统计过程控制(SPC)统计培训

合集下载

SPC培训 (统计过程控制)

SPC培训 (统计过程控制)
➢ 根据计算结果作成分析用控制图,并确认 是在控制状态下且过程能力尚可后,方可 将其控制限应用在过程控制用控制图上;
控制图的应用步骤
1. 选取要控制的质量特性值; 2. 选择合适的控制图种类;(均值-极差) 3. 确定样本组数k,样本量n和抽样间隔,一般样本组数不少于20-25个; 4. 收集生产条件比较稳定和有代表性的一批数据(至少50个以上); 5. 计算各组样本统计量,如样本均值、极差、标准差; 6. 计算各统计量控制界限(LCL,CL,UCL); 7. 画控制图;并将计算出的统计量在控制图上打点; 8. 观察分析控制图; 9. 决定下一步行动。
UCL
α
CL
β
LCL
如何减少两种错误造成的损失
间距↑→ α ↓,β ↑ → 错误不可避免
间距↓→ α ↑,β ↓ 解决办法:使两种错误造成的总损失最小 →确定最优间距→经验证明3σ 方式较好。
3σ 方式
UCL = u + 3σ
式中u、σ为统计量的总体参数
CL = u
LCL = u - 3σ
注意:规格界限不能用作控制界限。规格界限用 以区分合格与不合格,控制界限用以区分偶波与 异波,两者完全是两码事。
• 每一张控制图上的控制界限都是由 该图上的数据计算出来;
制作控制用控制图之目的
• 控制图的控制界限由分析阶段确定; • 控制图上的控制界限与该图中的数据
无必然联系; • 使用时只需把采集到的样本数据或统
计量在图上打点就行。
制作分析控制图注意点
➢ 上下控制限和中心线都是通过抽样收集过 去一段生产稳态下的数据计算出来的;
● Cpk>1.67的企业,平均销售收入增长率为11%以上, 而其它企业的数据为4.4%。

SPC统计过程控制培训

SPC统计过程控制培训

6、建立控制用控制图
当分析用控制图显示生产过程处于统计 受控状态,且过程能力满足技术标准的要 求时,可以把分析用控制图的控制界限延 长作为控制用控制图的控制界限。至此, 控制用控制图的制作过程全部完成。
7、使用控制图的注ቤተ መጻሕፍቲ ባይዱ事项
7.1 在5M1E因素未加控制,过程处于不稳 定状态下就使用控制图
7.2 把公差范围或内控标准当作控制界限 7.3 过程能力不足,Cp1的情况下就使用控
采集数据的方法: 1)样本组内的数据应在短时间内
抽取,以避免特殊原因进入; 2)样本之间可采用等时抽样方法。
4.6 计算各样本统计量 1)X-R图中要计算 X 及 R 值;
2)P或 nP图要计算 P值;
4.7 计算统计量的控制界限 计量值控制图控制界限计算公式
计数值控制图控制界限计算公式
控制界限常用系数表
7、C控制图:
用于控制一定单位中所出现的不合格 数目。常见的有控制布匹、钢板上的疵点 数、铸件上的沙眼数、设备的故障次数、 印刷品的错误数等等。类似于np图,C控制 图的样本大小必须保持不变。
8、U控制图:
用于平均每单位的不合格数。当样本 大小变化时应换算成平均每单位的不合格 数后再使用U控制图。但控制界限出现凹 凸状。
4.8 作图打点 • X图在上,R图在下; • X图上纵坐标的单位刻度的量值是R图上纵
坐标单位刻度量值的一半; • 控制图上,上下控制界限外要留有余地; • 控制图中,中心线是实线,上下控制界限
为虚线。
5、控制图的观察与分析 5.1 受控状态判断规则
• 连续25点都在界内,且排列无缺陷; • 连续35点中至多一点出界 ,且排列无
np图(n相同) --- 不合格品数控制图; p图(n可不同)--- 不合格品率控制图; 计点值: C图(n相同) --- 不合格数控制图; U图(n可不同)--- 单位不合格品数控制图;

统计过程控制SPC培训资料

统计过程控制SPC培训资料
常用的控制图
分布
控制图代号
控制图名称
备注
正态分布(计量值)
均值—极差控制图
最常用,判断工序是否正常的效果好,计算量大,适用于产品批量大、且稳定、正常的工序;S的计算比R复杂,但其精度高适用与检验时间远比加工时间段的场合计算简便,但效果差使用与产品批量较大、且稳定、正常的工序;简便省事,并能够及时判断工序是否处于稳定状态,但不宜发现工序分布中心的变化。
控制图的益处
合理使用控制图能:供正在进行过程控制的操作者使用;有助于过程在质量上和成本上能持续地、可预测地保持下去;使过程达到:——更高的质量; ——更低的单件成本; —— 更高的有效能力。
控制图的益处
为讨论过程的性能提高共同语言;区分变差的特殊原因和普通原因,作为采取局部对系统采取措施的指南。控制图为两班、三班操作过程的人员之间、和支持活动(维修、材料控制、过程工程、质量控制)的人员之间就有关过程性能的信息交流提供了通用的语言。
Β=
规范界限与控制界限的区别
规范界限:区分合格品与不合格品控制界限:区分偶波与异波
3σ方式确定控制界限
●UCL=μ+3 σ ●CL=μ●LCL=μ-3 σ●虚发警报α=0.27% 漏发警报β=
分析用控制图
分析用控制图 应用控制图时,首先将非稳态的过程调整到稳态,用分析控制图判断是否达到稳态。确定过程参数 特点: 1、分析过程是否为统计控制状态 2、过程能力指数是否满足要求?
2.连续6点递增或递减
判异准则
LCL
UCL
CL
A
B
C
C
B
A
3.连续14中相邻点上下交替
判异准则
判异准则
4.连续3点中有2点落在中心线同一侧的B区以外

spc培训教材完整版

spc培训教材完整版
利用ISO 9001质量管理体系的框架和流程,推动SPC 的实施和推广。
SPC与其他质量管理体系融合应用
与六西格玛管理的融合
将SPC作为六西格玛管理的一个重要工具,用于识别和改进生产过程中的问题和波 动。
结合六西格玛管理的DMAIC流程,运用SPC对生产过程进行持续改进和优化。
SPC与其他质量管理体系融合应用
免类似异常的再次发生。
06
SPC在企业中实施与推广
SPC实施步骤和关键成功因素
明确目标
确定SPC实施的目标和范围,包括要控制的 产品特性、生产过程和关键质量指标等。
数据收集
建立数据收集系统,收集生产过程中的原始 数据,并进行整理和清洗。
SPC实施步骤和关键成功因素
过程分析
运用统计技术对生产过程进行 分析,识别过程中的异常和波 动,并确定过程能力。
与精益生产的融合
将SPC与精益生产相结合,实现生产过程的高效、稳定和可控。
利用精益生产的理念和工具,如价值流分析、持续改进等,推动SPC的 实施和推广。
企业内部SPC培训和文化建设
统计技术基ห้องสมุดไป่ตู้知识培训
包括概率论、数理统计等基础知识,帮助员工掌握基本的统计概念和方法。
SPC理论和方法培训
深入讲解SPC的理论和方法,包括控制图的制定、分析和应用等,使员工能够熟练掌握 SPC技术。
SPC在企业中应用价值
提高产品质量
通过实施SPC,企业可以及时发现并解决生产过程中的问题,减少产品缺陷和不良品率, 提高产品质量和客户满意度。
降低生产成本
SPC有助于企业优化生产流程、提高设备利用率和劳动生产率,从而降低生产成本、提高 经济效益。
提升企业竞争力

SPC培训资料汇编

SPC培训资料汇编

SPC培训资料汇编一、SPC 概述SPC 即统计过程控制(Statistical Process Control),是一种借助数理统计方法的过程控制工具。

它对生产过程进行分析评价,根据反馈信息及时发现系统性因素出现的征兆,并采取措施消除其影响,使过程维持在仅受随机性因素影响的受控状态,以达到控制质量的目的。

SPC 强调预防为主,通过对过程数据的收集、分析和监控,提前预测可能出现的质量问题,从而避免不合格产品的产生,降低生产成本,提高生产效率和产品质量。

二、SPC 的基本原理1、过程的波动性任何生产过程中,产品的质量特性值总是存在着一定的波动。

这种波动可分为正常波动和异常波动。

正常波动是由随机原因引起的,对产品质量影响较小,在生产过程中是允许存在的。

异常波动则是由系统原因引起的,对产品质量影响较大,在生产过程中是不允许存在的。

2、控制图原理控制图是 SPC 中最重要的工具之一。

它是对过程质量特性值进行测定、记录、评估,从而监察过程是否处于控制状态的一种用统计方法设计的图。

控制图上有中心线(CL)、上控制限(UCL)和下控制限(LCL)。

通过观察点子在控制图中的分布情况,可以判断过程是否稳定。

当点子随机分布在控制限内,且没有明显的规律性时,说明过程处于稳定状态;当点子超出控制限,或者呈现出明显的规律性(如连续上升或下降、周期性变化等)时,说明过程出现了异常,需要采取措施进行调整。

三、SPC 常用的控制图1、均值极差控制图(XR 图)适用于计量值数据,是最常用的一种控制图。

均值控制图用于观察分布的均值变化,极差控制图用于观察分布的离散程度。

2、均值标准差控制图(XS 图)与 XR 图类似,但用标准差代替极差来反映数据的离散程度。

当样本量较大(n>10)时,使用 XS 图更为精确。

3、中位数极差控制图(XRm 图)适用于现场需要把测定数据直接记入控制图进行控制的场合,简便直观。

4、单值移动极差控制图(XMR 图)适用于单件小批生产过程,以及测量费用较高的场合。

SPC培训资料

SPC培训资料
计数值控制图(1) P控制图(不良率控制图)用来监视或控制生产批中不良件数的小数比或百分比,样本大小n可以不同。(2)np控制图(不良数控制图)用来监视一个生产批中的实际不良数量(而不是与样本的比率)。分析或控制过程不良数,样本大小n要相同。(3)C控制图(缺点数控制图)能在每一批量的生产中侦查出每一零件或受检验单位不良点的数目,样本大小n要相同。(4)U控制图(单位缺点数控制图)记录一个抽样批有几个缺点数,抽样时每次可以不相同,但以单位缺点数代表质量水准。
a.样本平均数 表示数据集中位置,常用符号 表示,其计算公司为:式中: ——样本的算术平均值 N ——样本数例如,有统计数据x1,x2,x3.x4,x5为2,3,4,5,6五个数据,则其平均数据为: 2+3+4+5+6 X = ————— =4 5
2、控制图的发展
控制图(SPC)的起源和发展
定义---控制图是对过程品质特性值进行测量、记录、评估,从而监视过程是否处于控制状态的一种用统计方法所设计出來的图表。 图上有中心线、上控制限和下控制限,并有按时间顺序抽取的样本统计,所得数值的描绘点。
三、控制图常用术语
设计规格与控制界限设计规格:规格上限(USL),目标值(SL),规格下限(LSL)之间的关系。双边规格,不对称规格,单边规格(上,下)定义。控制界限:控制上限(UCL),控制中心(CL),控制下限(LCL)之间的关系。控制界限是基于制程的数据而不是制造的规格。如果过程受控的话,计算的控制界限要比设计规格严。如果过程受控,但产品仍然不合格,则说明现有的生产工艺生产不出符合条件的产品。
波动源
基本原理:预防为主是SPC的重要原则工序诊断是排除异动的主要手段必须有效利用系统分析方法归纳起来20个字: 查找异因(特殊原因),采取措施, 加以消除,纳入标准,不再发生。

2024版SPC培训教材全课件

2024版SPC培训教材全课件

假设检验的基本概念
明确假设检验的定义、原假设与备择假设的设立原则及两类错误 的含义。
参数假设检验
掌握正态总体均值、方差的假设检验方法及步骤,理解t检验和F 检验的原理及应用场景。
非参数假设检验
了解非参数假设检验的适用条件及常用方法,如秩和检验、符号 检验等。
16
方差分析、回归分析应用举例
方差分析
掌握方差分析的基本原理、计算步骤及结果解释,理解其在多因素实验设计中的应用。
化。
大数据在SPC中的应用
大数据技术的不断发展将为SPC提供更丰富的数据来源和分析手段,有助于提高SPC的 应用效果。
2024/1/30
SPC在服务业的拓展
随着服务业的不断发展,SPC的应用领域将逐渐拓展到服务业领域,为服务业的质量管 理提供新的思路和方法。
36
下一讲预告及预备知识
2024/1/30
01
02
03
04
明确数据收集目标
根据业务需求,明确所需数据 的类型、范围和质量要求。
2024/1/30
制定数据收集计划
设计合理的数据收集流程,包 括数据源选择、采集频率、存
储方式等。
执行数据收集
运用合适的数据收集工具和技 术,按照计划进行数据采集。
数据质量监控
建立数据质量评估机制,确保 数据的准确性、完整性和一致
下一讲内容
下一讲将介绍SPC在企业中的实际应 用案例,包括不同行业和不同场景下 的SPC应用实践。
预备知识
为了更好地理解下一讲内容,建议学 员提前了解相关行业的生产流程和质 量管理要求,以及SPC在实际应用中 的挑战和解决方案。
37
THANKS
感谢观看
2024/1/30

统计过程控制(SPC)-培训教材

统计过程控制(SPC)-培训教材

02
拉图(决定控制重点)
03
计检定
04
制图
05
样计划
06
异数分析/回归分析
过程控制系统
设备 材料 环境 成品
人员
绩效报告
过程中对策
过程中对策
方法
成品改善
过程控制系统 1. 过程: 过程是指人员、设备、材料、方法及环境的输入,经由一 定的整理程序而得到输出的结果,一般称之成品。成品经 观察、测量或测试可衡量其绩效。SPC所控制的过程必须符 合连续性原则。 2. 绩效报告: 从衡量成品得到有关过程绩效的资料,由此提供过程的控 制对策或改善成品。 3. 过程中对策: 是防患于未然的一种措施,用以预防制造出不合规格的成品。 4. 成品改善: 对已经制造出来的不良品加以选别,进行全数检查并返工/ 返修或报废。
控制图(平均值与全距) 1.公式: (1) 控制图 CL = UCL = + A2 LCL = - A2 (2) R 控制图 CL = UCL = D4 LCL = D3 2.实例: 某工厂制造一批紫铜管,应用 -R控制图来控制其内径,尺寸 单位为m/m,利用下页数据表之资料,求得其控制界限并绘图。 (n = 5)
R
X1
X2
X3
X4
X5
X1
X2
X3
X4
X5
1
50
50
49
52
51
50.4
3
14
53
48
47
52
51
50.2
6
2
47
53
53
45
50
49.6
8
15
53
48
49
51

SPC统计过程控制培训资料

SPC统计过程控制培训资料
20%
过程处于统计
上的稳定状态
40%
各测量值服从
正态分布
60%
技术规范准确的
代表顾客要求
说明:
1、抽样存在偏差。
2、不存在完全受统计控制的过程。
3、制造过程不是一个完美的正态分布。
80%
设计目标值位于
规范的中心
100%
测量变差相对
较小
CPK—过程能力指数
CPK=CP•│1-Ca│
=
正态分布
CL
◎ 控制图的制作步骤
◎ 异常的判定原则
计量型控制图的优点
1、大部分测量数据都可以用
计量型数据表示
2、量化的值比简单的是或否
包含的信息更丰富
3、通过少量的数据检查可
以获得较多的过程信息
4、缩短采取措施的时间,提
高响应速度
前提条件:
1.选择特性作为计算对象。
2.测量方法准确,精密,误差小到忽略不计。
5、分析一个过程量化的值,
围,并确定其控制范围的异常和正常规律,达成一种事先预测并实施改进措
施的方法。
SPC研究的对象-特性
研究过程中的
可区分的特征
某一个特性
称为特性
特性
特性值的表达方
产品的特性有
式:定量、定性
哪些?
特性的分类
产品特性
关键特性
关键特性
与法律、安全有关
与功能、性能有关
普通特性
关键特性以外
产品特性
最终产品所具有的特性
83.74
86.81
85.12
84.39
84.15
84.84
19
85.43
85.49
86.50

SPC培训教程

SPC培训教程

SPC培训教程简介SPC〔统计过程控制〕是一种用于监控和控制过程质量的方法,通过对过程进行统计分析和控制,可以减少过程的变异性,提高产品质量的稳定性。

本培训教程将为你介绍SPC的根本概念、常用工具和应用方法,帮助你掌握SPC的核心原理和实践技巧。

第一章:SPC概述1.1 SPC的定义和作用SPC是一种用于监控和控制过程质量的方法,通过统计分析和控制过程变异性,提高产品质量和生产效率。

SPC可以减少过程中的变异性,并实现过程质量的稳定性。

1.2 SPC的优势 - 通过实时监控过程,即时发现异常情况,减少不良品数量和本钱 - 基于统计分析,可以定量评估和控制产品质量的稳定性- 提高生产效率,减少资源浪费1.3 SPC的应用范围 - 制造业:电子、医疗、汽车等 - 效劳业:金融、电信、物流等 - 过程控制领域第二章:SPC常用工具2.1 控制图控制图是SPC中最常用的工具,用于显示过程数据的变化趋势和规律。

常用的控制图包括:Xbar-R图、Xbar-S图、P图、C图等。

控制图可以帮助我们判断过程是否稳定,是否存在特殊因素。

2.2 测量系统分析〔MSA〕 MSA用于评估测量系统的准确性和可重复性,确保测量数据可靠可信。

常见的MSA方法有Gage R&R、线性回归分析、方差分析等。

2.3 过程能力分析过程能力分析用于评估过程是否满足产品质量要求的能力。

常用的指标有Cp、Cpk、Pp、Ppk等。

2.4 根底统计分析根底统计分析是SPC中的根底工具,包括均值、方差、标准差、偏度、峰度等统计指标的计算和分析。

第三章:SPC实施方法3.1 确定SPC应用的目标与范围在实施SPC之前,需要明确SPC的应用目标和范围,确定需要监控和控制的关键过程和指标。

3.2 数据收集与整理SPC需要大量的实时数据进行统计分析和控制,因此需要建立有效的数据收集和整理机制,确保数据的准确性和完整性。

3.3 控制限确实定控制限是用于判断过程是否稳定的界限,可以通过历史数据、样本数据或经验确定。

SPC制程统计分析培训资料

SPC制程统计分析培训资料

SPC制程统计分析培训资料SPC(Statistical Process Control,统计过程控制)是一种利用统计方法进行质量控制和改进的管理工具。

通过对制程数据进行收集、分析和解释,SPC帮助企业识别和消除生产过程中的变异性,确保产品符合质量要求。

下面是一份关于SPC制程统计分析的培训资料,详细介绍SPC的原理、工具和实施过程。

一、SPC的原理SPC的原理基于统计理论,通过对制程数据的分析和解释,可以帮助企业判断制程的稳定性和能力,并对不稳定的制程进行改进和优化,从而提高产品的质量和稳定性。

SPC的核心原理包括以下几个方面:1.变异性的存在:制程中存在着多种类型的变异性,包括常因、特因和随机因素等。

SPC的目标是通过控制变异性来提高质量。

2.统计控制:SPC利用统计方法分析制程数据,判断制程是否处于统计控制状态。

从而判断出制程是否稳定,并提供依据进行改进。

3.过程能力分析:SPC不仅关注制程的稳定性,还关注制程是否满足质量要求。

通过统计分析,可以评估制程的能力,发现潜在的问题并采取措施进行改进。

二、SPC的工具SPC依靠一系列的统计工具来分析制程数据。

常用的SPC工具包括:1.直方图:通过对制程数据进行分组并绘制直方图,可以了解数据的分布情况,判断是否符合正态分布,以及是否存在特殊因素造成的异常。

2. 控制图:通过对制程数据进行统计和对比,绘制控制图可以判断制程是否处于统计控制状态。

常用的控制图有X-Bar图、R图、S图和P图等。

3.散点图:散点图可以用来分析两个变量之间的关系,例如制程参数与产品质量之间的关系。

通过分析散点图,可以找到改善的方向和策略。

4.帕累托图:帕累托图可以帮助识别制程中的关键问题和优先改进的方向。

通过对问题进行分类和排序,可以优先处理影响最大的问题。

5.箱线图:箱线图可以显示数据的分布情况,包括中位数、上下四分位、异常值等。

通过对比不同制程的箱线图,可以找到优化和改进的空间。

SPC(统计过程控制)培训

SPC(统计过程控制)培训
量和服务的价值,达到顾客满意。
7
第一次把事情做好,持续改进,让顾客更满意!
4、SPC 实施的范围: 新产品和常规产品(包括老产品和旧产品) 中,顾客要求和公司确定的产品和过程特 殊特性。
8
第一次把事情做好,持续改进,让顾客更满意!
SPC: ㈠代表先进的品质管理 世界一流的大公司都在大力推行实施SPC 如通用汽车、福特、英特尔、摩托罗拉等 ㈡是成熟的品质管理方式 有一系列的运行、管理方法 ㈢是品质、产量、竞争能力提升及成本下降 的有力手段 许多厂商被顾客要求做SPC
重点强调对于一切事务,依其价值的大小而 付出不同的努力,以获得效果。亦即指柏拉
图分析前面2—3项重要项目之控制。
26
第一次把事情做好,持续改进,让顾客更满意!
4.3 排列图:一种用于解决问题的简单工具,按照 对成本或总变差的影响程度对各种潜在的有问题 区域或变差源进行排序。一般情况下,大多 数的成本(或变差)是由于少量原因造成的,所 以解决问题的精力最好优先集中在少量关键的原 因上,而暂时忽视多数不重要的原因。 4.4 柏拉图:是美国品管大师裘兰博士将劳伦兹曲 线(美国经济学者)运用于品管上,同时创造出 “Vital Few Trivial Many”(重要的少数、锁 细
发生比率
0.39 0.37 0.38
22
第一次把事情做好,持续改进,让顾客更满意!
3. 散布图(亦称相关图): 用来分析两个相对应变量(一组成对的数据) 之间是否存在某种相互作用或影响的相关性, 称为散布图。这种成对的数据或许是“特性
— 要因”、“特性—特性”、“要因—要因”。
23
第一次把事情做好,持续改进,让顾客更满意!
11
第一次把事情做好,持续改进,让顾客更满意!

统计过程控制(SPC)培训

统计过程控制(SPC)培训
C. 留意SPC小组制定之次品分析表,关心主要之次品并 向主管反映次品之成因,协助有关人员减低主要次品的形 成。
D. 积极参与SPC图的制作,确保SPC图之数据准时更新。 唯有工艺稳定,关键因素被控制在制定范围内,即时处理并 解决错误问题,才可确保工艺输出品质优良之产品,生产畅
顺。
统计过程控制(SPC)培训
P Chart (不良率管制图) NP Chart ( 不良数个数管制图) C Chart (缺陷数管制图) U Chart (单位缺陷数管制图)
统计过程控制(SPC)培训
常见的三种图的适用场合
▪ X-(MR) chart 因各种原因(时间、费用等)每次只能得到一个 样本或不易取得一个以上样本,或希望尽快发现并消除异常 因素时用之。 ▪ X bar –R chart 适用于产品批量较大的工序,通常N=4或5时。 ▪ P chart 适用在好/坏立分或进料检验时允收/拒收容易判断的 情况 。
Test 1 2
3 4
C
B
A LCL
八点一排在C区或以下
5
.............................................................
统计过程控制(SPC)培训
SPC的特点
• 1) SPC可以判断过程的异常,及时告警。 • 2)强调全员参加,而不是只依靠少数质量管理
人员。 3)强调应用统计技术来保证预防原则的实现。 4)强调从整个过程、整个体系来推行SPC,而不
是仅局限于个别工序,采用什么控制图的问题。
统计过程控制(SPC)培训
组数目。 A2、D4 、 D3 为与样本大小 n有关的系数。
系数
n2
n3
n4

SPC统计过程控制培训

SPC统计过程控制培训

SPC统计过程控制培训1. 介绍统计过程控制〔Statistical Process Control,简称SPC〕是一种通过对过程的数据进行统计分析来控制并改善过程稳定性和质量的方法。

它可以帮助组织监控和管理生产过程,并减少过程中的变异性,从而提高产品和效劳的质量。

本次培训旨在向参与者介绍SPC的根本概念、原理和应用。

通过培训,参与者将了解如何使用SPC工具和技术来监测和控制过程,并进行数据分析,以便及时采取纠正措施,解决潜在问题。

2. SPC的根本原理SPC的根本原理是基于过程能力和稳定性的统计分析。

它通过收集过程的数据样本,并对其进行分析,以确定过程的稳定性和能力。

2.1 过程稳定性过程稳定性是指过程在一定时间内的行为是可预测的、稳定的。

SPC通过控制图来监控过程的稳定性。

控制图分为均值图和范围图,它们可以帮助我们判断过程是否处于统计控制中。

2.2 过程能力过程能力是指过程在特定规格要求下能够产生合格产品或效劳的能力。

SPC使用过程能力指数来衡量过程的能力。

常见的过程能力指数包括Cp、Cpk等。

3. SPC的工具和技术SPC使用一系列的工具和技术来实施统计过程控制。

以下是几种常见的工具和技术:3.1 控制图控制图是SPC的核心工具,它可以帮助我们监控过程的稳定性。

控制图分为均值图和范围图,分别用于监控过程的中心线和过程变异性。

3.2 测量系统分析〔MSA〕测量系统分析是确保所采集数据的准确性和可靠性的过程。

它可以帮助我们评估测量系统的稳定性和能力,并确定是否需要进行改良。

3.3 过程能力分析过程能力分析是通过计算过程能力指数来评估过程的能力。

它可以帮助我们确定过程是否满足规格要求,并提供改良过程的建议。

3.4 样本抽取和数据收集样本抽取和数据收集是SPC的前提工作。

正确的样本抽取和数据收集方法可以确保所得到的数据具有可靠性和代表性。

4. SPC的应用SPC在各个行业和领域都有广泛的应用。

以下是一些常见的应用场景:4.1 制造业在制造业中,SPC可以帮助监控生产过程中的关键参数,并及时发现和校正异常,以确保产品质量的一致性。

SPC统计过程控制实用培训教程

SPC统计过程控制实用培训教程

1.376 1.377 1.378 1.377 1.381 1.375 1.377 1.375 1.377 1.378
数据会告诉您什么呢?
回答
数据列表不能表达出任何有实际意义的 东西(Virtually Nothing)! 必须对数据进行进一步分析。 图形可以帮助我们将数据转换成信息。
数据 列表
直方圖
1.376 ±0.010
数据量 分组数 50-100 6-10 100-250 7-12 250个以 10-20 上
制作频数分布表
组号
n 1 2 3 4 5 6 7 8 9
10 11
组中值 最小值+ (n-1)*组距
1.3700 1.3713 1.3726 1.3739 1.3752 1.3765 1.3778 1.3791 1.3804 1.3817 1.3830
方差
Cp 精密度(離散度)
標准差(S=母體標準差, s=樣本標準差) Cpk 制程能力指數
不良率 不良數 缺點數
σ 估計標准差
^T 規格公差 T=USL-LSL
每單位缺點
XUCL 平均數管制上限
百萬分之不良
Xbar (X) 平均數中心限
控制上限
XLCL 平均數管制下限
控制中心限
RUCL 全距管制上限
组下界 组中值 -组距/2 1.36935 1.37065 1.37195 1.37325 1.37455 1.37585 1.37715 1.37845 1.37975 1.38105 1.38235
组上界 组中值 +组距/2 1.37065 1.37130 1.37325 1.37455 1.37585 1.37715 1.37845 1.37975 1.38105 1.38235 1.38365

spc培训资料-统计过程控制

spc培训资料-统计过程控制

SPC培训资料 - 统计过程控制1. 简介统计过程控制(Statistical Process Control,SPC)是一种用来监控和控制质量的统计方法。

它通过收集和分析过程中产生的数据,以便及时发现过程中的变异和偏离,并采取相应的措施,以保持过程处于一种可控状态,提高产品和服务的质量。

这份培训资料旨在介绍统计过程控制的基本概念、原则和工具,以帮助培训受众理解和应用SPC,提升质量管理能力。

2. SPC的基本原则统计过程控制依据以下几个基本原则:2.1 过程的可测量性和可控性SPC基于过程的可测量性和可控性原则。

每个过程都应该有明确的测量指标,并且这些指标应该是可测量的。

同时,过程操作者应该能够对这些指标进行控制,以实现过程稳定和质量控制。

2.2 统计思维和数据驱动的决策SPC强调统计思维和数据驱动的决策。

通过数据的收集、整理和分析,可以更加客观地判断过程的稳定性和性能。

基于数据的决策能够降低人为主观性的影响,并提高决策的准确性。

2.3 变异的存在和可降低性统计过程控制承认过程中的变异是不可避免的,但也认为它是可以降低的。

通过分析和改善过程,可以减小过程的变异性,提高过程的稳定性和可重复性。

3. SPC的基本工具3.1 控制图控制图是用来显示过程数据变化的图表。

它可以帮助我们判断过程是否处于可控状态。

常用的控制图包括:均值图(X-Bar Chart)、范围图(R-Chart)、标准差图(S-Chart)等。

控制图通常由中心线、控制限和过程数据点组成。

中心线代表过程的平均值,控制限表示过程的可控范围。

3.2 基本统计量基本统计量包括均值、方差、标准差等。

这些统计量可以用来描述过程的中心位置和数据的分布情况。

通过分析这些统计量,可以判断过程的稳定性和性能。

3.3 过程能力指数过程能力指数用来评估过程的稳定性和性能。

常用的过程能力指数有过程能力指数(Cp)、过程潜在能力指数(Cpk)等。

这些指数可以帮助我们确定过程是否满足质量要求,并进行过程改进和优化。

SPC统计过程控制最佳培训资料

SPC统计过程控制最佳培训资料

因果图 (鱼骨图)
人員 熟練程度
班別
機器
原物料
送料
模具精度 料量 銅片不良
文化程度
成型條件
機台穩定性
水份含量
人工取活 方法
放置手法
濕度 環境
溫度 清潔度
变形?
▪直方图
▪了解数据分布规律 ▪判断过程稳定性 ▪定性评价过程能力
▪柏拉图
找出“重要的少数” 因为80%的问题由
20%的潜在原因引起
▪散布图
SPC统计过程控制
培训资料
SPC培训内容
1) SPC 的含义、概念…… 2) SPC 的由来及发展历程…… 3) SPC技术原理…… 4) SPC推行的目的、对象、意义…… 5) SPC的方式、运行前提…… 6) 企业为什么要选择SPC, SPC可为企业带来什么好处……
SPC其含义是什么?
Statistical :统计- 以概率统计学为基础,分 析数据、得出结论;
SPC问题分析:柏拉图(Pareto Chart)、散布图(Scatter Plot)、趋势图(Trend Chart)等
SPC指标参数: Cp、Cpk、Pp、PpK、Ppm、 Sigma水平、不良率、直通率等
SPC 是工具
X His togram
SPC 在工厂…
供应商 IQC
IPQC PQC FQC OQC
PQC
P/QM: Yield, Cpk,Ppk,ppm…
PE: 生產數, 不良 數, 不良項, 生產 相關資料
QA: 檢驗數, 不 良數, 不良項,抽 檢相關資料 (P,U,C,Xbar…)
厂商别、机台别、操作 员别、料号别、 批号别、工单别、班别
SPC管制图 (控制图)

统计过程控制SPC--培训

统计过程控制SPC--培训

最常用,判断工序是否异常的效 适用于产品批量较大而

制图
果好,但计算工作量大
且稳定正常的工序。
值 中位数—极差
计算简便,但效果较差些,便于
控 制
控制图 两极控制图
L—S
现场使用
一张图可同时控制均值和方差, 计算简单,使用方便
图 单值—移动极 X—Rs 简便省事,并能及时判断工序是 因各种原因每次只能得
C (Control)控制: 事物的发展和变化保持 稳定
统计过程控制(SPC)定义:
是一种使用诸如控制图等统计技术来分析制造 过程,以便采取适当的措施,为达到并保持统计控 制状态从而提高制造过程能力的质量统控计过制程控制方SPC法--培训。
一、统计过程控制简介
起源与发展
休哈特博士在 贝尔实验室发 明了控制图
差控制图
否处于稳定状态。缺点是不易发 到一个数据或希望尽快
现工序分布中心的变化。
发现并消除异常原因
计 不合格品数控
pn

制图
值 不合格品率控
p

制图
制 缺陷数控制图
C
图 单位缺陷数控
U
制图
较常用,计算简单,操作工人易 于理解
计算量大,管理界限凹凸不平
样本容量相等 样本容量可以不等
较常用,计算简单,操作工人易 于理解,使用简便
——《6 Sigma管理法 追求卓越的阶梯》
统计过程控制SPC--培训
一、统计过程控制简介
统计过程控制(SPC):
Statistical Process Control 的英文简称
S (Statistical)统计: 以统计学的方法分 析数据
P (Process)过程: 有输入-输出的一系列的 活动

SPC培训教材

SPC培训教材

SPC培训教材引言SPC(StatisticalProcessControl,统计过程控制)是一种以统计方法为基础的过程控制技术。

它通过对生产过程中收集的数据进行分析,实现对过程稳定性和产品质量的有效监控和控制。

本教材旨在为读者提供SPC的基本概念、原理、方法和应用技巧,帮助读者掌握SPC的实施步骤和技巧,提高生产过程的质量管理水平。

第一章:SPC基本概念1.1质量管理的发展1.2SPC的定义和作用1.3SPC的基本原理1.4SPC与全面质量管理的关系第二章:SPC的基本工具2.1控制图2.1.1控制图的类型和用途2.1.2控制图的绘制方法2.1.3控制图的判读规则2.2直方图2.2.1直方图的绘制方法2.2.2直方图的分析和应用2.3过程能力指数2.3.1过程能力指数的定义和计算方法2.3.2过程能力指数的应用和分析第三章:SPC的实施步骤3.1数据收集和整理3.1.1数据的类型和来源3.1.2数据的收集方法3.1.3数据的整理和表示3.2控制图的绘制和应用3.2.1控制图的绘制步骤3.2.2控制图的判读和应用3.3过程分析和改进3.3.1过程分析的方法和工具3.3.2过程改进的策略和实施第四章:SPC的应用案例4.1制造业中的应用案例4.2服务行业中的应用案例4.3公共事业中的应用案例第五章:SPC的推广和持续改进5.1SPC的推广策略5.2SPC的培训和效果评估5.3SPC的持续改进和优化结论通过对本教材的学习,读者应该能够掌握SPC的基本概念、原理、方法和应用技巧。

然而,SPC的实施需要结合实际情况进行具体的分析和应用,因此读者需要在实践中不断探索和总结,不断提高自己的质量管理水平。

希望本教材能够为读者提供有用的指导和帮助,促进SPC在各个领域的应用和发展。

重点关注的细节:控制图的绘制和应用控制图是SPC(统计过程控制)中最重要的工具之一。

它通过图形化的方式,直观地展示了生产过程中的数据变化,帮助工作人员及时发现问题,采取相应的措施,从而实现对生产过程的有效控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档