方程的根与零点存在定理课件
方程的根与函数的零点说课课件ppt
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
3板书设计
§3.1 方程的根与函数的零点
1、零点概念:
练习:
…………………………
…………………………
2、方程的根与函数零点的关系 …………………………
函数的图象与x 两个交点 轴的交点 (-1,0),(3,0)
一个交点 (1,0)
没有交点
上述一元二次方程的实数根二次函数图象与x轴交点的横坐标
意图:引起认知冲突;了解本课主旨; 通过熟悉情境,形成初步结论.
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
正反例证,熟悉定理
5、零点存在性定理的辨析与应用.
函数零点存在性定理:
y
ac O
y
y
ac
O
bx
bx
c Oa
y
c Oa
b x
b x
例1如判果断函正数误y=,f(若x)不在正区确间,[a,请b]上使的用图函象数是图连象续举不出断反的例一条曲线, 并 (且 1)有已f(知a)函·f(数b)<y=0f,(x那)在么区,间函[数a,by]=上f(连x)在续区,间且(fa(,ab)) ·内f(b有) <零0点,.则
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
—— 说课过程 ——
为深入学习习近平新时代中国特色社 会主义 思想和 党的十 九大精 神,贯彻 全国教 育大会 精神,充 分发挥 中小学 图书室 育人功 能
2019A新高中数学必修第一册:3.1.1 方程的根与函数的零点
本章内容
3.1 函数与方程 3.2 函数模型及其应用
第三章 小结
3.1.1 方程的根与函数的零点 3.1.2 用二分法求方程的近似解 复习与提高
返回目录
1. 方程 f(x)=0 的根与函数 y=f(x) 的图象上 的点有什么关系?
2. 什么是函数的零点? 函数的零点与函数 的图象、对应方程的解有什么关系?
(C) (2, 3)
(D) (3, +∞)
解: 设 f(x)=lgx+x-3,
f(x) 在(0, +∞)上是增函数,
f(1)= -2, <0,
f(2)=lg2-1<0,
f(3)=lg3 >0,
f(2)·f(3)<0,
∴方程的解在2与3之间.
2. 已知方程 x2+bx=1. 若方程有一根在1与2之间, 求 b 的取值范围;
【课时小结】
2. 求函数的零点所在区间 (1) 如果函数 y=f(x) 在区间 [a, b] 上的图象
连续不断, 且 f(a)·f(b)<0, 那么, 函数 y=f(x) 在区间 (a, b) 内有零点.
(2) 如果函数 y=f(x) 在区间 [a, b] 上是连续 的单调函数, 且 f(a)·f(b)<0, 那么, 函数 y=f(x) 在区间 (a, b) 内有且只有一个零点.
函数的零点与方程的根.ppt
例 6 ( 上 海 02 高 考 )、 已 知 函 数
f
(x)
ax
x2 x 1
a
1。
(1)求 f(x)单调区间。
(2)若 a=3,求证方程 f(x)=0 有且仅有一个正根。
解:(1)定义证明.(2)因在 (1,) 为增函数,
故在 (0,) 为增,又 f(0)= -1<0,f(1)=2.5,所 以在(0,1)有且只有一个正根.下用二分法 约为 0.28(列表,区间,中点,中点函数值)
求函数F( x) f ( x) g( x)的零点可转化为 求函数y f ( x)与y g( x)图像交点的横坐标
一、一元二次函数与一元二次方程 内容复习
知识归纳:1、一元二次函数、不等式、方程的关系
0
0
0
二次函数
y ax2 bx c
( a 0 )的 图象
一元二次方程
ax2 bx c 0
a 0的根
有两相异实根 有两相等实根
x1, x2 (x1 x2 )
x1
x2
b 2a
ax2 bx c 0
(a 0)的解集
x x x1或x x2
x
x
b 2a
无实根 R
ax2 bx c 0
例7 已知函数 f(x)=-x2+2ex+m
-1,g(x)=x+ex2(x>0). (1)若g(x)=m有零点,求m的取值范
围; (2)确定m的取值范围,使得g(x)-f(x)
=0有两个相异实根.
y f (x) 有零点(即横坐标)。
若函数f(x)的图像在x=x0处与x轴相切,则零点 x0为不变号零点若函数f(x)的图像在x=x0处与x 轴相交,则零点x0为变号零点
方程的根与函数的零点(5)
x2 2x 3 0
y x2 2x 3
透数形结合 的思想。为
方程的根 函数值y=0时的x的值 函数图象与x轴交点的横坐标
板书
引入函数零 点的概念打 下基础。
2019/6/26
27
五、教学过程
(三)数形结合,巩固认识
若将上面特殊的一元二次方程推广到一般的一元二
次 方 程 ax2 bx c 0 (a 0) 及 相 应 的 二 次 函 数
一些复杂的方程无法 求解,造成学生的认 知冲突,引发学生的好 奇心和求知欲。此时 开门见山的提出用函 数的思想解决方程根 的问题,点明本节课的 课题。
2019/6/26
25
五、教学过程
(二)启发引导,逐步深入
设计意图
问题2:
以问题激发学生
一元二次方程ax2+bx+c=0(a≠0)
思考,将大问题
分解为几个小问 与二次函数y=ax2+bx+c(a≠0)有什么联系? 题,自然地得到
2019/6/26
3
方程
函数 函 数 的 图 像
x2-2x-3=0 x2-2x+1=0 x2-2x+3=0 y= x2-2x-3 y= x2-2x+1 y= x2-2x+3
y
.
.
2
.1 .
-1 0 1 2 3 x -1
-2 -3
. -4
y
.2
.
1. .
. -1 0 1 2
x
y
.5 4
.
3.
2
.
.
1
-1 0 1 2 3 x
方程的实数根 x1=-1,x2=3
高一数学新人教A版必修1课件:第3章函数的应用3.1.1方程的根与函数的零点
阅读教材 P86~P87“探究”以上部分,完成下列问题. 1.二次函数 y=ax2+bx+c(a>0)的图象与根的关系
Δ>0
Δ=0
二次函数y=ax2 +bx+c(a>0)的 图象
与x轴的交点
(x1,0),(x2,0)
(x1,0)
Δ<0 无交点
2.函数的零点
对于函数 y=f(x),把使 f(x)=0的实数 x 叫做函数 y=f(x)的零点.
法二 由x2-1x=0,得x2=1x. 令h(x)=x2(x≠0),g(x)=1x. 在同一坐标系中分别画出h(x)和g(x)的图象,如图所示.可知两函数图象只有 一个交点,故函数f(x)=x2-1x只有一个零点.
判断函数存在零点的 3 种方法 1.方程法:若方程 f(x)=0 的解可求或能判断解的个数,可通过方程的解来判
函数零点个数的判断
判断下列函数零点的个数. (1)f(x)=x2-7x+12;(2)f(x)=x2-1x. 【精彩点拨】 (1)中f(x)为二次函数,解答本题可判断对应的一元二次方程 的根的个数;(2)中函数零点可用解方程法或转化为两个熟知的基本初等函数y= x2与y=1x的图象交点的个数.
【自主解答】 (1)由f(x)=0,即x2-7x+12=0,得Δ=49-4×12=1>0, ∴方程x2-7x+12=0有两个不相等的实数根3,4.∴函数f(x)有两个零点. (2)法一 令f(x)=0,即x2-1x=0. ∵x≠0,∴x3-1=0.∴(x-1)(x2+x+1)=0. ∴x=1或x2+x+1=0. ∵方程x2+x+1=0的根的判别式Δ=12-4=-3<0, ∴方程x2+x+1=0无实数根. ∴函数f(x)只有一个零点.
【答案】 B
高中数学课件
方程的根与函数的零点 课件
此判定方法经常考,要注意条件一定要完备,缺一不可. 反之,若函数 y=f(x)在(a,b)内有零点,则 f(a)·f(b)<0 不一定 成立. 因为 f(x)在(a,b)内的零点可能为不变号零点,也可能不止一个 零点.
(2)应用零点存在性定理应注意以下问题: ①并非函数所有的零点都能用该定理找到,当函数值在零点左 右不变号时就不能应用该定理,如函数 y=x2 在零点 x0=0 左右 的函数值都是正值,显然不能使用定理判断,只有函数值在零 点的左右两侧异号时才能用这种方法. ②利用零点存在性定理只能判别函数 y=f(x)在区间(a,b)上零 点的存在性,但不能确定零点的个数.
2.解决有关根的分布问题应注意以下几点: (1)首先画出符合题意的草图,转化为函数问题. (2)结合草图考虑四个方面:①Δ 与 0 的大小;②对称轴与所给 端点值的关系;③端点的函数值与零的关系;④开口方向. (3)写出由题意得到的不等式. (4)由得到的不等式去验证图象是否符合题意,这类问题充分体 现了函数与方程的思想,也体现了方程的根就是函数的零点.在 写不等式时要注意条件的完备性.
方程的根与函数的零点
自学导引 1.函数的零点 对于函数 y=f(x),把 使f(x)=0的实数x 叫做函数 y=f(x)的零点. 想一想:函数的零点是函数 y=f(x)与 x 轴的交点吗? 提示 函数的零点不是函数 y=f(x)与 x 轴的交点,而是 y=f(x) 与 x 轴交点的横坐标,也就是说函数的零点不是一个点,而是 一个实数.
如 f(x)=ax2+bx+c(a>0)的两个零点为
x1,x2(x1≤x2)且 k1<x1≤x2<k2.
Δ≥0, 则k1<-2ba<k2,
ffkk12> >00, ,
题型一 求函数的零点 【例 1】 判断下列函数是否存在零点,如果存在,请求出. (1)f(x)=xx+;3 (2)f(x)=x2+2x+4; (3)f(x)=2x-3; (4)f(x)=1-log3x; [思路探索] 利用解方程的方法求相应方程的根即可.
人教A版数学必修一3-1-1方程的根与函数的零点(68张).pptx
命题方向 3 判断函数的零点、方程的根所在的区间
[例 3] (2010·天津)函数 f(x)=ex+x-2 的零点所在的一
个区间是( )
A.(-2,-1)
B.(-1,0)
C.(0,1)
D.(1,2)
[分析] 函数零点附近函数值的符号相反,可据此求解.
f0=2m+1<0 观察图象可得ff- 1=1= 4m2+>02<0 ,
f2=6m+5>0
解得-56<m<-12.
所以 m 的取值范围是(-56,-12).
规律总结:这类题目一般是从几何角度入手,利用代数 方法解决.若题目改为函数 f(x)=x2+2mx+2m+1 的两个零
f0>0 点均在区间(0,1)内,则需满足不等式组fΔ≥1>00
(3)函数 y=x2-2x+3 与 x 轴没有交点,方程没有实根.
观察可知,二次函数 f(x)与 x 轴的交点的横坐标恰好是相 应方程 f(x)=0 的根,这种关系对一般的一元二次函数与其相 应的方程之间的情况也成立,即方程 ax2+bx+c=0 的实根就 是 f(x)=ax2+bx+c 与 x 轴交点的横坐标.
[解析] (1)令 f(x)=0,即 3x+2=0,∴x=-23. ∴f(x)=3x+2 的零点是-23. (2)令 f(x)=x2-3x-4=0,得 x1=4,x2=-1. ∴f(x)=x2-3x-4 的零点是 4,-1. (3)令 f(x)=log2x=0,得 x=1, ∴f(x)=log2x 的零点为 1.
名师辩误做答
1.混淆了零点与点的概念 [例 5] 函数 f(x)=x2-5x+6 的零点是________. [错解] (2,0),(3,0) 由题意,得 x2-55x+6=0,∴x=2,x=3, ∴函数的零点是(2,0)和(3,0).
吉林省公主岭市第五高级中学人教A版高中数学必修一课件:3-1-1方程的根与函数的零点 (共22张PPT)
五 教法与学法
新课程中强调以学生为主体,教师起引导作用, “将课堂还给 学生,让课堂焕发出生命的活力” 是我进行教学的指导思想,本次课 采用以学生为主体的探究式教学方法,采用“设问——探索——归 纳——定论”层层递进的方式来突破本课的重难点。通过引导学生积 极思考,热情参与,独立自主地解决问题。同时对学生的回答进行一 定的总结,把特殊的现象提升到理论的高度,让学生能更好的理解和 掌握。
一 以旧带新
引入课题
引例2 求出表中一元二次方程的实数根,画出相应的二次函数图像的 简图,并写出函数的图象与x轴的交点坐标。
方程 函数
x2-2x-3=0 y= x2-2x-3 .
-1
x2-2x+1=0 y= x2-2x+1 .
x2-2x+3=0 y= x2-2x+3
函 数 的 图 象
y
2 1
-1 -2
设计意图:从二次函数入手这样设 计既符合学生的认知特点,也让学 生经历从特殊到一般过程.
判别式△ = b2-4ac
△>0
△=0
△<0
没有实数根
两个不相等 有两个相等的 方程ax2 +bx+c=0 (a>0)的根 的实数根x1 、x2 实数根x1 = x2 函数y= ax2 +bx +c(a>0)的图象
x1
y
0 x2
y x
0 x1
y
函数的图象 与 x 轴交点
x
0
x
(x1,0) , (x2,0)
(2) 归纳能力:从具体的例子中归纳一般的,共性的性质定理。
3.情感态度与价值观
(1) 从易到难,顺应学生的学习心理,学生能体会到学习数学的成功感。 (2) 以学生为主体,营造学习氛围,学生产生热爱学习数学的积极心理。
零点存在性定理
2
方程 y=0 函数
x2-2x-3=0 - y= x -2x-3
2
x -2x+1=0 y= x -2x+1
2
2
x2-2x+3=0 y= x2-2x+3
. 函数图象
-1
y
2 1
. .
-1 -2
.y
2
y
. . . 1 .
2
.
.
x
-1
5
0
1
2
3
x
-1
1
(简图) 简图) 简图
0
-3 -4
3 2 1
.
4
.
.
5
问题1:此图象是否能 问题 : 表示函数? 表示函数? 问题2: 问题 :你能从中分析 函数有哪些零点吗? 函数有哪些零点吗?
-2
-1
2
3
6
设问激疑,延伸拓展 设问激疑 延伸拓展 例1:求函数 1:求函数
f ( x ) = 4 x 2 − 12 x + 9
的零点个数。 的零点个数。
再次思考问题: 再次思考问题:你能求出下列方程的实数根个数 吗?
∴选 B
15
方程的根与函数的零点
初步应用,理论迁移 初步应用 理论迁移
例2 求函数 y = ( x − 2) 2 ( x 2 − 2 x − 3) 的零点: 的零点
求函数零点的步骤: 求函数零点的步骤: (1)令 (1)令f(x)=0; (2)解方程f(x)=0; 解方程f(x)=0 (2)解方程f(x)=0; (3)写出零点 (3)写出零点 如何解下列方程
即存在 c ∈ ( a, b ) ,使得 f (c) = 0 ,这个 c 也就是方程 f ( x) = 0 的根。
高中数学 方程的根与函数的零点课件 1人教A版必修1
1. 下列函数图像与 x 轴均有公共点, 但不能用二分法求公共点横坐标的 是( )
y y y y
a 11 1
O b c x
O a x
O
O a x
b x
D A B C
2. 求方程x3-2x-5=0在区间[2,3]内的实
根,取区间中点x0=2.5,那么下一个有 根区间是
f (2) 1, f (3) 16 , f (2.5) 5.625 ,
10
15
-2
Байду номын сангаас
-4
-6
-8
5. 求函数f(x)= x3 +2 x2﹣3x﹣6的
一个正数零点(精确到0.1)
6 5 4
3
fx = x3+2x2-3x-6
2
1
-12
-10
-8
-6
-4
-2
O 1
-1 -2 -3
2
2
4
6
8
10
12
-4
-5
-6
-7
-8
由 f (0) 6 ,
f (1) 6 ,
8
6
4
gx = 3-x
2
fx = logx
5 10 15
-10
-5
-2
-4
方程x = 3﹣lgx 的解在区间(2,3)内选C。
-6 -8
4. A
方程( )x = lnx的根的个数为( 0 B 1 C 2 D 3
8
1 2
)
6
1x fx = 2
4
gx = lnx
2
-10
-5
《方程的根与函数的零点》
小结
1、函数零点与方程的根的关系。 函数零点与方程的根的关系。
2、函数零点存在性的判定方法。 函数零点存在性的判定方法。
3、数形结合、函数与方程的思想。 数形结合、函数与方程的思想。
作业
课本P119习题4—1 A组 4
<
在区间(a,d)上______(有/无)零点; 零点; ③ 在区间 上 有 有 无 零点 f(a).f(d) _____ 0(<或>). (<或 (<
<
辨析:
1、如果函数y=f(x)在区间 、如果函数 在区间[a,b]上满足 上满足f(a)f(b)<0, 在区间 上满足 那么函数y=f(x)在区间 那么函数 在区间(a,b)内一定有零点吗? 内一定有零点吗? 在区间 内一定有零点吗
y
0
a
b
x
4、若函数 函数f(x)在[a, b]上的图象是连续不断的一 b]上的图象是连续不断的一 函数 在 条曲线, 上恰有一个零点, 条曲线,在 (a, b) 上恰有一个零点,是否一定 有f(a)f(b) <0? ?
=3 x 例1 已知函数 f (x) 问:方程
x 2
f (x) = 0 在区间
y y
0
a
b
x
0a
b
x
函数f(x)在[a, b]上的图象是连续不断的一 b]上的图象是连续不断的一 2、若函数 函数 在 条曲线,满足f(a)f(b)>0,则函数 b)上 条曲线,满足 ,则函数f(x)在(a, b)上 在 有零点吗? 有零点吗?
函数f(x)在[a, b]上的图象是连续不断的一条 3、若函数 函数 在 上的图象是连续不断的一条 曲线,满足f(a)f(b)<0,是否意味着函数 曲线,满足 0 是否意味着函数f(x)在 在 (a, b)上有唯一一个零点? )上有唯一一个零点?
§3.1.1方程的根与函数的零点
.
2 3
.
5 6 7 8 9 10
1
2
x
.
16
重庆市万州高级中学 曾国荣 wzzxzgr@
§3.1.1方程的根与函数的零点
课堂练习2:
利用函数的图象,指出下列函数零点所在的大致区间:
(1)f(x)= -x3-3x+5;
(2)f(x)=2x · ln(x-2)-3;
(3)f(x)=ex-1+4x-4;
y
.
.
3 2 1
6 5 4
.
.
-1 0 1 2 3 4
2013-1-14 重庆市万州高级中学 曾国荣 wzzxzgr@
.
x
11
§3.1.1方程的根与函数的零点
(4) 5 x2 +2x=3 x2 +5 解:5x2 +2x=3x2 +5可化为2x2 +2x-5=0, 令f(x)=2x2+2x-5 , 作出函数f(x)的图象,如下: 它与x轴有两个交点,所以 方程5x2 +2x=3x2 +5有两个不 相等的实数根。
y
. . . - -2 - -4 3 . 1 0 1 2 -1
-2 -3 -4 -5 -6
4 3 2 1
3
x
.
2013-1-14
重庆市万州高级中学 曾国荣 wzzxzgr@
12
§3.1.1方程的根与函数的零点
拓展:求下列函数的零点。
(1)y=-x2 - x+20; (2)y=2x - 1;
2013-1-14
重庆市万州高级中学 曾国荣 wzzxzgr@
23
(4)f(x)=3(x+2)(x-3)(x+4)+x.
零点的存在性定理ppt课件
三 选做题 1若a < b < c,则函数f x x a x b x b x c x c x a的两个零点
分别位于哪两个区间?
12
能力提升题答案
1因为该函数的图像不是连续不断的, 不能使用零点存在性定理,所以选A
连续不断的一条曲线,并且有f a f b > 0 是不是说函数y f x在a,b内没有零点?
y f x在a,b内也可能有零点,如f x x2 1
在区间-2, 2上有f 2 f 2 > 0,但在-2,2内
有两个零点-1,1.
5
探究二 正确使用零点存在性定理
的个数。
9
六 当堂清学
一 基础题
1函数f x ex x 2的零点所在的一个区间是
A.2, 1 B. 1, 0
C
C.0,1
D.1, 2
10
二 能力提升题
1函数f x x 1 的零点个数是
x A.0 B.1 C.2 D.3
2若函数f x =ax2 x 1仅有一个零点,求实数
D =4a2 8 0
即218-8a < 0或a2 2解得a > 9 或a 2
4
当函数在该区间内有两个不同零点时,
必须满足D > 0,0 < - -2a < 4, f 0 0,
2
f 4 0.即4a2 4 2 > 0, 0 < a < 4, 2 0
18 8a 0.解得 2 < a 9 . 4
零点的存在性定理习题课
一、课题导入 上节课学习了函数零点的概念及其判定, 那么针对一般函数的零点问题又如何判 断?
人教A版2003课标高中数学必修1第三章3.1.1方程的根与函数的零点(共22张PPT)
探究三:零点存在性定理
探究三:零点存在性定理
(若不成立,利用图象举出反例)
23:27
学会了吗?
.
.
23:27
探究四:零点存在性定理的拓展
如果函数y=f(x)在区间[a,b]上的图象 是连续不断的一条曲线,并且有 f(a)·f(b)<0, 且是单调函数 那么,函数y=f(x)在区间(a,b) 内有零唯点一.的一个零点.
择决定命运,环境造就人生!
从特殊到一般性的归纳
判别式△
方程ax2 +bx +c =0(a>0)的 根
△>0
△=0
Байду номын сангаас
△< 0
这个结论对于一般的二次方程和对应函数成立吗?
上述结一论元:二一次元方程二的次实方数程根的实数二次根函就数是图相象应与函x轴数的图交象点的 横坐标(方程与实x轴数根交的点个的数横就坐是标对应. 函数图象与x轴的交点的个数)
记忆口诀: 零点不是点; 等价三相连. 上下不间断; 零点可呈现.
㈡数学思想方法
体会函数与方程和数形结合的数学思想
课后作业
⑴完成学案; ⑵ (选做)教材88页课后练习第2题.
小测试
①函数 f (x) (x2 2)( x2 3x 2) 的零点的个数是 ( )
A .1 B.2
C. 3
D.4
②函数 f (x) 图象在[a,b]上是一条连续不断的曲线,
且 f (a) f (b) 0 ,则 f (x) 在[a,b]上
()
A .一定没有零点 B.至少有一个零点 C. 只有一个零点 D.零点情况不确定
③函数 f (x) 2x 3x 的零点所在的大致区间是 ( )
方程的根与函数的零点
方程的根与函数的零点1.函数零点的概念对于函数y =f (x ),我们把使f (x )=0的实数x 叫做函数y =f (x )的零点.函数y =f (x )的零点就是方程f (x )=0的实数根,也就是函数y =f (x )的图象与x 轴的交点的横坐标.比如,由于方程f (x )=lg x =0的解是x =1,所以函数f (x )=lg x 的零点是1.注意 函数的零点不是点 我们把使f (x )=0成立的实数x 叫做函数y =f (x )的零点,因此函数的零点不是点,而是函数y =f (x )与x 轴的交点的横坐标,即零点是一个实数.当函数的自变量取这一实数时,其函数值为零.例如,函数f (x )=x +1,当f (x )=x +1=0时仅有一个实根x =-1,因此函数f (x )=x +1有一个零点-1,由此可见函数f (x )=x +1的零点是一个实数-1,而不是一个点.【例1】函数f (x )=x 2-1的零点是( ) A .(±1,0) B .(1,0) C .0 D .±1解析:解方程f (x )=x 2-1=0,得x =±1,因此函数f (x )=x 2-1的零点是±1.答案:D2【例2】若abc A .0 B .1 C .2 D .1或2解析:∵b 2=ac ,∴方程ax 2+bx +c =0的判别式Δ=b 2-4ac =b 2-4b 2=-3b 2.又∵abc ≠0,∴b ≠0.因此Δ<0.故函数f (x )=ax 2+bx +c 的零点个数为0.答案:A3.函数的零点与对应方程的关系(1)方程f (x )=0有实根⇔函数f (x )的图象与x 轴有交点⇔函数f (x )有零点.【例3-1】若函数f (x )=x 2+ax +b 的零点是2和-4,求a ,b 的值.解析:因为函数f (x )=x 2+ax +b 的零点就是方程x 2+ax +b =0的根,故方程x 2+ax +b =0的根是2和-4,可由根与系数的关系求a ,b 的值.解:由题意,得方程x 2+ax +b =0的根是2和-4,由根与系数的关系,得2(4),2(4),a b +-=-⎧⎨⨯-=⎩即(2)一元二次方程ax 2+bx +c =0(a ≠0)与二次函数f (x )=ax 2+bx +c (a ≠0)的图象联系密切,下面以a >0为例列表说明.因此,对于二次函数的零点问题,我们可以像研究一元二次方程那样,探讨方程的判别式即可.从形的角度沟通函数零点与方程的根的关系.【例3-2】函数y =f (x )的图象如图所示,则方程f (x )=0的实数根有( )A .0个B .1个C .2个D .3个解析:观察函数y =f (x )的图象,知函数的图象与x 轴有3个交点,则方程f (x )=0的实数根有3个.答案:D 点技巧 借助图象判断方程实数根的个数 由于“方程f (x )=0的实数根⇔函数y =f (x )的图象与x 轴的交点的横坐标”,因此,对于不能直接求出根的方程来说,我们要判断它在某个区间内是否有实数根,只需判断它的图象在该区间内与x 轴是否有交点即可.4.判断(或求)函数的零点(1)方程法:根据函数零点的定义可知:函数f (x )的零点,就是方程f (x )=0的根,因此,判断一个函数是否有零点,有几个零点,就是判断方程f (x )=0是否有实数根,有几个实数根.例如,判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=x +3x;(2)f (x )=1-log 3x .解:(1)令x +3x =0,解得x =-3.故函数f (x )=x +3x的零点是-3; (2)令1-log 3x =0,即log 3x =1,解得x =3.故函数f (x )=1-log 3x 的零点是3.(2)图象法:对于利用方程法很难求解的函数的零点问题,可利用函数的图象求解.我们知道,函数F (x )=f (x )-g (x )的零点就是方程F (x )=0即方程f (x )=g (x )的实数根,也就是函数y =f (x )的图象与y =g (x )的图象的交点的横坐标.这样,我们就将函数F (x )的零点问题转化为函数f (x )与g (x )图象的交点问题,作出两个函数的图象,就可以判断其零点个数.【例4-1】判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=x 2+7x +6;(2)f (x )=1-log 2(x +3);(3)f (x )=2x -1-3;(4)f (x )=24122x x x +--.解析:分别解方程f (x )=0得函数的零点.解:(1)解方程f (x )=x 2+7x +6=0,得x =-1或-6.故函数的零点是-1,-6. (2)解方程f (x )=1-log 2(x +3)=0,得x =-1.故函数的零点是-1.(3)解方程f (x )=2x -1-3=0,得x =log 26.故函数的零点是log 26. (4)解方程f (x )=24122x x x +--=0,得x =-6.故函数的零点为-6.辨误区 忽略验根出现错误 本题(4)中解方程后容易错写成函数的零点是-6,2,其原因是没有验根,避免出现此类错误的方法是解分式方程、对数方程等要验根,保证方程有意义.【例4-2】函数f (x )=ln x -11x -的零点的个数是( ) A .0 B .1 C .2 D .3解析:在同一坐标系中画出函数y =ln x 与11y x =-的图象如图所示,因为函数y =ln x 与11y x =-的图象有两个交点,所以函数f (x )=ln x -11x -的零点个数为2.答案:C ,5.判断零点所在的区间零点存在性定理 如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点(至少一个),即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.确定函数的零点所在的区间时,通常利用零点存在性定理,转化为判断区间两端点对应的函数值的符号是否相反.但需注意以下几点:(1) 当函数y =f (x )同时满足:①函数的图象在区间[a ,b ]上是连续曲线;②f (a )·f (b )<0.则可判定函数y =f (x )在区间(a ,b )内至少有一个零点,但是不能明确说明有几个.(2)当函数y =f (x )的图象在区间[a ,b ]上是连续的曲线,但是不满足f (a )·f (b )<0时,函数y =f (x )在区间(a ,b )内可能存在零点,也可能不存在零点.例如函数f (x )=x 2在区间[-1,1]上有f (-1)·f (1)>0,但是它在区间(-1,1)上存在零点0.(3)函数在区间[a ,b ]上的图象是连续曲线,且在区间(a ,b )上单调,若满足f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )上有且只有一个零点.,【例5-1】求函数f (x )=x 2-5x +6在区间[1,4]上的零点个数. 解:【例5-2】函数f (x )=lg x -9x的零点所在的大致区间是( )(提示先做图) A .(6,7) B .(7,8) C .(8,9) D .(9,10)解析:∵f (6)=lg 6-96=lg 6-32<0,f (7)=lg 7-97<0, f (8)=lg 8-98<0,f (9)=lg 9-1<0,f (10)=lg 10-910>0,∴f (9)·f (10)<0.∴函数f (x )=lg x -9x的零点所在的大致区间为(9,10).答案:D6.一元二次方程的根的分布(1)一元二次方程的根的零分布(正负分布)所谓一元二次方程的根的零分布,是指方程的根相对于零的关系.设一元二次方程ax 2+bx +c =0(a ≠0)的两个实根为x 1,x 2且x 1≤x 2 ①x 1>0,x 2>0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=->⎨⎪⎪⋅=>⎪⎩②x 1<0,x 2<0⇔2121240,0,0.b ac b x x a c x x a ⎧⎪∆=-≥⎪⎪+=-<⎨⎪⎪=>⎪⎩③x 1<0<x 2⇔c a <0. ④x 1=0,x 2>0⇔c =0,且b a <0;x 1<0,x 2=0⇔c =0,且ba>0. (2)一元二次方程的根的k 分布研究一元二次方程的根的k 分布,一般情况下要从以下三个方面考虑: ①一元二次方程根的判别式.②对应二次函数区间端点的函数值的正负. ③对应二次函数图象——抛物线的对称轴2bx a=-与区间端点的位置关系. 设一元二次方程ax 2+bx +c =0(a >0)的两实根为x 1,x 2,且x 1≤x 2,则一元二次方程的根的k 分布(即x 1,x 2相对于k 的位置)【例6-1】已知函数f (x )=mx 2+(m -3)x +1的零点至少有一个在原点右侧,求实数m 的取值范围.解:(1)当m =0时,f (x )=-3x +1,直线与x 轴的交点为1,03⎛⎫ ⎪⎝⎭,即函数的零点为13,在原点右侧,符合题意. (2)当m ≠0时,∵f (0)=1,∴抛物线过点(0,1).若m <0,函数f (x )图象的开口向下,如图①所示.二次函数的两个零点必然是一个在原点右侧,一个在原点左侧.若m >0,函数f (x )图象的开口向上,如图②所示,要使函数的零点在原点右侧,当且仅当2(3)40,30,20m m mm m ⎧∆=--≥⎪-⎪>⎨⎪>⎪⎩⇒21090,03,0m m m m ⎧-+≥⎪<<⎨⎪>⎩⇒19,03m m m ≤≥⎧⎨<<⎩或⇒0<m ≤1.综上所述,所求m 的取值范围是(-∞,1]. 点技巧 研究函数图象性质有技巧 对于函数图象性质的研究,一是要注意特殊点,如本题中有f (0)=1,即图象过点(0,1);二是要根据题意,画出示意图,再根据图象的特征解决问题.【例6-2】关于x 的方程ax 2-2(a +1)x +a -1=0,求a 为何值时,(1)方程有一根;(2)两根都大于1;(2)方程一根大于1,一根小于1;(3)方程一根在区间(-1,0)内,另一根在区间(1,2)内.解:(1)当a =0时,方程变为-2x -1=0,即12x =-符合题意; 当a ≠0时,方程为二次方程,因为方程有一根,所以Δ=12a +4=0,解得13a =-. 综上可知,当a =0或13a =-时,关于x 的方程ax 2-2(a +1)x +a -1=0有一根. (2)方程两根都大于1,图象大致如下图,所以必须满足:0,0,11,(1)0,a a a f >⎧⎪∆>⎪⎪+⎨>⎪⎪>⎪⎩或0,0,11,(1)0,a a a f <⎧⎪∆>⎪⎪+⎨>⎪⎪<⎪⎩ 解得a ∈∅.因此不存在实数a ,使方程两根都大于1. (3)因为方程有一根大于1,一根小于1,图象大致如下图,所以必须满足0,(1)0,a f >⎧⎨<⎩或0,(1)0,a f <⎧⎨>⎩解得a >0.(4)因为方程有一根在区间(-1,0)内,另一根在区间(1,2)内,图象大致如下图,所以必须满足(1)0,(0)0,(1)0,(2)0,f f f f ->⎧⎪<⎪⎨<⎪⎪>⎩或(1)0,(0)0,(1)0,(2)0,f f f f -<⎧⎪>⎪⎨>⎪⎪<⎩解得a ∈∅.因此不存在实数a ,使方程有一根在区间(-1,0)内,另一根在区间(1,2)内.知识应用考点一 函数零点的求法1.函数2()41f x x x =--+的零点为( )A、1-+、1- C、1-、不存在 2.函数32()32f x x x x =-+的零点个数为( )A 、0B 、1C 、2D 、33. 函数()ln 26f x x x =+-的零点一定位于区间( ).A. (1, 2)B. (2 , 3)C. (3, 4)D. (4, 5)4. 求证方程231x xx -=+在(0,1)内必有一个实数根.5.函数f (x )=log 5(x -1)的零点是( )A .0B .1C .2D .36 已知函数f (x )=x 2-1,则函数f (x -1)的零点是________.7. 若函数f (x )=ax +b 只有一个零点2,那么函数g (x )=bx 2-ax 的零点是___________8.函数f (x )=ax 2+2ax +c (a ≠0)的一个零点为1,则它的另一个零点为________.A.0个B.1个C.2个D.3个考点二 零点存在性定理1.xA.(-1,0) B .(0,1)2.函数f (x )=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(e,3)3. 设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)4. 若函数f (x )=3ax -2a +1在区间[-1,1]上存在一个零点,则a 的取值范围是________.考点三 一元二次方程根的分布1.已知关于x 的方程ax 2-2(a +1)x +a -1=0,探究a 为何值时,(1)方程有一正一负两根; (2)方程的两根都大于1;(3)方程的一根大于1,一根小于1.2. 已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围. (2)若方程两根均在区间(0,1)内,求m 的范围.3. 已知关于x 的方程x 2+2mx +2m +3=0的两个不等实根都在区间(0,2)内,求实数m 的取值范围.4. 已知函数f (x )=|x 2-2x -3|-a 分别满足下列条件,求实数a 的取值范围.(1) 函数有两个零点; (2)函数有三个零点; (3)函数有四个零点.。
3.4(10)方程的根与函数的零点
第三章 函数
新课导入: 你能解下列方程吗? (1) 3x 2 0 ; 2 (2) x 2 x 3 0 ; 3 (3) x x 4 0
f(x)与x轴的交点是
.
定义辨析: 判断下列命题的真假,并说明理由!
(1)所有函数都有零点; (2)零点就是与图像与x轴的交点;
一、概念应用
例 1.(1)函数 y 2 x 1的零点是 . . (2)若偶函数 y f x 有零点, 则所有零点之和为
(3)下列函数是否存在零点,若存在,求出零点;若 不存在,说明理由。 ① y x2 x 1 ② y x2 x 1
一 般 地 , 对 于 函 数 y f x , x D , 如 果 存 在 实 数
c, c D ,当 x c 时, f c 0 ,那么就把 x c 叫做函
数 y f x , x D 的零点.
函数y=f(x)的零点就是方程f(x)=0的实数根, 亦即函数y=f(x)的图象与x轴交点的横坐标. 即:若c是函数f(x)的零点 c是方程 的解
x
2 3
x1 1, x2 3
f ( x) 3 x 2
f ( x) x 2 2 x 3
2 3
1
3
函数图像与x 轴的交点
2 ( ,0) 3
2 f( )0 3
( 1,0) , ( 3,0)
f ( 1) 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程 函数 判别式 ax2+bx+c=0 y=ax2+bx+c 的根 的零点 >0 两不相等实根 两个零点 =0 两相等实根 一个零点 <0
探究3 二次函数的零点如何判定? 对于二次函数y=ax2+bx+c与二次方程 ax2+bx+c=0 ,其判别式=b2-4ac.
方程 函数 判别式 ax2+bx+c=0 y=ax2+bx+c 的根 的零点 >0 两不相等实根 两个零点 =0 两相等实根 一个零点 <0 没有实根
知识应用
求函数y=-x2-2x+3的零点.
知识应用 判断下列函数有几个零点
a
a
b
a
a
b b
b
a
b
探究4
观察二次函数 f(x)=x ―2x―3 的图象, 2 如右图,我们发现函数 f(x)=x ―2x―3 在 y 区间[―2, 1]上有零点. 计算 f(―2)f(1)的乘积, 你能发现这个乘积有什么 特点?在区间[2, 4]上是否 x 也具有这种特点呢? O
3.1.1方程的根与 函数的零点
学习目标
1.了解函数的零点与方程的根的联系; 2.认识函数的图象及基本性质,在 确定函数零点中的作用 . 3.深化概念和公式的理解,掌握数形
结合思想。
重 难 点 零点的概念及存在性的判定 点 零点的确定及存在性的判定
知识探究:方程的根与函数的图象
方程
函数
x2-2x-3=0 y= x2-2x-3
探究1 如何求函数的零点? 探究2 零点与函数图象的关系怎样? 方程f (x)=0有实数根
函数y=f (x)的图象与x轴有交点
函数y=f (x)有零点
探究3 二次函数的零点如何判定?
探究3 二次函数的零点如何判定? 对于二次函数y=ax2+bx+c与二次方程 ax2+bx+c=0 ,其判别式=b2-4ac.
课堂小结
1. 知识方面:
零点的概念、求法、判定;
2. 数学思想方面:
函数与方程的相互转化,即转化思想
借助图象探寻规律,即数形结合思想.
拓展研究
若函数f(x)=x2-ax-b的两个零点是 2和3,求loga25+b2.
x1=x2=1
无实数根
(1,0)
无交点
二次函数f(x)的图象与x轴的交点的横坐标 与相应一元二次方程f(x)=0的根有什么 关系?
函数零点的概念:对于函数y=f(x),我Fra bibliotek把使f(x)=0
的实数x叫做函数y=f(x)的零点.
零点是一个数值,还是一个点?
探究1 如何求函数的零点? 探究2 零点与函数图象的关系怎样?
探究3 二次函数的零点如何判定? 对于二次函数y=ax2+bx+c与二次方程 ax2+bx+c=0 ,其判别式=b2-4ac.
方程 函数 判别式 ax2+bx+c=0 y=ax2+bx+c 的根 的零点 >0 两不相等实根 两个零点 =0 两相等实根 <0
探究3 二次函数的零点如何判定? 对于二次函数y=ax2+bx+c与二次方程 ax2+bx+c=0 ,其判别式=b2-4ac.
探究3 二次函数的零点如何判定? 对于二次函数y=ax2+bx+c与二次方程 ax2+bx+c=0 ,其判别式=b2-4ac.
方程 函数 判别式 ax2+bx+c=0 y=ax2+bx+c 的根 的零点 >0 =0 <0
探究3 二次函数的零点如何判定? 对于二次函数y=ax2+bx+c与二次方程 ax2+bx+c=0 ,其判别式=b2-4ac.
方程 函数 判别式 ax2+bx+c=0 y=ax2+bx+c 的根 的零点 >0 两不相等实根 =0 <0
探究3 二次函数的零点如何判定? 对于二次函数y=ax2+bx+c与二次方程 ax2+bx+c=0 ,其判别式=b2-4ac.
方程 函数 判别式 ax2+bx+c=0 y=ax2+bx+c 的根 的零点 >0 两不相等实根 两个零点 =0 <0
探究3 二次函数的零点如何判定? 对于二次函数y=ax2+bx+c与二次方程 ax2+bx+c=0 ,其判别式=b2-4ac.
方程 函数 判别式 ax2+bx+c=0 y=ax2+bx+c 的根 的零点 >0 两不相等实根 两个零点 =0 两相等实根 一个零点 <0 没有实根 0个零点
2
零点存在性定理
如果函数y=f(x)在区间[a, b]上的 图象是连续不断的一条曲线,并且有 f(a)· f(b)<0,那么,函数y=f(x)在区 间(a, b)内有零点,即存在c∈(a, b), 使得f(c)=0, 这个c也就是方程f(x)=0 的根.
例 :求函数 f ( x) 2 x 2x 3 的零点个数.
y
2
x -2x+1=0
y= x2-2x+1
y
2
x2-2x+3=0 y= x2-2x+3
y
函 数 的 图 象
.
-1
.
-1 -2
.
1
0
1
2
.
.
x
-1
2 1
. .
.
3 2
5
3
-3 -4
0
.
1
.
.
2
.
4
.
1
.
2
.
x
-1
1
0
3
x
方程的实数根 函数的图象 与x轴交点
x1=-1,x2=3 (-1,0)、(3,0)