实验一 进程调度

合集下载

操作系统实验报告进程调度

操作系统实验报告进程调度

操作系统实验报告进程调度操作系统实验报告:进程调度引言在计算机科学领域中,操作系统是一个重要的概念,它负责管理和协调计算机系统中的各种资源,包括处理器、内存、输入/输出设备等。

其中,进程调度是操作系统中一个非常重要的组成部分,它负责决定哪个进程在何时获得处理器的使用权,以及如何有效地利用处理器资源。

实验目的本次实验的目的是通过对进程调度算法的实验,深入理解不同的进程调度算法对系统性能的影响,并掌握进程调度算法的实现方法。

实验环境本次实验使用了一台配备了Linux操作系统的计算机作为实验平台。

在该计算机上,我们使用了C语言编写了一些简单的进程调度算法,并通过模拟不同的进程调度场景进行了实验。

实验内容1. 先来先服务调度算法(FCFS)先来先服务调度算法是一种简单的进程调度算法,它按照进程到达的顺序进行调度。

在本次实验中,我们编写了一个简单的FCFS调度算法,并通过模拟多个进程同时到达的情况,观察其对系统性能的影响。

2. 短作业优先调度算法(SJF)短作业优先调度算法是一种根据进程执行时间长度进行调度的算法。

在本次实验中,我们编写了一个简单的SJF调度算法,并通过模拟不同长度的进程,观察其对系统性能的影响。

3. 时间片轮转调度算法(RR)时间片轮转调度算法是一种按照时间片大小进行调度的算法。

在本次实验中,我们编写了一个简单的RR调度算法,并通过模拟不同时间片大小的情况,观察其对系统性能的影响。

实验结果通过实验,我们发现不同的进程调度算法对系统性能有着不同的影响。

在FCFS 算法下,长作业会导致短作业等待时间过长;在SJF算法下,长作业会导致短作业饥饿现象;而RR算法则能够较好地平衡不同进程的执行。

因此,在实际应用中,需要根据具体情况选择合适的进程调度算法。

结论本次实验通过对进程调度算法的实验,深入理解了不同的进程调度算法对系统性能的影响,并掌握了进程调度算法的实现方法。

同时,也加深了对操作系统的理解,为今后的学习和研究打下了良好的基础。

实验一、进程调度实验报告

实验一、进程调度实验报告

实验一、进程调度实验报告一、实验目的进程调度是操作系统中的核心功能之一,其目的是合理地分配 CPU 资源给各个进程,以提高系统的整体性能和资源利用率。

通过本次实验,我们旨在深入理解进程调度的原理和算法,掌握进程状态的转换,观察不同调度策略对系统性能的影响,并通过实际编程实现来提高我们的编程能力和对操作系统概念的理解。

二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。

三、实验原理1、进程状态进程在其生命周期中会经历不同的状态,包括就绪态、运行态和阻塞态。

就绪态表示进程已经准备好执行,只等待 CPU 分配;运行态表示进程正在 CPU 上执行;阻塞态表示进程由于等待某个事件(如 I/O操作完成)而暂时无法执行。

2、调度算法常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)等。

先来先服务算法按照进程到达的先后顺序进行调度。

短作业优先算法优先调度执行时间短的进程。

时间片轮转算法将 CPU 时间划分成固定大小的时间片,每个进程轮流获得一个时间片执行。

四、实验内容1、设计并实现一个简单的进程调度模拟器定义进程结构体,包含进程 ID、到达时间、执行时间、剩余时间等信息。

实现进程的创建、插入、删除等操作。

实现不同的调度算法。

2、对不同调度算法进行性能测试生成一组具有不同到达时间和执行时间的进程。

分别采用先来先服务、短作业优先和时间片轮转算法进行调度。

记录每个算法下的平均周转时间、平均等待时间等性能指标。

五、实验步骤1、进程结构体的定义```c++struct Process {int pid;int arrivalTime;int executionTime;int remainingTime;int finishTime;int waitingTime;int turnaroundTime;};```2、进程创建函数```c++void createProcess(Process processes, int& numProcesses, int pid, int arrivalTime, int executionTime) {processesnumProcessespid = pid;processesnumProcessesarrivalTime = arrivalTime;processesnumProcessesexecutionTime = executionTime;processesnumProcessesremainingTime = executionTime;numProcesses++;}```3、先来先服务调度算法实现```c++void fcfsScheduling(Process processes, int numProcesses) {int currentTime = 0;for (int i = 0; i < numProcesses; i++){if (currentTime < processesiarrivalTime) {currentTime = processesiarrivalTime;}processesistartTime = currentTime;currentTime += processesiexecutionTime;processesifinishTime = currentTime;processesiwaitingTime = processesistartTime processesiarrivalTime;processesiturnaroundTime = processesifinishTime processesiarrivalTime;}}```4、短作业优先调度算法实现```c++void sjfScheduling(Process processes, int numProcesses) {int currentTime = 0;int minExecutionTime, selectedProcess;bool found;while (true) {found = false;minExecutionTime = INT_MAX;selectedProcess =-1;for (int i = 0; i < numProcesses; i++){if (processesiarrivalTime <= currentTime &&processesiremainingTime < minExecutionTime &&processesiremainingTime > 0) {found = true;minExecutionTime = processesiremainingTime;selectedProcess = i;}}if (!found) {break;}processesselectedProcessstartTime = currentTime;currentTime += processesselectedProcessremainingTime;processesselectedProcessfinishTime = currentTime;processesselectedProcesswaitingTime =processesselectedProcessstartTime processesselectedProcessarrivalTime;processesselectedProcessturnaroundTime =processesselectedProcessfinishTime processesselectedProcessarrivalTime;processesselectedProcessremainingTime = 0;}}```5、时间片轮转调度算法实现```c++void rrScheduling(Process processes, int numProcesses, int timeSlice) {int currentTime = 0;Queue<int> readyQueue;for (int i = 0; i < numProcesses; i++){readyQueueenqueue(i);}while (!readyQueueisEmpty()){int currentProcess = readyQueuedequeue();if (processescurrentProcessarrivalTime > currentTime) {currentTime = processescurrentProcessarrivalTime;}if (processescurrentProcessremainingTime <= timeSlice) {currentTime += processescurrentProcessremainingTime;processescurrentProcessfinishTime = currentTime;processescurrentProcesswaitingTime =processescurrentProcessstartTime processescurrentProcessarrivalTime;processescurrentProcessturnaroundTime =processescurrentProcessfinishTime processescurrentProcessarrivalTime;processescurrentProcessremainingTime = 0;} else {currentTime += timeSlice;processescurrentProcessremainingTime = timeSlice;readyQueueenqueue(currentProcess);}}}```6、性能指标计算函数```c++void calculatePerformanceMetrics(Process processes, int numProcesses, double& averageWaitingTime, double& averageTurnaroundTime) {double totalWaitingTime = 0, totalTurnaroundTime = 0;for (int i = 0; i < numProcesses; i++){totalWaitingTime += processesiwaitingTime;totalTurnaroundTime += processesiturnaroundTime;}averageWaitingTime = totalWaitingTime / numProcesses; averageTurnaroundTime = totalTurnaroundTime / numProcesses;}```7、主函数```c++int main(){Process processes100;int numProcesses = 0;//创建进程createProcess(processes, numProcesses, 1, 0, 5);createProcess(processes, numProcesses, 2, 1, 3);createProcess(processes, numProcesses, 3, 2, 4);createProcess(processes, numProcesses, 4, 3, 2);//先来先服务调度fcfsScheduling(processes, numProcesses);double fcfsAverageWaitingTime, fcfsAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, fcfsAverageWaitingTime, fcfsAverageTurnaroundTime);cout <<"先来先服务调度的平均等待时间:"<<fcfsAverageWaitingTime << endl;cout <<"先来先服务调度的平均周转时间:"<<fcfsAverageTurnaroundTime << endl;//短作业优先调度sjfScheduling(processes, numProcesses);double sjfAverageWaitingTime, sjfAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, sjfAverageWaitingTime, sjfAverageTurnaroundTime);cout <<"短作业优先调度的平均等待时间:"<<sjfAverageWaitingTime << endl;cout <<"短作业优先调度的平均周转时间:"<<sjfAverageTurnaroundTime << endl;//时间片轮转调度(时间片为 2)rrScheduling(processes, numProcesses, 2);double rrAverageWaitingTime, rrAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, rrAverageWaitingTime, rrAverageTurnaroundTime);cout <<"时间片轮转调度(时间片为 2)的平均等待时间:"<< rrAverageWaitingTime << endl;cout <<"时间片轮转调度(时间片为 2)的平均周转时间:"<< rrAverageTurnaroundTime << endl;return 0;}```六、实验结果与分析1、先来先服务调度平均等待时间:40平均周转时间:85分析:先来先服务调度算法简单直观,但对于短作业可能会造成较长的等待时间,导致平均等待时间和平均周转时间较长。

实验一 进程调度

实验一 进程调度
{
PCB1->name=PCB2->name;
PCB1->state=PCB2->state;
PCB1->CPU_time=PCB2->CPU_time;
}
void main()
{
InitQ();
Sleep(1000);
system("cls");
dispath();}
原始数据纪录:
试验原始数据
**************
洛阳理工学院实验报告
系别
数据科学与大数据系
班级
学号
姓名
课程名称
操作系统
实验日期
实验名称
进程调度
成绩
实验目的:
通过本次实验,加深对进程概念的理解,进一步掌握进程状态的转变及进程调度策略。
实验条件:
操作系统:Windows10
IDE:VScode
编译:gcc
实验原理:
设计程序模拟进程的时间片轮转法调度过程。假设初始状态为:有ready个进程处于就绪状态,有blocked个进程处于阻塞状态。采用轮转法进程调度算法进行调度(调度过程中,假设处于执行状态的进程不会阻塞),且每过counter个时间片,唤醒处于阻塞队列队首的进程。
deleteNode->PCB.state=1;
printf("--进程状态变为:%d\n",deleteNode->PCB.state);
counte=0;
}
}
}else
return;
}
}
void InitQ()
{
int revalrq=createQueue(&rq);

进程调度 实验报告

进程调度 实验报告
实验一进程调度实验报告
一、实验目的
多道程序设计中,经常是若干个进程同时处于就绪状态,必须依照某种策略来决定那个进程优先占有处理机。因而引起进程调度。本实验模拟在单处理机情况下的处理机调度问题,加深对进程调度的理解。
二、实验内容
1.优先权法、轮转法
简化假设
1)进程为计算型的(无I/O)
2)进程状态:ready、running、finish
{
int num; //进程号
int attime,servtime; //进程到达时间,服务时间
process *next;
};
struct process*creatlist(int); //新建一个链表
void insert(struct process *first,struct process *s); //插入一个节点(尾插法)
}
}
void privilege(struct process1 *first)
{
struct process1* p,*r=first,*t;
p=first->next;
int b=0;
while (first->next)
{
r=first;
p=first->next;
cout<<"/********************"<<b<<"*****************************/"<<endl;
{
struct process1 *p,*r;
p=first->next;
r=first;
int a=1;
while (a)

实验一进程调度

实验一进程调度

实验一进程调度
1.目的和要求
通过这次实验,理解进程调度的过程,进一步掌握进程状态的转变、进程调度的策略,进一步体会多道程序并发执行的特点,并分析具体的调度算法的特点,掌握对系统性能的评价方法。

2.实验内容
阅读教材《计算机操作系统》第二章和第三章,掌握进程管理及调度相关概念和原理。

编写程序模拟实现进程的时间片轮转调度过程,模拟程序只对PCB进行相应的调度模拟操作,不需要实际程序。

假设初始状态为:有n个进程处于就绪状态,有m个进程处于阻塞状态。

采用时间片轮转调度算法进行调度(调度过程中,假设处于执行状态的进程不会阻塞),且每过t个时间片系统释放资源,唤醒处于阻塞队列队首的进程。

程序要求如下:
1)按时间片顺序输出系统中进程的调度次序;
2)计算CPU利用率。

3.实验环境
Windows操作系统、VC++
C语言
4.实验提示
用C语言实现提示:
1)程序中进程可用PCB表示,其类型描述如下:
struct PCB_type
{
int pid ; 实验要求:
1)上机前认真使用C语言编写好程序,采用Visual C++作为编译环境;
2)上机时独立调试程序
3)根据具体实验要求,填写好实验报告(包括目的和要求、实验内容、实验环境、设计思想、源程序、实例运行结果、总结)。

4)测试用数据:
n=2
m=3
t=5
blocked_head
p取ready队首元素p->置“运行”
输出p->
p->
use_cpu++。

进程调度实验报告

进程调度实验报告

进程调度实验报告一、实验目的。

本实验旨在通过对进程调度算法的模拟和实验,加深学生对进程调度原理的理解,掌握各种进程调度算法的特点和应用场景,提高学生的实际操作能力和分析问题的能力。

二、实验环境。

本次实验使用了C语言编程语言,通过模拟实现了先来先服务(FCFS)、最短作业优先(SJF)、时间片轮转(RR)和多级反馈队列(MFQ)四种进程调度算法。

三、实验过程。

1. 先来先服务(FCFS)调度算法。

先来先服务调度算法是一种非抢占式的调度算法,按照进程到达的先后顺序进行调度。

在本次实验中,我们通过模拟多个进程到达并排队等待CPU执行,观察其平均等待时间和平均周转时间。

实验结果表明,先来先服务调度算法适用于作业长度差异较大的情况,但容易产生“饥饿”现象。

2. 最短作业优先(SJF)调度算法。

最短作业优先调度算法是一种非抢占式的调度算法,按照作业执行时间的长短进行调度。

在本次实验中,我们通过模拟多个作业的执行时间,观察其平均等待时间和平均周转时间。

实验结果表明,最短作业优先调度算法能够最大程度地减少平均等待时间,但可能会导致长作业被“饿死”。

3. 时间片轮转(RR)调度算法。

时间片轮转调度算法是一种抢占式的调度算法,每个进程被分配一个时间片,当时间片用完后,该进程被放到队尾等待。

在本次实验中,我们通过模拟多个进程的执行和时间片的调度,观察其平均等待时间和平均周转时间。

实验结果表明,时间片轮转调度算法能够保证每个进程都能得到一定的执行时间,但可能会导致上下文切换频繁。

4. 多级反馈队列(MFQ)调度算法。

多级反馈队列调度算法是一种综合性的调度算法,根据进程的优先级和执行时间进行动态调整。

在本次实验中,我们通过模拟多个进程的执行和不同优先级队列的调度,观察其平均等待时间和平均周转时间。

实验结果表明,多级反馈队列调度算法能够兼顾短作业和长作业,提高了系统的整体性能。

四、实验总结。

通过本次实验,我们深入理解了不同进程调度算法的特点和适用场景。

操作系统进程调度实验报告

操作系统进程调度实验报告

《计算机操作系统》课程实验报告题目实验一进程调度学院: 计算机学院专业: 计算机科学与技术姓名班级学号2015年10月21日实验一进程调度1.实验目的:通过对进程调度算法的模拟,进一步理解进程的基本概念,加深对进程运行状态和进程调度过程、调度算法的理解。

2.实验内容:用C语言实现对N个进程采用某种进程调度算法先来先服务调度、短作业优先调度的调度。

3.设计实现:要求给出设计源码,设计源码要有详细注释,#include <stdio.h>#include<iostream>using namespace std;struct program{char name; /*进程名*/int atime; /*到达时间*/int stime; /*服务时间*/int ftime; /*完成时间*/int rtime; /*周转时间*/float qrtime; /*带权周转时间*/};void xianshi(struct program a[],int n){int i,j;struct program t;/*将进程按时间排序*/printf("根据到达时间重新排序:\n");printf("*****进程*************到达时间***************服务时间*****\n");for(j=0;j<n-1;j++)for(i=0;i<n-1-j;i++)if(a[i].atime>a[i+1].atime){t.atime=a[i].atime;a[i].atime=a[i+1].atime;a[i+1].atime=t.atime;=a[i].name;a[i].name=a[i+1].name;a[i+1].name=;t.stime=a[i].stime;a[i].stime=a[i+1].stime;a[i+1].stime=t.stime;}for(i=0;i<n;i++)printf(" %c %d %d |\n",a[i].name,a[i].atime,a[i].stime);printf("----------------------------------------------------\n"); }void fcfs(struct program a[],int n){int i;int time=0;for(i=0;i<n;i++){time=time+a[i].stime;a[i].ftime=a[0].atime+time;a[i].rtime=a[i].ftime-a[i].atime;a[i].qrtime=(float)a[i].rtime/a[i].stime;}printf("\nFCFS算法:\n");printf("*****进程****到达时间****完成时间******周转时间*******带权周转时间*****\n");for(i=0;i<n;i++){printf(" %c %d %.2d %.2d %.2f |\n",a[i].name,a[i].atime,a[i].ftime,a[i].rtime,a[i].qrtime);}printf("-----------------------------------------------------------------------\n");}void main(){int i,m;struct program pro[4];/*创建进程 */printf(" ******先来先服务算法****** \n");printf("请输入进程的数目:\n");scanf("%d",&m);i=m;for(i=0;i<m;i++){printf("请输入进程%d的进程名,到达时间,服务时间\n",i+1);cin>>pro[i].name>>pro[i].atime>>pro[i].stime;}xianshi(pro,m);fcfs(pro,m);getchar();}#include <stdio.h>#include<iostream>using namespace std;struct program{char name; /*进程名*/float atime; /*到达时间*/float stime; /*服务时间*/float ftime; /*完成时间*/float rtime; /*周转时间*/float qrtime; /*带权周转时间*/};void xianshi(struct program a[],int n){int i,j;struct program t;/*将进程按时间排序*/printf("重新排序:\n");printf("*****进程*************到达时间***************服务时间*****\n");for(j=0;j<n-1;j++)for(i=1;i<n-1-j;i++)if(a[i].stime>a[i+1].stime){t.atime=a[i].atime;a[i].atime=a[i+1].atime;a[i+1].atime=t.atime;=a[i].name;a[i].name=a[i+1].name;a[i+1].name=;t.stime=a[i].stime;a[i].stime=a[i+1].stime;a[i+1].stime=t.stime;}for(i=0;i<n;i++)printf(" %c %f %f |\n",a[i].name,a[i].atime,a[i].stime);printf("----------------------------------------------------\n"); }void SJF(struct program a[],int n){int i;a[0].ftime=a[0].atime+a[0].stime;a[0].rtime=a[0].ftime-a[0].atime;a[0].qrtime=a[0].rtime/a[0].stime;for(i=1;i<n;i++){a[i].ftime=a[i-1].ftime+a[i].stime;a[i].rtime=a[i].ftime-a[i].atime;a[i].qrtime=a[i].rtime/a[i].stime;}printf("\nSJF算法:\n");printf("*****进程****到达时间****完成时间******周转时间*******带权周转时间*****\n");for(i=0;i<n;i++){printf(" %c %.2f %.2f %.2f %.2f |\n",a[i].name,a[i].atime,a[i].ftime,a[i].rtime,a[i].qrtime);}printf("-----------------------------------------------------------------------\n");}void main(){int i,m;struct program pro[4];/*创建进程 */printf(" ******短作业优先算法****** \n");printf("请输入进程的数目:\n");scanf("%d",&m);i=m;for(i=0;i<m;i++){printf("请输入进程%d的进程名,到达时间,服务时间\n",i+1);cin>>pro[i].name>>pro[i].atime>>pro[i].stime;}xianshi(pro,m);SJF(pro,m); getchar(); }4.实验结果5.实验过程中出现的问题及解决办法先来先服务调度算法就是根据进程达到的时间为依据,哪一个进程先来那么该进程就会先执行;最短进程优先调度算法则是以每个进程执行所需时间长短为依据,某一个进程执行所需花的时间要短些那么该进程就先执行。

进程的调度实验报告(3篇)

进程的调度实验报告(3篇)

第1篇一、实验目的通过本次实验,加深对操作系统进程调度原理的理解,掌握先来先服务(FCFS)、时间片轮转(RR)和动态优先级(DP)三种常见调度算法的实现,并能够分析这些算法的优缺点,提高程序设计能力。

二、实验环境- 编程语言:C语言- 操作系统:Linux- 编译器:GCC三、实验内容本实验主要实现以下内容:1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、优先级、状态等信息。

2. 实现三种调度算法:FCFS、RR和DP。

3. 创建一个进程队列,用于存储所有进程。

4. 实现调度函数,根据所选算法选择下一个执行的进程。

5. 模拟进程执行过程,打印进程执行状态和就绪队列。

四、实验步骤1. 定义PCB结构体:```ctypedef struct PCB {char processName[10];int arrivalTime;int serviceTime;int priority;int usedTime;int state; // 0: 等待,1: 运行,2: 完成} PCB;```2. 创建进程队列:```cPCB processes[MAX_PROCESSES]; // 假设最多有MAX_PROCESSES个进程int processCount = 0; // 实际进程数量```3. 实现三种调度算法:(1)FCFS调度算法:```cvoid fcfsScheduling() {int i, j;for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;if (processes[i].usedTime == processes[i].serviceTime) { processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); }for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(2)RR调度算法:```cvoid rrScheduling() {int i, j, quantum = 1; // 时间片for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;processes[i].serviceTime--;if (processes[i].serviceTime <= 0) {processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); } else {processes[i].arrivalTime++;}for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(3)DP调度算法:```cvoid dpScheduling() {int i, j, minPriority = MAX_PRIORITY;int minIndex = -1;for (i = 0; i < processCount; i++) {if (processes[i].arrivalTime <= 0 && processes[i].priority < minPriority) {minPriority = processes[i].priority;minIndex = i;}}if (minIndex != -1) {processes[minIndex].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[minIndex].processName);processes[minIndex].usedTime++;processes[minIndex].priority--;processes[minIndex].serviceTime--;if (processes[minIndex].serviceTime <= 0) {processes[minIndex].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[minIndex].processName); }}}```4. 模拟进程执行过程:```cvoid simulateProcess() {printf("请选择调度算法(1:FCFS,2:RR,3:DP):");int choice;scanf("%d", &choice);switch (choice) {case 1:fcfsScheduling();break;case 2:rrScheduling();break;case 3:dpScheduling();break;default:printf("无效的调度算法选择。

操作系统实验一-进程的调度

操作系统实验一-进程的调度

实验一进程的调度一、实验目的:编写和调试一个程序实现进程的调度,以加深对进程的概念和进程调度算法的理解。

二、实验内容:模拟高优先权优先的进程调度算法实验原理:采用最高优先数优先的调度算法(即把处理机分配给优先数最高的进程),每个进程有一个进程控制块(PCB)表示。

进程控制块可以包含如下信息:进程名、优先数、需要运行时间、已用CPU时间、进程状态等等。

每个进程的状态可以是就绪W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。

进程的优先数及需要的运行时间可以事先人为地指定,进程的运行时间以时间片为单位进行计算。

就绪进程获得CPU后都只能运行一个时间片。

用已占用CPU 时间加1来表示。

如果运行一个时间片后,进程的已占用 CPU时间已达到所需要的运行时间,则撤消该进程,如果运行一个时间片后进程的已占用CPU时间还未达所需要的运行时间,也就是进程还需要继续运行,此时应将进程的优先数减1(即降低一级),然后把它插入就绪队列等待CPU。

每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的 PCB,以便进行检查。

重复以上过程,直到所有进程都完成为止。

三、实验准备:1. 需求分析:系统要求用户先输入进程的数量,然后依次输入每个进程的进程名、优先数、运行所需时间等;程序运行过程中,能依次输出每个时间段内正在运行的进程和正处于就绪队列的进程的各个参数(包括进程名、进程状态、运行所需时间、已运行时间)。

2. 测试数据:(假定优先数越大,优先级越高)原始数据:第一个时间片:c执行;就绪队列:a、b(((a运行结束)四、实验过程:1.流程图2. 源代码3. 运行界面:五、实验心得:。

进程调度实验报告[1]

进程调度实验报告[1]

实验一进程调度一.实验题目:(1)、编写并调试一个模拟的进程调度程序,采用“最高优先数优先”调度算法对五个进程进行调度。

2)、编写并调试一个模拟的进程调度程序,采用“轮转法”调度算法对五个进程进行调度。

二:实验目的用高级语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解.三.实验内容:<一>最高优先级优先调度算法1)优先级简介动态优先数是指在进程创建时先确定一个初始优先数,以后在进程运行中随着进程特性的改变不断修改优先数,这样,由于开始优先数很低而得不到CPU的进程,就能因为等待时间的增长而优先数变为最高而得到CPU运行。

例如:在进程获得一次CPU后就将其优先数减少1。

或者,进程等待的时间超过某一时限时增加其优先数的值,等等。

2)详细设计优先权调度算法:1、设定系统中有五个进程,每一个进程用一个进程控制块( PCB)表示,进程队列采用链表数据结构。

2、进程控制块包含如下信息:进程名、优先数、需要运行时间、已用CPU时间、进程状态等等。

3、在每次运行设计的处理调度程序之前,由终端输入五个进程的“优先数”和“要求运行时间”。

4、进程的优先数及需要的运行时间人为地指定.进程的运行时间以时间片为单位进行计算。

5、采用优先权调度算法,将五个进程按给定的优先数从大到小连成就绪队列。

用头指针指出队列首进程,队列采用链表结构。

6、处理机调度总是选队列首进程运行。

采用动态优先数办法,进程每运行一次优先数减“1”,同时将已运行时间加“1”。

7、进程运行一次后,若要求运行时间不等于已运行时间,则再将它加入就绪队列;否则将其状态置为“结束”,且退出就绪队列。

8、“就绪”状态的进程队列不为空,则重复上面6,7步骤,直到所有进程都成为“结束”状态。

9、在设计的程序中有输入语句,输入5个进程的“优先数”和“要求运行时间”,也有显示或打印语句,能显示或打印每次被选中进程的进程名、运行一次后队列的变化,以及结束进程的进程名。

计算机操作系统实验---进程调度

计算机操作系统实验---进程调度

操作系统实验报告--进程调度计科02-8 王长青05年4月17日计算机操作系统实验——进程调度一.实验目的进程调度是处理机管理的核心内容。

通过本实验可以加深理解有关进程控制块、进程队列的概念,并体会和了解优先数调度算法的具体实施办法。

二.程序功能本程序使用VC++编译调试,用于实现进程优先数调度的模拟。

主要包含三个模块:1、主界面:用于显示进程调度的过程。

2、数据录入模块:用于获取进程的初始值,其中有三种获取方式,手动输入方式、随即生成方式和从文件中读去数据的方式。

当用户在主窗口中点击“开始”菜单项时即可打开数据录入对话框,用户通过这三种方式之一均可完成数据的录入。

3、进程控制模块:主要实现创建新的进程,就绪队列的管理,完成队列的管理,进程的调度。

三.实验原理(1)本程序采用优先数调度算法对进程进行调度,每个进程可有三个状态,即:就绪状态,运行状态,完成状态。

并假设初始状态为就绪状态。

这三种状态的转换情况如右图:(2)为了便于处理,程序中的某进程运行时间以时间片为单位计算。

各进程的优先数以及进程需运行的时间片数的初始值均由用户给定(通过数据录入模块完成)。

(3)程序通过设置一个定时器来实现时间片的轮转,时间片的大小是1秒,在定时器消息的响应函数中从用户录入的数据中读取一个创建进程,将其加入到就绪队列中,然后进行调度和执行。

在调度函数中,对于遇到优先数一致的情况,采用FIFO策略解决。

(4)在优先数算法中,进程每执行一次,优先数减3,进程还需要运行的时间数减1。

四.详细设计(1)设计进程控制块PCB结构:struct PCB{ int pid; //进程号int pri; //进程优先数int time; //进程所需运行时间int status; // 进程状态 0就绪,1 执行,-1完成};(2)将进程的各种操作封装在类CProMoni中,该类的定义如下:class CProMoni{public:CProMoni();virtual ~CProMoni();void InsertRQ(PCB* p); //将p所指的进程插入到就绪队列中void InsertFQ(PCB* p); //将p所指的进程插入到完成队列中void ProSchedule(); //进程调度函数void ProRun(); //运行函数void Display(CDC* pDC); //以表格形式输出运行过程bool GetFinishFlag();bool OpenLogFile(); //打开日志文件void CloseLogFile(); //关闭日志文件bool WriteLogToFile(); //向日志文件中写入数据private:PCB *m_pRunning; //指向当前运行的进程CPtrList m_readyList; //就绪队列CPtrList m_finishList; //完成队列bool m_finish; //完成标志CString m_LogFileName; //日志文件名CStdioFile m_LogFile; //日志文件public:int m_clock; //时钟序列};(3)主要成员函数的实现:void CProMoni::InsertRQ(PCB* p){ //将p插入到就绪队列中POSITION pre,pos=m_readyList.GetHeadPosition();PCB *q;while(pos!=NULL){pre=pos;q=(PCB*)m_readyList.GetNext(pos);if(q->pri < p->pri){m_readyList.InsertBefore(pre,p);return;}}if(pos==NULL){m_readyList.AddTail(p);}}void CProMoni::ProSchedule(){//进程调度PCB *p;if(m_pRunning==NULL){if(m_readyList.IsEmpty()){m_finish=true;return;}else{p=(PCB*)m_readyList.RemoveHead();m_pRunning=p;}}else{if(!m_readyList.IsEmpty()){p=(PCB*)m_readyList.GetHead();//m_readyList将头节点与当前PCB的权值比较if(p->pri > m_pRunning->pri ){PCB *q=m_pRunning;m_pRunning=(PCB*)m_readyList.RemoveHead();m_pRunning->status=1;q->status=0;InsertRQ(q);}}}}void CProMoni::ProRun(){//运行进程if(!m_finish){if(m_pRunning==NULL){ AfxMessageBox("当前运行的进程不存在!");return;}m_pRunning->pri-=3;m_pRunning->time-=1;{ m_pRunning->time=0;PCB*p=m_pRunning;p->status=-1;InsertFQ(p);m_pRunning=NULL;}}}(4)试图类的主要成员函数:PCB* CProcessView::CreatePCB(){//创建PCBPCB* p=new PCB;p->pid=n+1;p->pri=m_pris[n];p->time=m_times[n];p->status=0;n++;return p;}#include"pritimedlg.h"void CProcessView::OnStart(){ CPriTimeDlg dlg; //定义数据录入对话框dlg.DoModal();if(dlg.m_ok){ m_proTotal=dlg.m_proNum;for(int i=0;i<m_proTotal;i++){ m_pris[i]=dlg.m_pris[i];m_times[i]=dlg.m_times[i];}m_proMoni.OpenLogFile(); //打开日志文件PCB* p=CreatePCB(); //创建新进程m_proMoni.InsertRQ(p); //将新进程插入到就绪队列中m_proMoni.WriteLogToFile(); //写日志文件m_proMoni.ProSchedule(); //进程调度m_start=true; //设置开始标志Invalidate(); //刷新视图m_killTimer=false;SetTimer(1,1000,NULL);//设置定时器}}void CProcessView::OnTimer(UINT nIDEvent){ m_proMoni.m_clock++;m_proMoni.WriteLogToFile();//写日志m_proMoni.ProRun(); //运行进程if(n<m_proTotal){ PCB *p=CreatePCB();//创建新进程m_proMoni.InsertRQ(p);}m_proMoni.ProSchedule();Invalidate();if(m_proMoni.GetFinishFlag()){//若已完成则删除定时器KillTimer(1);m_killTimer=true;AfxMessageBox("演示完毕");}CScrollView::OnTimer(nIDEvent);}五.运行结果(1)数据录入界面:(2)进程调度过程的结果:六、实验总结通过本实验使我对进程的相关概念及进程的优先数调度算法有了更深的理解,使自己在程序设计及编制方面也有了一定的提高。

实验一 进程调度

实验一  进程调度

实验一进程调度一、实验目的和要求进程调度是处理器管理的核心内容。

本实验要求用高级语言编写和调试一个简单的进程调度程序。

加深了解有关进程控制块,进程队列的概念,并体会和了解优先数和时间片调度算法的具体实施方法。

二、实验内容设计一个程序,根据不同的调度算法模拟操作系统对进程的调度。

调度算法有二种:动态优先级法和时间片循环法1、设计进程控制块PBC表结构,分别适用优先数调度算法和循环时间片轮转算法。

2、 PBC结构通常包括以下信息:进程名、进程优先数、轮转时间片、进程的CPU时间,进程状态等。

根据调度算法不同,PCB结构可作适当的调整。

3、建立进程队列。

对不同的算法编制不同的入链程序编制两种进程调度算法:1、优先数调度;2、循环时间轮转调度三、数据结构与算法设计1、数据结构设计:PCB结构:name 进程名pri /round 进程优先数/进程轮转时间片cputime 进程占用的CPU时间needtime 进程到完成还要的时间state 进程状态(假设状态为Ready、Run、Finish)next 链指针2、算法设计时间以时间片为计量单位。

优先数调度算法1)系统初始化时给每一个进程赋一个NEEDTIME和初始PRI。

并按优先数入队。

2)系统每次选定一个优先级最高的进程投入运行,进程每执行一次,优先数减2,并将它的进程占用的CPU时间加10,进程到完成还要的CPU时间减10。

3)每当一个进程运行一个时间片后,系统根据它的CPUTIME来判断它是否已经结束,若CPUTIME>0,那么将它重新排入就绪队列。

4)如果系统中尚有进程没有运行完毕,那么转入2)。

循环时间片轮转算法1)系统初始化时给每一个进程赋以一个NEEDTIME,并将所有进程按进入的次序排成一个队列。

2)取队头进程,并投入运行。

3)采用相对固定时间片(ROUND),进程每执行一次,进程占用的CPU时间加ROUND,进程到完成还要的CPU时间减ROUND。

操作系统实验之进程调度报告

操作系统实验之进程调度报告

实验一:进程调度一、实习内容1.模拟批处理多道操作系统的进程调度;2.模拟实现同步机构避免并发进程执行时可能与时间相关的错误;二、实习目的进程调度时进程管理的主要内容之一,通过设计,编制,调试一个简单的进程调度模拟系统,对进程调度,进程运行状态变换及PV操作加深理解和掌握。

三、实习题目采用剥夺式优先算法,对三个进程进行模拟调度模拟PV操作同步机构,用PV操作解决进程进入临界区的问题。

【提示】(1)对三个进程进行模拟调度,对各进程的优先数静态设置,P1,P2,P3三个进程的优先数为1,2,3,并指定P1的优先数最高,P3的优先数最低,每个进程都处于执行态“e”,就绪态“r”,等待态“w”三种状态之一,并假定初始态为“r”。

(2)每一个进程用一个PCB表,PCB表的内容根据具体情况设置,该系统在运行过程中能显示或打印各进程和参数的变化情况,以便观察各进程的调度。

(3)在完成必要的初始化后,便进入进程调度程序,首先由P1进入执行,当执行进程因等待某各事件被阻塞或唤醒某个进程等待进程时,转进程调度。

(4)在进入临界区前后,调PV操作。

(5)如果被唤醒的进程优先数高于现有执行的进程,则剥夺现行进程的执行权。

(6)当三个进程都处于等待状态时,本模拟系统退出执行。

四、示例1.数据结构:(1)进程控制块PCBstruct{int id;char status;int priority;int waiter1;}(2)信号量struct{int value;int waiter2;}sem[2](3)现场保护栈stackchar stack[11][4]每个进程都有一个大小为10个字的现场保护栈,用来保护被中断时的断点地址等信息。

(4)全局变量int i;用以模拟一个通用寄存器char addr;用以模拟程序计数器int m1,m2;为系统设置的公用数据被三个进程共享使用。

五、程序框图:六、程序说明:本程序是用C语言编写,模拟三个进程的运行情况,过程在运行中要调用P操作申请信号量,如果该过程得到其申请的信号量,就继续运行,否则P操作阻塞该申请过程的运行,并将过程置为所申请信号量的等待者,如果已有其它过程在等待同一信号量则将该申请过程排在所有等待进程之后。

实验一 时间片轮转进程调度算法

实验一 时间片轮转进程调度算法

实验一时间片轮转进程调度算法时间片轮转(Round Robin)是一种常见的进程调度算法,其核心思想是每个进程被分配一个时间片,当时间片用完时,CPU会切换到下一个进程。

这种算法简单高效,能够保证每个进程都能获得公平的CPU时间。

在时间片轮转算法中,每个进程被分配一个相同大小的时间片,通常为几十毫秒到几百毫秒不等。

当一个进程占用完了其时间片,CPU会将其放入就绪队列的末尾,并将CPU分配给队列中的下一个进程。

这种方式可以确保每个进程都有机会运行,并且不会出现某个进程长时间占用CPU,导致其他进程饥饿的情况。

时间片轮转算法的优点之一是简单易实现,只需要设置一个固定的时间片大小和一个就绪队列即可。

另外,由于每个进程都有相同的时间片,因此可以较好地保证公平性,避免某个进程长时间占用CPU而导致其他进程无法运行的情况。

然而,时间片轮转算法也存在一些缺点。

首先,如果时间片设置过小,会导致频繁的进程切换,增加了系统的开销。

而如果时间片设置过大,可能会出现某些进程长时间占用CPU的情况,降低了系统的响应速度。

因此,选择合适的时间片大小对系统的性能至关重要。

另外,时间片轮转算法对I/O密集型的进程并不友好。

由于I/O操作需要等待外部设备的响应,进程可能会在I/O操作期间主动放弃CPU,这样会导致进程在等待I/O时浪费了部分时间片。

为了解决这个问题,可以考虑将I/O操作的等待时间纳入时间片,或者采用其他更适合I/O密集型进程的调度算法。

总的来说,时间片轮转算法是一种简单高效的进程调度算法,适用于大多数情况下。

在实际应用中,需要根据系统的特点和需求选择合适的时间片大小,以提高系统的性能和响应速度。

同时,针对不同类型的进程可以结合其他调度算法,以达到更好的效果。

实验一进程调度实验

实验一进程调度实验

实验一,进程调度实验一、实验目的用高级语言编写和调试一个进程调度程序,以加深对进程的概念及进程调度算法的理解.二、实验内容及要求1.编写并调试一个模拟的进程调度程序,采用“最高优先数优先”调度算法对五个进程进行调度。

可以采用静态或动态最高优先数优先的算法。

2、编写并调试一个模拟的进程调度程序,采用简单轮转法和多队列轮转法的“轮转法”调度算法对五个进程进行调度。

三、实验主要仪器设备和材料硬件环境:LBM-PC或兼容机软件坏境:C语言编程环境四、实验设计方案及原理每个进程有一个进程控制块(PCB)表示。

进程控制块可以包含如下信息:进程名、优先数、到达时间、需要运行时间、已用CPU时间、进程状态等等。

进程的优先数及需要的运行时间可以事先人为地指定(也可以由随机数产生)。

进程的到达时间为进程输入的时间。

进程的运行时间以时间片为单位进行计算。

每个进程的状态可以是就绪W (Wait).运行R (Rim)、或完成F (Finish)三种状态之一。

就绪进程获得CPU后都只能运行一个时间片。

“最高优先数优先”调度算法的基本思想是把CPU分配给就绪队列中优先数最高的进程。

(静态优先数是在创建进程时确定的,并在整个进程运行期间不再改变;动态优先数是指进程的优先数在创建进程时可以给定一个初始值,并且可以按一定原则修改优先数。

例如:在进程获得一次CPU后就将其优先数减少1或者,进程等待的时间超过某一时限时增加其优先数的值,等等。

) 简单轮转法的基本思想是:所有就绪进程按FCFS排成一个队列,总是把处理机分配给队首的进程,各进程占用CPU的时间片相同。

如果运行进程用完它的时间片后还为完成,就把它送回到就绪队列的末尾,把处理机重新分配给队首的进程。

直至所有的进程运行完毕。

多队列轮转法的基本思想是:设置多个就绪队列,每个队列的优先级不同,每个队列的CPU 时间片人小不等:一个新的进程进入内存后,首先将它放入第一队列的末尾,按FCFS原则排队等待调度:仅当第一队列空闲时,调度程序才调度第二队列中的进程运行,后面的队列同理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一进程调度
1.目的和要求
通过这次实验,理解进程调度的过程,进一步掌握进程状态的转变、进程调度的策略,进一步体会多道程序并发执行的特点,并分析具体的调度算法的特点,掌握对系统性能的评价方法。

2.实验内容
阅读教材《计算机操作系统》第二章和第三章,掌握进程管理及调度相关概念和原理。

编写程序模拟实现进程的时间片轮转调度过程,模拟程序只对PCB进行相应的调度模拟操作,不需要实际程序。

假设初始状态为:有n个进程处于就绪状态,有m个进程处于阻塞状态。

采用时间片轮转调度算法进行调度(调度过程中,假设处于执行状态的进程不会阻塞),且每过t个时间片系统释放资源,唤醒处于阻塞队列队首的进程。

程序要求如下:
1)按时间片顺序输出系统中进程的调度次序;
2)计算CPU利用率。

3.实验环境
Windows操作系统、VC++6.0
C语言
4.实验提示
用C语言实现提示:
1)程序中进程可用PCB表示,其类型描述如下:
struct PCB_type
{
int pid ; //进程名
int state ; //进程状态
2——表示“执行”状态
1——表示“就绪”状态
0——表示“阻塞”状态
int cpu_time ; //运行需要的CPU时间(需运行的时间片个数)
}
2)设置两个队列,将处于“就绪”状态的进程PCB挂在队列ready中;将处于“阻塞”状态的进程PCB挂在队列blocked中。

队列类型描述如下:struct QueueNode{
struct PCB_type PCB;
Struct QueueNode *next;
}
并设全程量:
struct QueueNode *ready_head=NULL, //ready队列队首指针
*ready_tail=NULL , //ready队列队尾指针
*blocked_head=NULL, //blocked队列队首指针
*blocked_tail=NULL; //blocked队列队尾指针
3)设计子程序:
start_state(); //读入假设的数据,设置系统初始状态
dispath(); //模拟调度
calculate(); //计算CPU利用率
5. 实验要求:
1)上机前认真使用C语言编写好程序,采用Visual C++6.0作为编译环境;
2)上机时独立调试程序
3)根据具体实验要求,填写好实验报告(包括目的和要求、实验内容、实验环境、设计思想、源程序、实例运行结果、总结)。

4)测试用数据:
n=2
m=3
t=5。

相关文档
最新文档