2012高考数学圆锥曲线精选(含答案)
2012高考数学专题综合训练--圆锥曲线(分专题,含答案)
2012年高考圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程.(2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程.(1)解:1C的焦点坐标为(0,27e =由1273e e =得13e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN ⊥MQ ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ ………3分 由(1)-(2)可得1.3MN QN k k ∙=-…6分又MN ⊥MQ ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3y y x x y x =+-,又直线PT 的方程为11.xy x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 二、中点弦问题:3、已知椭圆22221(0)y x a b a b +=>>的一个焦点1(0,F -,对应的准线方程为y =.(1)求椭圆的方程;(2)直线l 与椭圆交于不同的两点M 、N ,且线段MN 恰被点13,22P ⎛⎫- ⎪⎝⎭平分,求直线l 的方程.解:(1)由2222.c ac a b c ⎧-=-⎪⎪-=⎨⎪⎪=+⎩3,1a b ==即椭圆的方程为221.9y x +=(2)易知直线l 的斜率一定存在,设l :313,.2222k y k x y kx ⎛⎫-=+=++ ⎪⎝⎭即设M (x 1, y 1),N (x 2, y 2),由223,221.9k y kx y x ⎧=++⎪⎪⎨⎪+=⎪⎩得2222327(9)(3)0.424k k x k k x k +++++-= ∵x 1、x 2为上述方程的两根,则2222327(3)4(9)0424k k k k k ⎛⎫∆=+-+⋅+-> ⎪⎝⎭①∴21223.9k k x x k ++=-+∵MN 的中点为13,22P ⎛⎫- ⎪⎝⎭,∴1212 1.2x x ⎛⎫+=⨯-=- ⎪⎝⎭ ∴223 1.9k k k +-=-+ ∴2239k k k +=+,解得k=3.代入①中,229927184(99)180424⎛⎫∆=-+⋅+-=> ⎪⎝⎭∴直线l :y=3x+3符合要求.4、已知椭圆的一个焦点为)22,0(1-F ,对应的准线为429-=y ,离心率e 满足34,,32e 成等比数列.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在直线l ,使l 与椭圆交于不同的两点B A ,,且线段AB 恰好被直线21-=x 平分?若存在,求出直线l 的倾斜角α的取值范围;若不存在,说明理由.解 : (Ⅰ)由题意知,9834322=⋅=e ,所以322=e . 设椭圆上任意一点P 的坐标为),(y x ,则由椭圆的第二定义得,322429)22(22=+++y y x ,化简得1922=+y x ,故所求椭圆方程为1922=+y x . (Ⅱ)设),(),,(2211y x B y x A ,AB 中点),(00y x M ,依题意有⎪⎪⎩⎪⎪⎨⎧+=-=+=2212210210y y y x x x ,可得⎩⎨⎧=+-=+0212121y y y x x .若直线l 存在,则点M 必在椭圆内,故19)21(22<+-y ,解得023*******<<-<<y y 或.将),(),,(2211y x B y x A 代入椭圆方程,有⎪⎪⎩⎪⎪⎨⎧=+=+)2(19)1(1922222121y x y x)1()2(-得,09))(())((12121212=+-++-y y y y x x x x , 故0121212122)1(9)(9y y y x x x x y y k AB -⨯-=++-=--=, 所以AB k y 290=, 则有029233233290<<-<<ABAB k k 或, 解得33-<>AB AB k k 或, 故存在直线l 满足条件,其倾斜角)32,2()2,3(ππππα⋃∈. 三、定义与最值:5、已知动点P 与双曲线22x -32y =1的两个焦点F 1、F 2的距离之和为6.(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)若1PF •2PF =3,求⊿PF 1F 2的面积;(Ⅲ)若已知D(0,3),M 、N 在轨迹C 上且DM = DN ,求实数 的取值范围.解:①92x +42y =1;②2;③[51,5]四、弦长及面积:6、已知椭圆1422=+y x 及直线m x y +=.(1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为5102,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x , 即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221m x x -=+,51221-=m x x .根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫⎝⎛-⋅+m m .解得0=m .方程为x y =. 7、已知ABC △的顶点A B ,在椭圆2234x y +=上,C 在直线2l y x =+:上,且AB l ∥. (Ⅰ)当AB 边通过坐标原点O 时,求AB 的长及ABC △的面积;(Ⅱ)当90ABC ∠=,且斜边AC 的长最大时,求AB 所在直线的方程.解:(Ⅰ)因为AB l ∥,且AB 边通过点(00),,所以AB 所在直线的方程为y x =. 设A B ,两点坐标分别为1122()()x y x y ,,,.由2234x y y x⎧+=⎨=⎩,得1x =±.所以12AB x =-= 又因为AB 边上的高h 等于原点到直线l的距离.所以h =122ABC S AB h == △. (Ⅱ)设AB 所在直线的方程为y x m =+,由2234x y y x m⎧+=⎨=+⎩,得2246340x mx m ++-=.因为A B ,在椭圆上,所以212640m ∆=-+>.设A B ,两点坐标分别为1122()()x y x y ,,,,则1232m x x +=-,212344m x x -=, 所以12AB x =-=.又因为BC 的长等于点(0)m ,到直线l 的距离,即BC =.22222210(1)11AC AB BC m m m =+=--+=-++.所以当1m =-时,AC 边最长,(这时12640∆=-+>) 此时AB 所在直线的方程为1y x =-. 五、范围问题:8、已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利用上述条件建立m 的不等式即可求得m 的取值范围. 解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点. ∵l 的斜率4=l k ,∴设直线AB 的方程为n x y +-=41.由方程组⎪⎪⎩⎪⎪⎨⎧=++-=,134,4122yx n x y 消去y 得 0481681322=-+-n nx x ①。
2012年高考试题汇编——圆锥曲线
2012年高考数学真题分类汇编:圆锥曲线一、选择题1.【2012高考真题浙江理8】如图,F 1,F 2分别是双曲线C :22221x y a b-=(a,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是B【答案】B【解析】由题意知直线B F 1的方程为:b x c b y +=,联立方程组⎪⎪⎩⎪⎪⎨⎧=-+=0,b y a x b x cb y 得点Q ),(a c bc a c ac --,联立方程组⎪⎪⎩⎪⎪⎨⎧=++=0,b y a x b x cb y 得点P ),(ac bc a c ac ++-,所以PQ 的中点坐标为),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222b ca xbc b c y --=-,令0=y ,得)1(22b ac x +=,所以c ba c 3)1(22=+,所以2222222a cb a -==,即2223c a =,所以26=e 。
故选B 2.【2012高考真题新课标理8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =;则C 的实轴长为( )()A ()B()C 4 ()D 8【答案】C【解析】设等轴双曲线方程为)0(22>=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得4121622=-=-=y x m ,所以双曲线方程为422=-y x ,即14422=-y x ,所以2,42==a a ,所以实轴长42=a ,选C.3.【2012高考真题新课标理4】设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P为直线32ax =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 45【答案】C【解析】因为12PF F ∆是底角为30的等腰三角形,则有P F F F 212=,,因为02130=∠F PF ,所以0260=∠D PF ,0230=∠DPF ,所以21222121F F PF D F ==,即c c c a =⨯=-22123,所以c a 223=,即43=a c ,所以椭圆的离心率为43=e ,选C. 4.【2012高考真题四川理8】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2012年高考文科数学试题分类汇编--圆锥曲线-推荐下载
3。 4
4
(D)
5
的关系.
态度决定高度
【解析】设椭圆的长轴为 2a,双曲线的长轴为 2a ,由 M,O,N 将椭圆长轴四等分,则
2a 2 2a ,即 a 2a ,又因为双曲线与椭圆有公共焦点,设焦距均为 c,则双曲线的
离心率为 e
c a
,e
c a
,
e e
a a
a 3,c 2,或0,或1
以上两种情况下有 4 条重复,故共有 9+5=14 条; 同理 若 b=1,共有 9 条; 若 b=3 时,共有 9 条.
综上,共有 14+9+9=32 种 [点评]此题难度很大,若采用排列组合公式计算,很容易忽视重复的 4 条抛物线. 列举法是 解决排列、组合、概率等非常有效的办法.要能熟练运用.
9.【2012 高考上海文 16】对于常数 m 、 n ,“ mn 0 ”是“方程 mx2 ny2 1的曲线是
椭圆”的( )
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2012年高考真题:圆锥曲线
1设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 452.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 83.已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 2x y =(B) 2x y = (C)28x y = (D)216x y = 4椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += 5.已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )456.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点。
若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A.3B.2C.D.7.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
若点M 到该抛物线焦点的距离为3,则||OM =( )A 、B 、C 、4D 、8.方程22ay b x c =+中的,,{2,0,1,2,3}a b c ∈-,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )A 、28条B 、32条C 、36条D 、48条 9对于常数m 、n ,“0mn >”是“方程221mx ny +=的曲线是椭圆”的( )A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件10.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。
2012年高考圆锥曲线经典题
2012年高考圆锥曲线经典题1、(北京理19).已知曲线C :(5-m )x 2+(m -2)y 2=8(m ∈R ). (1)若曲线C 是焦点在x 轴上的椭圆,求m 的取值范围;(2)设m =4,曲线C 与y 轴的交点为A ,B (点A 位于点B 的上方),直线y =kx +4与曲线C 交于不同的两点M ,N ,直线y =1与直线BM 交于点G .求证:A ,G ,N 三点共线.解:(1)曲线C 是焦点在x 轴上的椭圆,当且仅当50208852m m m m ⎧⎪->⎪->⎨⎪⎪>--⎩,,,解得72<m <5,所以m 的取值范围是(72,5).(2)当m =4时,曲线C 的方程为x 2+2y 2=8,点A ,B 的坐标分别为(0,2),(0,-2).由22428y kx x y =+⎧⎨+=⎩,,得(1+2k 2)x 2+16kx +24=0. 因为直线与曲线C 交于不同的两点, 所以∆=(16k )2-4(1+2k 2)×24>0,即232k >. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2), 则y 1=kx 1+4,y 2=kx 2+4,x 1+x 2=21612k k -+,x 1x 2=22412k +. 直线BM 的方程为1122y y x x ++=,点G 的坐标为(1132x y +,1). 因为直线AN 和直线AG 的斜率分别为222AN y k x -=,1123AG y k x +=-,所以k AN -k AG =21212121222633y y kx kx x x x x -++++=+=2121221622()4412=0243312k x x k k k x x k -⨯⨯+++=++,即k AN =k AG .故A ,G ,N 三点共线. 2、(全国新课标理20).设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD的面积为p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.解:(1)由已知可得△BFD 为等腰直角三角形,|BD |=2p ,圆F的半径||FA . 由抛物线定义可知A 到l的距离=||d FA .因为△ABD的面积为所以1||2BD d ⋅=即122p ⋅= 解得p =-2(舍去),p =2.所以F (0,1),圆F 的方程为x 2+(y -1)2=8. (2)因为A ,B ,F 三点在同一直线m 上, 所以AB 为圆F 的直径,∠ADB =90°. 由抛物线定义知|AD |=|F A |=12|AB |, 所以∠ABD =30°,m当m的斜率为3时,由已知可设n :y=3x +b ,代入x 2=2py ,得x 2-3px -2pb =0.由于n 与C 只有一个公共点,故∆=43p 2+8pb =0, 解得6p b =-. 因为m 的截距12p b =,1||3||b b =,所以坐标原点到m ,n 距离的比值为3. 当m的斜率为-m ,n 距离的比值为3. 3、(全国理21).已知抛物线C :y =(x +1)2与圆M :(x -1)2+(y -12)2=r 2(r >0)有一个公共点A ,且在A 处两曲线的切线为同一直线l . (1)求r ;(2)设m ,n 是异于l 且与C 及M 都相切的两条直线,m ,n 的交点为D ,求D 到l 的距离.21.解:(1)设A (x 0,(x 0+1)2),对y =(x +1)2求导得y ′=2(x +1), 故l 的斜率k =2(x 0+1).当x 0=1时,不合题意,所以x 0≠1.圆心为M (1,12),MA 的斜率2001(1)21x k'x +-=-.由l ⊥MA 知k ·k ′=-1,即2(x 0+1)·2001(1)21x x +--=-1,解得x 0=0,故A (0,1), r =|MA |2=,即2r =.(2)设(t ,(t +1))为C 上一点,则在该点处的切线方程为y -(t +1)2=2(t +1)(x -t ),即y =2(t +1)x -t 2+1.若该直线与圆M 相切,则圆心M=, 化简得t (t -4t -6)=0,解得t 0=0,12t =22t =抛物线C 在点(t i ,(t i +1)2)(i =0,1,2)处的切线分别为l ,m ,n ,其方程分别为y =2x +1,①y =2(t 1+1)x -t 12+1,② y =2(t 2+1)x -t 22+1,③ ②-③得1222t t x +==. 将x =2代入②得y =-1,故D (2,-1). 所以D 到l的距离5d ==. 4、(山东理21).在平面直角坐标系xOy 中,F 是抛物线C :x 2=2py (p >0)的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34. (1)求抛物线C 的方程;(2)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(3)若点Ml :y =kx +14与抛物线C 有两个不同的交点A ,B ,l 与圆Q 有两个不同的交点D ,E ,求当12≤k ≤2时,|AB |2+|DE |2的最小值. 解:(1)依题意知F (0,2p ),圆心Q 在线段OF 的垂直平分线4py =上,因为抛物线C 的准线方程为2py =-,所以3344p =,即p =1, 因此抛物线C 的方程为x 2=2y .(2)假设存在点M (x 0,202x )(x 0>0)满足条件,抛物线C 在点M 处的切线斜率为y ′|x =x 0=(22x )′|x =x 0=x 0.所以直线MQ 的方程为y -202x =x 0(x -x 0),令14y =,得00124Q x x x =+,所以Q (00124x x +,14).又|QM |=|OQ |,故2222000001111()()()42424216x x x x x -+-=++,因此22019()416x -=,又x 0>0,所以0x M1).故存在点M1),使得直线MQ 与抛物线C 相切于点M .(3)当0x =(2)得Q (814).Q的半径为r ==, 所以Q 的方程为22127(()432x y +-=. 由21214y x y kx ⎧=⎪⎪⎨⎪=+⎪⎩,,整理得2x 2-4kx -1=0. 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 由于1∆=16k 2+8>0,x 1+x 2=2k ,1212x x =-, 所以|AB |2=(1+k 2)[(x 1+x 2)2-4x 1x2]=(1+k 2)(4k 2+2).由22127((),84321,4x y y kx ⎧-+-=⎪⎪⎨⎪=+⎪⎩ 整理得(1+k 2)x 2116x -=0.设D ,E 两点的坐标分别为(x 3,y 3),(x 4,y 4).由于2227048k ∆=+>,3424(1)x x k +=+, 342116(1)x x k =-+, 所以|DE |2=(1+k 2)[(x 3+x 4)2-4x 3x 4]=22518(1)4k ++.因此|AB |2+|DE |2=(1+k 2)(4k 2+2)+22518(1)4k ++. 令1+k 2=t ,由于12≤k ≤2,则54≤t ≤5.所以|AB |2+|DE |2=t (4t -2)+25184t +=4t 2-2t +25184t +, 设g (t )=4t 2-2t +25184t +,t ∈[54,5], 因为g ′(t )=8t -2-2258t ,所以当t ∈[54,5]时,g ′(t )≥g ′(54)=6,即函数g (t )在t ∈[54,5]是增函数,所以当54t =时g (t )取到最小值132,因此当12k =时,|AB |2+|DE |2取到最小值132.5、(湖南理21).在直角坐标系xOy 中,曲线C 1上的点均在圆C 2:(x -5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x =-2的距离等于该点与圆C 2上点的距离的最小值.(1)求曲线C 1的方程;(2)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.解:(1)方法一:设M 的坐标为(x ,y ),由已知得|2|3x +=.易知圆C 2上的点位于直线x =-2的右侧,于是x +2>0,所以5x =+.化简得曲线C 1的方程为y 2=20x .方法二:由题设知,曲线C 1上任意一点M 到圆C 2圆心(5,0)的距离等于它到直线x =-5的距离.因此,曲线C 1是以(5,0)为焦点,直线x =-5为准线的抛物线.故其方程为y 2=20x .(2)当点P 在直线x =-4上运动时,P 的坐标为(-4,y 0).又y 0≠±3,则过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y -y 0=k (x +4),即kx -y +y 0+4k =0.3=.整理得72k 2+18y 0k +y 02-9=0.① 设过P 所作的两条切线P A ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根.故001218724y yk k +=-=-.② 由101240,20k x y y k y x-++=⎧⎨=⎩得 k 1y 2-20y +20(y 0+4k 1)=0.③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,则y 1,y 2是方程③的两个实根,所以0112120(4)y k y y k +=.④同理可得0234220(4)y k y y k +=.⑤于是由②④⑤三式得010*******400(4)(4)y k y k y y y y k k ++==201201212400[4()16]y k k y k k k k +++=22001212400(16) 6 400y y k k k k -+=.所以,当P 在直线x =-4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6 400.6、(天津理19).设椭圆22221x y a b+=(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.(1)若直线AP 与BP 的斜率之积为12-,求椭圆的离心率; (2)若|AP |=|OA |,证明直线OP 的斜率k满足||k >.解:(1)设点P 的坐标为(x 0,y 0).由题意,有2200221x y a b+=① 由A (-a,0),B (a,0),得00AP y k x a =+,00BP y k x a=-. 由k AP ·k BP =12-,可得x 02=a 2-2y 02,代入①并整理得(a 2-2b 2)y 02=0. 由于y 0≠0,故a 2=2b 2.于是222212a b e a -==,所以椭圆的离心率e =. (2)证明:(方法一)依题意,直线OP 的方程为y =kx ,设点P 的坐标为(x 0,y 0).由条件得00220022,1,y kx x y ab =⎧⎪⎨+=⎪⎩消去y 0并整理得2220222a b x k a b =+.②由|AP |=|OA |,A (-a,0)及y 0=kx 0, 得(x 0+a )2+k 2x 02=a 2.整理得(1+k 2)x 02+2ax 0=0.而x 0≠0,于是021ax k-=+,代入②,整理得 (1+k 2)2=4k 2(a b)2+4.由a >b >0,故(1+k 2)2>4k 2+4,即k 2+1>4,因此k 2>3.所以||k .(方法二)依题意,直线OP 的方程为y =kx ,可设点P 的坐标为(x 0,kx 0),由点P 在椭圆上,有22200221x k x a b +=.因为a >b >0,kx 0≠0,所以22200221x k x a a+<,即(1+k 2)x 02<a 2.③由|AP |=|OA |,A (-a,0),得(x 0+a )2+k 2x 02=a 2,整理得(1+k 2)x 02+2ax 0=0,于是0221ax k -=+. 代入③,得(1+k 2)2224(1)a k +<a 2,解得k 2>3,所以||k >. 7、(上海理22).在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1. (1)过C 1的左顶点引C 1的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成的三角形的面积;(2)设斜率为1的直线l 交C 1于P ,Q 两点.若l 与圆x 2+y 2=1相切,求证:OP ⊥OQ ;(3)设椭圆C 2:4x 2+y 2=1.若M ,N 分别是C 1,C 2上的动点,且OM ⊥ON ,求证:O 到直线MN 的距离是定值.解: (1)双曲线C 1:22112x y -=,左顶点A(2-,0),渐近线方程:y =.过点A与渐近线y =平行的直线方程为)2y x =+,即1y +.解方程组,1y y ⎧=⎪⎨=+⎪⎩得41.2x y ⎧=-⎪⎪⎨⎪=⎪⎩所以所求三角形的面积为1||||28S OA y ==.(2)设直线PQ 的方程是y =x +b .因直线PQ 与已知圆相切,1=,即b 2=2. 由22,21y x b x y =+⎧⎨-=⎩得x 2-2bx -b 2-1=0. 设P (x 1,y 1),Q (x 2,y 2),则122122,1.x x b x x b +=⎧⎨=--⎩ 又y 1y 2=(x 1+b )(x 2+b ), 所以OP OQ ⋅=x 1x 2+y 1y 2=2x 1x 2+b (x 1+x 2)+b 2=2(-1-b 2)+2b 2+b 2=b 2-2=0.故OP ⊥OQ .(3)当直线ON 垂直于x 轴时,|ON |=1,|OM |则O 到直线MN当直线ON 不垂直于x 轴时, 设直线ON 的方程为y =kx (显然|k |>2),则直线OM 的方程为1y x k =-. 由22,41y kx x y =⎧⎨+=⎩得222221,4,4x kk y k ⎧=⎪⎪+⎨⎪=⎪+⎩ 所以2221||4k ON k +=+.同理2221||21k OM k +=-. 设O 到直线MN 的距离为d ,因为(|OM |2+|ON |2)d 2=|OM |2|ON |2,所以22222111333||||1k d OM ON k +=+==+,即d =. 综上,O 到直线MN 的距离是定值.8、(重庆理20).如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形.(1)求该椭圆的离心率和标准方程;(2)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程.解:(1)如图,设所求椭圆的标准方程为2222=1x y a b+(a >b >0),右焦点为F 2(c ,0).因△AB 1B 2是直角三角形,又|AB 1|=|AB 2|,故∠B 1AB 2为直角,因此|OA |=|OB 2|,得2cb =,结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率c e a ==在Rt △AB 1B 2中,OA ⊥B 1B 2,故12AB B S ∆=12·|B 1B 2|·|OA |=|OB 2|·|OA |=2c·b =b 2.由题设条件124AB B S ∆=得b 2=4,从而a 2=5b 2=20,因此所求椭圆的标准方程为22=1204x y +. (2)由(1)知B 1(-2,0),B 2(2,0).由题意知直线l 的倾斜角不为0,故可设直线l 的方程为x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0,设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是上面方程的两根,因此12245my y m +=+,122165y y m ⋅=-+,又2B P =(x 1-2,y 1),2B Q=(x 2-2,y 2),所以2B P ·2B Q =(x 1-2)(x 2-2)+y 1y 2=(my 1-4)·(my 2-4)+y 1y 2=(m 2+1)y 1y 2-4m (y 1+y 2)+16=22222216(1)161664+16=555m m m m m m +----+++. 由PB 2⊥QB 2,得2B P ·2B Q=0,即16m 2-64=0,解得m =±2.所以满足条件的直线有两条,其方程分别为x +2y +2=0和x -2y +2=0.。
高考数学真题汇编圆锥曲线文(解析版)
2012高考试题分类汇编:8:圆锥曲线一、选择题1.【2012高考新课标文4】设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 45【答案】C【解析】因为12PF F ∆是底角为30的等腰三角形,则有PF F F 212=,,因为2130=∠F PF ,所以0260=∠D PF ,0230=∠DPF ,所以21222121F F PF D F ==,即c c c a =⨯=-22123,所以c a 223=,即43=a c ,所以椭圆的离心率为43=e ,选C.2.【2012高考新课标文10】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,43AB =C 的实轴长为( )()A 2 ()B 22()C 4 ()D 8【答案】C【解析】设等轴双曲线方程为)0(22>=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得4121622=-=-=y x m ,所以双曲线方程为422=-y x ,即14422=-y x ,所以2,42==a a ,所以实轴长42=a ,选C.3.【2012高考山东文11】已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为(A) 283x y =(B) 2163x y = (C)28x y = (D)216x y =【答案】D【解析】抛物线的焦点 )2,0(p ,双曲线的渐近线为x a b y ±=,不妨取x aby =,即0=-ay bx ,焦点到渐近线的距离为2222=+⨯b a pa ,即cb a ap 4422=+=,所以4p a c =双曲线的离心率为2=a c ,所以24==pa c ,所以8=p ,所以抛物线方程为y x 162=,选D.4.【2012高考全国文5】椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += 【答案】C【解析】椭圆的焦距为4,所以2,42==c c 因为准线为4-=x ,所以椭圆的焦点在x 轴上,且42-=-ca ,所以842==c a ,448222=-=-=c ab ,所以椭圆的方程为14822=+y x ,选C. 5.【2012高考全国文10】已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠= (A )14 (B )35 (C )34 (D )45【答案】C【解析】双曲线的方程为12222=-y x ,所以2,2===c b a ,因为|PF 1|=|2PF 2|,所以点P 在双曲线的右支上,则有|PF 1|-|PF 2|=2a=22,所以解得|PF 2|=22,|PF 1|=24,所以根据余弦定理得432422214)24()22(cos 2221=⨯⨯-+=PF F ,选C. 6.【2012高考浙江文8】 如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点。
2012-2018全国卷圆锥曲线(理科)
2012-2018全国卷圆锥曲线解答题(理科)1.(2012年全国高考新课标Ⅰ卷理科第20题)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈.已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点.(Ⅰ)若90BFD ∠=︒,ABD ∆的面积为,求p 的值及圆F 的方程.(Ⅱ)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.2.(2013全国高考新课标Ⅰ卷理科第20题)已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于,A B 两点,当圆P 的半径最长时,求||AB .3.(2014年全国高考新课标Ⅰ卷理科第20题)已知点(0,2)A -,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.4.(2015年全国高考新课标Ⅰ卷理科第20题)在直角坐标系xOy 中,曲线2:4x C y =与直线(0)y kx a a =+>交于,M N 两点.(Ⅰ) 当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ) y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 5.(2016年全国高考新课标Ⅰ卷理科第20题) (本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E .(I)证明EA EB +为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线1C ,直线l 交1C 于,M N 两点,过B 且与l 垂直的直线与圆A 交于,P Q 两点,求四边形MPNQ 面积的取值范围.6. (2017年全国高考Ⅰ卷理科第20题) (本小题满分12分)已知椭圆C :(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1,)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。
2012年高考真题理科数学解析分类汇编10圆锥曲线
2012年高考真题理科数学解析分类汇编10 圆锥曲线一、选择题1.【2012高考浙江理8】如图,F 1,F 2分别是双曲线C:22221x y a b -=(a,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是A.BD. 【答案】B【解析】由题意知直线B F 1的方程为:b x c b y +=,联立方程组⎪⎪⎩⎪⎪⎨⎧=-+=0,b y a x b x cb y 得点Q ),(ac bc a c ac --,联立方程组⎪⎪⎩⎪⎪⎨⎧=++=0,by a x b x cb y 得点P ),(ac bc a c ac ++-,所以PQ 的中点坐标为),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222b c a x b c b c y --=-,令0=y ,得)1(22b ac x +=,所以c b a c 3)1(22=+,所以2222222a c b a -==,即2223c a =,所以26=e 。
故选B 2.【2012高考新课标理8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =;则C 的实轴长为( )()A ()B()C 4 ()D 8【答案】C【解析】设等轴双曲线方程为)0(22>=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得4121622=-=-=y x m,所以双曲线方程为422=-y x ,即14422=-y x ,所以2,42==a a ,所以实轴长42=a ,选C. 3.【2012高考新课标理4】设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【答案】C【解析】因为12PF F ∆是底角为30的等腰三角形,则有P F F F 212=,,因为02130=∠F PF ,所以0260=∠D PF ,0230=∠DPF,所以21222121F F PF D F ==,即c c c a =⨯=-22123,所以c a 223=,即43=a c ,所以椭圆的离心率为43=e ,选C. 4.【2012高考四川理8】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2012高考数学圆锥曲线精选(含答案)
2012年高考数学---圆锥曲线与方程一、选择题1 .(2012年高考(山东理))已知椭圆2222:1(0)x y C a b a b+=>>双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为( )A .22182x y +=B .221126x y += C .221164x y += D .221205x y += 2 .(2012年高考(山东文))已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为 ( )A .2x y =B .2x y =C .28x y =D .216x y =3 .(2012年高考(浙江文))如图,中心均为原点O 的双曲线与椭圆有公共焦点,M,N 是双曲线的两顶点.若M,O,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是 ( )A .3B .2C D4 .(2012年高考(浙江理))如图,F 1,F 2分别是双曲线C:22221x y a b-=(a ,b >0)的左右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是 ( )A BC D 5 .(2012年高考(辽宁文))已知P,Q 为抛物线x 2=2y 上两点,点P,Q 的横坐标分别为4,-2,过P,Q 分别作抛物线的切线,两切线交于点A,则点A 的纵坐标为 ( ) A .1 B .3 C .-4 D .-8 6 .(2012年高考(四川文))已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y .若点M 到该抛物线焦点的距离为3,则||OM = ( )A .B .C .4D .7 .(2012年高考(课标文))等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =则C 的实轴长为( )AB .C .4D .88 .(2012年高考(课标文))设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为 ( ) A .12 B .23 C .34 D .459 .(2012年高考(江西文))椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A,B,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为 ( )A .14B C .12D10 .(2012年高考(湖南文))已知双曲线C :22x a -22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为( )A .220x -25y =1B .25x -220y =1C .280x -220y =1D .220x -280y =1[w~、ww.zz&st^@]11 .(2012年高考(福建文))已知双曲线22x a-25y =1的右焦点为(3,0),则该双曲线的离心率等于A14B .4C .32D .4312.(2012年高考(大纲文))已知12,F F 为双曲线222x y -=的左,右焦点,点P 在C上,12||2||PF PF =,则12cos F PF ∠= ( )A .14 B .35 C .34D .4513.(2012年高考(大纲文))椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为( )A .2211612x y += B .221128x y += C .22184x y += D .221124x y +=14 .(2012年高考(新课标理))等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =则C 的实轴长为( )A B .C .4D .815 .(2012年高考(新课标理))设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为 ( ) A .12 B .23 C .34 D .4516 .(2012年高考(四川理))已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y .若点M 到该抛物线焦点的距离为3,则||OM = ( )A .B .C .4D .17 .(2012年高考(上海春))已知椭圆222212:1,:1,124168x y x y C C +=+=则 [答]( )A .1C 与2C 顶点相同.B .1C 与2C 长轴长相同. C .1C 与2C 短轴长相同.D .1C 与2C 焦距相等.18 .(2012年高考(湖南理))已知双曲线C :22x a -22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为( )A .220x -25y =1B .25x -220y =1C .280x -220y =1D .220x -280y =119 .(2012年高考(福建理))已知双曲线22214x y b-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离等于 ( )A B .C .3D .520 .(2012年高考(大纲理))已知12,F F 为双曲线22:2C x y -=的左右焦点,点P 在C上,12||2||PF PF =,则12cos F PF ∠= ( )A .14B .35 C .34D .4521.(2012年高考(大纲理))椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 ( )A .2211612x y += B .221168x y += C .22184x y += D .221124x y += 22.(2012年高考(安徽理))过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O是原点,若3AF =;则AOB ∆的面积为 ( )A .2BC .2D .二、填空题23.(2012年高考(天津文))已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C 的右焦点为F ,则a =______,b =_______.24.(2012年高考(重庆文))设P 为直线3by x a=与双曲线22221(0,0)x y a b a b -=>> 左支的交点,1F 是左焦点,1PF 垂直于x 轴,则双曲线的离心率e =___25.(2012年高考(四川文))椭圆2221(5x y a a +=为定值,且a >的的左焦点为F ,直线x m =与椭圆相交于点A 、B ,FAB ∆的周长的最大值是12,则该椭圆的离心率是______.26.(2012年高考(陕西文))右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.27.(2012年高考(辽宁文))已知双曲线x 2- y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若P F 1⊥PF 2,则∣P F 1∣+∣P F 2∣的值为___________________.28.(2012年高考(安徽文))过抛物线24y x =的焦点F 的直线交该抛物线于,A B 两点,若||3AF =,则||BF =______29.(2012年高考(天津理))己知抛物线的参数方程为2=2,=2,x pt y pt ⎧⎨⎩(t 为参数),其中>0p ,焦点为F ,准线为l ,过抛物线上一点M 作的垂线,垂足为E ,若||=||EF MF ,点M 的横坐标是3,则=p _______.30.(2012年高考(重庆理))过抛物线22y x =的焦点F 作直线交抛物线于,A B 两点,若25,,12AB AF BF =<则AF =_____________________. 31.(2012年高考(四川理))椭圆22143x y +=的左焦点为F ,直线x m =与椭圆相交于点A 、B ,当FAB ∆的周长最大时,FAB ∆的面积是____________.32.(2012年高考(上海春))抛物线28y x =的焦点坐标为_______.33.(2012年高考(陕西理))右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽____米. 34.(2012年高考(辽宁理))已知P ,Q 为抛物线22x y =上两点,点P ,Q 的横坐标分别为4,-2,过P 、Q 分别作抛物线的切线,两切线交于A ,则点A 的纵坐标为__________.35.(2012年高考(江西理))椭圆22221x y a b+=(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为_______________. 36.(2012年高考(江苏))在平面直角坐标系xOy 中,若双曲线22214x y m m -=+则m 的值为____. 37.(2012年高考(湖北理))如图,双曲线2222 1 (,0)x y a b a b-=>的两顶点为1A ,2A ,虚轴两端点为1B ,2B ,两焦点为1F ,2F . 若以12A A 为直径的圆内切于菱形1122F B F B ,切点分别为,,,A B C D . 则 (Ⅰ)双曲线的离心率e =________;(Ⅱ)菱形1122F B F B 的面积1S 与矩形ABCD 的面积2S 的比值12S S =________. 38.(2012年高考(北京理))在直角坐标系xoy 中,直线l 过抛物线24y x=的焦点F,且与该抛物线相较于A 、B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________. 三、解答题 39.(2012年高考(重庆文))(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)xy已知椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为12,F F ,线段12,OF OF 的中点分别为12,B B ,且△12AB B 是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过1B 作直线交椭圆于,P Q ,22PB QB ⊥,求△2PB Q 的面积40.(2012年高考(浙江文))(本题满分14分)如图,在直角坐标系xOy 中,点P (1,12)到抛物线C :2y =2px (P >0)的准线的距离为54。
2012年高考真题理科数学解析分类汇编10圆锥曲线
2012年高考真题理科数学解析分类汇编10 圆锥曲线一、选择题1.【2012高考浙江理8】如图,F 1,F 2分别是双曲线C :22221x y ab-=(a,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是A.3B2C.D.【答案】B【解析】由题意知直线B F 1的方程为:b x cb y +=,联立方程组⎪⎪⎩⎪⎪⎨⎧=-+=0,b y a x b x cb y 得点Q ),(a c bc a c ac --,联立方程组⎪⎪⎩⎪⎪⎨⎧=++=0,b y a x b x cb y 得点P ),(ac bc a c ac ++-,所以PQ 的中点坐标为),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222bca xbc b c y --=-,令0=y ,得)1(22ba c x +=,所以c ba c 3)1(22=+,所以2222222a c b a -==,即2223c a =,所以26=e 。
故选B2.【2012高考新课标理8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B()C 4 ()D 8【答案】C【解析】设等轴双曲线方程为)0(22>=-m m y x ,抛物线的准线为4-=x ,由34=AB ,则32=A y ,把坐标)32,4(-代入双曲线方程得4121622=-=-=y x m ,所以双曲线方程为422=-y x ,即14422=-yx,所以2,42==a a,所以实轴长42=a ,选C.3.【2012高考新课标理4】设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,12PF F ∆是底角为30 的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 45【答案】C【解析】因为12PF F ∆是底角为30的等腰三角形,则有PF F F 212=,,因为2130=∠F PF ,所以260=∠D PF ,0230=∠DPF,所以21222121F F PF D F ==,即c c c a =⨯=-22123,所以c a 223=,即43=ac ,所以椭圆的离心率为43=e ,选C.4.【2012高考四川理8】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
2012年高考文科全国试题汇编:圆锥曲线(含解析)
2012年高考文科试题分类汇编:圆锥曲线一、选择题1.【2012高考新课标文4】设12F F 是椭圆2222:1(0)x y Ea b ab+=>>的左、右焦点,P为直线32a x=上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为( )()A 12()B 23()C 34()D 45【答案】C【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题.【解析】∵△21F P F 是底角为030的等腰三角形, ∴0260P F A ∠=,212||||2P F F F c==,∴2||A F =c,∴322ca=,∴e =34,故选C.2.【2012高考新课标文10】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线xy 162=的准线交于,A B 两点,A B =C 的实轴长为( )()A ()B ()C 4()D 8【答案】C【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题.【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:222x y a -=,将4x =代入等轴双曲线方程解得y=,∵||A B =,∴a =2,∴C的实轴长为4,故选C.3.【2012高考山东文11】已知双曲线1C :22221(0,0)x y a b ab-=>>的离心率为2.若抛物线22:2(0)Cxp y p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C的方程为(A) 23xy=(B) 23xy=(C)28xy= (D)216xy=【答案】D考点:圆锥曲线的性质解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知ab3=,此题应注意C2的焦点在y 轴上,即(0,p/2)到直线xy 3=的距离为2,可知p=8或数形结合,利用直角三角形求解。
4.【2012高考全国文5】椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 (A )2211612xy+= (B )221128xy+=(C )22184xy+= (D )221124xy+=【答案】C 【命题意图】本试题主要考查了椭圆的方程以及性质的运用。
[高三数学]2012高考理科数学圆锥曲线试题及答案
2012高考理科数学圆锥曲线大题及答案一、选择题1 .(2012年高考(新课标理))等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =则C 的实轴长为( )A B .C .4D .82 .(2012年高考(新课标理))设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为 ( )A .12B .23C .34D .453 .(2012年高考(浙江理))如图,F 1,F 2分别是双曲线C:22221x y a b-=(a ,b >0)的左右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是 ( )A BC D 4 .(2012年高考(四川理))已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y .若点M 到该抛物线焦点的距离为3,则||OM =( )A .B .C .4D .5 .(2012年高考(上海春))已知椭圆222212:1,:1,124168x y x y C C +=+=则 [答]( )A .1C 与2C 顶点相同.B .1C 与2C 长轴长相同. C .1C 与2C 短轴长相同.D .1C 与2C 焦距相等.6 .(2012年高考(山东理))已知椭圆2222:1(0)x y C a b a b +=>>.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为( )A .22182x y += B .221126x y += C .221164x y += D .221205x y += 7 .(2012年高考(湖南理))已知双曲线C :22x a -22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为( )A .220x -25y =1B .25x -220y =1C .280x -220y =1D .220x -280y =18 .(2012年高考(福建理))已知双曲线22214x y b-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离等于 ( )A B .C .3D .59 .(2012年高考(大纲理))已知12,F F 为双曲线22:2C xy -=的左右焦点,点P 在C上,12||2||PF PF =,则12cos F PF ∠= ( )A .14B .35C .34D .4510.(2012年高考(大纲理))椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 ( )A .2211612x y += B .221168x y += C .22184x y += D .221124x y += 11.(2012年高考(安徽理))过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O是原点,若3AF =; 则AOB ∆的面积为 ( )A .2 B C .2D .二、填空题12.(2012年高考(天津理))己知抛物线的参数方程为2=2,=2,x pt y pt ⎧⎨⎩(t 为参数),其中>0p ,焦点为F ,准线为l ,过抛物线上一点M 作的垂线,垂足为E ,若||=||EF MF ,点M 的横坐标是3,则=p _______.13.(2012年高考(重庆理))过抛物线22y x =的焦点F 作直线交抛物线于,A B 两点,若25,,12AB AF BF =<则AF =_____________________. 14.(2012年高考(四川理))椭圆22143x y +=的左焦点为F ,直线x m =与椭圆相交于点A 、B ,当FAB ∆的周长最大时,FAB ∆的面积是____________.15.(2012年高考(上海春))抛物线28y x =的焦点坐标为_______.16.(2012年高考(陕西理))右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽____米.17.(2012年高考(辽宁理))已知P ,Q 为抛物线22xy =上两点,点P ,Q 的横坐标分别为4,-2,过P 、Q 分别作抛物线的切线,两切线交于A ,则点A 的纵坐标为__________.18.(2012年高考(江西理))椭圆22221x y a b+=(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为_______________.19.(2012年高考(江苏))在平面直角坐标系xOy 中,若双曲线22214x ym m -=+则m 的值为____. 20.(2012年高考(湖北理))如图,双曲线2222 1 (,0)x y a b a b-=>的两顶点为1A ,2A ,虚轴两端点为1B ,2B ,两焦点为1F ,2F . 若以12A A 为直径的圆内切于菱形1122F B F B ,切点分别为,,,A B C D . 则 (Ⅰ)双曲线的离心率e =________;(Ⅱ)菱形1122F B F B 的面积1S 与矩形A B C D 的面积2S 的比值12S S =________. 21.(2012年高考(北京理))在直角坐标系xoy 中,直线l 过抛物线24yx =的焦点F,且与该抛物线相较于A 、B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.三、解答题22.(2012年高考(天津理))设椭圆2222+=1x y a b(>>0)a b 的左、右顶点分别为,A B ,点P 在椭圆上且异于,A B 两点,O 为坐标原点. (Ⅰ)若直线AP 与BP 的斜率之积为12-,求椭圆的离心率; xy(Ⅱ)若||=||AP OA ,证明直线OP 的斜率k 满足|k23.(2012年高考(新课标理))设抛物线2:2(0)C xpy p =>的焦点为F ,准线为l ,A C ∈,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点;(1)若090=∠BFD ,ABD ∆的面积为24;求p 的值及圆F 的方程;(2)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点, 求坐标原点到,m n 距离的比值.24.(2012年高考(浙江理))如图,椭圆C:2222+1x y a b=(a >b >0)的离心率为12,其左焦点到点P (2,1)不过原点O 的直线l 与C 相交于A ,B 两点,且线段AB 被直线OP 平分. (Ⅰ)求椭圆C 的方程;(Ⅱ) 求∆ABP 的面积取最大时直线l 的方程.25.(2012年高考(重庆理))(本小题满分12分(Ⅰ)小问5分(Ⅱ)小问7分)如图,设椭圆的中心为原点O,长轴在x 轴上,上顶点为A,左右焦点分别为21,F F ,线段12,OF OF 的中点分别为21,B B ,且△21B AB 是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过1B 做直线l 交椭圆于P,Q 两点,使22QB PB ⊥,求直线l 的方程26.(2012年高考(四川理))如图,动点M 到两定点(1,0)A -、(2,0)B 构成MAB ∆,且2MBA MAB ∠=∠,设动点M 的轨迹为C .(Ⅰ)求轨迹C 的方程;(Ⅱ)设直线2y x m =-+与y 轴交于点P ,与轨迹C 相交于点Q R 、,且||||PQ PR <,求||||PR PQ 的取值范围.27.(2012年高考(上海理))在平面直角坐标系xOy 中,已知双曲线12:221=-y xC .(1)过1C 的左顶点引1C 的一条渐近线的平行线,求该直线与另一条渐近线及x 轴围成 的三角形的面积;(2)设斜率为1的直线l 交1C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OP ⊥OQ ;(3)设椭圆14:222=+y x C . 若M 、N 分别是1C 、2C 上的动点,且OM ⊥ON , 求证:O 到直线MN 的距离是定值.28.(2012年高考(上海春))本题共有2个小题,第1小题满分6分,第2小题满分8分.已知双曲线221: 1.4y C x -= (1)求与双曲线1C 有相同的焦点,且过点P 的双曲线2C 的标准方程;(2)直线:l y x m =+分别交双曲线1C 的两条渐近线于A B 、两点.当3OA OB =时,求实数m 的值.29.(2012年高考(陕西理))已知椭圆221:14x C y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率. (1)求椭圆2C 的方程;(2)设O 为坐标原点,点A,B 分别在椭圆1C 和2C 上,2OB OA =,求直线AB 的方程.30.(2012年高考(山东理))在平面直角坐标系xOy 中,F 是抛物线2:2(0)C xpy p =>的焦点,M 是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34. (Ⅰ)求抛物线C 的方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(Ⅲ)若点M 直线1:4l y kx =+与抛物线C 有两个不同的交点,A B ,l 与圆Q 有两个不同的交点,D E ,求当122k ≤≤时,22AB DE +的最小值.31.(2012年高考(辽宁理))如图,椭圆0C :22221(0x y a b a b+=>>,a ,b 为常数),动圆22211:C x y t +=,1b t a <<.点12,A A 分别为0C 的左,右顶点,1C 与0C 相交于A ,B ,C ,D四点.(Ⅰ)求直线1AA 与直线2A B 交点M 的轨迹方程;(Ⅱ)设动圆22222:C x y t +=与0C 相交于////,,,A B C D 四点,其中2b t a <<,12t t ≠.若矩形ABCD 与矩形////A B C D 的面积相等,证明:2212t t +为定值.32.(2012年高考(江西理))已知三点O(0,0),A(-2,1),B(2,1),曲线C 上任意一点M(x,y)满足()2MA MB OM OA OB +=⋅++.(1) 求曲线C 的方程;(2)动点Q(x 0,y 0)(-2<x 0<2)在曲线C 上,曲线C 在点Q 处的切线为l 向:是否存在定点P(0,t)(t<0),使得l 与PA,PB 都不相交,交点分别为D,E,且△QAB 与△PDE 的面积之比是常数?若存在,求t 的值.若不存在,说明理由.33.(2012年高考(江苏))如图,在平面直角坐标系xoy 中,椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知(1)e ,和e ⎛⎝⎭都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的方程;(2)设,A B 是椭圆上位于x 轴上方的两点,且直线1AF 与直线2BF点P.(i)若12AF BF -=,求直线1AF 的斜率; (ii)求证:12PF PF +是定值.34.(2012年高考(湖南理))在直角坐标系xOy 中,曲线C 1的点均在C 2:(x-5)2+y 2=9外,且对C 1上任意一点M,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值.(Ⅰ)求曲线C 1的方程;(Ⅱ)设P(x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别与曲线C 1相交于点A,B 和C,D.证明:当P 在直线x=﹣4上运动时,四点A,B,C,D 的纵坐标之积为定值.(第19题)35.(2012年高考(湖北理))设A 是单位圆221x y +=上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足||||(0,1)DM m DA m m =>≠且. 当点A 在圆上运动时,记点M 的轨迹为曲线C .(Ⅰ)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(Ⅱ)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H . 是否存在m ,使得对任意的0k >,都有PQ PH ⊥?若存在,求m 的值;若不存在,请说明理由。
2012年高考理科数学——圆锥曲线
2012年高考理科数学——圆锥曲线1、2012重庆3.意的实数k ,直线y=kx+1与圆 的位置关系一定是A . 相离 B.相切 C.相交但直线不过圆心 D.相交且直线过圆心 2、2012天津理(8)设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x -- 相切,则+m n 的取值范围是(A )[1-(B)(,1)-∞-∞(C)[2- (D)(,2)-∞-∞3、2012陕西理4. 已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( ) (A )l 与C 相交 (B ) l 与C 相切 (C )l 与C 相离 (D ) 以上三个选项均有可能4、2012江苏12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =- 上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是5、2012新课标理(4)设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,∆21F P F 是底角为30 的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 456、2012全国理(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 (A )2211612xy+= (B )221128xy+= (C )22184xy+= (D )221124xy+=7、2012山东理(10)已知椭圆C :的离心率为,双曲线x ²-y ²=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆c 的方程为 A 、22182xy+= B 、221126xy+= C 、221164xy+= D 、221205xy+=8、2012江西理13椭圆22221x y ab+=(a >b >0)的左、右顶点分别是A,B,左、右焦点分别是F 1,F 2。
高考数学试题分项版解析专题10 圆锥曲线(学生版) 理
2012年高考试题分项版解析数学(理科)专题10 圆锥曲线(学生版)一、选择题:1. (2012年高考新课标全国卷理科4)设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 452.(2012年高考新课标全国卷理科8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 83. (2012年高考福建卷理科8)双曲线22214x y b-=的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A .5B .24C .3D .56.(2012年高考安徽卷理科9)过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =,则AOB ∆的面积为( )()A ()B ()C ()D8. (2012年高考四川卷理科8)已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。
若点M 到该抛物线焦点的距离为3,则||OM =( )A 、、、4 D 、9.(2012年高考全国卷理科3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为( )A .2211612x y += B .221168x y += C .22184x y += D .221124x y +=二、填空题:1. (2012年高考江苏卷8)在平面直角坐标系xOy 中,若双曲线22214x y m m -=+的离心率m 的值为 .2.(2012年高考北京卷理科12)在直角坐标系xOy 中,直线l 过抛物线=4x 的焦点F.且与该撇物线相交于A 、B 两点.其中点A 在x 轴上方。
2012年高考试题分类汇编:圆锥曲线(文)
23.【2012 高考广东文 20】 (本小题满分 14 分) 在平面直角坐标系 xOy 中,已知椭圆 C1 :
x2 y2 1 ( a b 0 )的左焦点为 a2 b2
F1 (1, 0) ,且点 P (0,1) 在 C1 上.
(1)求椭圆 C1 的方程; (2)设直线 l 同时与椭圆 C1 和抛物线 C2 : y 4 x 相切,求直线 l 的方程. 【答案】 【解析】 (1)因为椭圆 C1 的左焦点为 F1 ( 1, 0) ,所以 c 1 ,
3 14 14
B
3 2 4
C
3 2
D
4 3
【答案】C. 【解析】根据焦点坐标 (3,0) 知 c 3 ,由双曲线的简单几何性质知 a 5 9 ,所以 a 2 , 因此 e
2
3 .故选 C. 2
二 、填空题
13.【2012 高考四川文 15】椭圆
x2 y2 1(a 为定值,且 a 5) 的的左焦点为 F ,直线 a2 5 x m 与椭圆相交于点 A 、B ,FAB 的周长的最大值是 12,则该椭圆的离心率是______。 2 【答案】 , 3
∴椭圆的方程为
x2 y2 1 。 2
0) ,又∵ AF1 ∥ BF2 , (2)由(1)得 F1 (1, 0) , F2 (1,
∴ 设
AF1 、 BF2 的 方 程 分 别 为 my =x 1,my =x 1 ,
A x1,y1 ,B x2,y2 ,y1 > 0,y2 > 0 。
2
14.【2012 高考辽宁文 15】已知双曲线 x
y =1,点 F1,F2 为其两个焦点,点 P 为双曲线上
2
一点,若 P F1⊥P F2,则∣P F1∣+∣P F2∣的值为___________________. 【答案】 2 3 15.【2012 高考江苏 8】 (5 分)在平面直角坐标系 xOy 中,若双曲线 率为 5 ,则 m 的值为 【答案】2。 【考点】双曲线的性质。 16.【2012 高考陕西文 14】右图是抛物线形拱桥,当水面在 l 时,拱顶离水面 2 米,水面宽 4 米,水位下降 1 米后,水面宽 米. ▲ .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年高考数学---圆锥曲线与方程一、选择题1 .(2012年高考(山东理))已知椭圆2222:1(0)x y C a b a b+=>>双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为( )A .22182x y +=B .221126x y += C .221164x y += D .221205x y += 2 .(2012年高考(山东文))已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为 ( )A .2x y =B .2x y =C .28x y =D .216x y =3 .(2012年高考(浙江文))如图,中心均为原点O 的双曲线与椭圆有公共焦点,M,N 是双曲线的两顶点.若M,O,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是 ( )A .3B .2C D4 .(2012年高考(浙江理))如图,F 1,F 2分别是双曲线C:22221x y a b-=(a ,b >0)的左右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是 ( )A BC D 5 .(2012年高考(辽宁文))已知P,Q 为抛物线x 2=2y 上两点,点P,Q 的横坐标分别为4,-2,过P,Q 分别作抛物线的切线,两切线交于点A,则点A 的纵坐标为 ( ) A .1 B .3 C .-4 D .-8 6 .(2012年高考(四川文))已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y .若点M 到该抛物线焦点的距离为3,则||OM = ( )A .B .C .4D .7 .(2012年高考(课标文))等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =则C 的实轴长为( )AB .C .4D .88 .(2012年高考(课标文))设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、右焦点,P 为直线32ax =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为 ( ) A .12 B .23 C .34 D .459 .(2012年高考(江西文))椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A,B,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为 ( )A .14B C .12D10 .(2012年高考(湖南文))已知双曲线C :22x a -22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为( )A .220x -25y =1B .25x -220y =1C .280x -220y =1D .220x -280y =1[w~、ww.zz&st^@]11 .(2012年高考(福建文))已知双曲线22x a-25y =1的右焦点为(3,0),则该双曲线的离心率等于A14B .4C .32D .4312.(2012年高考(大纲文))已知12,F F 为双曲线222x y -=的左,右焦点,点P 在C上,12||2||PF PF =,则12cos F PF ∠= ( )A .14 B .35 C .34D .4513.(2012年高考(大纲文))椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为( )A .2211612x y += B .221128x y += C .22184x y += D .221124x y +=14 .(2012年高考(新课标理))等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =则C 的实轴长为( )A B .C .4D .815 .(2012年高考(新课标理))设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为 ( ) A .12 B .23 C .34 D .4516 .(2012年高考(四川理))已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y .若点M 到该抛物线焦点的距离为3,则||OM = ( )A .B .C .4D .17 .(2012年高考(上海春))已知椭圆222212:1,:1,124168x y x y C C +=+=则 [答]( )A .1C 与2C 顶点相同.B .1C 与2C 长轴长相同. C .1C 与2C 短轴长相同.D .1C 与2C 焦距相等.18 .(2012年高考(湖南理))已知双曲线C :22x a -22y b=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为( )A .220x -25y =1B .25x -220y =1C .280x -220y =1D .220x -280y =119 .(2012年高考(福建理))已知双曲线22214x y b-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离等于 ( )A B .C .3D .520 .(2012年高考(大纲理))已知12,F F 为双曲线22:2C x y -=的左右焦点,点P 在C上,12||2||PF PF =,则12cos F PF ∠= ( )A .14B .35 C .34D .4521.(2012年高考(大纲理))椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 ( )A .2211612x y += B .221168x y += C .22184x y += D .221124x y += 22.(2012年高考(安徽理))过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O是原点,若3AF =;则AOB ∆的面积为 ( )A .2BC .2D .二、填空题23.(2012年高考(天津文))已知双曲线)0,0(1:22221>>=-b a by a x C 与双曲线1164:222=-y x C 有相同的渐近线,且1C 的右焦点为F ,则a =______,b =_______.24.(2012年高考(重庆文))设P 为直线3by x a=与双曲线22221(0,0)x y a b a b -=>> 左支的交点,1F 是左焦点,1PF 垂直于x 轴,则双曲线的离心率e =___25.(2012年高考(四川文))椭圆2221(5x y a a +=为定值,且a >的的左焦点为F ,直线x m =与椭圆相交于点A 、B ,FAB ∆的周长的最大值是12,则该椭圆的离心率是______.26.(2012年高考(陕西文))右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.27.(2012年高考(辽宁文))已知双曲线x 2- y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若P F 1⊥PF 2,则∣P F 1∣+∣P F 2∣的值为___________________.28.(2012年高考(安徽文))过抛物线24y x =的焦点F 的直线交该抛物线于,A B 两点,若||3AF =,则||BF =______29.(2012年高考(天津理))己知抛物线的参数方程为2=2,=2,x pt y pt ⎧⎨⎩(t 为参数),其中>0p ,焦点为F ,准线为l ,过抛物线上一点M 作的垂线,垂足为E ,若||=||EF MF ,点M 的横坐标是3,则=p _______.30.(2012年高考(重庆理))过抛物线22y x =的焦点F 作直线交抛物线于,A B 两点,若25,,12AB AF BF =<则AF =_____________________. 31.(2012年高考(四川理))椭圆22143x y +=的左焦点为F ,直线x m =与椭圆相交于点A 、B ,当FAB ∆的周长最大时,FAB ∆的面积是____________.32.(2012年高考(上海春))抛物线28y x =的焦点坐标为_______.33.(2012年高考(陕西理))右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽____米. 34.(2012年高考(辽宁理))已知P ,Q 为抛物线22x y =上两点,点P ,Q 的横坐标分别为4,-2,过P 、Q 分别作抛物线的切线,两切线交于A ,则点A 的纵坐标为__________.35.(2012年高考(江西理))椭圆22221x y a b+=(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为_______________. 36.(2012年高考(江苏))在平面直角坐标系xOy 中,若双曲线22214x y m m -=+则m 的值为____. 37.(2012年高考(湖北理))如图,双曲线2222 1 (,0)x y a b a b-=>的两顶点为1A ,2A ,虚轴两端点为1B ,2B ,两焦点为1F ,2F . 若以12A A 为直径的圆内切于菱形1122F B F B ,切点分别为,,,A B C D . 则 (Ⅰ)双曲线的离心率e =________;(Ⅱ)菱形1122F B F B 的面积1S 与矩形ABCD 的面积2S 的比值12S S =________. 38.(2012年高考(北京理))在直角坐标系xoy 中,直线l 过抛物线24y x=的焦点F,且与该抛物线相较于A 、B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________. 三、解答题 39.(2012年高考(重庆文))(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)xy已知椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为12,F F ,线段12,OF OF 的中点分别为12,B B ,且△12AB B 是面积为4的直角三角形.(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过1B 作直线交椭圆于,P Q ,22PB QB ⊥,求△2PB Q 的面积40.(2012年高考(浙江文))(本题满分14分)如图,在直角坐标系xOy 中,点P (1,12)到抛物线C :2y =2px (P >0)的准线的距离为54。