相反
一.质点的动量矩
)(m O v M
二.质点系的动量矩
r'r r i
c i +=v v v ir c
ia +=
∑∑
ia
i
m v ()L
r L C
C
C
O
mv +×=()()
L v v v +×∑c ir i i c i m m v ia
三.刚体动量矩计算:
1.平动刚体
2.定轴转动刚体
转动惯量
3.平面运动刚体
点的动量矩等于O到质心C的矢量叉乘平面运动刚体的动量加上刚体对于质心
C 1
2
1+
一.定义:∑=
2
i
i z r
m J ∫
=
dm
r J m
z 2
1.积分法二.转动惯量的计算
−l
2
m
J z
2
z
z m J ρ=均质刚体2. 回转半径
3. 平行轴定理
2
'md
J J zC z +=通过质心该轴平行的轴的转动惯量刚体的质量与两轴间距离的平方之乘积
证明例如)ml ml =
+
=
4.计算转动惯量的组合法5. 求转动惯量的实验方法
212
3l m +2
321l m +
§13-3动量矩定理
一.质点的动量矩定理
v r m −×)()()]([
, )(F M v M F r v r O O m dt
d m dt d =×=×质点对固定点的动量矩定理。
)()( ),()( ),()(F v F v F v z z y y x x M m M dt d M m M dt d M m M dt
d ===质点对固定轴的动量矩定理动量矩定理的投影形式同一轴质点的动量矩守恒
由动量矩定理 , sin )(+−=ϕϕϕl mgl ml dt d t l g 22l
g
ππω=
二.质点系的动量矩定理
=i i O )(m v M (e)O O dt
d M L =
质点系对固定点的动量矩对于时间的一阶导数等于外力系对同一点的主矩dL dt dL dt z y x (e)O O dt
d M L =
或某定轴或力矩的代数和或该轴
矢量方程
质点系的动量和动量矩
动量系基本特征量动量系的主矢和主矩。
两者对时间的变化率等于外力系
力系的主矢和主矩。
B
A g
r v g +⋅)
2( , 2P P g L r g B A O ++=得代入P P g dt B A 2⎢
⎜++B
A ⋅
=
相对绳子的速度解:
O
R
B
v A
v
A B
O
R
B
v A
v A
B
Aa
v Ba
v v v 同时到达顶点思考
§13-4刚体定轴转动微分方程
解决两类问题:
但不能求出轴承处的约束反力,需用质心运动定理求解。
P l ⋅=⋅αF P F a O y O y Cy =⇒−=
2(3222g r g
dt +⋅ω得:3
22g a =1
1P P P 23
11++1
§13-5质点系相对于质心的动量矩定理
一.质点系动量矩
二.质点系对质心的动量矩定理
)
1
i ∑=)(c c c c c m m v r v +×+×
等式可化为:∑×=c i
i c 'F r 质点系相对于质心的动量矩对时间的导数,外力系对质心的主矩。
质点系对质心的动量矩定理。
()(i n c c c c c c dt d m dt d m dt d F r L v r v r ×=+×+×∑0
=
?
?
§13–6 刚体的平面运动微分方程
写成投影形式
上式称为平面运动微分方程。
C
C
α
θαθ ; sin ,sin F g g ==
r
, , , ===F F F A NA B f r d r
f f dt
∫+⋅−=⋅+−='1
, ''1ω)
'1('20
f gf +r。