金属切削
金属切削原理
三、切削层参数
•切削层厚度hD 垂直于正在加工的表面(过渡表面)度量 的切削层参数。 hD=f•sinκ r •切削层宽度bD 平行于正在加工的表面(过渡表面)度 量的切削层参数。 bD=ap/sinκ r •切削层横截面积AD 在切削层参数平面内度量的横截面 积。 AD=hD•bD=ap•f
常用刀具材料有碳素工具钢(如T10A、T12A)、合金工具钢 (如9SiCr、CrWMn)、高速钢、硬质合金、陶瓷、金刚石、 立方炭化硼等。
二、常用刀具材料
常用刀具材料的种类及其特性 • 碳素工具钢 • 高速钢 • 硬质合金 • 其它刀具材料(涂层刀具、陶瓷、金刚石、立方氮
化硼 )
• 优点、缺点、种类、常用牌号、应用等
1. 金属切削过程
刀具从工件上切除多余的金属的过程,并使工件得到符 合图纸要求的尺寸、形状和表面质量。
必须具备以下三个条件: 1.工件和刀具之间要有相对运动及,即切削运动; 2.刀具材料必须具备一定的切削性能; 3.刀具必须有合理的几何参数,即切削角度等。
一、切削运动与切削用量 1.工件加工表面
在切削过程中,工件上存在三个不断变化的表面:
上述公式中可看出 hD、bD均与主偏角有关,但切削层 横截面积 AD 只与 hD、bD 或 f、ap有关。
§1-2 刀具材料
•刀具材料通常是指刀具切削部分的材料。 •加工质量、加工效率、加工成本,在很大程度上取决于 刀具材料的合理选择。因此,材料、结构和几何形状是决 定刀具切削性能的主要因素。 •金属切削过程除了要求刀具具有适当的几何参数外,还 要求刀具材料具备一定性能。
金属切削加工的基本知识
进给速度vf是单位时间内刀具对工件沿进给方
向的相对位移,单位是mm/s或mm/min。
进给量f是工件或刀具每回转一周时两者沿进
给运动方向的相对位移,单位是mm/r。
二者关系:
vf=f×n
切 削 用 量 三 要 素
(3)背吃刀量 工件上已加工表面和待加工表面间的垂直距 离,单位为mm。 外圆柱表面车削的深度可用下式计算: ap=(dw-dm)/2 mm 对于钻孔工作 ap=dm/2 mm 上两式中 dm——已加工表面直径(mm) dw—— 待加工表面直径(mm)
(3)金刚石
是目前人工制造出的最硬的物质,分天然和人造两种。
特点:
耐磨性好,可用于加工硬质合金、陶瓷、高硅铝合金及耐磨塑料等高硬度、
高耐磨的材料;
其热稳定性差, 强度低、脆性大、对振动敏感,只宜微量切削; 与铁有极强的化学亲合力,不适于加工黑金属。
(4)立方氮化硼
由软的立方氮化硼在高温高压下加入催化剂转变而成。
切 削 层 横 截 面 要 素
由切削刃正在切削的这一层金属叫作切削层。切削层的 截面尺寸称为切削层参数。它决定了刀具切削部分所承受的 负荷和切屑尺寸的大小,通常在基面Pr内度量。 1. 切削厚度 ac (λs= 0)
ac= f sinκr
2. 切削宽度 aw
aw= ap/sinκr
3. 切削层面积 Ac ( κr = 0)
特点:Leabharlann 有很高的硬度及耐磨性; 热稳定性好,可用来加工高温合金; 化学惰性大,可用与加工淬硬钢及冷硬铸铁; 有良好的导热性、较低的摩擦系数。
第二节 金属切削过程中的基本规律
一、切削变形
1.变形区的划分
金属切削与机床金属切削的基本概念资料
第1章 金属切削的基本概念
3. 合成切削运动
由主运动和进给运动合成的运动,称为合成切削运动。 刀具切削刃上选定点相对工件的瞬时合成运动方向称为该点 的合成切削运动方向,其速度称为合成切削速度,如图1-1 所示。
第1章 金属切削的基本概念 1.1.2 加工表面
切削加工时在工件上会形成依次变化的三个表面, 如图 1-2所示。
刃在基面上投影的平面。
第1章 金属切削的基本概念
2) 法平面参考系(Pr-Ps-Pn) 法平面参考系由基面Pr、切削平面Ps和法平面Pn组成,如 图1-7(a)所示。 法平面Pn: 通过切削刃上选定点,垂直于切削刃的平面。
第1章 金属切削的基本概念
3) 假定工作平面、背平面参考系(Pr-Pf-Pp) 假定工作平面、背平面参考系由基面Pr、假定工作平面Pf、 背平面Pp组成,如图1-7(b)所示。 (1) 假定工作平面Pf:通过切削刃上选定点,平行于假定
速度。
vf=fn
(1-2)
式中: vf——进给速度(mm/s); n——主轴转速(r/s); f——进给量(mm/r)。
第1章 金属切削的基本概念
3. 背吃刀量ap
背吃刀量一般是指工件上已加工表面和待加工表面间的 垂直距离。 如纵向车外圆时,其背吃刀量可按下式计算:
ap
dw
dm 2
(1-3)
式中:dw——工件待加工表面直径(mm);
第1章 金属切削的基本概念 图1-1 切削运动
第1章 金属切削的基本概念
2. 进给运动
金属切削的基础知识
切削过程: 三个变形区
(1)第一变形区
(2)第二变形区: (3)第三变形区:
制造技术
切屑种类:
1)带状切屑
外形连绵不断,与前刀 面接触的面很光滑,背面呈毛 茸状。用较大前角、较高的切 削速度和较小的进给量切削塑 性材料时,容易得到带状切屑。
制造技术
2)崩碎切屑 切削铸铁等脆性材料
制造技术
二、切削热的传散
在一般干切削的情况下,大部分的切削热由切屑传散出 去,其次由工件和刀具传散,而周围介质传散出去的热量很 少。但各种传散热量的比例,随着工件材料、刀具材料、切 削用量、刀具角度及切削方式等切削条件的不同而异。 切削热传散给切削及周围介质,对切削加工没有影响, 且传散得越多越好。 切削热传散给刀具切削部分,使刀具磨损加快,缩短刀 具的使用寿命;切削热传散给工件,影响工件的加工精度和 表面质量。 为了减小切削热对工件加工质量的不良影响,可采取的 两方面工艺措施:一是减小工件材料的变形抗力和摩擦阻力, 降低功率消耗和减少切削热;二是要加速切削热的传散,以 降低切削温度。
面粗糙度;严重时,会引起崩刀打刀,加速刀具的磨损。 二、表层材质变化
1.加工硬化
加工硬化是指在切削过程中,工件已加工表面受刀刃和后 面的挤压和摩擦而产生塑性变形,使表层组织发生变化,硬度 显著提高的现象。硬化层深度可达到0.02~0.03mm,表层硬度 约为工件材料的1.2~2倍。
制造技术
对加工硬化的影响因素:刀具几何参数、切削条件、工件
制造技术
2.润滑作用 金属切削加工液(简称切削液)在切削过程中的润滑作用, 可以减小前刀面与切屑,后刀面与已加工表面间的摩擦,形成部 分润滑膜,从而减小切削力、摩擦和功率消耗,降低刀具与工件 坯料摩擦部位的表面温度和刀具磨损,改善工件材料的切削加工 性能。在磨削过程中,加入磨削液后,磨削液渗入砂轮磨粒-工 件及磨粒-磨屑之间形成润滑膜,使界面间的摩擦减小,防止磨 粒切削刃磨损和粘附切屑,从而减小磨削力和摩擦热,提高砂轮 耐用度以及工件表面质量。 3.清洗和排屑作用 在金属切削过程中,要求切削液有良好的清洗作用。除去生 成切屑、磨屑以及铁粉、油污和砂粒,防止机床和工件、刀具的 沾污,使刀具或砂轮的切削刃口保持锋利,不致影响切削效果。 对于油基切削油,粘度越低,清洗能力越强,尤其是含有煤油、 柴油等轻组份的切削油,渗透性和清洗性能就越好。含有表面活 性剂的水基切削液,清洗效果较好,因为它能在表面上形成吸附
金属切削基本知识及刀具角度
04
切削液及其应用
切削液的种类和作用
油基切削液
以矿物油为主要成分,适用于多 种切削加工。
水基切削液
以水为主要成分,适用于高速切 削和难加工材料的切削。
切削液的种类和作用
乳化切削液
油和水混合而成的切削液,具有较好的润滑性和冷却性。
切削油膏
一种特殊的切削液,具有极佳的润滑性和防锈性。
切削液的种类和作用
详细描述
前角的大小决定了刀具切削刃的锋利 程度,较大前角可减小切削力、降低 切削热,提高刀具寿命,但可能导致 加工表面质量下降。
后角
总结词
影响刀具强度、刀具寿命和加工表面质量的重要角度。
详细描述
后角的大小决定了刀具后刀面的磨损程度和加工表面的质量,较大后角可减小 后刀面的磨损,提高加工表面质量,但可能降低刀具强度和寿命。
冷却
降低切削温度,防止工件热变形。
润滑
减少切削阻力,降低刀具磨损。
切削液的种类和作用
清洁
去除切屑和污物,保持切削区域清洁。
防锈
防止金属材料生锈,延长工件和刀具的使用寿命。
切削液的选用原则
根据加工材料选择
不同材料的切削加工需要选用不同类型的切削液 。例如,切削软钢材料时,可以选择油基切削液 ;切削硬钢材料时,可以选择水基切削液。
刀具在切削过程中,由于受到较大的 侧向力或热量影响,导致刀具出现卷 刃现象,影响切削效率和加工质量。
破损
刀具在切削过程中,由于受到较大的 冲击或热量影响,导致刀具出现裂纹、 崩刃等现象,影响切削效率和加工质 量。
03
刀具角度及其作用
前角
总结词
影响切削力、切削热、刀具寿命和加 工表面质量的重要角度。
第一章 金属切削基本知识
刀具角度对加工过程的影响
1. 前角(0) ① 减小切屑的变形;
作用 ② 减小前刀面与切屑之间的摩擦力。
a .减小切削力和切削热; 所以 0 : b .减小刀具的磨损;
c .提高工件的加工精度和表面质量。
0
0选择:
加工塑性材料和精加工—取大前角( 0 ) 加工脆性材料和粗加工—取小前角(0 )
前角(0)可正、可负、也可以为零。
➢ 偏挤压:金属材料一部分受挤压时 ,OB线以下金属由于母体阻碍,不 能沿AB线滑移,而只能沿OM线滑移
F
B
O
a)正挤压
45° M A F
BO
b)偏挤压
➢ 切削:与偏挤压情况类似。弹性变
M
形→剪切应力增大,达到屈服点→产 生塑性变形,沿OM线滑移→剪切应
O F
力与滑移量继续增大,达到断裂强度
c)切削
后角( 0)只能是正的。
精加工: 0= 80~120 粗加工: 0= 40~80 3 . 主偏角(kr)
作用:改善切削条件,提高刀具寿命。
减小kr:当ap、f 不变时,则 aw 、ac — 使切削条件得到改善,提高了刀具寿命。
dw
ap
dm
但减小kr
Fy 、
n
Fx ,加大工件的变形
挠度,使工件精度降
化学惰性
低 惰性大 惰性小 惰性小 惰性大
耐磨性 低 加工质量
低
较高
高 最高
最高
很高
一般精度 Ra≤0.8 Ra≤0.8 IT7-8 IT7-8
高精度 Ra=0.1-0.05
IT5-6
Ra=0.4-0.2
IT5-6 可替代磨削
低速加 加工对象 工一般
金属切削的基础知识概述
金属切削的基础知识概述简介金属切削是一种通过削剪和切割金属材料的方法,是制造业中常见的一项工艺。
基于材料的性质和切削工具的性能,金属切削可以实现高精度和高效率的加工。
本文将介绍金属切削的基本原理、切削工具、切削过程中的参数和常见的切削方式。
基本原理金属切削的基本原理是通过切削工具对金属材料进行削剪,从而使金属材料形成所需的形状和尺寸。
切削工具通常是由刀具和刀具架组成。
刀具用于切削金属材料,而刀具架则用于固定刀具并提供切削力。
切削过程中,刀具和工件之间形成了切削区域。
刀具通过在切削区域施加切削力,将金属材料削去。
这种削去的过程称为切削,并产生了削屑。
削屑是通过切削工具对金属材料进行切割而产生的废料。
切削工具金属切削中常用的切削工具有刀具、铣刀和钻头等。
下面简单介绍几种常见的切削工具:1. 刀具刀具是用于切削金属材料的基本工具。
刀具通常包括刀片和刀柄两部分。
刀片是用来切削金属材料的零件,而刀柄则用于固定刀片和提供切削力。
常见的刀具类型包括车刀、铣刀、刨刀和麻花钻等。
不同的刀具适用于不同的切削任务和金属材料。
2. 铣刀铣刀是一种旋转切削工具,用于将金属材料进行铣削。
铣刀通常由刀柄和多个刀片组成。
刀柄用于固定刀片,而刀片通过旋转进行切削。
铣刀常用于对金属材料进行复杂的零件加工,如开槽、螺纹加工和表面光洁度要求较高的加工。
3. 钻头钻头是一种专门用于钻孔的切削工具。
钻头通常由刀片和刀杆组成。
刀片被用于切削金属材料,并通过刀杆进行固定。
钻头适用于对金属材料进行孔加工,如钻孔和锪孔等。
切削过程中的参数切削过程中有几个重要的参数需要考虑,包括切削速度、进给速度和切削深度。
1. 切削速度切削速度是指切削工具在单位时间内切削的线速度。
切削速度的选择与金属材料的性质和切削工具的性能有关。
切削速度过高容易引起切削工具的损坏,而切削速度过低则会降低加工效率。
因此,在切削过程中需要选择适当的切削速度,以确保切削质量和切削效率。
六种常见的金属切削工艺
六种常见的金属切削工艺
金属切削工艺是机械加工领域的重要组成部分,包括以下六种常见的工艺:
1. 车削:车削是一种利用工件旋转作为主运动,以刀具直线移动作为进给运动的切削加工方法。
这种工艺特别适用于加工具有回转面的零件,如轴、盘、环等。
2. 铣削:铣削是利用旋转的多刃刀具对工件进行切削,以完成金属切削加工的方法。
铣削广泛应用于加工各种平面、沟槽、成形面等,是一种应用非常广泛的金属切削工艺。
3. 刨削:刨削是利用刨刀对工件作往复直线运动,以完成金属切削加工的方法。
刨削主要用于加工平面、沟槽等,如导轨面、平面轴承座等。
4. 磨削:磨削是利用磨具对工件表面进行磨削加工的方法。
磨削可以获取较高的加工精度和表面光洁度,适用于各种金属材料的加工,如铸铁、钢、铜、铝等。
5. 钻孔:钻孔是一种在工件上加工出孔的方法,常用的钻孔设备有钻床。
钻孔应用广泛,可用于加工各种类型的孔,如通孔、盲孔、沉头孔等。
6. 镗孔:镗孔是一种在工件上加工出孔的方法,常用的镗孔设备有镗床。
镗孔通常用于加工较大的孔或精密孔,如轴承孔、齿轮孔等。
这些金属切削工艺各自有着不同的特点和应用范围,需要根据具体的加工要求和材料选择合适的工艺。
熟练掌握这些工艺,对于提高机械加工效率和质量具有重要意义。
1。
金属切削加工的基本知识
第一章金属切削加工的根本学问教学方法导入课:金属切削加工,通常又称为机械加工,是通过刀具与工件之间的相对运动,从毛坯上切除多余的金属,从而获得合格零件的加工方法。
切削加工的根本形式有:车、铣、刨、磨、钻等,包括钳工加工〔錾、锉、锯、刮削、钻孔、铰孔、攻丝、套丝等〕一般状况下,通过铸造、锻造、焊接及轧制的型材毛坯精度低和外表粗糙度大,必需进展切削加工才能成为零件。
本章主要介绍金属切削加工中的根本规律和现象。
讲授课:第一节金属切削加工的根本概念一、切削运动和切削要素1、切削运动切削运动是为了形成工件所必需的刀具和工件之间的相对运动。
切削运动按其作用不同,分为主运动和进给运动。
(1)主运动是切削运动中速度最高、消耗功率最大的运动;一般切削运动中,主运动只有一个。
各种机械加工的主运动:车削:工件的旋转铣削:铣刀的旋转刨削:刨刀〔牛头刨〕或工件〔龙门刨〕的往复直线运动钻削:刀具〔钻床上〕或工件〔车床上〕的旋转。
(2)进给运动是使的切削层金属不断地投入切削,从而切出整个外表的运动;进给运动可以是一个或多个。
各种机械加工的进给运动:车削:刀具的移动铣削:工件的移动钻孔:钻头沿轴向移动内外圆磨削:工件旋转和移动切削加工过程中,为实现机械化和自动化,提高效率,除切削运动外,还需要关心运动。
如切入运动,空程运动,分度转位运动、送夹料运动及机床掌握运动等。
切削过程中形成三个外表:待加工外表、加工外表、已加工外表2、切削要素包括切削用量和切削层横截面要素。
(1)切削用量三要素1)切削速度v是主运动的线速度〔m/s 或m/min 〕a = d w旋转主运动:2) 进给速度 v f 或进给量 fv f :单位时间内刀具对工件沿进给方向的相对位移〔 mm/s或 mm/min 〕进给量 f :工件或刀具每转一周,刀具对工件沿进给方向的相对位移。
〔mm/r 〕切削时间 t = L/v f = L/nf3〕背吃刀量 a p 〔切削深度〕工件已加工外表和待加工外表的垂直距离〔mm 〕 教学方法 外圆车削: - d p 2钻孔: a = d mp 2合成切削运动 :v e = v +v f 〔向量的关系〕(2) 切削层横截面要素切削层是指刀具与工件相对移动一个进给量时,相邻两个加工外表之间的金属层,切削层的轴向剖面称为切削层横截面。
常见的金属切削加工方法 -回复
常见的金属切削加工方法-回复题目:常见的金属切削加工方法引言:金属切削加工是指通过对金属材料进行物理变形,最终得到所需形状和尺寸的加工方法。
随着工业的发展,金属切削加工方法也不断发展和完善。
本文将逐步介绍常见的金属切削加工方法,包括车削、铣削、钻削和刨削,以及其应用领域和优缺点。
一、车削(Turning):1. 车削原理及过程:车削是通过旋转的机床主轴,将金属材料放置在机床上,刀具沿工件的旋转轴线进行切削。
刀具将金属材料不断磨削,实现切削加工。
车削过程中,刀具和工件相对运动,切削下屑不断产生,并通过切削液带走。
2. 车削应用领域:车削广泛应用于各种金属材料的加工中,特别是在外圆和平面加工中,如轴承座、法兰盘等。
汽车、航空、机械等制造业中常常使用车削方法。
3. 车削优缺点:优点:车削加工速度快,工艺成熟,能够实现高精度、高光洁度的加工效果。
刀具具有不同的形状和材质,适用于各种复杂形状的加工。
缺点:车削成本相对较高,需要专业的机械设备和操作技能。
同时,大量的切削下屑也会产生废料。
二、铣削(Milling):1. 铣削原理及过程:铣削是通过刀具在工件表面上不断旋转和前进,将金属材料进行切削。
铣削过程中,刀具通过切削槽将金属材料削除,使工件表面得到所需形状。
2. 铣削应用领域:铣削适用于各种金属材料的加工,特别是用于复杂形状和曲线表面的加工,如齿轮、模具、零件等。
3. 铣削优缺点:优点:铣削能够快速高效地切削金属材料,且切削过程中削屑容易清除。
铣削具有较高的加工精度和表面质量。
缺点:铣削刀具和机床设备相对复杂,需要较高的设备和技术。
同时,铣削加工中切削力较大,容易产生振动和噪音。
三、钻削(Drilling):1. 钻削原理及过程:钻削是通过钻头在工件上旋转切削,形成圆孔的加工方法。
钻削过程中,钻头通过切削边缘不断旋转,将金属材料削除。
2. 钻削应用领域:钻削广泛应用于各种金属材料的孔加工中,例如机械零件、螺栓孔、管道等。
金属切削原理
切削时消耗的功率
金属切削原理及其应用
一、切削变形 二、切削力 三、切削热与切削温度 四、刀具磨损与耐用度变化
1.1 金属切削过程的基本规律
一、切削变形 变形Ⅰ,Ⅱ,Ⅲ区, 剪切面间距0.02-0.2mm。
1. 切屑的形成
图为金属切削过程中的滑移线
1.1 金属切削过程的基本规律.
• (1)第一变形区 从OA线开始发生塑性变形,到 OM线金属晶粒的剪切滑移基本完成。OA线和OM 线之间的区域(图中Ⅰ区)称为第一变形区。
碳素钢,合金钢,铜 铝合金; 黄铜,低速切削钢; 铝; 铸鉄,黄铜
图为切屑类型
2. 积屑瘤
图为积屑瘤与切削刃的金 相显微照片
2. 积屑瘤
积屑瘤高度及其实际工作前角
2. 积屑瘤
(1)积屑瘤对切削过程的影响: 1) 积屑瘤包围着切削刃,可以代替前面、后面和切
削刃进行切削,从而保护了刀刃,减少了刀具的磨 损。 2) 积屑瘤使刀具的实际工作前角增大,而且,积屑 瘤越高,实际工作前角越大,刀具越锋利。 3) 积屑瘤前端伸出切削刃外,直接影响加工尺寸精 度。 4) 积屑瘤直接影响工件加工表面的形状精度和表面 粗糙度。
Fx Fxy sin r
3. 影响切削力的因素
3)刀具几何参数对切削力的影响。
c)刃倾角ls 对切削力的影响; ls↑ 背前角gp↑ 侧前角gf↓
Fp↓ Ff↑
3. 影响切削力的因素
3)刀具几何参数对切削力的影响。
d)刀尖圆弧半径r 对切削力的影响;
3. 影响切削力的因素
3)刀具几何参数对切削力的影响。 e)使用切削液 对切削力的影响;
v a 273
f 0.26 0.07
c
0.01
金属切削的基本定义(精)
返回本章目录
1.1.3 工件上的加工表面 (1)待加工表面 工件上即将被切去的表 面。 (2)已加工表面 刀具切削后在工件上形 成的新表面。 (3)过渡表面 切削刃正在切削的表面。
返回本章目录
1.1.4 切削用量 (1)切削速度 v c 是切削加工时,切削刃 上选定点相对于工件的主运动速度。主运动 为旋转运动时,工件或刀具最大直径处v c :
d w —工作直径。
返回本章目录
式中
上述角度换算到工作正交平面内,则
tano tan sin k
oe o o
oe o o
f 愈大或 d 愈小,则 值愈大。对于一般的
外圆纵车, 值仅为30-40ˊ,一般忽略不记。
w
返回本章目录
工作角度
返回本章目录
返回本章目录
返回本章目录
外圆车刀在法平面参考系的角度
返回本章目录
(3)刀具在背平面和假定工作平面参考系中的 角度除基面上表示的角度与上面相同外,前角、 后角和楔角是分别在背平面 Pp 和假定工作平面 Pf 内标出的,故有背前角 p 、背后角 p 、背楔角 p 和侧前角 f 、侧后角 f 、侧楔角 f 诸角度(图114)。 p 和 p 前角、后角、楔角定义同前,只不过 p 、 f 和 f 在假定工作平面 Pf 内。 在背平面 Pp 内; f 、
返回本章目录
3)背平面和假定工作平面参考系 基面 Pr 的定义同正交平面参考系。 背平面( Pp )——过切削上选定点,平行于 刀杆中心线并垂直于基面 Pr 的平面,它与进给方 向v f 是垂直的。 假定工作平面( Pf)——过切削刃上选定点, 同时垂直于刀杆中心线与基面 Pr 的平面,它与进 给方向 v f 平行。
《金属切削原理》课件
金属切削在机械制造中的应用
加工精度:金属切削可以精确地加工出各种形状和尺寸的零件 加工效率:金属切削可以提高生产效率,缩短生产周期 加工范围:金属切削可以加工各种金属材料,包括钢、铝、铜等 加工质量:金属切削可以保证加工质量,提高产品的可靠性和耐用性
金属切削在航空航天领域的应用
飞机制造:金属 切削用于制造飞 机机身、机翼、 发动机等部件
新材料硬度 高,耐磨性 好,对刀具 寿命和加工 效率产生影 响
新材料热导 率低,切削 过程中热量 难以散发, 对刀具和工 件产生影响
新材料化学 活性强,易 与刀具材料 发生化学反 应,影响刀 具寿命和加 工质量
新材料加工 难度大,对 刀具材料和 加工工艺提 出更高要求
新材料加工 过程中产生 的废料处理 问题,对环 保和资源利 用提出挑战
切削热的ห้องสมุดไป่ตู้生与散失
切削热的产生:刀具与工件之间的摩擦和剪切作用 切削热的散失:通过刀具、工件和切屑的传导、对流和辐射等方式 切削热的影响:影响刀具寿命、工件加工精度和表面质量 切削热的控制:通过优化刀具材料、切削参数和冷却方式等手段
切削表面的形成与变化
切削过程:刀具与工件之间的相对运动 切削力:刀具与工件之间的相互作用力 切削温度:刀具与工件之间的摩擦热 切削表面:刀具与工件之间的接触面
火箭制造:金属 切削用于制造火 箭发动机、燃料 箱、控制系统等 部件
卫星制造:金属 切削用于制造卫 星外壳、太阳能 电池板、天线等 部件
空间站制造:金 属切削用于制造 空间站外壳、太 阳能电池板、生 命支持系统等部 件
金属切削在汽车工业领域的应用
汽车零部件制造:金属切削用于生产汽车发动机、变速箱、底盘等零部件 汽车车身制造:金属切削用于生产汽车车身、车门、车窗等车身部件 汽车模具制造:金属切削用于生产汽车模具,如冲压模具、注塑模具等 汽车维修与保养:金属切削用于汽车维修与保养,如更换损坏的零部件、修复车身损伤等
金属切削加工基本知识
第一章金属切削及机床的基本知识
基本内容: 主要介绍刀具几何角度及工作角度、切削变形
与积屑瘤、切削力、切削热、切削温度、刀具磨 损与刀具耐用度、切削液及刀具几何参数的合理 选择、机床的基本知识等。 2.基本要求:
刀具几何角度和积屑瘤的成因、作用及控制措施 影响切削力、切削热、切削温度、刀具磨损的因 素; 合理选择刀具材料、几何参数、切削液等。
部分表面。
3.切削用量 切削用量是切削速度、进给量(或进给速度)和背吃刀量 的总称。
1)切削速度(Vc)是指在切削加工时,切削刃上选定 点相对于工件的主运动瞬时线速度。
Vc=πDn/1000
2)进给量(f)是指工件(或刀具)每回转一周时,刀 具(或工件)在进给运动方向上的相对位移量。
3)背吃刀量(ap)指待加工表面和已加工表面之间的 垂直距离。
度达10000HV,耐磨性是硬质合金的60~80 倍;切削刃锋利,能实现超精密微量加工和 镜面加工;很高的导热性。 (3)缺点:耐热性差,强度低,脆性大,对振动 很敏感。 (4)适用范围:用于高速条件下精细加工有色金 属及其合金和非金属材料。
3)立方氮化硼刀具
(1)概念:立方氮化硼(简称CBN)是由六方氮化 硼为原料在高温、高压下合成。
A、刀具耐磨性是刀具抵抗磨损能力。 一般刀具硬度越高,耐磨性越好。 刀具金相组织中硬质点(如碳化物、氮化物等)越多,
颗粒越小,分布越均匀,则刀具耐磨性越好。 B、刀具材料耐热性是衡量刀具切削性能的主要标志,
通常用高温下保持高硬度的性能来衡量,也称热硬性。 刀具材料高温硬度越高,则耐热性越好,在高温抗塑性
γoe = γo + µ αoe = αo - µ
2)纵向进给运动对工作角度的影响
金属工艺学第一章 金属切削基础知识
主要的影响因素
切削速度 (切中碳钢) <5m/min不产生 5~50m/min形成
控 制 措 降低塑性 施
(正火、调质)
>100 m/min不形成 选用低速或高速
冷却润滑条件
300~500oC最易产 生 >500oC趋于消失
选用切削液
第三节 金属切削过程
三、切削力与切削功率
1、切削力的构成与分解
切削力的来源
热处理变形 不需要
用途
各种刀片
1200
(12~14)
高硬度钢材 精加工
人造金刚石
HV10000 (硬质合金为 HV1300~1800)
700~800
不宜加工钢铁材 料
第二节 刀具材料及刀具构造
三、刀具角度
各种刀具的切削部分形状
第二节 刀具材料及刀具构造
二、刀具角度
1、车刀切削部分的组成
三面
两刃 一尖
(2)作用 ①冷却 ②润滑
第三节 金属切削过程
五、刀具磨损和刀具耐用度
1、刀具磨损形式
(1)前刀面磨损 (2)后刀面磨损 (通常以后刀面磨损值VB表示刀具磨损程度) (3)前后刀面同时磨损
2、刀具磨损过程:
前面磨损、后面磨损、前后面同时磨损 。 刀具磨损过程: 初期磨损阶段、正常磨损阶段、急剧磨损阶段
刀尖高低对刀具工作角度的影响
车刀刀杆安装偏斜对刀具角度的影响
② 进给运动的影响
第二节 刀具材料及刀具构造
三、刀具结构
刀具的结构形式很多,有整体式、焊接式、机夹 不重磨式等。
目前一般整体式的多为高速钢车刀,其结构简单, 制造、使用都方便。而对于贵重刀具材料,如硬质合 金等,可采用焊接式或机夹不重磨式。焊接式车刀结 构简单、紧凑、刚性好,可磨出各种所需角度,应用 广泛。
金属切削过程
- 22 -
3.2 切削过程基本规律
5. 刀具寿命 刃磨后的刀具,自开始切削到磨损量达磨钝标准为止的总切削工作时间,称为刀具寿命,以T 表示。这是确定换刀时间
的重要依据。 刀具总寿命表示一把新刀用到报废之前总的切削时间,其中包括多次重磨。因此,刀具总寿命等于刀具寿命乘以重磨次
切削厚度是指过切削刃上选定点,在基面内测量的垂直于加工表面的切削层尺寸,单位为mm。
ac = f sin κr
2. 切削宽度aw 切削宽度是指过切削刃上选定点,在基面内测量的平行于加工表面的切削层尺寸,单位为mm。
aw = ap sin κr
3. 切削面积Ac 切削面积是指过切削刃上选定点,在基面内测量的切削层的横截面面积,单位为mm2。
- 17 -
3.2 切削过程基本规律
三、刀具磨损和刀具寿命
1. 刀具的磨损 刀具磨损分为正常磨损和非正常磨损。正常磨损是指刀具在设计与使用合理、制造与刃磨质量符合要求的情况下,在切
削过程中逐渐产生的磨损。非正常磨损是切削过程中突然或过早产生的损坏现象,如脆性破损(崩刃、碎裂、剥落等)、卷 刃等。
正常磨损
金属切削过程
-1-
目录页
Contents Page
01 金属切削过程 02 切削过程基本规律 03 切削过程基本规律应用
-2-
过渡页
Transition Page
01 金属切削过程 02 切削过程基本规律 03 切削过程基本规律应用
-3-
3.1 金属切削过程
一、切削层及其参数
以车削加工为例,如图3.1 所示,工件转一转,车刀沿工件轴向移动一个进给量 f(mm / r),车刀切削刃从一个位置移至 另一个位置,在两个位置之间由车刀切削刃切下的一层金属称为切削层。在与切削速度方向相垂直的切削层剖面内度量的切削 层的尺寸称为切削层参数。 1. 切削厚度ac
金属切削的基础知识
已加工表面质量越好
2) 后角α0 在正交平面内测量, 主后刀面与切削平面之间
的夹角。
υc
切削平面投影线
后角α0 主后刀面投影线
作用:
减小后刀面与已加工表面之间的摩擦; 它和 前角一样影响刃口的强度和锋利程度。
后角应在60~120内选取; 粗加工取小, 精加 工取大。
3) 主偏角κr
主切削平面与假定工作平面之间的夹角。
• 目前绝大多数零件的质量还要靠切削加工的方法来 保证。
第一章 第二章
金属切削的基础知识 金属切削机床的基本知识
第三章
常用加工方法综述
第四章 精密加工和特种加工简介
第五章
典型表面加工分析
§1-1 切削运动及切削要素
一、零件表面的形成及切削运动
1.主运动―― ―主要完成切削的动,消耗功率最多,一种 加工主运动只有一个。( );
3.车刀的主要角度 为确定刀具的主要角度, 须建立三个相互垂直的
参考平面构 成的静止参考系。
(1) 建立车刀静止参考系 基面 切削平面 正交平面
1) 基面 通过切削刃选定点的平面, 它平行刀具安装的一个 平面, 其方位要垂直于主运动方向。
υc
2) 切削平面 通过切削刃选定点并同时垂直于基面的平面。
三、刀具结构 车刀按结构分类, 有整体式、焊接式、机夹式
和可转位式四种型式(见图)。 (它们的特点与常用场合见表1-2。)
表1-2 车刀结构类型、特点与用途
名称
特
点
整体 用整体高速钢制造,刃口较锋利,但价高的刀具 式 材料消耗较大
适 用 场合
小型车床或加工有色金 属
焊接 式
焊接硬质合金或高速钢于预制刀柄上,结构紧 凑,刚性好,灵活性大。但硬质合金刀片经过高 温焊接和刃磨,易产生内应力和裂纹
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前三章复习题
一、填空题:
1.切削用量是切削过程中切削速度、背吃刀量、进给量的总称。
2.车刀由刀头、刀柄两部分组成。
刀头用于切削,刀柄用于装夹。
3.前面A
γ:刀具上切削流过的表面;后面A
α
:与过渡表面相对的表面;副
后面A
α
':与已加工表面相对的表面。
4.在各类参考系中最基本的刀具角度类型只有4个前角、后角、刃倾角、偏角。
5.刀具材料应具备有高硬度和高耐磨性、足够的强度与韧性以及较高的耐热性,刀具材料还需要有较好的工艺性和经济性。
6.刀具材料分4大类工具钢、硬质合金、陶瓷、超硬刀具材料。
一般机加工使用最多的是高速钢与硬质合金。
7.常用高速钢类型有普通高速钢、高性能高速钢。
8.常用硬质合金类型有钨钴类、钨钛钴类、添加钽铌类、碳化钛基类。
9. 适用于脆性金属的粗加工;适用于半精加工;适用于精加工。
适用于塑性材料性的粗加工;适用于半精加工;适用于精加工。
10.切屑类型带状切屑、节状切屑、单元状切屑、崩碎状切屑四种。
11.刀具磨损可分为正常磨损和非正常磨损两类。
正常磨损形式有前面磨损、主后面磨损副后面磨损。
非正常磨损形式有沟槽磨损、切削刃细小缺口、塑性变形、
切削刃崩裂、切削刃剥落和热裂。
二、判断题
1.前、后面汇交的边缘称主切削刃S.
2.刀具静止参考系是确定刀具切削工作时角度的基准。
用此定义的刀具角度称刀具标注角度
3.用
γ、sλ两角可确定前面的方位;用oα、r k两角可确定后面的
o
方位;用
k、sλ两角可确定主切削刃的方位。
r
4.切削层形状、尺寸直接影响着切削过程的变形、刀具承受的负荷与刀具的磨损。
5.硬质合金是由硬度和熔点很高的碳化物和金属通过粉末冶金工艺制成的。
6.工具钢包括碳素工具钢、合金工具钢、高速钢、硬质合金。
7.积屑瘤是由切屑堆积在刀具前面近切削刃处的一个硬楔块,它是在第Ⅲ变形区内,是由摩擦和变形形成的物理现象。
8.切削力是工件材料抵抗刀具切削所产生的阻力,它是影响工艺系统强度、刚性和加工工件质量重要因素。
9.
a和f增大,使切削力c F增大,两者影响程度相同。
p
10.通常确定合理的刀具寿命有两种方法:最高生产率寿命和最低生产成本寿命。
三、名词解释1.刀具寿命T 2.自由切削与非自由切削3.前角
γ和后角oα 4.
o
切削平面
P 5.正交平面o P 6.法平面n P7.主偏角r k和刃倾角sλ8.前面γA和后面
s
A9.主切削刃S和副切削刃S' 10.高速钢
α
四、简答题
1.刀具参考系有哪几种?正交平面参考系有哪三个平面组成?
2.影响切削变形的因素有哪些?
3.简述刀具磨损的原因。
4.试说明三个分力的作用。
影响切削力的因素有哪些?9.怎样减小内摩擦区的摩擦?
5.影响刀具寿命的因素有哪些?
6.在生产中常采用什么措施来抑制或消除积屑瘤?
7.影响切削温度的因素有哪些?8.刀具磨损过程和磨损标准各是什么?
10.解释为什么加工材料硬度增加使切削变形减小、而使切削力增大?。