高中数学 直线与圆锥曲线的位置关系
高中数学第2轮总复习专题6第4课时直线与圆锥曲线的位置关系课件文.ppt
所
以
x y
21 2t , 1 2t 2
所
以
y
x2 4
,
即x2 4y.因为t 0,1,所以x 2 1 2t 2, 2.
所以所求动点M 的轨迹方程为x2 4y( x 2, 2).
备选例题: 已知一条曲线C在y轴右边,C上每一点
到点F 1, 0的距离减去它到y轴距离的差都是1. 1求曲线C的方程; 2是否存在正数m,对于过点M m,0且与曲线C
B
(
x
,
2
y2
),
l的
方
程
为
x
ty
m.
由
x ty
y2
4x
m,
得
y2
4ty
4m
0,
16t2
16m
0, 于
是
y1 y1
y2
y2
4t 4m
.
又FA (x1 1,y1),FB (x2 1,y2 ),由FA FB 0,
得x1x2
x1
x2 1
y1 y2
0.又x
y2 , 4
所以 y12 y22 16
xE yE
2t .
2t 1
所 以 kDE
yE xE
yD xD
2t 1 2t 1 2t 2t 2
1 2t.
所 以 t 0,1, 所 以 kDE 1,1.
2因为DM t DE,
所以( x 2t 2,y 2t 1)
t 2t 2t 2,2t 1 2t 1
t 2, 4t 2 2t, 4t 2 2t .
1.(2011四川卷)在抛物线yx2 ax5(a0)上取横
坐标为x1 4,x2 2的两点,过这两点引一条割线 有平行于该割线的一条直线同时与抛物线和圆
过点的直线与圆锥曲线有且仅有一个交点的判别方法
过点的直线与圆锥曲线有且仅有一个交点的判别方法作者:黄志宁来源:《中学教学参考·理科版》2011年第10期点、直线与圆锥曲线的位置关系是高中数学的重要内容,怎样才能学好这部分知识,我认为必须掌握好如何判别过点的直线与圆锥曲线的位置关系,以及直线与圆锥曲线有且仅有一个交点的判别方法.通过本人多年的研究,总结出求过点作直线与圆锥曲线有且仅有一个交点的直线方程的解法必须同时具备以下三个步骤:第一步是确定点与圆锥曲线的位置关系,确定直线的条数;第二步是判断直线与圆锥曲线的位置关系;第三步是确定直线与圆锥曲线有且仅有一个交点的情况.以下针对三种不同类型的题型进行探讨一、直线与圆或椭圆直线与圆或椭圆有且仅有一个交点,只有相切时才成立.(注意利用判别式为零或斜率不存在的情况)针对点P(m,n)与椭圆>b>0)时,①点P在椭圆内,不存在;②点P在椭圆上,只有一条直线,即;③点P在椭圆外时,有两条直线且为切线,利用点斜式求出斜率即可,注意切线垂直于x 轴时的情况【例1】求过点P(0,4)与椭圆有且仅有一个交点的直线方程解:把点P代入椭圆方程的左边得016+169=169>1,∴点P在椭圆外,有两条直线与椭圆相切设切线方程为:y-4=kx,即y=kx+4,代入椭圆方程得,(9+-∴即∴切线方程为y=±74x+4,所求的直线方程为二、直线与双曲线直线与双曲线有且仅有一个交点有两种可能,即直线与双曲线相切或直线与双曲线的渐近线平行且与双曲线相交针对点P(m,n)与双曲线-而言(1)当P点在双曲线内时,能作两条分别与渐近线平行的直线与双曲线有且只有一个交点,此时,可以利用点斜式求出直线方程(2)当P点在双曲线上时,能作出三条直线,其中两条为与渐近线平行的交线,一条为双曲线的切线,此时,可以利用点斜式求出交线方程.切线方程利用点斜式求出或用公式-求出(注意当P点在双曲线顶点时切线方程x=a或x=-a)(3)当P点在双曲线外时:①点P只在一条渐近线上时,能作出两条,其中一条为切线(注意斜率不存在的切线),另一条为平行于另一条渐近线的交线②点P在两条渐近线的交点上时,不能作出直线与双曲线有且只有一个交点③点P不在渐近线上时,能作四条,其中两条是切线,两条是与渐近线平行的直线,此时切线可以利用点斜式求出直线方程(注意斜率不存在的切线)【例2】已知双曲线方程-,针对P(m,n)所在平面的位置,求出过点P引直线与双曲线有且只有一个交点的直线方程.①P(3,0);②P(1,1);③P(0,0);④解:选②.把点P代入双曲线方程的左边得14-14=0<1,则点P在双曲线外双曲线的渐近线方程为:y=±x,可知点P在双曲线的一条渐近线上,则能作出两条满足条件的直线,其中一条为切线,另一条为平行于另一条渐近线的交线交线为:y-1=-(x-1),即y=-设切线为:y-1=k(x-1),即y=kx+(1-k),代入双曲线方程得:-[kx+(1-k)]--2k(1-k)x--2k+5)=0.当(1-时,即k=1或k=-1,此时平行于渐近线的直线为y=x(不合题意舍去)或y=-x+2;当(1-时,则由[2k(1-k)]--2k+5)=0得-5=0,则k=-53,k=1(不合题意舍去切线方程为:y=-53x+83.综合所求直线方程为:y=-53x+83或y=-三、直线与抛物线直线与抛物线有且仅有一个交点的两种可能分别是相切和直线平行于抛物线的对称轴针对点Q(m,n)与抛物线而言:(1)当点Q(m,n)在抛物线内时,有且只有一条直线,即y=n,平行于对称轴;(2)当点Q(m,n)在抛物线上时,有两条,其中一条为切线,一条为交线,且交线为y=n.切线时,利用点斜式就可以求出切线方程,或利用公式即:,或利用求导数的方法求斜率;(3)当点Q(m,n)在抛物线外时,有三条.其中两条为切线,一条为交线,交线的方程为y=n,切线时,注意点Q是否在y轴上,利用点斜式就可以求出切线方程【例3】已知抛物线,过点Q(2,3)作一直线与抛物线有且只有一个交点,求这条直线的方程解:把点Q的坐标代入抛物线方程得:左边右边∴左边>右边,∴点Q在抛物线外∴过点Q可以作三条直线与抛物线有且只有一个交点,其中有两条是切线及一条是交线∵Q点不在y轴上,∴交线为y=3,与抛物线有且只有一个交点将切线设为:y-3=k(x-2),则y=[kx+(3-2k)],代入抛物线方程得:[kx+(3-2k)],即--3k+1)x+(3-∵k≠0,∴Δ=---即-6k+1=0,则k=34±54,故切线为y-3=(34±54)(x-2).综合所求直线方程为:y=3,y-3=(34±54)(x-综合上述过一点引直线与圆锥曲线有且仅有一个交点的情况,首先是判断点与圆锥曲线的位置关系,其次判断能引几条与圆锥曲线有且仅有一个交点的直线,最后利用点斜式设切线方程,解一元二次方程组,二次项系数为零或判别式为零求斜率,从而求出直线方程由于点、直线与圆锥曲线的位置关系与其他知识联系既多又广,因此,它的题型多而又活,常考常新.所以,掌握好点、直线与圆锥曲线的位置关系是很有必要的.希望同学们可以根据上述内容,寻找到适合自己的解决点、直线与圆锥曲线的位置关系的判别方法(责任编辑金铃)。
高中数学 同步教学 直线与圆锥曲线的交点
[练一练]
2.已知动点 P(x,y)满足|3x-54y-1|=13· x-12+y-52,则动点 P 的轨迹是(
(2)设 P(x,y)到 l 的距离为 d,由|PF|=5,得 d=4. 即156-x=4,解得 x=356或 x=-45. 由于|x|≥4,故 x=-45不合题意,舍去. 由 x=356得 y=±65 14. ∴点 P 的坐标为356,±6 514.
探究二 直线与圆锥曲线的公共点问题 [典例 2] 已知直线 l:y=2x+m,椭圆 C:x42+y22=1.试问当 m 取何值时,直线 l 与椭 圆 C: (1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.
的交点,就是求方程组fgxx00,,yy00==00 的实数解.
三、方程组的解与曲线交点的关系 方程组有几组不同的实数解,两条曲线就有 几个不同交点 ;方程组没有实数解,两条 曲线就 无交点 .
[想一想] 1.直线与圆锥曲线相切时,有且只有一个交点.反之,直线与圆锥曲线只有一个交点 时,一定相切,这种说法对吗?为什么?
一、圆锥曲线的共同特征 圆锥曲线上的点到 一个定点 的距离与它到 一条定直线 的距离之比为定值 e. 当 0<e<1 时,圆锥曲线是 椭圆 ;当 e>1 时,圆锥曲线是 双曲线 ;当 e=1 时,圆 锥曲线是 抛物线 .
二、曲线的交点
由曲线方程的定义可知,对于曲线 C1:f(x,y)=0 和曲线 C2:g(x,y)=0,由于 M(x0, y0)是 C1 与 C2 的一个交点⇔ f(x0,y0)=0 且 g(x0,y0)=0 ,椭圆 C 的方程联立, y=2x+m ①
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
掌握圆锥曲线的相关知识对于解决数学问题和理解数学的应用具有重要意义。
一、椭圆1、定义平面内与两个定点 F1、F2 的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。
2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
(2)焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。
3、椭圆的性质(1)对称性:椭圆关于 x 轴、y 轴和原点对称。
(2)范围:\(a \leq x \leq a\),\(b \leq y \leq b\)。
点为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点为\((0, \pm a)\),\((\pm b, 0)\)。
(4)离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e < 1\)),它反映了椭圆的扁平程度,\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。
二、双曲线1、定义平面内与两个定点 F1、F2 的距离之差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。
2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} =1\),其中\(a\)为实半轴长,\(b\)为虚半轴长,\(c\)为半焦距,满足\(c^2 = a^2 + b^2\)。
(2)焦点在 y 轴上:\(\frac{y^2}{a^2} \frac{x^2}{b^2} =1\)。
圆锥曲线 题型分类 知乎
圆锥曲线题型分类
圆锥曲线是高中数学中的一个重要概念,涉及到许多类型的问题。
下面是圆锥曲线常见的题型分类:
1. 数形结合确定直线和圆锥曲线的位置关系
这个题型主要考察学生如何根据给定的条件判断直线和圆锥曲线的位置关系,例如直线与椭圆的位置关系、直线与双曲线的位置关系等。
2. 弦的垂直平分线问题
这个题型主要考察学生如何根据给定的条件判断一条弦的垂直平分线是否经过某个点,例如一条直线是否经过椭圆的两个焦点。
3. 动弦过定点的问题
这个题型主要考察学生如何根据给定的条件判断动弦是否经过某个定点,例如一条直线是否经过椭圆上的某个点。
4. 过已知曲线上定点的弦的问题
这个题型主要考察学生如何根据给定的条件判断是否存在一条直线经过已知曲线上的某个点,例如一条直线是否经过椭圆上的某个点。
5. 共线向量问题
这个题型主要考察学生如何根据给定的条件判断两条直线是否共线,例如两条直线是否平行或重合。
6. 面积问题
这个题型主要考察学生如何根据给定的条件计算圆锥曲线的面积,例如计算椭圆或双曲线的面积。
7. 弦或弦长为定值问题
这个题型主要考察学生如何根据给定的条件判断一条弦或弦长是否为定值,例如一条直线是否经过椭圆上的两点使得这条直线的长度为定值。
8. 角度问题
这个题型主要考察学生如何根据给定的条件判断两条直线或圆锥曲线之间的角度关系,例如两条直线是否垂直或两个圆锥曲线是否相交。
以上是圆锥曲线常见的题型分类,希望能对您有所帮助。
新教材高中数学精品第3讲 直线与圆锥曲线的位置关系
第3讲 直线与圆锥曲线的位置关系[考情分析] 直线与圆锥曲线的位置关系是高考的必考内容,涉及直线与圆锥曲线的相交、相切、弦长、面积以及弦中点等问题,难度中等. 考点一 弦长、面积问题 核心提炼已知A (x 1,y 1),B (x 2,y 2),直线AB 的斜率为k (k ≠0), 则|AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2, 或|AB |=1+1k2|y 1-y 2|=1+1k2(y 1+y 2)2-4y 1y 2. 考向1 弦长问题例1 (2022·新高考全国Ⅱ)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63. (1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |= 3.(1)解 由题意得,椭圆半焦距c =2且e =c a =63,所以a =3, 又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1. (2)证明 由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不符合题意; 当直线MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2), 必要性:若M ,N ,F 三点共线,可设直线MN :y =k (x -2), 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得|2k |k 2+1=1,解得k =±1, 联立⎩⎪⎨⎪⎧y =±(x -2),x 23+y 2=1,可得4x 2-62x +3=0,所以x 1+x 2=322,x 1·x 2=34,所以|MN |=1+1·(x 1+x 2)2-4x 1·x 2=3, 所以必要性成立;充分性:设直线MN :y =kx +b (kb <0),即kx -y +b =0, 由直线MN 与曲线x 2+y 2=1(x >0)相切可得|b |k 2+1=1,所以b 2=k 2+1, 联立⎩⎪⎨⎪⎧y =kx +b ,x 23+y 2=1,可得(1+3k 2)x 2+6kbx +3b 2-3=0, 所以x 1+x 2=-6kb1+3k 2,x 1·x 2=3b 2-31+3k 2,所以|MN |=1+k 2·(x 1+x 2)2-4x 1·x 2=1+k 2⎝⎛⎭⎫-6kb 1+3k 22-4·3b 2-31+3k 2=1+k 2·24k 21+3k 2=3, 化简得3(k 2-1)2=0,所以k =±1,所以⎩⎨⎧ k =1,b =-2或⎩⎨⎧k =-1,b =2,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立, 所以M ,N ,F 三点共线的充要条件是|MN |= 3. 考向2 面积问题例2 (2022·大庆模拟)已知焦点在x 轴上的椭圆C :x 2a 2+y 2b 2=1(a >b >0),短轴长为23,椭圆左顶点A 到左焦点F 1的距离为1. (1)求椭圆C 的标准方程;(2)设椭圆的右顶点为B ,过F 1的直线l 与椭圆C 交于点M ,N ,且S △BMN =1827,求直线l 的方程.解 (1)由⎩⎪⎨⎪⎧2b =23,a -c =1,a 2-c 2=b 2,得⎩⎪⎨⎪⎧b =3,a =2,c =1,所以椭圆C 的标准方程为x 24+y 23=1.(2)方法一 由题意知,直线的斜率不为0,F 1(-1,0), 设直线l 的方程为x =my -1,M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1,x =my -1,得(3m 2+4)y 2-6my -9=0, 即y 1+y 2=6m3m 2+4,y 1·y 2=-93m 2+4.又S △BMN =12·|BF 1|·|y 1|+12·|BF 1|·|y 2|=12·|BF 1|·|y 1-y 2| =12·|BF 1|·(y 1+y 2)2-4y 1·y 2 =18m 2+13m 2+4=1827,解得m =±1,所以直线l 的方程为x -y +1=0或x +y +1=0. 方法二 由(1)知F 1(-1,0),B (2,0),当直线l 的斜率不存在时,|MN |=3,点B (2,0)到直线l :x =-1的距离为3,所以S △BMN =92≠1827,所以直线l 的斜率存在. 设直线l 的斜率为k ,则直线l 的方程为y =k (x +1),M (x 1,y 1),N (x 2,y 2), 由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x +1)得(3+4k 2)x 2+8k 2x +4k 2-12=0, 所以x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2.所以|MN |=(x 1-x 2)2+(y 1-y 2)2 =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫-8k 23+4k 22-4(4k 2-12)3+4k 2 =1+k 2·144(k 2+1)(3+4k 2)2=12(k 2+1)3+4k 2.因为点B (2,0)到直线l 的距离为d =|3k |k 2+1,所以S △BMN =12·|MN |·d =12·12(k 2+1)3+4k 2·|3k |k 2+1=1827,即k 2=1,得k =±1, 所以直线l 的方程为x -y +1=0或x +y +1=0.易错提醒 (1)设直线方程时,需考虑特殊直线,如直线的斜率不存在、斜率为0等. (2)涉及直线与圆锥曲线相交时,Δ>0易漏掉.(3)|AB |=x 1+x 2+p 是抛物线过焦点的弦的弦长公式,其他情况该公式不成立.跟踪演练1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12. (1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 解 (1)由题意可知直线AM 的方程为y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4, 所以a =4.由椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M (2,3),可得416+9b 2=1,解得b 2=12.所以椭圆C 的方程为x 216+y 212=1.(2)设与直线AM 平行的直线方程为x -2y =m .如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立⎩⎪⎨⎪⎧x -2y =m ,x 216+y 212=1,可得3(m +2y )2+4y 2=48,化简可得16y 2+12my +3m 2-48=0, 所以Δ=144m 2-4×16(3m 2-48)=0, 即m 2=64,解得m =±8,与AM 距离比较远的直线方程为x -2y =8,点N 到直线AM 的距离即两平行线之间的距离, 即d =8+41+4=1255,由两点之间距离公式可得 |AM |=(2+4)2+32=3 5.所以△AMN 的面积的最大值为12×35×1255=18.考点二 中点弦问题 核心提炼已知A (x 1,y 1),B (x 2,y 2)为圆锥曲线E 上两点,AB 的中点C (x 0,y 0),直线AB 的斜率为k . 若E 的方程为x 2a 2+y 2b 2=1(a >b >0),则k =-b 2a 2·x 0y 0;若E 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则k =b 2a 2·x 0y 0;若E 的方程为y 2=2px (p >0),则k =py 0.例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63.(1)证明:a =3b ;(2)若点M ⎝⎛⎭⎫910,-310在椭圆C 的内部,过点M 的直线l 交椭圆C 于P ,Q 两点,M 为线段PQ 的中点,且OP ⊥OQ . ①求直线l 的方程; ②求椭圆C 的标准方程. (1)证明 ∵e =ca =c 2a 2=a 2-b 2a 2=1-⎝⎛⎭⎫b a 2=63,∴b a =33,∴a =3b . (2)解 ①由(1)知,椭圆C 的方程为x 23b 2+y 2b 2=1,即x 2+3y 2=3b 2, 当⎝⎛⎭⎫910,-310在椭圆C 的内部时,⎝⎛⎭⎫9102+3·⎝⎛⎭⎫-3102<3b 2,可得b >3010. 设点P (x 1,y 1),Q (x 2,y 2),则⎩⎨⎧x 1+x 22=910,y 1+y 22=-310,所以y 1+y 2x 1+x 2=-39,由已知可得⎩⎪⎨⎪⎧x 21+3y 21=3b 2,x 22+3y 22=3b 2,两式作差得(x 1+x 2)(x 1-x 2)+3(y 1+y 2)(y 1-y 2)=0, 所以y 1-y 2x 1-x 2=-x 1+x 23(y 1+y 2)=-13×⎝⎛⎭⎫-93=3,所以直线l 的方程为y -⎝⎛⎭⎫-310=3⎝⎛⎭⎫x -910, 即y =3x - 3.所以直线l 的方程为3x -y -3=0.②联立⎩⎨⎧x 2+3y 2=3b 2,y =3(x -1),消去y 可得10x 2-18x +9-3b 2=0. Δ=182-40(9-3b 2)=120b 2-36>0,由根与系数的关系可得x 1+x 2=95,x 1x 2=9-3b 210,又∵OP ⊥OQ ,而OP →=(x 1,y 1),OQ →=(x 2,y 2),∴OP →·OQ →=x 1x 2+y 1y 2=x 1x 2+3(x 1-1)·3(x 2-1)=4x 1x 2-3(x 1+x 2)+3 =2(9-3b 2)-27+155=6-6b 25=0,解得b 2=1,合乎题意,故a 2=3b 2=3, 因此椭圆C 的方程为x 23+y 2=1.规律方法 (1)处理中点弦问题常用的求解方法(2)中点弦问题常用的两种求解方法各有弊端:根与系数的关系在解题过程中易产生漏解,需关注直线的斜率问题;点差法在确定范围方面略显不足.跟踪演练2 (1)(2022·太原模拟)若过椭圆x 29+y 24=1内一点P (2,1)的弦被该点平分,则该弦所在的直线方程为( ) A .8x +9y -25=0 B .3x -4y -5=0 C .4x +3y -15=0 D .4x -3y -9=0答案 A解析 设弦的两端点分别为A (x 1,y 1),B (x 2,y 2),P 为AB 的中点,因为A ,B 在椭圆上,所以x 219+y 214=1,x 229+y 224=1,两式相减得x 21-x 229+y 21-y 224=0,因为x 1+x 2=4,y 1+y 2=2, 可得y 1-y 2x 1-x 2=-89,则k =-89,且过点P (2,1),所以y -1=-89(x -2),整理得8x +9y -25=0.(2)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,虚轴的上端点为B ,点P ,Q 在双曲线上,且点M (-2,1)为线段PQ 的中点,PQ ∥BF ,双曲线的离心率为e ,则e 2等于( ) A.2+12 B.3+12 C.2+22 D.5+12答案 A解析 方法一 由题意知F (c ,0),B (0,b ),则k PQ =k BF =-b c .设P (x 1,y 1),Q (x 2,y 2),则⎩⎨⎧x 21a 2-y 21b 2=1,x 22a 2-y22b 2=1,两式相减,得y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2).因为线段PQ 的中点为M (-2,1), 所以x 1+x 2=-4,y 1+y 2=2,又k PQ =y 1-y 2x 1-x 2=-b c ,所以-b c =-4b 22a 2,整理得a 2=2bc ,所以a 4=4b 2c 2=4c 2(c 2-a 2),即4e 4-4e 2-1=0,得e 2=2+12. 方法二 由题意知F (c ,0),B (0,b ),则k BF =-bc .设直线PQ 的方程为y -1=k (x +2), 即y =kx +2k +1, 代入双曲线方程,得(b 2-a 2k 2)x 2-2a 2k (2k +1)x -a 2(2k +1)2-a 2b 2=0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=-4,所以2a 2k (2k +1)b 2-a 2k 2=-4,又k =k BF =-b c ,所以2a 2·⎝⎛⎭⎫-b c ⎣⎡⎦⎤2·⎝⎛⎭⎫-b c +1=-4b 2+4a 2⎝⎛⎭⎫-b c 2, 整理得a 2=2bc ,所以c 2-b 2-2bc =0, 即⎝⎛⎭⎫c b 2-2c b -1=0,得cb=2+1, 则e 2=c 2a 2=c2c 2-b 2=⎝⎛⎭⎫c b 2⎝⎛⎭⎫c b 2-1=()2+12()2+12-1=2+12. 考点三 直线与圆锥曲线位置关系的应用 核心提炼直线与圆锥曲线位置关系的判定方法 (1)联立直线的方程与圆锥曲线的方程. (2)消元得到关于x 或y 的一元二次方程.(3)利用判别式Δ,判断直线与圆锥曲线的位置关系.例4 (1)已知直线l 与椭圆x 2a 2+y 2b 2=1(a >b >0)相切,与直线x =-a ,x =a 分别交于点M ,N ,F 为椭圆的左焦点,若以MN 为直径的圆为E ,则F ( ) A .在圆E 上 B .在圆E 内C .在圆E 外D .以上三种情况都有可能答案 A解析 显然直线l 的斜率存在,设直线l 的方程为y =kx +m , 由⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1,可得(a 2k 2+b 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0, 因为直线l 与椭圆相切,所以Δ=(2a 2km )2-4(a 2k 2+b 2)(a 2m 2-a 2b 2)=0, 故m 2=a 2k 2+b 2.易知F (-c ,0),M (-a ,-ak +m ), N (a ,ak +m ),则FM →=(c -a ,m -ak ),FN →=(c +a ,m +ak ),则FM →·FN →=c 2-a 2+m 2-a 2k 2=-b 2+a 2k 2+b 2-a 2k 2=0,故∠MFN =90°, 即点F 在圆E 上.(2)(多选)(2022·漳州龙海二中模拟)已知直线y =x 与双曲线x 2a 2-y 2b 2=1(a >0,b >0)无公共点,则双曲线的离心率可能为( )A .1 B. 2 C.62D. 3 答案 BC解析 双曲线的一条渐近线为y =b a x ,因为直线y =x 与双曲线无公共点,故有ba ≤1.即b 2a 2=c 2-a 2a 2=e 2-1≤1,所以e 2≤2, 所以1<e ≤ 2.易错提醒 (1)直线与双曲线只有一个交点,包含直线与双曲线相切或直线与双曲线的渐近线平行.(2)直线与抛物线只有一个交点包含直线与抛物线相切、直线与抛物线的对称轴平行(或重合). 跟踪演练3 (2022·沈阳模拟)已知A ,B 分别是椭圆C :x 24+y 2=1的右顶点和上顶点,P 为椭圆C 上一点,若△P AB 的面积是2-1,则P 点的个数为( ) A .0 B .2 C .3 D .4 答案 C解析 由C :x 24+y 2=1可得a =2,b =1 ,所以A (2,0),B (0,1),|AB |= 5 ,所以直线AB 的方程为y -1=-12x ,即y =-12x +1,设过点P 与直线AB 平行的直线l :y =-12x +t ,则直线l 与直线AB 的距离d =|t -1|1+14=25|t -1|, 因为点P 为直线l 与椭圆的交点, 所以点P 到直线AB 的距离为d , 因为△P AB 的面积是2-1,可得S △P AB =12×|AB |×d =12×5×25|t -1|=2-1,解得t =2或t =2-2,当t =2时,由⎩⎨⎧x 24+y 2=1,y =-12x +2,可得(x -2)2=0,解得⎩⎪⎨⎪⎧x =2,y =22,此时P ⎝⎛⎭⎫2,22,当t =2-2时,⎩⎨⎧x 24+y 2=1,y =-12x +2-2,可得x 2+(22-4)x +10-82=0,因为Δ=(22-4)2-4(10-82)=16(2-1)>0,此时直线l 与椭圆有2个交点,此时有2个点P ,所以共有3个点P .专题强化练一、单项选择题1.直线l 经过P (4,2)且与双曲线x 22-y 2=1交于M ,N 两点,如果点P 是线段MN 的中点,那么直线l 的方程为( ) A .x -y -2=0 B .x +y -6=0 C .2x -3y -2=0 D .不存在答案 A解析 当斜率不存在时,显然不符合题意; 当斜率存在时,设M (x 1,y 1),N (x 2,y 2), 因为点P 是线段MN 的中点, 所以x 1+x 2=8,y 1+y 2=4,代入双曲线方程得⎩⎨⎧x 212-y 21=1,x222-y 22=1,两式相减得x 21-x 22=2(y 21-y 22),则k =y 1-y 2x 1-x 2=x 1+x 22(y 1+y 2)=1,又直线过点P ,所以直线方程为y =x -2,联立⎩⎪⎨⎪⎧x 22-y 2=1,y =x -2,得到x 2-8x +10=0,经检验Δ>0,方程有解,所以直线y =x -2满足题意.2.已知F 是抛物线y 2=2px (p >0)的焦点,斜率为-2且经过焦点F 的直线l 交该抛物线于M ,N 两点,若|MN |=52,则该抛物线的方程是( )A .y 2=xB .y 2=2xC .y 2=4xD .y 2=6x答案 B解析 设直线l :y =-2x +p ,联立方程⎩⎪⎨⎪⎧y =-2x +p ,y 2=2px , 得4x 2-6px +p 2=0,设M (x M ,y M ),N (x N ,y N ),则x M +x N =6p 4=3p 2. 又|MN |=52, 所以x M +p 2+x N +p 2=5p 2=52, 所以p =1,所以所求抛物线的方程是y 2=2x .3.(2022·成都模拟)设O 为坐标原点,直线l 过定点(1,0),与抛物线C :y 2=2px (p >0)交于A ,B 两点,若OA ⊥OB ,则抛物线C 的准线方程为( )A .x =-14B .x =-12C .x =-1D .x =-2 答案 A解析 由题意可知直线l 的斜率不为0.设直线l :x =my +1,与y 2=2px (p >0)联立得y 2-2pmy -2p =0,Δ>0恒成立.设A (x 1,y 1),B (x 2,y 2),则y 1y 2=-2p .由OA ⊥OB ,得x 1x 2+y 1y 2=0,即y 212p ·y 222p+y 1y 2=0, 即4p 24p 2-2p =0,得p =12, 所以其准线方程为x =-14. 4.过椭圆内定点M 且长度为整数的弦,称作该椭圆过点M 的“好弦”.在椭圆x 264+y 216=1中,过点M (43,0)的所有“好弦”的长度之和为( )A .120B .130C .240D .260答案 C解析 由已知可得a =8,b =4,所以c =43,故M 为椭圆的右焦点,由椭圆的性质可得当过焦点的弦垂直于x 轴时弦长最短,所以当x =43时,最短的弦长为2b 2a =2×168=4, 当弦与x 轴重合时,弦长最长为2a =16,则弦长的取值范围为[4,16],故弦长为整数的弦有4到16的所有整数,则“好弦”的长度之和为4+16+(5+6+7+…+15)×2=240.5.已知过椭圆x 25+y 2=1的右焦点的直线l ,斜率存在且与椭圆交于A ,B 两点,若AB 的垂直平分线与x 轴交于点M ,则点M 横坐标的取值范围为( )A.⎣⎡⎦⎤0,85 B.⎝⎛⎦⎤-85,0 C.⎣⎡⎭⎫0,85 D.⎣⎡⎭⎫-85,0 答案 C解析 当直线AB 的斜率k =0时,即AB 为x 轴,则垂直平分线为y 轴,所以x M =0; 当直线AB 的斜率k ≠0 时,又斜率存在,则设直线方程为y =k (x -2),联立⎩⎪⎨⎪⎧x 2+5y 2=5,y =k (x -2),得(5k 2+1)x 2-20k 2x +20k 2-5=0, 由根与系数的关系得x 1+x 2=20k 25k 2+1,x 1x 2=20k 2-55k 2+1, 设N 为线段AB 的中点,所以x N =10k 25k 2+1,代入直线方程可得y N =-2k 5k 2+1, 则AB 的垂直平分线MN 的方程为y +2k 5k 2+1=-1k ⎝⎛⎭⎫x -10k 25k 2+1, 当y =0时,x =8k 25k 2+1=85+1k 2, 因为k 2>0,所以x ∈⎝⎛⎭⎫0,85, 综上所述,x ∈⎣⎡⎭⎫0,85, 即点M 横坐标的取值范围为⎣⎡⎭⎫0,85. 6.(2022·大连模拟)第24届冬季奥林匹克运动会,将在2022年2月4日在中华人民共和国北京市和张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京成为奥运史上第一个举办夏季奥林匹克运动会和冬季奥林匹克运动会的城市.同时中国也成为第一个实现奥运“全满贯”(先后举办奥运会、残奥会、青奥会、冬奥会、冬残奥会)的国家.根据规划,国家体育场(鸟巢)成为北京冬奥会开、闭幕式的场馆.国家体育场“鸟巢”的钢结构鸟瞰图如图所示,内外两圈的钢骨架是离心率相同的椭圆,若由外层椭圆长轴一端点A 和短轴一端点B 分别向内层椭圆引切线AC ,BD (如图),且两切线斜率之积等于-916,则椭圆的离心率为( )A.34B.74C.916D.32答案 B解析 若内层椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由离心率相同,可设外层椭圆方程为x 2(ma )2+y 2(mb )2=1(m >1),∴A (-ma ,0),B (0,mb ),设切线AC 为y =k 1(x +ma ),切线BD 为y =k 2x +mb ,∴⎩⎪⎨⎪⎧y =k 1(x +ma ),x 2a 2+y 2b 2=1,整理得(a 2k 21+b 2)x 2+2ma 3k 21x +m 2a 4k 21-a 2b 2=0,由Δ=0知, (2ma 3k 21)2-4(a 2k 21+b 2)(m 2a 4k 21-a 2b 2)=0, 整理得k 21=b 2a 2·1m 2-1, 同理,⎩⎪⎨⎪⎧y =k 2x +mb ,x 2a 2+y 2b 2=1,可得k 22=b 2a 2·(m 2-1), ∴(k 1k 2)2=b 4a 4=⎝⎛⎭⎫-9162,即b 2a 2=916,故e =c a =a 2-b 2a 2=74. 二、多项选择题7.(2022·兰州模拟)过抛物线C :y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,过A ,B 两点分别作抛物线C 的准线的垂线,垂足分别为M ,N ,若线段MN 的中点为P ,且线段FP 的长为4,则直线l 的方程为( )A .x +3y -1=0B .x -3y -1=0 C.3x -y -3=0 D.3x +y -3=0 答案 AB解析 由y 2=4x 得p =2,所以F (1,0),准线为x =-1,设直线l 的方程为x =ty +1,联立⎩⎪⎨⎪⎧x =ty +1,y 2=4x ,消去x 并整理得y 2-4ty -4=0,Δ=16t 2+16>0恒成立, 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4t ,所以y 1+y 22=2t , 依题意得M (-1,y 1),N (-1,y 2),则线段MN 的中点P (-1,2t ),因为|PF |=4,所以22+4t 2=4,解得t =±3,所以直线l 的方程为x +3y -1=0或x -3y -1=0.8.已知双曲线E :x 2a 2-y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-3,0),F 2(3,0),两条渐近线的夹角正切值为22,直线l :kx -y -3k =0与双曲线E 的右支交于A ,B 两点,设△F 1AB 的内心为I ,则( )A .双曲线E 的标准方程为x 26-y 23=1 B .满足|AB |=6的直线l 有2条C .IF 2⊥ABD .△F 1AB 与△IAB 的面积的比值的取值范围是(2,6]答案 ACD解析 A 选项,设双曲线E 的一条渐近线的倾斜角为θ,0<θ<π2,因为a >b ,所以0<2θ<π2,从而tan 2θ=2tan θ1-tan 2θ=22,解得tan θ=22或tan θ=-2(舍去),所以b a =22,又a 2+b 2=9,所以a 2=6,b 2=3,所以双曲线E 的标准方程为x 26-y 23=1,故A 正确;B 选项,直线l 的方程kx -y -3k =0,即k (x -3)-y =0,则直线l 恒过右焦点F 2,又过焦点F 2的弦最短为2b 2a =66=6,所以满足|AB |=6的直线l 只有1条,B 错误; C 选项,由双曲线的定义可知,|AF 1|-|AF 2|=26=|BF 1|-|BF 2|,即|AF 1|-|BF 1|=|AF 2|-|BF 2|,因此F 2是△F 1AB 的内切圆在AB 边上的切点,因此IF 2⊥AB ,C 正确;D 选项,由题意知1F ABIAB S S △△=12|IF 2|·(|AF 1|+|BF 1|+|AB |)12|IF 2|·|AB | =26+|AF 2|+26+|BF 2|+|AB ||AB |=46|AB |+2, 因为|AB |≥6,所以1F AB IAB S S △△∈(2,6],D 正确.三、填空题9.直线y =kx +1与椭圆x 24+y 2m=1总有公共点,则实数m 的取值范围是________. 答案 [1,4)∪(4,+∞)解析 直线y =kx +1过定点(0,1),故点(0,1)在椭圆x 24+y 2m=1上或内部, ∴1m≤1,且m >0,m ≠4, ∴m ≥1,且m ≠4.10.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.答案 53解析 由题意知椭圆的右焦点F 的坐标为(1,0),则直线AB 的方程为y =2x -2.联立⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得交点坐标为(0,-2),⎝⎛⎭⎫53,43, 不妨设A 点的纵坐标y A =-2,B 点的纵坐标y B =43, ∴S △OAB =12·|OF |·|y A -y B |=12×1×⎪⎪⎪⎪-2-43=53. 11.(2022·绵阳模拟)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)与抛物线C :y 2=2px (p >0)有共同的一焦点,过E 的左焦点且与曲线C 相切的直线恰与E 的一条渐近线平行,则E 的离心率为________.答案 2 解析 因为抛物线与双曲线共焦点,所以c =p 2,p =2c ,抛物线方程为y 2=4cx , 双曲线的左焦点为F 1(-c ,0),过F 1与一条渐近线y =b a x 平行的直线方程为y =b a(x +c ), 由⎩⎪⎨⎪⎧y 2=4cx ,y =b a (x +c ),得by 2-4acy +4bc 2=0, 所以Δ=16a 2c 2-16b 2c 2=0,所以a =b ,从而c =a 2+b 2=2a ,离心率为e =c a = 2.12.已知直线y =kx +2(k >0)与抛物线C :x 2=8y 相交于A ,B 两点,点F 为C 的焦点,|F A |=4|FB |,则k =________.答案 34解析 设A (x 1,y 1),B (x 2,y 2),由题意知抛物线的焦点坐标为F (0,2),直线y =kx +2(k >0)与抛物线C :x 2=8y 联立方程得x 2-8kx -16=0,所以x 1+x 2=8k ,x 1x 2=-16,所以y 1+y 2=k (x 1+x 2)+4=8k 2+4,y 1y 2=(kx 1+2)·(kx 2+2)=4,又因为|F A |=4|FB |,所以y 1+2=4(y 2+2),即y 1=4y 2+6,所以由y 1=4y 2+6和y 1y 2=4,解得y 1=8,y 2=12(负值舍去), 所以y 1+y 2=8k 2+4=8+12,解得k 2=916,所以k =34. 四、解答题13.已知点A (0,2),B 为抛物线x 2=2y -2上任意一点,且B 为AC 的中点,设动点C 的轨迹为曲线E .(1)求曲线E 的方程;(2)A 关于直线y =x 的对称点为D ,斜率为12的直线l 交曲线E 于M ,N 两点,且△MDN 是以MN 为底边的等腰三角形,求△MDN 的面积.解 (1)设C (x ,y ),B (m ,n ),∵B 是AC 的中点,∴⎩⎨⎧m =x 2,n =y +22,∵B 在抛物线x 2=2y -2上,∴m 2=2n -2,∴x 24=2×2+y 2-2, ∴曲线E 的方程为x 2=4y .(2)由题意得D (2,0), 设l :y =12x +t ,M (x 1,y 1),N (x 2,y 2), 联立⎩⎪⎨⎪⎧y =12x +t ,x 2=4y ,得x 2-2x -4t =0, ∴x 1+x 2=2,x 1x 2=-4t ,Δ=4+16t >0,∴y 1+y 2=12(x 1+x 2)+2t =1+2t . 设MN 的中点为P ,则P ⎝⎛⎭⎫1,12+t , ∵△MDN 是以MN 为底边的等腰三角形,则k DP ·k MN =-1,∴12+t 1-2·12=-1,解得t =32,符合Δ>0. ∴x 2-2x -6=0,∴|MN |=1+⎝⎛⎭⎫122·|x 1-x 2|=1+14·4-4×(-6)=35,|DP |=5, ∴S △MDN =12×35×5=572. 14.设中心在原点,焦点在x 轴上的椭圆E 过点⎝⎛⎭⎫1,32,且离心率为32,F 为E 的右焦点,P 为E 上一点,PF ⊥x 轴,圆F 的半径为PF .(1)求椭圆E 和圆F 的方程;(2)若直线l :y =k (x -3)(k >0)与圆F 交于A ,B 两点,与椭圆E 交于C ,D 两点,其中A ,C 在第一象限,是否存在k 使|AC |=|BD |?若存在,求l 的方程;若不存在,请说明理由.解 (1)由题意可设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0), 如图,由e =32,即c a =32, 再由a 2=b 2+c 2,可得a =2b ,①将点⎝⎛⎭⎫1,32代入椭圆方程,可得1a 2+34b 2=1,② 由①②可解得a =2,b =1,故椭圆E 的方程为x 24+y 2=1, ∴F (3,0),∵PF ⊥x 轴,∴P ⎝⎛⎭⎫3,±12,∴圆F 的方程为(x -3)2+y 2=14. (2)由A ,B 在圆上得|AF |=|BF |=|PF |=r =12, 设C (x 1,y 1),D (x 2,y 2),则|CF |=(x 1-3)2+y 21=2-32x 1, 同理|DF |=2-32x 2, 若|AC |=|BD |,则|AC |+|BC |=|BD |+|BC |, 即|AB |=|CD |=1,∴4-32(x 1+x 2)=1,∴x 1+x 2=2 3. 由⎩⎪⎨⎪⎧ x 24+y 2=1,y =k (x -3),得(4k 2+1)x 2-83k 2x +12k 2-4=0,∴x 1+x 2=83k 24k 2+1, ∴83k 24k 2+1=23, 得4k 2=4k 2+1,无解,故不存在.。
圆锥曲线的定点、定值问题(解析版)
2020上学期期末复习专题1 圆锥曲线的定点、定值问题(教师版)一.知识梳理1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (或x )得到一个关于变量x (或y )的一元方程.例:由⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则: Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时, 若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行; 若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合. 2.弦长公式设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |= 1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2或|AB |=1+1k2·|y 1-y 2|= 1+1k2·(y 1+y 2)2-4y 1y 2. 3.定点问题(1)参数法:参数法解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中的核心变量(此处设为k );②利用条件找到k 与过定点的曲线F (x ,y )=0之间的关系,得到关于k 与x ,y 的等式,再研究变化量与参数何时没有关系,找到定点.(2)由特殊到一般法:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.4.定值问题(1)直接消参求定值:常见定值问题的处理方法:①确定一个(或两个)变量为核心变量,其余量均利用条件用核心变量进行表示;②将所求表达式用核心变量进行表示(有的甚至就是核心变量),然后进行化简,看能否得到一个常数.(2)从特殊到一般求定值:常用处理技巧:①在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;②巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算.二.题型归纳题型1 “设参→用参→消参”三步解决圆锥曲线中的定点问题【例1-1】已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点. (1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.[解] (1)因为抛物线2y =2px (p >0)的焦点坐标为F (1,0),所以p2=1,所以p =2.所以抛物线C 的方程为2y =4x .(2)证明:①当直线AB 的斜率不存在时,设A ⎪⎪⎭⎫ ⎝⎛t t ,42,B ⎪⎪⎭⎫⎝⎛-t t ,42. 因为直线OA ,OB 的斜率之积为-12,所以214422-=-⋅t t t t ,化简得2t =32.所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A ()A A ,y x ,B ()B B ,y x ,联立⎩⎨⎧+==bkx y x y 42,消去x ,化简得ky 2-4y +4b =0.所以B A y y =4bk ,因为直线OA ,OB 的斜率之积为-12,所以21-=⋅B B A A x y x y ,整理得B A x x +2B A y y =0.即024422=+⋅B A B A y y yy ,解得B A y y =0(舍去)或B A y y =-32.所以B A y y =4bk=-32,即b =-8k ,所以y =kx -8k ,即y =k (x -8).综上所述,直线AB 过定点(8,0).【跟踪训练1-1】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (3,0),长半轴长与短半轴长的比值为2.(1)求椭圆C 的标准方程;(2)设不经过点B (0,1)的直线l 与椭圆C 相交于不同的两点M ,N ,若点B 在以线段MN 为直径的圆上,证明:直线l 过定点,并求出该定点的坐标.【解】(1)由题意得,c =3,a b=2,a 2=b 2+c 2,∴a =2,b =1, ∴椭圆C 的标准方程为x 24+y 2=1.(2)当直线l 的斜率存在时,设直线l 的方程为y =kx +m (m ≠1),M (x 1,y 1),N (x 2,y 2). 联立⎩⎨⎧y =kx +m ,x 2+4y 2=4,消去y ,可得(4k 2+1)x 2+8kmx +4m 2-4=0.∴Δ=16(4k 2+1-m 2)>0,x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.∵点B 在以线段MN 为直径的圆上,∴BM ―→·BN ―→=0. ∵BM ―→·BN ―→=(x 1,kx 1+m -1)·(x 2,kx 2+m -1) =(k 2+1)x 1x 2+k (m -1)(x 1+x 2)+(m -1)2=0,∴(k 2+1)4m 2-44k 2+1+k (m -1)-8km4k 2+1+(m -1)2=0,整理,得5m 2-2m -3=0,解得m =-35或m =1(舍去).∴直线l 的方程为y =kx -35.易知当直线l 的斜率不存在时,不符合题意.故直线l 过定点,且该定点的坐标为⎪⎭⎫ ⎝⎛-530,.【总结归纳】定点问题实质及求解步骤解析几何中的定点问题实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动.这类问题的求解一般可分为以下三步:题型2 “设参→用参→消参”三步解决圆锥曲线中的定值问题【例2-1】设O 为坐标原点,动点M 在椭圆x 29+y 24=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NM 2=(1)求点P 的轨迹E 的方程;(2)过F (1,0)的直线l 1与点P 的轨迹交于A ,B 两点,过F (1,0)作与l 1垂直的直线l 2与 点P 的轨迹交于C ,D 两点,求证:1|AB |+1|CD |为定值.[解] (1)设P(x ,y),M(x 0,y 0),则N(x 0,0).∵NP ―→= 2 NM ―→,∴(x -x 0,y)=2(0,y 0),∴x 0=x ,y 0=y 2.又点M 在椭圆上,∴142922=⎪⎭⎫ ⎝⎛+y x ,即x 29+y 28=1.∴点P 的轨迹E 的方程为x 29+y 28=1.(2)证明:由(1)知F 为椭圆x 29+y 28=1的右焦点,当直线l 1与x 轴重合时,|AB|=6,|CD|=2b 2a =163,∴1|AB|+1|CD|=1748.当直线l 1与x 轴垂直时,|AB|=163,|CD|=6,∴1|AB|+1|CD|=1748. 当直线l 1与x 轴不垂直也不重合时,可设直线l 1的方程为y =k(x -1)(k ≠0), 则直线l 2的方程为y =-1k(x -1),设A(x 1,y 1),B(x 2,y 2),联立⎩⎨⎧y =k x -1,x 29+y28=1消去y ,得(8+9k 2)x 2-18k 2x +9k 2-72=0,则Δ=(-18k 2)2-4(8+9k 2)(9k 2-72)=2 304(k 2+1)>0, x 1+x 2=18k 28+9k 2,x 1x 2=9k 2-728+9k 2,∴|AB|= 1+k 2·x 1+x 22-4x 1x 2=481+k 28+9k 2.同理可得|CD|=481+k 29+8k 2.∴1|AB|+1|CD|=8+9k 248k 2+1+9+8k 248k 2+1=1748.综上可得1|AB|+1|CD|为定值. 【跟踪训练2-1】已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)如图所示,点D 为x 轴上一点,过点D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过点D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为定值,并求出该定值.【解】(1)设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧a =2,c a =32,b 2+c 2=a 2,解得⎩⎨⎧b =1,c =3,所以椭圆C 的方程为x 24+y 2=1.(2)法一:设D (x 0,0),M (x 0,y 0),N (x 0,-y 0),-2<x 0<2,所以k AM =y 0x 0+2,因为AM ⊥DE ,所以k DE =-2+x 0y 0,所以直线DE 的方程为y =-2+x 0y 0(x -x 0). 因为k BN =-y 0x 0-2,所以直线BN 的方程为y =-y 0x 0-2(x -2).由⎩⎨⎧y =-2+x0y(x -x 0),y =-y0x 0-2(x -2),解得E ⎝⎛⎭⎫45x 0+25,-45y 0, 所以S △BDE S △BDN =12|BD |·|y E |12|BD |·|y N |=⎪⎪⎪⎪-45y 0|-y 0|=45.故△BDE 与△BDN 的面积之比为定值45.法二:设M (2cos θ,sin θ)(θ≠k π,k ∈Z ),则D (2cos θ,0),N (2cos θ,-sin θ), 设BE ―→=λBN ―→,则DE ―→=DB ―→+BE ―→=DB ―→+λBN ―→=(2-2cos θ,0)+λ(2cos θ-2,-sin θ) =(2-2cos θ+2λcos θ-2λ,-λsin θ).又AM ―→=(2cos θ+2,sin θ),由AM ―→⊥DE ―→,得AM ―→·DE ―→=0,从而[(2-2cos θ)+λ(2cos θ-2)](2cos θ+2)-λsin 2θ=0,整理得4sin 2θ-4λsin 2θ-λsin 2θ=0, 即5λsin 2θ=4sin 2θ.,所以λ=45,所以S △BDE S △BDN =|BE ||BN |=45.故△BDE 与△BDN 的面积之比为定值45.【总结归纳】定值问题实质及求解步骤定值问题一般是指在求解解析几何问题的过程中,探究某些几何量(斜率、距离、面积、比值等)与变量(斜率、点的坐标等)无关的问题.其求解步骤一般为:题型三 探索性问题例3.已知圆M 的圆心在直线2x -y -6=0上,且过点(1,2),(4,-1). (1) 求圆M 的方程;(2) 设P 为圆M 上任一点,过点P 向圆O :x 2+y 2=1引切线,切点为Q .试探究:平面内是否存在一定点R ,使得PQPR 为定值.若存在,求出点R 的坐标;若不存在,请说明理由. 解析:(1) 因为圆M 的圆心在直线2x -y -6=0上,且过点(1,2),(4,-1), 所以设圆心坐标为(m,2m -6),半径为r , 则圆的标准方程为(x -m )2+(y -2m +6)2=r 2.则(1-m )2+(2-2m +6)2=r 2且(4-m )2+(-1-2m +6)2=r 2, 即(m -1)2+(8-2m )2=r 2且(m -4)2+(5-2m )2=r 2, 解得m =4,r =3.所以圆M :(x -4)2+(y -2)2=9.(2) 设P (x ,y ),R (a ,b ),则(x -4)2+(y -2)2=9,即x 2+y 2=8x +4y -11. 又PQ 2=x 2+y 2-1,PR 2=(x -a )2+(y -b )2=x 2+y 2-2ax -2by +a 2+b 2, 故PQ 2=8x +4y -12,PR 2=(8-2a )x +(4-2b )y +a 2+b 2-11.又设PQPR =t 为定值,故8x +4y -12=t 2[(8-2a )x +(4-2b )y +a 2+b 2-11]. 因为上式对圆M 上任意点P (x ,y )都成立,可得⎩⎪⎨⎪⎧8=(8-2a )t 2,4=(4-2b )t 2,-12=(a 2+b 2-11)t 2,解得⎩⎪⎨⎪⎧a 1=2,b 1=1,t 1=2或⎩⎪⎪⎪⎨⎪⎪⎪⎧a 2=25,b 2=15,t 2=103.综上,存在点R (2,1)或R ⎝ ⎛⎭⎪⎫25,15满足题意.跟踪训练3:已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点⎝⎛⎭⎫1,32,离心率为32. (1) 求椭圆C 的方程;(2) 直线y =k (x -1)(k ≠0)与椭圆C 交于A ,B 两点,点M 是椭圆C 的右顶点.直线AM 与直线BM 分别与y 轴交于点P ,Q ,试问:以线段PQ 为直径的圆是否过x 轴上的定点?若是,求出定点坐标;若不是,请说明理由.解析:(1) 由题意得⎩⎪⎨⎪⎧ca =32,1a 2+34b 2=1,解得a =2,b =1.所以椭圆C 的方程是x 24+y 2=1.(2) 以线段PQ 为直径的圆过x 轴上的定点. 由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 2=1得(1+4k 2)x 2-8k 2x +4k 2-4=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2.又因为点M 是椭圆C 的右顶点,所以点M (2,0).由题意可知直线AM 的方程为y =y 1x 1-2(x -2),故点P ⎝ ⎛⎭⎪⎪⎫0,-2y 1x 1-2. 直线BM 的方程为y =y 2x 2-2(x -2),故点Q ⎝ ⎛⎭⎪⎪⎫0,-2y 2x 2-2. 若以线段PQ 为直径的圆过x 轴上的定点N (x 0,0),则等价于PN →·QN →=0恒成立.又因为PN →=⎝⎛⎭⎪⎪⎫x 0,2y 1x 1-2,QN →=⎝⎛⎭⎪⎪⎫x 0,2y 2x 2-2,所以PN →·QN →=x 20+2y 1x 1-2·2y 2x 2-2=x 20+4y 1y 2(x 1-2)(x 2-2)=0恒成立. 又因为(x 1-2)(x 2-2)=x 1x 2-2(x 1+x 2)+4=4k 2-41+4k 2-28k 21+4k 2+4=4k 21+4k 2,y 1y 2=k (x 1-1)k (x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=k 2⎝ ⎛⎭⎪⎪⎫4k2-41+4k 2-8k 21+4k 2+1=-3k 21+4k2,所以x 20+4y 1y 2(x 1-2)(x 2-2)=x 20+-12k 21+4k 24k 21+4k 2=x 20-3=0,解得x 0=±3. 故以线段PQ 为直径的圆过x 轴上的定点(±3,0).圆锥曲线定点定值问题作业1. 如图,平行四边形AMBN 的周长为8,点M ,N 的坐标分别为(-3,0),(3,0). (1) 求点A ,B 所在的曲线L 的方程;(2) 过L 上点C (-2,0)的直线l 与L 交于另一点D ,与y 轴交于点E ,且l ∥OA .求证:CD ·CEOA 2为定值.解析:(1) 因为四边形AMBN 是平行四边形,周长为8,所以A ,B 两点到M ,N 的距离之和均为4>23,可知所求曲线为椭圆. 由椭圆定义可知,a =2,c =3,b =1.曲线L 的方程为x24+y 2=1(y ≠0).(2) 由已知可知直线l 的斜率存在.因为直线l 过点C (-2,0),设直线l 的方程为y =k (x +2),代入曲线方程x 24+y 2=1(y ≠0),并整理得(1+4k 2)x 2+16k 2x +16k 2-4=0. 因为点C (-2,0)在曲线L 上,则D ⎝ ⎛⎭⎪⎪⎫-8k 2+21+4k2,4k 1+4k 2,E (0,2k ), 所以CD =41+k 21+4k2,CE =21+k 2. 因为OA ∥l ,所以设OA 的方程为y =kx ,代入曲线L 的方程,并整理得(1+4k 2)x 2=4. 所以x 2A =41+4k 2,y 2A =4k 21+4k 2,所以OA 2=4+4k 21+4k2,化简得CD ·CE OA 2=2,所以CD ·CE OA 2为定值.说明:本题考查用定义法求椭圆方程知识及直线与椭圆相交的有关线段的计算与证明.2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴是短轴的两倍,点A ⎝ ⎛⎭⎪⎫3,12在椭圆C 上.不过原点的直线l 与椭圆C 相交于A ,B 两点,设直线OA ,l ,OB 的斜率分别为k 1,k ,k 2,且k 1,k ,k 2恰好构成等比数列. (1) 求椭圆C 的方程;(2) 试判断OA 2+OB 2是否为定值.若是,求出这个值;若不是,请说明理由.解析:(1) 由题意知a =2b 且3a 2+14b 2=1,所以b 2=1,所以椭圆C 的方程为x 24+y 2=1. (2) 设直线l 的方程为y =kx +m ,m ≠0,A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4, 整理得(1+4k 2)x 2+8km x +4m 2-4=0,所以x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k2且Δ=16(1+4k 2-m 2)>0.解析:(1) 由题意知a =2b 且3a 2+14b 2=1,所以b 2=1,所以椭圆C 的方程为x 24+y 2=1.(2) 设直线l 的方程为y =kx +m ,m ≠0,A (x 1,y 1),B (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4,整理得(1+4k 2)x 2+8km x +4m 2-4=0,所以x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k2且Δ=16(1+4k 2-m 2)>0.此时Δ=16(2-m 2)>0,即m ∈(-2,2),所以⎩⎪⎨⎪⎧x 1+x 2=±2m ,x 1x 2=2m 2-2.又OA 2+OB 2=x 21+y 21+x 22+y 22=34(x 21+x 22)+2=34[(x 1+x 2)2-2x 1x 2]+2=5, 所以OA 2+OB 2是定值,且为5.3.过椭圆x 2a 2+y 2b 2=1的右焦点F 作斜率k =-1的直线交椭圆于A ,B 两点,且OA →+OB →与a =⎝ ⎛⎭⎪⎫1,13共线.(1)求椭圆的离心率;(2)设P 为椭圆上任意一点,且OP →=mOA →+nOB →(m ,n ∈R ),证明:m 2+n 2为定值. 解 (1)设AB :y =-x +c ,直线AB 交椭圆于两点,A (x 1,y 1),B (x 2,y 2)⎩⎪⎨⎪⎧b 2x 2+a 2y 2=a 2b2y =-x +c⇒b 2x 2+a 2(-x +c )2=a 2b 2,(b 2+a 2)x 2-2a 2cx +a 2c 2-a 2b 2=0x 1+x 2=2a 2c a 2+b 2,x 1x 2=a 2c 2-a 2b 2a 2+b 2, OA →+OB →=(x 1+x 2,y 1+y 2)与a =⎝ ⎛⎭⎪⎫1,13共线,3(y 1+y 2)-(x 1+x 2)=0,3(-x 1+c -x 2+c )-(x 1+x 2)=0,即 x 1+x 2=3c 2,a 2=3b 2,c =a 2-b 2=6a 3,e =c a =63.(2)证明:a 2=3b 2,椭圆方程为x 2+3y 2=3b 2,设M (x ,y )为椭圆上任意一点,OM →=(x ,y ),OM →=mOA →+nOB →,(x ,y )=(mx 1+nx 2,my 1+ny 2),点M (x ,y )在椭圆上,(mx 1+nx 2)2+3(my 1+ny 2)2=3b 2,即m 2(x 21+3y 21)+n 2(x 22+3y 22)+2mn (x 1x 2+3y 1y 2)=3b 2. ∴x 1+x 2=3c 2,a 2=32c 2,b 2=12c 2,x 1x 2=a 2c 2-a 2b 2a 2+b 2=38c 2,∴x 1x 2+3y 1y 2=x 1x 2+3(-x 1+c )(-x 2+c )=4x 1x 2-3c (x 1+x 2)+3c 2=32c 2-92c 2+3c 2=0,将x 21+3y 21=3b 2,x 22+3y 22=3b 2代入得 3b 2m 2+3b 2n 2=3b 2,即m 2+n 2=1.3.在直角坐标系xOy 中,已知椭圆E 的中心在原点,长轴长为8,椭圆在x 轴上的两个焦点与短轴的一个顶点构成等边三角形. (1)求椭圆的标准方程;(2)过椭圆内一点M (1,3)的直线与椭圆E 交于不同的A ,B 两点,交直线y =-14x 于点N ,若NA →=mAM →,NB →=nBM →,求证:m +n 为定值,并求出此定值. 解 (1)因为长轴长为8,所以2a =8,a =4, 又因为两个焦点与短轴的一个顶点构成等边三角形, 所以b =32a =23,由于椭圆焦点在x 轴上, 所以椭圆的标准方程为x 216+y 212=1. (2)设A (x 1,y 1),B (x 2,y 2),N ⎝⎛⎭⎫x 0,-14x 0, 由NA →=mAM →,得⎝⎛⎭⎫x 1-x 0,y 1+14x 0=m (1-x 1,3-y 1),所以x 1=m +x 0m +1,y 1=3m -14x 0m +1,所以A ⎝ ⎛⎭⎪⎪⎫m +x 0m +1,3m -14x 0m +1, 因为点A 在椭圆x 216+y 212=1上,所以得到⎝ ⎛⎭⎪⎫m +x 0m +1216+⎝ ⎛⎭⎪⎪⎫3m -14x 0m +1212=1,得到9m 2+96m +48-134x 20=0;同理,由NB →=nBM →,可得9n 2+96n +48-134x 20=0, 所以m ,n 可看作是关于x 的方程9x 2+96x +48-134x 20=0的两个根, 所以m +n =-969=-323,为定值.4. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(0,-3),点F 是椭圆的右焦点,点F 到左顶点的距离和到右准线的距离相等.过点F 的直线l 交椭圆于M ,N 两点.(1) 求椭圆C 的标准方程;(2) 若直线l 上存在点P 满足PM ·PN =PF 2,且点P 在椭圆外,证明:点P 在定直线上.解析:(1) 设椭圆的焦距为2c .由椭圆经过点(0,-3)得b = 3. ①由点F 到左顶点的距离和到右准线的距离相等,得a +c =a 2c -c . ② 又a 2=b 2+c 2, ③由①②③可得a =2,c =1,所以椭圆C 的标准方程为x 24+y 23=1.(2) 法一:当直线l 的斜率为0时,则M (2,0),N (-2,0),设P (x 0,y 0),则PM ·PN =|(x 0-2)(x 0+2)|.因为点P 在椭圆外,所以x 0-2,x 0+2同号,又PF 2=(x 0-1)2,所以|(x 0-2)(x 0+2)|=(x 0-1)2,解得x 0=52. 当直线l 的斜率不为0时,因为y 1+y 2=-6m3m 2+4,y 1y 2=-93m 2+4,PM =1+m 2|y 1-y 0|,PN =1+m 2|y 2-y 0|,PF =1+m 2|y 0|.因为点P 在椭圆外,所以y 1-y 0,y 2-y 0同号,所以PM ·PN =(1+m 2)(y 1-y 0)(y 2-y 0)=(1+m 2)[y 1y 2-y 0(y 1+y 2)+y 20]=(1+m 2)⎝ ⎛⎭⎪⎪⎫y 20+6m3m 2+4-93m 2+4, 代入PM ·PN =PF 2得(1+m 2)⎝ ⎛⎭⎪⎪⎫y 20+6m3m 2+4-93m 2+4=(1+m 2)y 20,整理得y 0=32m ,代入直线方程得x 0=52.所以点P 在定直线x =52上.法二:当直线l ⊥x 轴,则M ⎝ ⎛⎭⎪⎫1,32,N ⎝ ⎛⎭⎪⎫1,-32,则PM ·PN =⎪⎪⎪⎪⎪⎪y 0-32⎪⎪⎪⎪⎪⎪y 0+32.又PF 2=y 20,所以PM ·PN =PF 2不成立,不合题意. 当直线l 与x 轴不垂直时,设P (x 0,y 0),M (x 1,y 1),N (x 2,y 2).设直线l 的方程为y =k (x -1),与椭圆x 24+y 23=1联立并消去y 得 (3+4k 2)x 2-8k 2x +4k 2-12=0.因为Δ=64k 4-4(3+4k 2)(4k 2-12)=16k 4+108k 2+108>0, 所以x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,所以PM =1+k 2|x 1-x 0|,PN =1+k 2|x 2-x 0|,PF =1+k 2|x 0-1|. 因为点P 在椭圆外,所以x 1-x 0,x 2-x 0同号,所以PM ·PN =(1+k 2)(x 1-x 0)(x 2-x 0)=(1+k 2)[x 1x 2-x 0(x 1+x 2)+x 20] =(1+k 2)⎝ ⎛⎭⎪⎪⎫x 20-8k 23+4k 2+4k 2-123+4k 2.代入PM ·PN =PF 2得(1+k 2)⎝ ⎛⎭⎪⎪⎫x 20-8k 23+4k 2+4k 2-123+4k 2=(1+k 2)(x 20)(x 20-2x 0+1), 整理得x 0=52,所以点P 在定直线x =52上.。
直线与圆锥曲线的位置关系的判定复习课教案
①掌握点与椭圆、双曲线、抛物线位置关系的判定方法:代数方法②掌握直线与椭圆、双曲线、抛物线位置关系(交点个数) 的判定方法:代数方法和几何法(数型结合方法)。
③掌握直线与椭圆、双曲线、抛物线位置关系的常见题型的解题思路与方法,会根据直线与圆锥曲线的位置确定参数的值(或范围)。
①培养学生运算能力、探索能力,分析问题解决问题的能力;②培养学生数形结合思想、转化思想函数方程思想及分类讨论思想。
①培养学生运动变化观点;②培养学生认识事物的特殊性与一般性规律。
直线与圆锥曲线位置关系的判定是高中数学的重点内容,是高考数学考查的重要内容,在高考试卷中占有相当的分量。
该内容经常与方程组的解的讨论、方程的区间根、直线的斜率,以及数形结合思想,分类讨论思想、转化化归思想、函数方程思想方法等知识相结合。
该内容知识的综合性、应用性较强,是学生学习的难点之一。
点、直线与圆锥曲线位置关系的判定方法,以及判定方法的灵活应用。
直线与圆锥曲线在某个区间内有交点的问题。
求参数的取值范围。
根据本内容的特点结合学生的实际,采用讲解和学生讨论探索,最后教师总结归纳的教学方法。
指导学生掌握通性,同时注重对一题多解和一题多变的训练,培养思维能力。
<>1、给出下列曲线:① 4x+2y-1=0 , ② ,③⑤=2x. 其中与直线 y=-2x-3 有交点的所有曲线是(A .①③ B.②④⑤ C.①②③ D.②③④2①若题目中没给出直线方程,假设直线方程时应对直线方程的斜率存在和不存在两种情况进行分类讨论。
②对于研究给定区间的位置关系问题,应转化为方程ax2+bx+c=0 的区间根问题,结合二次函数图象加以解决。
联立方程,消去x或y,得到关于x (或y)的方程ax2+bx+c=0 (或ay2+by+c=0)。
(1)当a=0 时 (2)当 a ≠0 时3<1>判断直线与圆锥曲线交点个数;<2>证明直线与圆锥曲线的位置关系;<3>已知直线与圆锥曲线的位置关系,求直线方程(或确定参数的值);<4>已知直线与圆锥曲线的位置关系,求参数的取值范围。
《直线与圆锥曲线的位置》课件1 (北师大版必修2).ppt
时,直线与抛物线无公共点。
点评:本题利用方程思想及数形结合的思想解决问题。尤其是k=0时 直线与抛物线有一个公共点,而k=0时,⊿>0.
例2.已知:A(-3,4),B(4,4)若线段AB与椭圆
没有公共点。求正数a的取值范围。
Hale Waihona Puke 解:线段AB的方程为 y=4 (-3≤x≤4) 得:x =a2 - 8
ⅰ.当a2 -8<0时,方程组无解,即 ⅱ.当a2 -8>4 时,方程组无解,即
例4.过点(0,2)的直线l与抛物线 y =4x2仅有一个公共点,则
满足条件的直线l有 ( ) A. 1条 B. 2条 C. 3条 D. 4条
解:观察演示 选C
例5.不论k为何值,直线y=kx+b 与椭圆 总有公共点,求b的取值范围。
解:观察演示可得:
例6.过双曲线
的右焦点作直线l交双曲线于 A、B两
直线与圆锥曲线的位置关系
一. 基本方法: 1. 直线与圆锥曲线的位置关系可以通过对直线方 程与圆锥曲线方程组成的二元二次方程组的解的 情况的讨论来研究。即方程消元后得到一个一元 二次方程,利用判别式⊿来讨论(注⊿≠0时,未 必只有二个交点)。 2. 直线与圆锥曲线的位置关系,还可以利用数形 结合、以形助数的方法来解并决。 3. 如果直线的斜率为k,被圆锥曲线截得弦AB两 端点坐标分别为(x1,y1)、(x2,y2)则弦长公式为:
点,|AB|=4 ,则这样的直线存在( ) A.一条 B.二条 C.三条 D.四条
解:观察演示可得三条。选C
四.总结:
1. 利用基本方法,如对方程组解的讨论、弦长公式等是解决问题的基本方法。 2. 数形结合、以形助数是我们解决问题的一个重要思想。
新教材高中数学第二章直线与圆锥曲线的位置关系课件新人教B版选择性必修第一册ppt
2.中点弦问题常用的求解方法 (1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中 含有 x1+x2,y1+y2,yx11--yx22 三个未知量,这样就直接联系了中点和直线的斜率, 借用中点公式即可求得斜率. (2)根与系数的关系法:即联立直线与圆锥曲线的方程得到方程组,化为一元二次 方程后由根与系数的关系求解.
y=kx-k+1, 即 y=kx-k+1,联立方程x2-y42=1,
消去 y 得:(4-k2)x2-2k(1-k)x-[(1-k)2+4]=0, 因为直线 l 和双曲线 Γ 有且仅有一个公共点, 所以 Δ=4k2(1-k)2+4(4-k2)[(1-k)2+4]=0, 化简得:80-32k=0,所以 k=25 , 所以直线 l 的方程为:y=52 x-23 ,即 5x-2y-3=0.
(2)由A→P =3P→B 可得 y1=-3y2.
由y=32x+t, 可得 y2-2y+2t=0. y2=3x,
所以 y1+y2=2.从而-3y2+y2=2,故 y2=-1,y1=3.
代入 C 的方程得 x1=3,x2=31 .
故|AB|=4
13 3
.
角度 2 中点弦问题 【典例】已知 P(1,1)为椭圆x42 +y22 =1 内一定点,经过 P 引一条弦,使此弦被 P 点平分,则此弦所在的直线方程为________.
1.斜率为 1 的直线 l 与椭圆x42 +y2=1 相交于 A,B 两点,则|AB|的最大值为(
)
A.2 B.45 5
C.4
10 5
D.8
10 5
【解析】选 C.设 A,B 两点的坐标分别为(x1,y1),(x2,y2), 直线 l 的方程为 y=x+t, 由xy=2+x4+y2t=,4, 消去 y,得 5x2+8tx+4(t2-1)=0, 则 x1+x2=-85 t,x1x2=4(t25-1) . 所以|AB|= 1+k2 |x1-x2|
(完整版)圆锥曲线知识点总结
高中数学圆锥曲线选知识点总结一、椭圆1、定义:平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.即:|)|2(,2||||2121F F a a MF MF >=+。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:2222二、双曲线1、定义:平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。
这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.2、双曲线的几何性质:22x y 22y x 5、实轴和虚轴等长的双曲线称为等轴双曲线. 三、抛物线1、定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.2、抛物线的几何性质:3、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =.4、关于抛物线焦点弦的几个结论:设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则⑴ 221212,;4p x x y y p ==- ⑵ 22;sin p AB θ= ⑶ 以AB 为直径的圆与准线相切; ⑷ 焦点F 对A B 、在准线上射影的张角为2π;⑸112.||||FA FB P+= 四、直线与圆锥曲线的位置关系⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧繁琐)利用两点间距离公式(易)利用一般弦长公式(容弦长问题直线与圆锥曲线相交的系)直线与圆锥曲线位置关代数角度(适用于所有)位置关系主要适用于直线与圆的(几何角度关系直线与圆锥曲线的位置直线与圆锥曲线.12.直线与圆锥曲线的位置关系:⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。
新教材高中数学第三章圆锥曲线的方程章末复习练习含解析新人教A版选择性必修第一册
章末复习一、圆锥曲线的定义及标准方程 1.求圆锥曲线方程的常用方法(1)直接法:动点满足的几何条件本身就是几何量的等量关系,只需把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程.(2)定义法:动点满足已知曲线的定义,可先设定方程,再确定其中的基本量.(3)代入法:动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的.如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程.(4)待定系数法:根据条件能确定曲线的类型,可设出方程形式,再根据条件确定待定的系数. 2.求圆锥曲线方程体现了逻辑推理和数学运算、直观想象的数学素养.例1 (1)已知动点M 的坐标满足方程5x 2+y 2=|3x +4y -12|,则动点M 的轨迹是( ) A .椭圆 B .双曲线 C .抛物线 D .以上都不对答案 C解析 把轨迹方程5x 2+y 2=|3x +4y -12|写成x 2+y 2=|3x +4y -12|5.∴动点M 到原点的距离与它到直线3x +4y -12=0的距离相等.∴点M 的轨迹是以原点为焦点,直线3x +4y -12=0为准线的抛物线.(2)在圆x 2+y 2=4上任取一点P ,设点P 在x 轴上的正投影为点D .当点P 在圆上运动时,动点M 满足PD →=2MD →,动点M 形成的轨迹为曲线C .求曲线C 的方程.解 方法一 由PD →=2MD →,知点M 为线段PD 的中点,设点M 的坐标为(x ,y ),则点P 的坐标为(x ,2y ).因为点P 在圆x 2+y 2=4上, 所以x 2+(2y )2=4,所以曲线C 的方程为x 24+y 2=1.方法二 设点M 的坐标为(x ,y ),点P 的坐标是(x 0,y 0), 由PD →=2MD →,得x 0=x ,y 0=2y , 因为点P (x 0,y 0)在圆x 2+y 2=4上, 所以x 20+y 20=4,(*)把x 0=x ,y 0=2y 代入(*)式,得x 2+4y 2=4, 所以曲线C 的方程为x 24+y 2=1.反思感悟 (1)应用定义解题时注意圆锥曲线定义中的限制条件.(2)涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决.(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.跟踪训练1 (1)已知抛物线y 2=8x 的准线过双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________. 答案 x 2-y 23=1解析 由题意得⎩⎪⎨⎪⎧c =2,ca=2,解得⎩⎪⎨⎪⎧a =1,c =2,则b 2=c 2-a 2=3,因此双曲线方程为x 2-y 23=1.(2)点P 是抛物线y 2=8x 上的任意一点,F 是抛物线的焦点,点M 的坐标是(2,3),求|PM |+|PF |的最小值,并求出此时点P 的坐标.解 抛物线y 2=8x 的准线方程是x =-2,那么点P 到焦点F 的距离等于它到准线x =-2的距离,过点P 作PD 垂直于准线x =-2,垂足为D ,那么|PM |+|PF |=|PM |+|PD |.如图所示,根据平面几何知识,当M ,P ,D 三点共线时,|PM |+|PF |的值最小, 且最小值为|MD |=2-(-2)=4, 所以|PM |+|PF |的最小值是4.此时点P 的纵坐标为3,所以其横坐标为98,即点P 的坐标是⎝ ⎛⎭⎪⎫98,3. 二、圆锥曲线的几何性质1.本类问题主要有两种考查类型:(1)已知圆锥曲线的方程研究其几何性质,其中以求椭圆、双曲线的离心率为考查重点. (2)已知圆锥曲线的性质求其方程,基本方法是待定系数法,其步骤可以概括为“先定位、后定量”.2.圆锥曲线的性质的讨论和应用充分体现了直观想象和逻辑推理的数学素养.例2 (1)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62答案 D解析 由椭圆可知|AF 1|+|AF 2|=4,|F 1F 2|=2 3.因为四边形AF 1BF 2为矩形, 所以|AF 1|2+|AF 2|2=|F 1F 2|2=12,所以2|AF 1||AF 2|=(|AF 1|+|AF 2|)2-(|AF 1|2+|AF 2|2)=16-12=4, 所以(|AF 2|-|AF 1|)2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|=12-4=8, 所以|AF 2|-|AF 1|=22,因此对于双曲线有a =2,c =3, 所以C 2的离心率e =c a =62.(2)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为________. 答案 x ±2y =0解析 设椭圆C 1和双曲线C 2的离心率分别为e 1和e 2,则e 1=a 2-b 2a ,e 2=a 2+b 2a.因为e 1·e 2=32,所以a 4-b 4a 2=32,即⎝ ⎛⎭⎪⎫b a 4=14,所以b a =22. 故双曲线的渐近线方程为y =±ba x =±22x , 即x ±2y =0.反思感悟 求解离心率的三种方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x 轴上还是y 轴上都有关系式a 2-b 2=c 2(a 2+b 2=c 2)以及e =c a,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a 与c 之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.跟踪训练2 (1)已知椭圆x 2a 2+y 2b2=1(a >b >0)的半焦距是c ,A ,B 分别是长轴、短轴的一个端点,O 为原点,若△ABO 的面积是3c 2,则此椭圆的离心率是( ) A.12 B.32 C.22 D.33 答案 A解析 12ab =3c 2,即a 2(a 2-c 2)=12c 4,所以(a 2+3c 2)(a 2-4c 2)=0,所以a 2=4c 2,a =2c ,故e =c a =12.(2)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|FA |=c ,则双曲线的渐近线方程为_________.答案 x ±y =0 解析 c 2=a 2+b 2,①由双曲线截抛物线的准线所得线段长为2c 知, 双曲线过点⎝⎛⎭⎪⎫c ,-p 2,即c 2a 2-p 24b2=1.② 由|FA |=c ,得c 2=a 2+p 24,③由①③得p 2=4b 2.④将④代入②,得c 2a 2=2.∴a 2+b 2a 2=2,即ba=1,故双曲线的渐近线方程为y =±x ,即x ±y =0. 三、直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式.2.借用直线与圆锥曲线问题培养数学运算的数学核心素养.例 3 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程. 解 (1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得a =2,b =3,c =1, ∴椭圆的方程为x 24+y 23=1. (2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1,∴圆心到直线l 的距离d =2|m |5, 由d <1得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =-12x +m ,x 24+y 23=1,得x 2-mx +m 2-3=0,由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫-122[m 2-4m 2-3]=1524-m 2. 由|AB ||CD |=534,得 4-m25-4m2=1, 解得m =±33,满足(*). ∴直线l 的方程为y =-12x +33或y =-12x -33.反思感悟 (1)直线与圆锥曲线的位置关系可以通过代数法判断. (2)一元二次方程的判别式Δ、弦长公式是代数法解决问题的常用工具.跟踪训练3 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0),其焦点为F 1,F 2,离心率为22,直线l :x +2y-2=0与x 轴,y 轴分别交于点A ,B .(1)若点A 是椭圆E 的一个顶点,求椭圆的方程;(2)若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,求a 的取值范围. 解 (1)由椭圆的离心率为22,得a =2c , 由A (2,0),得a =2, ∴c =2,b =2, ∴椭圆方程为x 24+y 22=1.(2)由e =22,设椭圆方程为x 2a 2+2y2a2=1,联立⎩⎪⎨⎪⎧x 2a 2+2y 2a2=1,x +2y -2=0,得6y 2-8y +4-a 2=0,若线段AB 上存在点P 满足|PF 1|+|PF 2|=2a ,则线段AB 与椭圆E 有公共点,等价于方程6y 2-8y +4-a 2=0在y ∈[0,1]上有解. 设f (y )=6y 2-8y +4-a 2,∴⎩⎪⎨⎪⎧Δ≥0,f 0≥0,即⎩⎪⎨⎪⎧a 2≥43,4-a 2≥0,∴43≤a 2≤4, 故a 的取值范围是⎣⎢⎡⎦⎥⎤233,2. 四、圆锥曲线的综合问题1.圆锥曲线的综合问题包括位置关系证明及定值、最值问题,解决的基本思路是利用代数法,通过直线与圆锥曲线的方程求解.2.圆锥曲线的综合问题的解决培养学生的逻辑推理和数学运算素养.例4 已知抛物线C :y 2=2px (p >0)经过点P (2,2),A ,B 是抛物线C 上异于点O 的不同的两点,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)若OA ⊥OB ,求△AOB 面积的最小值.解 (1)由抛物线C :y 2=2px 经过点P (2,2)知4p =4,解得p =1. 则抛物线C 的方程为y 2=2x .抛物线C 的焦点坐标为⎝ ⎛⎭⎪⎫12,0,准线方程为x =-12.(2)由题意知,直线AB 不与y 轴垂直,设直线AB :x =ty +a ,由⎩⎪⎨⎪⎧x =ty +a ,y 2=2x ,消去x ,得y 2-2ty -2a =0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t ,y 1y 2=-2a . 因为OA ⊥OB ,所以x 1x 2+y 1y 2=0,即y 21y 224+y 1y 2=0,解得y 1y 2=0(舍去)或y 1y 2=-4. 所以-2a =-4,解得a =2.所以直线AB :x =ty +2. 所以直线AB 过定点(2,0).S △AOB =12×2×||y 1-y 2=y 21+y 22-2y 1y 2=y 21+y 22+8≥2||y 1y 2+8=4. 当且仅当y 1=2,y 2=-2或y 1=-2,y 2=2时,等号成立. 所以△AOB 面积的最小值为4.反思感悟 (1)解决最值问题常见的题型,可用建立目标函数的方法求解.(2)圆锥曲线的综合问题可以从分析问题的数量关系入手,利用直线系或曲线系方程或函数方程思想,通过联想与类比,使问题获解.跟踪训练4 已知动圆P 与圆O 1:x 2-x +y 2=0内切,且与直线x =-1相切,设动圆圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过曲线C 上一点M (2,y 0)(y 0>0)作两条直线l 1,l 2与曲线C 分别交于不同的两点A ,B ,若直线l 1,l 2的斜率分别为k 1,k 2,且k 1k 2=1.证明:直线AB 过定点.(1)解 由题意可知,动圆圆心P 到点⎝ ⎛⎭⎪⎫12,0的距离与到直线x =-12的距离相等,所以点P 的轨迹是以⎝ ⎛⎭⎪⎫12,0为焦点,直线x =-12为准线的抛物线,所以曲线C 的方程为y 2=2x .(2)证明 易知M (2,2),设点A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =my +b ,联立⎩⎪⎨⎪⎧x =my +b ,y 2=2x ,得y 2-2my -2b =0,所以⎩⎪⎨⎪⎧y 1+y 2=2m ,y 1y 2=-2b ,所以⎩⎪⎨⎪⎧x 1+x 2=2m 2+2b ,x 1x 2=b 2,因为k 1k 2=y 1-2x 1-2·y 2-2x 2-2=1, 即y 1y 2-2(y 1+y 2)=x 1x 2-2(x 1+x 2), 所以b 2-2b -4m 2+4m =0, 所以(b -1)2=(2m -1)2, 所以b =2m 或b =-2m +2.当b =-2m +2时,直线AB 的方程为x =my -2m +2过定点(2,2)与M 重合,舍去; 当b =2m 时,直线AB 的方程为x =my +2m 过定点(0,-2),所以直线AB 过定点(0,-2).1.(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( ) A .2sin 40° B .2cos 40° C.1sin 50°D.1cos 50°答案 D解析 由题意可得-b a=tan 130°, 所以e =1+b 2a2=1+tan 2130° =1+sin 2130°cos 2130° =1|cos 130°|=1cos 50°.2.(2019·全国Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p 等于( )A .2B .3C .4D .8 答案 D解析 由题意知,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,椭圆的焦点坐标为(±2p ,0), 所以p2=2p ,解得p =8,故选D.3.(2019·全国Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( ) A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 答案 B解析 由题意设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),连接F 1A ,令|F 2B |=m ,则|AF 2|=2m ,|BF 1|=3m .由椭圆的定义知,4m =2a ,得m =a2,故|F 2A |=a =|F 1A |,则点A 为椭圆C 的上顶点或下顶点.令∠OAF 2=θ(O 为坐标原点),则sin θ=c a=1a.在等腰三角形ABF 1中,cos 2θ=2m2+3m 2-3m 22×2m ·3m=13,因为cos 2θ=1-2sin 2θ,所以13=1-2⎝ ⎛⎭⎪⎫1a 2,得a 2=3.又c 2=1,所以b 2=a 2-c 2=2,椭圆C 的方程为x 23+y 22=1,故选B.4.(2019·北京)已知椭圆C :x 2a 2+y 2b2=1的右焦点为(1,0),且经过点A (0,1).(1)求椭圆C 的方程;(2)设O 为原点,直线l :y =kx +t (t ≠±1)与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .若|OM |·|ON |=2,求证:直线l 经过定点. (1)解 由题意,得b 2=1,c =1, 所以a 2=b 2+c 2=2.所以椭圆C 的方程为x 22+y 2=1.(2)证明 设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为y =y 1-1x 1x +1. 令y =0,得点M 的横坐标x M =-x 1y 1-1.又y 1=kx 1+t ,从而|OM |=|x M |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1.同理,|ON |=⎪⎪⎪⎪⎪⎪x 2kx 2+t -1.由⎩⎪⎨⎪⎧y =kx +t ,x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,则x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-21+2k 2.所以|OM |·|ON |=⎪⎪⎪⎪⎪⎪x 1kx 1+t -1·⎪⎪⎪⎪⎪⎪x 2kx 2+t -1=⎪⎪⎪⎪⎪⎪x 1x 2k 2x 1x 2+k t -1x 1+x 2+t -12=2⎪⎪⎪⎪⎪⎪1+t 1-t .又|OM |·|ON |=2,所以2⎪⎪⎪⎪⎪⎪1+t 1-t =2.解得t =0,所以直线l 经过定点(0,0).。
高中数学齐次化妙解圆锥曲线问题 (解析版)
齐次化妙解圆锥曲线问题【微点综述】直线与圆锥曲线位置关系,是高考的一个难点,而其中一个难在于运算,本微专题的目标在于采用齐次化运算解决直线与圆锥曲线的一类:斜率之和或斜率之积的问题.本专题重难点:一是在于消元的解法,即怎么构造齐次化方程;二是本解法的适用范围.亮点是用平面几何的视角解决问题.圆锥曲线的定义、定值、弦长、面积,很多都可以转化为斜率问题,当圆锥曲线遇到斜率之和或者斜率之积,以往我们的常用解法是设直线y =kx +b ,与圆锥曲线方程联立方程组,韦达定理,再将斜率之和或之积的式子通分后,将x 1+x 2和x 1⋅x 2代入,得到关于k 、b 的式子.解法不难,计算量较为复杂.如果采用齐次化解决,直接得到关于k 的方程,会使题目计算量大大减少.“齐次”即次数相等的意思,例如f x =ax 2+bxy +cy 2称为二次齐式,即二次齐次式的意思,因为f x 中每一项都是关于x 、y 的二次项.如果公共点在原点,不需要平移.如果不在原点,先平移图形,将公共点平移到原点,无论如何平移,直线斜率是不变的.注意平移口诀是“左加右减,上减下加”,你没有看错,“上减下加”,因为是在等式与y 同侧进行加减,我们以往记的“上加下减”都是在等式与y 的异侧进行的.例:y =kx +b 向上平移1个单位,变为y =kx +b +1,即y -1=kx +b ,x 2a 2+y 2b 2=1向上平移1个单位,变为x 2a 2+y -1 2b 2=1.设平移后的直线为mx +ny =1(为什么这样设?∵这样齐次化更加方便,相当于“1”的妙用),与平移后的圆锥联立,一次项乘以mx +ny ,常数项乘以mx +ny 2,构造ay 2+bxy +cx 2=0,然后等式两边同时除以x 2(前面注明x 不等于0),得到a ⋅y x2+b ⋅y x +c =0,可以直接利用韦达定理得出斜率之和或者斜率之积,y 1x 1+y 2x 2=-b a ,y 1x 1⋅y 2x 2=c a ,即可得出答案.如果是过定点题目,还需要还原,之前如何平移,现在反平移回去.总结解法为:①平移;②联立并齐次化;③同除以x 2;④韦达定理.证明完毕,若过定点,还需要还原.优点:大大减小计算量,提高准确率!缺点:mx +ny =1不能表示过原点的直线,少量题目需要讨论.一、齐次化运算的前世--韦达定理1.韦达定理发展简史法国数学家弗朗索瓦·韦达(Fran çois Vi ète ,1540-1603)在著作《论方程的识别与订正》中改进了三、四次方程的解法,还对n =2,3的情形,建立了方程根与系数之间的关系,现代称之为韦达定理.证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性.2.韦达定理:设关于x 的一元二次方程ax 2+bx +c =0的两根为x 1,x 2,则x 1+x 2=-b a ,x 1x 2=c a .韦达定理是本微专题的理论基础..引例1.已知x1和x2是方程2x2+3x-4=0的两个根,求1x1+1x2的值.【解析】解法1:1x1+1x2=x1+x2x1⋅x2=-b aca=-b c=34.解法2:方程两边同除以x2,得-41x2+31x +2=0,∵1x1,1x2,∴由韦达定理得1x1+1x2=34.引例2.设x1,y1,x2,y2是方程组y=x-1,y2=4x的两组根,求y1x1+y2x2,y1x1⋅y2x2的值.【分析】如果可以建立关于以yx为未知数的一元二次方程Ayx2+B⋅y x+C=0,那么y1x1+y2x2,y1x1⋅y2x2就是对应方程的两根之和了.所以本运算的关键是如何通过消元得到:Ay2+Bxy+Cx2=0,再由x≠0,方程两边同时除以x2.消元得到方程Ay2+Bxy+Cx2=0是个二次齐次式,所以把本计算方法命名为:齐次化运算.观察y=x-1,y2=4x,发现y2已经为二次式,关键在于将4x化成二次式,由y=x-1可得1=x-y,∴y2=4x⋅1=4x⋅x-y,整理可得y2+4xy-4x2=0,显然x=0不是方程y2+4xy-4x2=0的根,方程y2+4xy-4x2=0两边同时除以x2可得:关于yx为未知数的一元二次方程:yx2+4⋅y x-4=0,则由韦达定理可得:y1x1+y2x2=-4,y1x1⋅y2x2=-4.二、齐次化运算的今生--韦达定理遇到笛卡尔解析几何例1.直线mx+ny=1与抛物线y2=4x交于A x1,y1,B x2,y2,求k OA+k OB,k OA⋅k OB.(用m,n表示)【解析】联立mx+ny=1y2=4x,齐次化得y2=4x mx+ny,等式两边同时除以x2,yx2-4n y x -4m=0,∴∴k OA+k OB=y1x1+y2x2=4n,k OA k OB=y1x1⋅y2x2=-4m.例2.直线mx+ny=1与椭圆x24+y23=1交于A x1,y1,B x2,y2,求k OA⋅k OB(用m,n表示).【解析】mx+ny=1 x24+y23=1齐次化联立得:x24+y23=mx+ny2,等式两边同时除以x2,12n2-4yx2+24mn y x +12m2-3=0,∴k OA⋅k OB=y1x1⋅y2x2=12m2-312n2-4.引例3.已知动直线l的方程为mx+ny=1.(1)若m=2n,求直线l的斜率;(2)若m=-12,求直线l所过的定点;(3)若m=2n+1,求直线l所过的定点;(4)若m=2n+2,求直线l所过的定点;(5)若6+3n4+12m=1,求直线l所过的定点.【解析】(1)k =-mn=-2.(2)-12x +ny =1,消去n ,令y =0,∴过定点-2,0 .(3)整理得m -2n =1∴过定点1,-2 .(4)整理得12m -n =1,∴过定点12,-1 .(5)整理得6m -32n =1,∴过定点6,-32 .例3.抛物线y 2=4x ,直线l 交抛物线于A 、B 两点,且OA ⊥OB ,求证:直线l 过定点.【解析】设直线AB 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1y 2=4x 联立得y x 2-4n y x-4m =0,∵k OA k OB=y 1y 2x 1x 2,∴-4m =-1,∴m =14,∴直线AB :14x +ny =1过定点4,0 .例4.不过原点的动直线交椭圆x 24+y 23=1于A 、B 两点,直线OA 、AB 、OB 的斜率成等比数列,求证:直线l 的斜率为定值.【解析】设直线AB 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1x 24+y 23=1联立得12n 2-4 y x 2+24mn y x+12m 2-3=0,于是k OA k OB =y 1x 1y 2x 2=12m 2-312n 2-4,又k AB =-m n ,∴12m 2-312n 2-4=m 2n 2,得k AB=-m n =±32.三、y -nx -m型怎么采用齐次化运算解决,平移是关键引例4.已知椭圆x 24+y 2=1,按照平移要求变换椭圆方程,并化简平移后的椭圆方程.(1)将椭圆向左平移1个单位,求平移后的椭圆;(2)将椭圆向右平移2个单位,求平移后的椭圆;(3)将椭圆向上平移3个单位,求平移后的椭圆;(4)将椭圆向下平移4个单位,求平移后的椭圆;(5)将椭圆向左平移1个单位,向下平移32个单位,求平移后的椭圆;(6)将椭圆向左平移2个单位,向下平移1个单位,求平移后的椭圆.【解析】(1)x +124+y 2=1,即4y 2+x 2+2x -3=0.(2)x -224+y 2=1,即4y 2+x 2-4x =0.(3)x 24+y -3 2=1,即4y 2+x 2-24y +32=0.(4)x 24+y +4 2=1,即4y 2+x 2+32y +60=0.(5)x +124+y +322=1,即4y 2+x 2+2x +43y =0.(6)x +224+y -1 2=1,即4y 2+x 2+4x -8y +4=0.例5.抛物线y 2=4x ,P 1,2 ,直线l 交抛物线于A 、B 两点,PA ⊥PB ,求证:直线l 过定点.【解析】将图形向左平移1个单位,向下平移2个单位,平移后的抛物线方程为y +2 2=4x +1 ,整理得y 2+4y -4x =0.设平移后直线A B 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1,y 2+4y -4x =0联立得1+4n y x 2+4m -4n y x -4m =0,于是k P Ak PB=y 1x 1⋅y 2x 2=-4m1+4n=-1,整理得4m -4n =1,∴mx +ny =1过定点4,-4 ,右移1个,上移2个,直线AB 过定点5,-2 .例6.椭圆x 24+y 23=1,点P 1,32,A ,B 为椭圆上两点,k PA +k PB =0.求证:直线AB 斜率为定值.【解析】解法一:将图形向左平移1个单位,向下平移32个单位,平移后的椭圆为x +1 24+y +3223=1,整理得4y 2+3x 2+6x +12y =0,设平移后直线A B 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =14y 2+3x 2+6x +12y =0,联立得4y 2+3x 2+6x +12y mx +ny =0,12n +4 y2+62m +n xy +6m +3 x 2=0,同时除以x 2,12n +4 y x2+62m +n y x +6m +3 =0,k P A+k PB=y 1x 1+y 2x 2=-62m +n 12n +4=0,-62m +n =0,mx +ny =1的斜率-m n =12.解法二(换元法):设A x 1,y 1 ,B x 2,y 2 ,即化为y 1-32x 1-1⋅y 2-32x 2-1=0,即建立以y -32x -1为未知数的一元二次方程A y -32x -12+B⋅y -32x -1+C =0,即可解答.为了方便运算设x -1=s ,y -32=t ,代入椭圆x 24+y 23=1,得3s 2+4t 2+6t +12t =0,∴设直线ms +nt =6可方便运算,3s 2+4t 2+t (ms +nt )+2t (ms +nt )=0,化简得:4+2n t s 2+2m +n t s +(3+m )=0,∴y 1-32x 1-1⋅y 2-32x 2-1=t 1s 1⋅t 2s 2=2m +n 4+2n =0,x -1=s ,y -32=t ,n =-2m 代入ms +nt =6,得m (x -1)-2m y -32 =6,∴直线AB 的斜率是12.例7.双曲线x 22-y 22=1,P 2,0 ,A 、B 为双曲线上两点,且k PA +k PB =0.AB 不与x 轴垂直,求证:直线AB 过定点.【解析】将图形左平移2个单位,平移后的双曲线为x +222-y 22=1,整理得y 2-x 2-4x -2=0,设平移后直线A B 方程为mx +ny =1,A x 1,y 1 ,B x 2,y 2 ,mx +ny =1y 2-x 2-4x -2=0 ,联立得y 2-x 2-4x mx +ny -2mx +ny 2=0,1-2n 2 y 2-4n +4mn xy -2m 2+4m +1 x 2=0,同时除以x 2,1-2n 2y x 2-4n +4mn y x -2m 2+4m +1 =0,k P A+k PB=y 1x 1+y 2x 2=4n +4mn 1-2n 2=0,4n +4mn =4n m +1 =0,n =0或m =-1,AB 不与x 轴垂直,n ≠0,∴m =-1,-x +ny =1过-1,0 ,右移2个单位,原直线过1,0 .四、齐次化在解析几何中的应用例8.(2021重庆期末)已知抛物线C :y 2=2px p >0 上一点A 2,a 到其焦点的距离为3.(Ⅰ)求抛物线C 的方程;(Ⅱ)过点4,0 的直线与抛物线C 交于P ,Q 两点,O 为坐标原点,证明:∠POQ =90°.【解析】解法1:(Ⅰ)由题意知:2--p2=3⇒p =2⇒y 2=4x .(Ⅱ)证明:设该直线为my =x -4,P 、Q 的坐标分别为x 1,y 1 、x 2,y 2 ,联立方程有:my =x -4y 2=4x⇒y 2-4my -16=0,OP ⋅OQ =x 1x 2+y 1y 2=y 21y 2216+y 1y 2=116×-16 2-16=0,∴∠POQ =90°.解法2:要证明∠POQ =90°,即证k PO ⋅k QO =-1,设PQ :mx +ny =1,过4,0 ,∴4m =1,m =14,y 2=4x mx +ny ,y 2-4nxy -4mx 2=0,同除以x 2得y x 2-4n y x -4m =0,k 1⋅k 2=-4m ,∵m =14,∴k 1⋅k 2=-1即∠POQ =90°.例9.如图,椭圆E :x 2a 2+y 2b 2=1a >b >0 经过点A 0,-1 ,且离心率为22.(Ⅰ)求椭圆E 的方程;(Ⅱ)经过点1,1 ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 斜率之和为2.【解析】解法1:(Ⅰ)由题设知,c a =22,b =1,结合a 2=b 2+c 2,解得a =2,∴x 22+y 2=1.(Ⅱ)证明:由题意设直线PQ 的方程为y =k x -1 +1k ≠0 ,代入椭圆方程x 22+y 2=1,可得1+2k 2 x 2-4k k -1 x +2k k -2 =0,由已知得1,1 在椭圆外,设P x 1,y 1 ,Q x 2,y 2 ,x 1x 2≠0,则x 1+x 2=4k k -1 1+2k 2,x 1x 2=2k k -21+2k 2,且Δ=16k 2k -1 2-8k k -2 1+2k 2 >0,解得k >0或k <-2.则有直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +2-k 1x 1+1x 2 =2k +2-k ⋅x 1+x 2x 1x 2=2k +2-k ⋅4k k -12k k -2=2k -2k -1 =2.即有直线AP 与AQ 斜率之和为2.解法2:(2)上移一个单位,椭圆E 和直线L :x 22+y -12=1mx +ny =1,mx +ny =1过点1,2 ,m +2n =1,m =1-2n ,x 2+2y -1 2=2,x 2+2y 2-4y =0,2y 2+x 2-4y mx +ny =0,-4n +2 y2-4mxy +x 2=0,∵x ≠0,同除x 2,得-4n +2 y x2-4m yx+1=0,k 1+k 2=-4m -4n +2=2m 1-2n =2mm=2.例10.设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【解析】(1)设A x 1,x 214 ,B x 2,x 224为曲线C :y =x 24上两点,则直线AB 的斜率为k =x 214-x 224x 1-x 2=14x 1+x 2 =14×4=1.(2)解法1:设直线AB 的方程为y =x +t ,代入曲线C :y =x 24,可得x 2-4x -4t =0,即有x 1+x 2=4,x 1x 2=-4t ,再由y =x 24的导数为y=12x ,设M m ,m 24 ,可得M 处切线的斜率为12m ,由C 在M 处的切线与直线AB 平行,可得12m =1,解得m =2,即M 2,1 ,由AM ⊥BM 可得,k AM ⋅k BM =-1,即为x 214-1x 1-2⋅x 224-1x 2-2=-1,化为x 1x 2+2x 1+x 2 +20=0,即为-4t +8+20=0,解得t =7,则直线AB 的方程为y =x +7.解法2:y =x 24,y =x 2=1,x =2,∴M 2,1 ,左移2个单位,下移1个单位C:y +1=x +2 24,A B :mx +ny =1,4y +4=x 2+4x +4,x 2+4x -y mx +ny =0,x 2+4mx 2+nxy -mxy -ny 2 =0,1+4m x2+4n -m xy -4ny 2=0,x ≠0,同除以x 2,得-4n y x2+4n -m yx+1+4m =0,4nk 2-4n -m k -1+4m =0,mx +ny =1,斜率-mn =1,m =-n ,k 1k 2=-1+4m 4n=-1,1+4m =4n ,n =18,m =-18,-18x +18y =1,x -y +8=0右2,上1,x -2 -y -1 +8=0,x -y +7=0.例11.(2017年全国卷理)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 ,四点P 11,1 ,P 20,1 ,P 3-1,32 ,P 41,32 中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.【解析】(1)解:根据椭圆的对称性,P 3-1,32 ,P 41,32两点必在椭圆C 上,又P 4的横坐标为1,∴椭圆必不过P 11,1 ,∴P 20,1 ,P 3-1,32,P 41,32 三点在椭圆C 上,把P 20,1 ,P 3-1,32 代入椭圆C ,得:1b 2=11a 2+34b 2=1,解得a 2=4,b 2=1,∴椭圆C 的方程为x 24+y 2=1.(2)证法1:①当斜率不存在时,设l :x =m ,A m ,y A ,B m ,-y A ,∵直线P 2A 与直线P 2B 的斜率的和为-1,∴k P 2A +k P 2B =y A -1m +-y A -1m =-2m=-1,解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l :y =kx +t ,t ≠1 ,A x 1,y 1 ,B x 2,y 2 ,联立y =kx +tx 2+4y 2-4=0 ,整理,得1+4k 2 x 2+8ktx +4t 2-4=0,x 1+x 2=-8kt 1+4k 2,x 1x 2=4t 2-41+4k 2,则k P 2A +k P 2B =y 1-1x 1+y 2-1x 2=x 2kx 1+t -x 2+x 1kx 2+t -x 1x 1x 2=8kt 2-8k -8kt 2+8kt 1+4k 24t 2-41+4k 2=8k t -14t +1 t -1=-1,又t ≠1,∴t =-2k -1,此时Δ=-64k ,存在k ,使得Δ>0成立,∴直线l 的方程为y =kx -2k -1,当x =2时,y =-1,∴l 过定点2,-1 .证法2:下移1个单位得E:x 24+y +1 2=1,A B :mx +ny =1,x 24+y 2+2y =0,x 2+4y 2+8y mx +ny =0,8n +4 y 2+8mxy +x 2=0,∵x ≠0同除以x 2,8n +4 y x 2+8m y x +1=0,8n +4 k 2+8mk +1=0,k 1+k 2=-8m 8n +4=-1,8m =8n +4,2m -2n =1,∴mx +ny =1过2,-2 ,上移1个单位2,-1 .例12.(2018全国一文)设抛物线C :y 2=2x ,点A 2,0 ,B -2,0 ,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:∠ABM =∠ABN .【解析】(1)当l 与x 轴垂直时,x =2,代入抛物线解得y =±2,∴M 2,2 或M 2,-2 ,直线BM 的方程:y =12x +1,或y =-12x -1.(2)解法1:证明:设直线l 的方程为l :x =ty +2,M x 1,y 1 ,N x 2,y 2 ,联立直线l 与抛物线方程得y 2=2xx =ty +2 ,消x 得y 2-2ty -4=0,即y 1+y 2=2t ,y 1y 2=-4,则有k BN +k BM =y 1x 1+2+y 2x 2+2=y 222×y 1+y 212×y 2+2y 1+y 2 x 1+2 x 2+2 =y 1+y 2 y 1y 22+2 x 1+2 x 2+2=0,∴直线BN 与BM 的倾斜角互补,∴∠ABM =∠ABN .解法2:(2)右移2个单位C :y 2=2x -2 ,l :mx +ny =1过4,0 即4m =1,m =14,y 2=2x -4,y 2=2x mx +ny -4mx +ny 2,y 2=2mx 2+2nxy -4m 2x 2+n 2y 2+2mnxy ,1+4n 2y2+8mn -2n xy +4m 2-2m x 2=0,∵x ≠0,同除以x 2,得1+4n 2 k 2+8mn -2n k +4m 2-2m =0,k 1+k 2=-8mn -2n 1+4n 2=-2n 4m -1 1+4n 2=0,∴∠ABM =∠ABN .例13.(2018全国一卷理)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为2,0 .(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:∠OMA =∠O MB .【解析】(1)c =2-1=1,∴F 1,0 ,∵l 与x 轴垂直,∴x =1,由x =1x 22+y 2=1 ,解得x =1y =22 或x =1y =-22,∴A 1,22 ,或1,-22 ,∴直线AM 的方程为y =-22x +2,y =22x -2.(2)证明:解法1:当l 与x 轴重合时,∠OMA =∠O MB =0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA =∠O MB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k x -1 ,k ≠0,A x 1,y 1 ,B x 2,y 2 ,则x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =y 1x 1-2+y 2x 2-2,由y 1=kx 1-k ,y 2=kx 2-k 得k MA +k MB =2kx 1x 2-3x 1+x 2 +4k x 1-2 x 2-2 ,将y =k x -1 代入x 22+y 2=1可得2k 2+1 x 2-4k 2x +2k 2-2=0,∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,∴2kx 1x 2-3k x 1+x 2 +4k =12k 2+14k 3-4k -12k 3+8k 3+4k =0,从而k MA +k MB =0,故MA ,MB 的倾斜角互补,∴∠OMA =∠O MB ,综上∠OMA =∠O MB .解法2:左移2个单位C:x +222+y 2=1,l :mx +ny =1过-1,0 即-m =1.m =-1,x 2+4x +2y 2+2=0,x 2+4x mx +ny +2y 2+2mx +ny 2=0,2+2n 2y2+4n +4mn xy +1+4m +2m 2 x 2=0,∵x ≠0,同除以x 2,得2+2n 2 k 2+4n +4mn k +1+4m +2m 2=0,k 1+k 2=4n +4mn-2+2n 2=0,∴∠OMA =∠O MB .例14.(2020·新课标Ⅰ)已知A ,B 分别为椭圆E :x 2a 2+y 2=1a >1 的左、右顶点,G 为E 的上顶点,AG ⋅GB =8.P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)由题意A -a ,0 ,B a ,0 ,G 0,1 ,∴AG =a ,1 ,GB =a ,-1 ,AG ⋅GB =a 2-1=8,解得:a =3,故椭圆E 的方程是x 29+y 2=1.(2)证法1:由(1)知A -3,0 ,B 3,0 ,设P 6,m ,则直线PA 的方程是y =m9x +3 ,联立x 29+y 2=1y =m 9x +3⇒9+m 2 x 2+6m 2x +9m 2-81=0,由韦达定理-3x c =9m 2-819+m 2⇒x c =-3m 2+279+m 2,代入直线PA 的方程为y =m 9x +3 得:y c=6m9+m 2,即C -3m 2+279+m 2,6m9+m 2,直线PB 的方程是y =m3x -3 ,联立方程x 29+y 2=1y =m 3x -3⇒1+m 2 x 2-6m 2x +9m 2-9=0,由韦达定理3x D =9m 2-91+m 2⇒x D =3m 2-31+m 2,代入直线PB 的方程为y =m 3x -3 得y D =-2m 1+m 2,即D 3m 2-31+m 2,-2m1+m 2 ,则①当x c =x D 即27-3m 29+m 2=3m 2-3m 2+1时,有m 2=3,此时x c =x D=32,即CD 为直线x =32.②x C ≠x D 时,直线CD 的斜率K CD =y C -y D x C -x D =4m33-m 2 ,∴直线CD 的方程是y --2m 1+m 2=4m 33-m 2 x -3m 2-31+m 2 ,整理得:y =4m 33-m 2x -32 ,直线CD 过定点32,0 .综合①②故直线CD 过定点32,0 .证法2:设P 6,t ,A -3,0 ,B 3,0 ,则k AC =k AP =t 9,k BD =k BP =t 3,根据椭圆第三定义(本书后面有详细讲解),k AD ⋅k BD =b 2a2=-19,∴k AD =-13t ,则k AC ⋅k AD =-127,将图像向右移动3个单位,则椭圆E 和直线l CD :x -329+y 2=1mx +ny =1,联立得:x 2-6x +9y 2=0,x 2-6x mx +ny +9y 2=0,即9y 2-6nxy +1-6m x 2=0,两边同时除以x 2,得:9y 2x2-6n yx +1-6m =0,则k AC ⋅k AD =1-6m 9=-127,解得m =29,则直线过定点92,0 ,则平移前过32,0 .例15.(2020·山东)已知椭圆C :x 2a 2+y 2b 2=1a >b >0 的离心率为22,且过点A 2,1 .(1)求C 的方程;(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【解析】(1)∵离心率e =c a =22,∴a =2c ,又a 2=b 2+c 2,∴b =c ,a =2b ,把点A 2,1 代入椭圆方程得,42b 2+1b 2=1,解得b 2=3,故椭圆C 的方程为x 26+y 23=1.(2)证法1:①当直线MN 的斜率存在时,设其方程为y =kx +m ,联立y =kx +mx 26+y 23=1,得2k 2+1 x 2+4km x +2m 2-6=0,由Δ=4km 2-42k 2+1 2m 2-6 >0,知m 2<6k 2+3,设M x 1,y 1 ,N x 2,y 2 ,则x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-62k 2+1,∵AM ⊥AN ,∴AM ⋅AN=x 1-2,y 1-1 ⋅x 2-2,y 2-1 =0,即k 2+1 x 1x 2+km -k -2 x 1+x 2 +m 2-2m +5=0,∴k 2+1 ⋅2m 2-62k 2+1+km -k -2 -4km 2k 2+1+m 2-2m +5=0,化简整理得,4k 2+8km +3m 2-2m -1=2k +m -1 2k +3m +1 =0,∴m =1-2k 或m =-2k +13,当m =1-2k 时,y =kx -2k +1,过定点A 2,1 ,不符合题意,舍去;当m =-2k +13时,y =kx -2k +13,过定点23,-13.设D x 0,y 0 ,则y 0=kx 0+m ,(i )若k ≠0,∵AD ⊥MN ,∴k ⋅kx 0+m -1x 0-2=-1,解得x 0=2k 2+4k +63k 2+3,y 0=3k 2+4k -13k 2+3,∴x 0-432+y 0-132=-2k 2+4k +23k 2+3 2+2k 2+4k -23k 2+3 2=8k 4+2k 2+1 9k 2+12=89,∴点D 在以43,13 为圆心,223为半径的圆上,故存在Q 43,13 ,使得DQ =223,为定值.(ii )若k =0,则直线MN 的方程为y =-13,∵AD ⊥MN ,∴D 2,-13 ,∴DQ =43-22+13+132=223,为定值.②当直线MN 的斜率不存在时,设其方程为x =t ,M t ,s ,N t ,-s ,且t 26+s 23=1,∵AM ⊥AN ,∴AM ⋅AN =t -2,s -1 ⋅t -2,-s -1 =t 2-4t -s 2+5=32t 2-4t +2=0,解得t =23或2(舍2),∴D 23,1 ,此时DQ =43-232+13-1 2=223,为定值.综上所述,存在定点Q 43,13,使得DQ 为定值,且该定值为223.证法2:将图像向左移动两个单位,向下移动一个单位,那么平移后的C 和直线M N :x +226+y +123=1mx +ny =1,联立得:x 2+2y 2+4x +4y mx +ny =0,两边同时除以x 2:4n +2 y 2+4m +4n xy +4m +1 x 2=0,得:4n +2 k 2+4m +4n k +4m +1 =0,∵AM ⊥AN ,∴k AM ⋅k AN =-1,∴4m +14n +2=-1,4m +1=-4n -2,即-43m +-43n =1,M N 过定点-43,--43 ,则平移前该直线过定点P 23,-13 .在△ADP 中,AD ⊥DP ,则D 点的轨迹是以AP 为直径,∵A 为定点,P 为定点,则AP 为定值,则Q 为AP 中点,此时DQ 为定值,∵A 2,1 ,P 23,-13,则Q 43,13 ,DQ =12AP =223.例16.(2022惠州模拟)已知左焦点为F -1,0 的椭圆过点E 1,233,过点P 1,1 分别作斜率为k 1,k 2的椭圆的动弦AB ,CD ,设M ,N 分别为线段AB ,CD 的中点(1)求椭圆的标准方程;(2)若P 为线段AB 的中点,求k 1;(3)若k 1+k 2=1,求证:直线MN 恒过定点,并求出定点坐标【解析】(1)由题意c =1,且右焦点F 1,0 ,∴2a =EF +EF =23,b 2=a 2-c 2=2,∴所求椭圆方程为x 23+y 22=1.(2)设A x 1,y 1 ,B x 2,y 2 ,则x 213+y 212=1①,x 223+y 222=1②②-①,可得k 1=y 2-y 1x 2-x 1=-2x 2+x 1 3y 2+y 1=-23.(3)证法1:由题意,k 1≠k 2,设M x M ,y M ,直线AB 的方程为y -1=k 1x -1 ,即y =k 1x +k 2,代入椭圆方程并化简得2+3k 21 x 2+6k 1k 2x +3k 22-6=0,∴x M =-3k 1k 22+3k 21,y M =2k 22+3k 21,同理,x N =-3k 1k 22+3k 22,y N =2k 12+3k 22,当k 1k 2≠0时,直线MN 的斜率k =y M -y N x M -x N =10-6k 1k 2-9k 1k 2,直线MN 的方程为y -2k 22+k 21=10-6k 1k 2-9k 1k 2x --3k 1k 22+3k 21,即y =10-6k 1k 2-9k 1k 2x -23,此时直线过定点0,-23 .当k 1k 2=0时,直线MN 即为y 轴,此时亦过点0,-23.综上,直线MN 恒过定点,且坐标为0,-23.证法2:设过点P 的弦的中点坐标为x 0,y 0 ,由点差法得y 0-1x 0-1⋅y 0x 0=-23,即中点的轨迹方程为2x 2-x +3y 2-y =0,将点P 平移到原点,整体左移1个单位,下移1个单位,设平移后的MN 方程为mx +ny =1,曲线为2x +1 2-x +1 +3y +1 2-y +1 =0,2x 2+3y 2+3y mx +ny +2x mx +ny =0,3+3n y 2+2n +3m xy +2+2m x 2=0,同除以x 2,得3+3n k 2+2n +3m k +2+2m =0,∵k 1+k 2=1,∴-2n +3m 3+3n =1,-m -35n =1,∴过定点-1,-53,则平移前的MN 过定点0,-23 .例17.(2022武汉模拟)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左右顶点分别为A ,B ,过椭圆内点D 23,0 且不与x 轴重合的动直线交椭圆C 于P ,Q 两点,当直线PQ 与x 轴垂直时,PD =BD =43.(1)求椭圆C 的标准方程;(2)设直线AP ,AQ 和直线l :x =t 分别交于点M ,N ,若MD⊥ND 恒成立,求t 的值.【解析】(Ⅰ)由BD =43得a =23+43=2,故C 的方程为x 24+y 2b2=1,此时P 23,43 ,代入方程19+169b2=1,解得b 2=2,故C 的标准方程为x 24+y 22=1.(Ⅱ)解法1:设直线PQ 的方程为:x =my +23,与椭圆联立得m 2+2 y 2+4m 3y 329=0,设P x 1,y 1 ,Q x 2,y 2 ,则y 1+y 2=-4m 3m 2+2 y 1y 2=-329m 2+2,①此时直线PA 的方程为y =y 1x 1+2x +2 ,与x =t 联立,得点M t ,t +2 y 1x 1+2 ,同理,N t ,t +2 y 2x 2+2 ,由MD ⊥ND ,则k MD ⋅k ND =-1,即t +2 y 1t -23 x 1+2 ⋅t +2 y 2t -23 x 2+2=-1,∴t +2 2y 1y 2+t -23 2my 1+83 my 2+83 =0,即t +2 2y 1y 2+t -232m 2y 1y 2+8m 3y 1+y 2 +649 =0,把①代入得-32t +2 29m 2+2+t -23 2-32m 29m 2+2 -32m 29m 2+2 +649 =0,化简得-32t +2 2+t -23 2-32m 2-32m 2+64m 2+2 =0,即t +2 2-4t -23 2=0,t +2=±2t -23 ,解得t =-29或t =103.解法2:公共点A -2,0 ,右移2个单位后P O :mx +ny =1过D 83,0 ,∴83m +0n =1,m =38,C :x -2 24+y 22=1P O :mx +ny =1 ,x 2+2y 2-4x mx +ny =0,2y 2-4nxy +1-4m x 2=0,等式两边同时除以x ,2y x 2-4n y x +1-4m =0,k AP ⋅k AQ =k AM ⋅k AN =1-4m 2=-14,∵MD ⊥ND ,∴k MD ⋅k ND =-1,k DM ⋅k DN k AM ⋅k AN =-1-14=4,直线MN :x =t ,MTt -23⋅-NT t -23 MT t +2⋅-NT t +2=4,t +2 2t -23 2=4,解得t =-29或t =103.五、齐次化运算为什么不是解决圆锥曲线的常规武器通过上面分析,我们可以发现,齐次化运算比传统的设而不求运算量大大的降低,但为什么齐次化运算并不是常规武器呢?首先我们总结一下齐次化运算步骤f x ,y =0,g x ,y =0 ⇒A y x 2+B ⋅y x +C =0⇒y 1x 1+y 2x 2=-B A ,y 1x 1⋅y 2x 2=C A ⇒k 1+k 2=-B A ,k 1k 2=C A .通过上面的步骤可以看出,本方法适用于斜率的相关问题,有较大的局限性,当然,还有一个难点在于方程消元的基本思路是消未知数,而本方法是消去常数,这也是学生不适应之处.但更大的难点是如果通过审题,转化为斜率之积、之和问题.下面通过两道题来说明:例18.A ,B 分别是椭圆E :x 29+y 2=1左右顶点,P 是直线x =6的动点,PA 交E 于另一点C ,PB 交E 于另一点D .求证:直线CD 过定点.思路一:本问题没有直接的提到斜率之和(积),而且很容易入手,分别设直线PA ,PB ,与椭圆方程联立,消去x 得到关于y 的常数项为0的方程,即可解出C ,D 坐标,然后写出CD 方程.在实际运算中,C ,D 坐标,CD 过定点运算量巨大.本方法少思、多算.解答如下:证法一:设P 6,y 0,则直线AP 的方程为:y =y 0-06--3 x +3 ,即:y =y 09x +3 ,联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9,将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9,所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1.当y 20≠3时,直线CD 的方程为:y --2y 0y 02+1 =6y 0y 02+9--2y 0y 02+1 -3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04 x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1,整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32 ,所以直线CD 过定点32,0 .当y 20=3时,直线CD :x =32,直线过点32,0 .故直线CD 过定点32,0 .思路二:连接CB ,由椭圆第三定义得,k CA k CB =-19,而k CA k CB =-19, k CA =PQ AQ,k BD =k BP =PQ BQ =13,可得:k BC k BD =-13,就可以采用本方法解答.证法二:设交点C x 1,y 1 ,D x 2,y 2 ,即化为y 1x 1-3⋅y 2x 2-3=-13,设x -3=t ,得t 2+9y 2+6t =0, 故设6=mt +ny 易算.计算如下:9y t 2+n ⋅y t +m +1 =0⇒k 1k 2=m +19=-13⇒m =-4⇒-4x -3 +ny =6,可知直线CD 过定点32,0 .例19.A ,B 分别是椭圆E :x 24+y 2=1下上两顶点,过(1,0)的直线l 交于E 的C ,D ,设直线AC ,BD 的斜率为k 1,k 2,k 1=2k 2,求直线l 的方程.【分析】已知给出了k 1=2k 2,但还是没有斜率之积(和)为定值,还是要用到椭圆的第三定义,k AD k BD =-14,得到k AC k AD =-12,即可采用齐次化运算了.【简解】设交点C x 1,y 1 ,D x 2,y 2 ,即化为y 1x 1+1⋅y 2x 2+1=-12,设y +1=t ,得x 2+4t 2-8t =0, 所以设8=mx +n (y +1)=mx +nt 易算.计算如下:4-n t x 2-m ⋅t x +1=0,∴k 1k 2=14-n ,∴14-n =-12,∴n =6,又l 过(1,0),得m =2,∴直线l 的方程的方程:y =13x -13.六、为什么斜率为会是定值,从平面几何看众所周知,直径所对的圆周角为直角,其实圆相交弦的还有如下性质.如图圆中,AB 为直径,CD 与AB 交于F ,则有如下性质:tan αtan β=BF AF =PQ AQ ,tan ηtan β=-PQ AQ.引入坐标系,如图建系,设A (-a ,0),B (a ,0),F (m ,0),则k BC k BD =m +a m -a ,k AC k BD =a -m m +a ,且AB 与CD 的交点在直线x =a 2m 上.【简证】tan αtan β=sin αsin βcos αcos β=sin αsin βsin γsin η,分别在ΔACF ,ΔBCF ,由正弦定理得:sin αsin β=CF AF ,sin γsin η=BF CF ,所以tan αtan β=sin αsin β⋅cos αcos β=sin αsin β⋅sin γsin η=CF AF ⋅BF CF =BF AF,tan α=PQ AQ ,tan β=PQ BQ ,tan αtan β=BQ AQ,而tan ηtan β=-tan βtan α=-AQ BQ .那么椭圆怎么有这些性质呢?如图,圆的方程为x 2+y 2=a 2,椭圆方程为:x 2a 2+y 2b 2=1,设B x 1,y 1 ,D x 2,y 2 ,B x 1,y 1b ,D x 2,y 2b ,则k A Dk C B=k AD k CB ,k B A k B C=-b 2a 2,更具一般性质的椭圆的内接四边形性质如如下:在椭圆中,O 为椭圆的中心,A ,C 是椭圆上两点且关于O 对称,直线A C 上一点M ,过M 的直线交椭圆于B ,D ,则如果M 为定点,则k A D k B C为定值,反之亦成立.例20.A,B分别是椭圆E:x29+y2=1左右顶点,P是直线x=6的动点,PA交E于另一点C,PB交E于另一点D.求证:直线CD 过定点.【分析】用几何法,k ACk BD=BQAQ=EBAE,得BE=32,所以过32,0.例21.A,B分别是椭圆E:x24+y2=1下上两顶点,过(1,0)的直线l交于E的C,D,设直线AC,BD的斜率为k1,k2,k1=2k2,求直线l 的方程.【分析】用几何法,k1k2=k ACk BD=AEBE,得BE=23,所以E13,0,所以直线l的方程的方程:y=13x-13.【评注】用平面几何的视角,对本问题进行证明,使代数,解析几何,平面几何三者融合.七、微专题小结齐次化运算在解析几何中的运算,只可以处理斜率之和(积)的问题,基本步骤如下:f x,y=0,g x,y=0⇒A yx2+B⋅y x+C=0⇒y1x1+y2x2=-BA,y1x1⋅y2x2=CA⇒k1+k2=-B A,k1k2=C A,重点一在于通过分析题意,明确能不能用本方法,二在于直线方程的设元技巧,三在于消元中的齐次化运算.【针对训练训练】(2022阎良区期末)1.已知抛物线C:x2=2py p>0,直线l经过抛物线C的焦点,且垂直于抛物线C的对称轴,直线l与抛物线C交于M,N两点,且MN=4.(1)求抛物线C的方程;(2)已知点P2,1,直线m:y=k x+2与抛物线C相交于不同的两点A,B,设直线PA与直线PB的斜率分别为k1和k2,求证:k1⋅k2为定值.2.已知直线l与抛物线C:y2=4x交于A,B两点.(1)若直线l的斜率为-1,且经过抛物线C的焦点,求线段AB的长;(2)若点O为坐标原点,且OA⊥OB,求证:直线l过定点.(2022滁州期末)3.已知点A在圆C:x-2,线段AB的垂直平分线与AC相交于点D.2+y2=16上,B-2,0,P0,2(1)求动点D的轨迹方程;(2)若过点Q0,-1的直线l斜率存在,且直线l与动点D的轨迹相交于M,N两点.证明:直线PM与PN的斜率之积为定值.4.已知椭圆M:x2a2+y2b2=1(a>b>0)经过点P3,12,且椭圆M的上顶点与右焦点所在直线的斜率为-33.(1)求椭圆M的方程;(2)设B、C是椭圆上异于左顶点A的两个点,若以BC为直径的圆过点A,求证:直线BC过定点.(2022醴陵市期中)5.已知椭圆C1:x2a2+y2b2=1a>b>0的左右顶点是双曲线C2:x24-y2=1的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为215 5.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.6.椭圆C:x2a2+y2b2=1(a>b>0)的离心率为22,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l平行于x轴时,直线l被椭圆C截得线段长为26.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案:1.(1)x 2=4y (2)证明见解析【分析】(1)将MN 用p 表示,得出p 的值,进而得抛物线方程;(2)联立直线与抛物线的方程,根据斜率计算公式结合韦达定理即可得结果.(1)由题意可得2p =4,得p =2,∴抛物线C :x 2=4y .(2)证明:m :y =k x +2 ,联立y =k x +2 x 2=4y,得x 2-4kx -8k =0.由Δ=16k 2+32k >0,得k >0或k <-2,设A x 1,y 1 ,B x 2,y 2 ,则x 1+x 2=4k ,x 1x 2=-8k ,∴k 1k 2=y 1-1x 1-2⋅y 2-1x 2-2=x 214-1x 1-2⋅x 224-1x 2-2=x 1+2 x 2+216=x 1x 2+2x 1+x 2 +416=-8k +8k +416=14.2.(1)8(2)证明见解析【分析】(1)联立直线与抛物线的方程,根据抛物线的焦点弦公式结合韦达定理即可得解;(2)直线AB 方程为:x =my +n ,由向量数量积公式结合韦达定理可得n 的值,进而可得结果.(1)抛物线为y 2=4x ,∴焦点坐标为1,0 ,直线AB 斜率为-1,则直线AB 方程为:y =-x +1,设A x 1,y 1 ,B x 2,y 2 ,由y =-x +1y 2=4x 得:x 2-6x +1=0,可得x 1+x 2=6,由抛物线定义可得AB =x 1+x 2+2,∴AB =8.(2)设直线AB 方程为:x =my +n ,设A x 1,y 1 ,B x 2,y 2 ,∵OA ⊥OB ,∴OA ⋅OB =0,∴x 1x 2+y 1y 2=0,由x =my +n y 2=4x得:y 2-4my -4n =0,∴y 1y 2=-4n ;x 1x 2=n 2;∴n 2-4n =0,解得n =0或n =4,当n=0时,直线AB过原点,不满足题意;当n=4时,直线AB过点4,0.故当OA⊥OB时,直线AB过定点4,0.3.(1)x24+y22=1;(2)-32-2.【解析】(1)由圆的方程可得:圆心C(2,0),半径r=4,|DA|=|DB|,|DB|+|DC|=|DA|+|DC|=|AC|=r=4>|BC|=22,由椭圆的定义即可求解;(2)设l:y=kx-1,M(x1,y1),N(x2,y2),联立直线与椭圆的方程,利用根与系数的关系计算x1+x2,x1x2,再计算k1k2=y1-2x1⋅y2-2x2=(kx1-2-1)x1⋅(kx2-2-1)x2即可求解.【详解】(1)由C:x-22+y2=16得,圆心C(2,0),半径r=4,∵点D在线段AB的垂直平分线上,∴|DA|=|DB|,∴|DB|+|DC|=|DA|+|DC|=|AC|=r=4>|BC|=22,由椭圆的定义可得动点D的轨迹是以B(-2,0),C(2,0)为焦点,长轴长为2a=4的椭圆.从而a=2,c=2,b2=a2-c2=2,故所求动点D的轨迹方程为x24+y22=1.(2)设l:y=kx-1,M(x1,y1),N(x2,y2)由y=kx-1x24+y22=1消去y得(2k2+1)x2-4kx-2=0,显然Δ=(-4k)2+8(2k2+1)=k2+8>0∴x1+x2=4k2k2+1,x1x2=-22k2+1.∵x1≠0,x2≠0,∴可设直线PM与PN的斜率分别为k1,k2则k1k2=y1-2x1⋅y2-2x2=(kx1-2-1)x1⋅(kx2-2-1)x2=k2x1x2-(2+1)k(x1+x2)+22+3x1x2=k2+-(2+1)k×4k2k2+1+22+3-22k2+1=k2+2k2+3+22-2=-32-2即直线PM与PN的斜率之积为定值.【点睛】方法点睛:求轨迹方程的常用方法(1)直接法:如果动点满足的几何条件本身就是一些几何量,如(距离和角)的等量关系,或几何条件简单明了易于表达,只需要把这种关系转化为x,y的等式,就能得到曲线的轨迹方程;(2)定义法:某动点的轨迹符合某一基本轨迹如直线、圆锥曲线的定义,则可根据定义设方程,求方程系数得到动点的轨迹方程;(3)几何法:若所求轨迹满足某些几何性质,如线段的垂直平分线,角平分线的性质,则可以用几何法,列出几何式,再代入点的坐标即可;(4)相关点法(代入法):若动点满足的条件不变用等式表示,但动点是随着另一动点(称之为相关点)的运动而运动,且相关点满足的条件是明显的或是可分析的,这时我们可以用动点的坐标表示相关点的坐标,根据相关点坐标所满足的方程,求得动点的轨迹方程;(5)交轨法:在求动点轨迹时,有时会出现求两个动曲线交点的轨迹问题,这类问题常常通过解方程组得出交点(含参数)的坐标,再消去参数即可求出所求轨迹的方程.4.(1)x 24+y 2=1;(2)证明见解析【分析】(1)由椭圆的定义,性质列方程,求出a ,b 的值,再得到椭圆的方程;(2)设出直线BC 方程,与椭圆联立,由题可得AB ⊥AC ,利用AB ⋅AC =0建立关系可得.【详解】(1)由已知设椭圆的上顶点的坐标为(0,b ),右焦点为(c ,0),则由已知可得-b c =-333a 2+14b 2=1a 2=b 2+c 2,解得a =2,b =1,所以椭圆方程为x 24+y 2=1;(2)可得A (-2,0),设直线BC 方程为x =my +n ,代入椭圆方程可得4+m 2 y 2+2mny +n 2-4=0,设B x 1,y 1 ,C x 2,y 2 ,则y 1+y 2=-2mn 4+m 2,y 1y 2=n 2-44+m 2,∴x 1+x 2=m y 1+y 2 +2n =8n 4+m 2,x 1x 2=my 1+n my 2+n =m 2y 1y 2+mn y 1+y 2 +n 2=4n 2-m 2 4+m 2,∵以BC 为直径的圆过点A ,∴AB ⊥AC ,即AB ⋅AC =0,∴x 1+2,y 1 ⋅x 2+2, y 2 =x 1x 2+2x 1+x 2 +4+y 1y 2=5n 2+16n +124+m 2=0,解得n =-2或n =-65,又A (-2,0),故n =-65,所以直线BC 方程为x =my -65,故直线BC 过定点-65,0 .【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤:(1)得出直线方程,设交点为A x 1,y 1 ,B x 2,y 2 ;(2)联立直线与曲线方程,得到关于x(或y)的一元二次方程;(3)写出韦达定理;(4)将所求问题或题中关系转化为x1+x2,x1x2形式;(5)代入韦达定理求解.5.(1)x24+y23=1;(2)存在,-4,0.【分析】(1)由双曲线顶点求出a,再由点到直线距离求出b作答.(2)设出直线l的方程,与双曲线方程联立,利用韦达定理及斜率坐标公式计算、推理作答.(1)双曲线C2:x24-y2=1的顶点坐标为(±2,0),渐近线方程为x±2y=0,依题意,a=2,椭圆上顶点为0,b到直线x±2y=0的距离2b5=2155,解得b=3,所以椭圆的方程为x24+y23=1.(2)依题意,设直线l的方程为y=kx+m,A x1,y1、B x2,y2,点F-1,0,由x24+y23=1y=kx+m消去y并整理得3+4k2x2+8km x+4m2-12=0,则x1+x2=-8km3+4k2,x1⋅x2=4m2-123+4k2,直线FA、FB的斜率之和为y1x1+1+y2x2+1=kx1+mx1+1+kx2+mx2+1=2kx1x2+(k+m)(x1+x2)+2m(x1+1)(x2+1)=0,即2kx1x2+k+mx1+x2+2m=0,有2k⋅4m2-123+4k2+k+m-8km3+4k2+2m=0,整理得m=4k,此时Δ=64k2m2-16(4k2+3)(m2-3)=48(4k2+3-m2)=144(1-4k2),k≠0,否则m=0,直线l 过F点,因此当Δ>0且k≠0,即-12<k<12且k≠0时,直线l与椭圆C1交于两点,直线l:y=k(x+4),所以符合条件的动直线l过定点(-4,0).6.(Ⅰ)x28+y24=1;(Ⅱ)存在定点Q(0,4)满足题意.【详解】试题分析:(1)由椭圆C的离心率是22,直线l被椭圆C截得的线段长为26列方程组求出b 2=4,a 2=8,从而可得椭圆C 的标准方程;(2)设直线l 方程为y =kx +1,由x 2+2y 2=8y =kx +1 得2k 2+1 x 2+4kx -6=0,Δ=16k 2+242k 2+1 >0,根据韦达定理及斜率公式可得k QA +k QB =2k+1-t-4k -6=2k 4-t 3,令4-t =0,可得t =4符合题意.试题解析:(1)∵e =22,e 2=c 2a2=12,∴a 2=2c 2=b 2+c 2,b =c ·a 2=2b 2,椭圆方程化为:x 22b 2+y 2b2=1,由题意知,椭圆过点6,1 ,∴62b 2+1b 2=1,解得b 2=4,a 2=8,所以椭圆C 的方程为:x 28+y 24=1;(2)当直线l 斜率存在时,设直线l 方程:y =kx +1,由x 2+2y 2=8y =kx +1得2k 2+1 x 2+4kx -6=0,Δ=16k 2+242k 2+1 >0,设A x 1,y 1 ,B x 2,y 2 ,x 1+x 2=-4k 2k 2+1x 1x 2=-62k 2+1,假设存在定点Q 0,t (t 不为2)符合题意,∵∠PQA =∠PQB ,∴k QA =-k QB ,∴k QA +k QB =y 1-t x 1+y 2-t x 2=x 2y 1+x 1y 2-t x 1+x 2 x 1x 2=x 2kx 1+1 +x 1kx 2+1 -t x 1+x 2 x 1x 2=2kx 1x 2+1-t x 1+x 2 x 1x 2=2k +1-t -4k -6=2k 4-t 3=0,∵上式对任意实数k 恒等于零,∴4-t =0,即t =4,∴Q 0,4 ,当直线l 斜率不存在时,A ,B 两点分别为椭圆的上下顶点0,-2 ,0,2 ,显然此时∠PQA =∠PQB ,综上,存在定点Q 0,4 满足题意.。
高中数学 第2章 圆锥曲线与方程 章末小结(含解析)1数学教案
第2章圆锥曲线与方程1.圆锥曲线的标准方程求椭圆、双曲线、抛物线的标准方程包括“定位”和“定量”两方面,一般要先确定焦点的位置,再确定参数,当焦点位置不确定时,要分情况讨论,也可将方程设为一般形式:①椭圆方程为Ax2+By2=1(A>0,B>0,A≠B);②双曲线方程为Ax2+By2=1(AB<0);③抛物线方程为x2=2py(p≠0)或y2=2px(p≠0).2.椭圆、双曲线的离心率求椭圆、双曲线的离心率常用以下两种方法:(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=ca,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.3.直线与圆锥曲线的位置关系(1)从几何的角度看,直线和圆锥曲线的位置关系可分为三类:无公共点、仅有一个公共点及有两个相异的公共点.其中,直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与其相切;对于双曲线,表示与其相切或直线与双曲线的渐近线平行;对于抛物线,表示与其相切或直线与其对称轴平行或重合.(2)从代数的角度看,可通过将表示直线的方程与曲线的方程组成方程组,消元后利用所得形如一元二次方程根的情况来判断.4.求曲线的方程求曲线方程的常用方法有:(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x,y之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x,y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x,y之间的关系式.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:选择一个(或几个)与动点变化密切相关的量作为参数,用参数表示动点的坐标(x,y),即得动点轨迹的参数方程,消去参数,可得动点轨迹的普通方程.曲线方程的求法[例1] 过原点作圆的弦OA,求OA中点B的轨迹方程.[解] 法一(直接法):设B点坐标为(x,y),由题意,得|OB|2+|BC|2=|OC|2,如图所示,即x 2+y 2+[(x -1)2+y 2]=1, 即OA 中点B 的轨迹方程为⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点).法二(几何法):设B 点坐标为(x ,y ), 由题意知CB ⊥OA ,OC 的中点记为M ⎝ ⎛⎭⎪⎫12,0, 如法一中图,则|MB |=12|OC |=12,故B 点的轨迹方程为⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点).法三(代入法):设A 点坐标为(x 1,y 1),B 点坐标为(x ,y ),由题意得⎩⎪⎨⎪⎧x =x 12,y =y12,即⎩⎪⎨⎪⎧x 1=2x ,y 1=2y .又因为(x 1-1)2+y 21=1,所以(2x -1)2+(2y )2=1.即⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点).法四(交点法):设直线OA 的方程为y =kx ,当k =0时,B 为(1,0);当k ≠0时,直线BC 的方程为: y =-1k(x -1),直线OA ,BC 的方程联立消去k 即得其交点轨迹方程:y 2+x (x -1)=0,即⎝⎛⎭⎪⎫x -122+y 2=14(x ≠0,1),显然B (1,0)满足⎝⎛⎭⎪⎫x -122+y 2=14,故⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点)为所求.(1)解决轨迹问题要明确圆锥曲线的性质,做好对图形变化情况的总体分析,选好相应的解题策略和拟定好具体的方法,注意将动点的几何特性用数学语言表述.(2)要注意一些轨迹问题所包含的隐含条件,也就是曲线上点的坐标的取值范围.1.求与圆x 2+y 2=1外切,且和x 轴相切的动圆圆心M 的轨迹方程.解:设两圆的切点为A ,M 的坐标为(x ,y ),圆M 与x 轴相切于点N ,∴|AM |=|MN |, |MO |-1=|MN |=|y |. ∴x 2+y 2-1=|y |. 化简得:x 2=2|y |+1.∴动圆圆心M 的轨迹方程为x 2=2|y |+1.2.已知定点A (4,0)和圆x 2+y 2=4上的动点B ,点P 分AB 之比为AP ∶PB =2∶1,求点P 的轨迹方程.解:设点P 的坐标为(x ,y ),点B 的坐标为(x 0,y 0),由题意得AP ―→=2PB―→,即(x -4,y )=2(x 0-x ,y 0-y ),∴⎩⎪⎨⎪⎧x -4=2x 0-2x ,y =2y 0-2y ,即⎩⎪⎨⎪⎧x 0=3x -42,y 0=3y 2,代入圆的方程x 2+y 2=4,得⎝ ⎛⎭⎪⎫3x -422+9y 24=4, 即⎝⎛⎭⎪⎫x -432+y 2=169.∴所求轨迹方程为⎝⎛⎭⎪⎫x -432+y 2=169.圆锥曲线的定义及性质问题[例2] F 1,F 2为左、右焦点,P 为双曲线上一点,且∠F 1PF 2=60°,S △PF 1F 2=123,求双曲线的标准方程.[解] 如图所示,设双曲线方程为x 2a 2-y 2b2=1(a>0,b >0).∵e =ca=2,∴c =2a .由双曲线的定义,得||PF1|-|PF2||=2a=c,在△PF1F2中,由余弦定理,得:|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos 60°=(|PF1|-|PF2|)2+2|PF1||PF2|(1-cos 60°),即4c2=c2+|PF1||PF2|.①又S△PF1F2=123,∴12|PF1||PF2|sin 60°=123,即|PF1||PF2|=48.②由①②,得c2=16,c=4,则a=2,b2=c2-a2=12,∴所求的双曲线方程为x24-y212=1.(1)圆锥曲线的定义是标准方程和几何性质的根源,对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.(2)应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.3.(2017·全国卷Ⅲ)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的一条渐近线方程为y=52x,且与椭圆x212+y23=1有公共焦点,则C的方程为( )A.x 28-y 210=1 B.x 24-y 25=1C.x 25-y 24=1 D.x 24-y 23=1解析:根据双曲线C 的渐近线方程为y =52x ,可知b a =52.①又椭圆x 212+y 23=1的焦点坐标为(3,0)和(-3,0),所以a 2+b 2=9.②根据①②可知a 2=4,b 2=5, 所以C 的方程为x 24-y 25=1.答案:B4.抛物线y 2=2px (p >0)上有A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点,F 是它的焦点,若|AF |,|BF |,|CF |成等差数列,则( )A .x 1,x 2,x 3成等差数列B .y 1,y 2,y 3成等差数列C .x 1,x 3,x 2成等差数列D .y 1,y 3,y 2成等差数列 解析:由抛物线定义:|AF |=|AA ′|,|BF |=|BB ′|,|CF |=|CC ′|.∵2|BF |=|AF |+|CF |, ∴2|BB ′|=|AA ′|+|CC ′|.又∵|AA ′|=x 1+p 2,|BB ′|=x 2+p 2,|CC ′|=x 3+p2,∴2⎝⎛⎭⎪⎫x 2+p 2=x 1+p 2+x 3+p2⇒2x 2=x 1+x 3.答案:A直线与圆锥曲线的位置关系[例3] x 轴上,若右焦点到直线x -y +22=0的距离为3.(1)求椭圆的方程;(2)设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M ,N ,当|AM |=|AN |时,求m 的取值范围.[解] (1)依题意可设椭圆方程为x 2a2+y 2=1(a >1),则右焦点F (a 2-1,0),由题设,知|a 2-1+22|2=3,解得a 2=3,故所求椭圆的方程为x 23+y 2=1.(2)设点P 为弦MN 的中点,由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(3k 2+1)x 2+6mkx +3(m 2-1)=0,由于直线与椭圆有两个交点, 所以Δ>0,即m 2<3k 2+1, ① 所以x P =x M +x N2=-3mk 3k 2+1,从而y P =kx P +m =m3k 2+1,所以k AP =y P +1x P =-m +3k 2+13mk,又|AM |=|AN |,所以AP ⊥MN ,则-m +3k 2+13mk =-1k,即2m =3k 2+1, ②把②代入①得2m >m 2, 解得0<m <2,由②得k 2=2m -13>0,解得m >12,故所求m的取值范围是⎝ ⎛⎭⎪⎫12,2.讨论直线与圆锥曲线的位置关系,一般是将直线方程与圆锥曲线方程联立,组成方程组,消去一个未知数,转化为关于x (或y )的一元二次方程,由根与系数的关系求出x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)进而解决了与“距离”“中点”等有关的问题.5.设抛物线y 2=4x 截直线y =2x +k 所得弦长|AB |=3 5. (1)求k 的值;(2)以弦AB 为底边,x 轴上的P 点为顶点组成的三角形面积为39时,求点P 的坐标.解:(1)设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =2x +k ,y 2=4x ,得4x 2+4(k -1)x +k 2=0,Δ=16(k -1)2-16k 2>0,∴k <12.又由根与系数的关系有x 1+x 2=1-k ,x 1x 2=k 24,∴|AB |=x 1-x 22+y 1-y 22=1+22·x 1+x 22-4x 1x 2=5·1-2k , 即51-2k =35,∴k =-4.(2)设x 轴上点P (x,0),P 到AB 的距离为d , 则d =|2x -0-4|5=|2x -4|5,S △PAB =12·35·|2x -4|5=39,∴|2x -4|=26,∴x =15或x =-11. ∴P 点坐标为(15,0)或(-11,0).圆锥曲线中的定点、定值、最值问题[例4] (2017·全国卷Ⅲ)已知椭圆C :2a 2+2b2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎪⎫-1,32,P 4⎝ ⎛⎭⎪⎪⎫1,32中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解析] (1)由于P 3,P 4两点关于y 轴对称, 故由题设知椭圆C 经过P 3,P 4两点.又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B的坐标分别为⎝⎛⎭⎪⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎪⎫t ,-4-t 22. 则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -1x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).(1)圆锥曲线中的定点、定值问题往往与圆锥曲线中的“常数”有关,如椭圆的长轴、短轴,双曲线的虚轴、实轴,抛物线的焦点等,可以通过直接计算求解,也可用“特例法”和“相关系数法”.(2)圆锥曲线中的最值问题,通常有两类:一类是有关长度、面积等的最值问题;一类是圆锥曲线中有关几何元素的最值问题,这两类问题的解决往往要通过回归定义,结合几何知识,建立目标函数,利用函数的性质或不等式知识,以及数形结合、设参、转化代换等途径来解决.6.设椭圆x 29+y 24=1上的动点P (x ,y ),点A (a,0)(0<a <3).若|AP |的最小值为1,求a 的值.解:|AP |2=(x -a )2+y 2=(x -a )2+4⎝⎛⎭⎪⎫1-x 29=59⎝ ⎛⎭⎪⎫x -9a 52-4a 25+4.因为x 29=1-y 24,所以x 29≤1,0≤|x |≤3. (1)当0<9a 5≤3,即0<a ≤53时,x =9a 5,|AP |2取最小值4-4a 25=1.解得a =152.因为152>53,所以a 不存在.(2)当9a 5>3,即53<a <3时,x =3,|AP |2取最小值59⎝ ⎛⎭⎪⎫3-9a 52+4-4a25=1.解得a =2或a =4(舍).所以,当a =2时,|AP |的最小值为1.7.过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A ,B 两点,点C 在抛物线的准线上,且BC ∥x 轴,证明:直线AC 经过原点O .证明:如图所示.∵抛物线y 2=2px (p >0)的焦点为F ⎝ ⎛⎭⎪⎫p 2,0, ∴经过点F 的直线AB 的方程可设为x =my +p2,代入抛物线方程得y 2-2pmy -p 2=0,设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根, ∴y 1y 2=-p 2,∵BC ∥x 轴,且点C 在准线x =-p2上,∴点C的坐标为⎝ ⎛⎭⎪⎫-p 2,y 2,故直线CO 的斜率k =y 2-p 2=-2y 2p =y 1x 1,即k 也是直线OA 的斜率, ∴直线AC 经过原点O .(时间120分钟,满分150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017·浙江高考)椭圆x 29+y 24=1的离心率是( )A.133B.53C.23D.59解析:根据题意知,a =3,b =2,则c =a 2-b 2=5,∴椭圆的离心率e =c a =53.答案:B2.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(1,+∞)B .(1,2) C.⎝ ⎛⎭⎪⎫12,1 D .(0,1)解析:由x 2+ky 2=2,得x 22+y 22k=1,又∵椭圆的焦点在y 轴上, ∴2k>2,即0<k <1.答案:D3.若抛物线x 2=2ay 的焦点与椭圆x 23+y 24=1的下焦点重合,则a 的值为( )A .-2B .2C .-4D .4解析:椭圆x 23+y 24=1的下焦点为(0,-1),∴a2=-1,即a =-2. 答案:A4.θ是任意实数,则方程x 2+y 2sin θ=4的曲线不可能是( )A .椭圆B .双曲线C .抛物线D .圆解析:由于θ∈R ,对sin θ的值举例代入判断.sin θ可以等于1,这时曲线表示圆,sin θ可以小于0,这时曲线表示双曲线,sin θ可以大于0且小于1,这时曲线表示椭圆.答案:C5.已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .12解析:抛物线y 2=8x 的焦点为(2,0), ∴椭圆中c =2,又c a =12,∴a =4,b 2=a 2-c 2=12, 从而椭圆的方程为x 216+y 212=1.∵抛物线y 2=8x 的准线为x =-2, ∴x A =x B =-2,将x A =-2代入椭圆方程可得|y A |=3, 由图象可知|AB |=2|y A |=6.故选B. 答案:B6.设已知抛物线C 的顶点在坐标原点,焦点为F (1,0),过F 的直线l 与抛物线C 相交于A ,B 两点,若直线l 的倾斜角为45°,则弦AB 的中点坐标为( )A .(1,0)B .(2,2)C .(3,2)D .(2,4)解析:依题意得,抛物线C 的方程是y 2=4x ,直线l 的方程是y =x -1.由⎩⎪⎨⎪⎧y 2=4x ,y =x -1,消去y 得(x -1)2=4x ,即x 2-6x +1=0.因此线段AB 的中点的横坐标是62=3,纵坐标是y =3-1=2.所以线段AB 的中点坐标是(3,2).答案:C7.过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点F (-c,0)(c >0)作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若OE―→=12(OF ―→+OP ―→),则双曲线的离心率为( ) A.102B.105C.10D.2解析:设双曲线右焦点为M ,∵OE ⊥PF ,∴在直角三角形OEF 中,|EF |=c 2-a 24.又OE ―→=12(OF ―→+OP ―→),∴E 是PF 的中点.∴|PF |=2c 2-a 24,|PM |=a .又|PF |-|PM |=2a ,∴2c 2-a 24-a =2a .∴离心率e =c a =102.答案:A8.已知|AB ―→|=3,A ,B 分别在y 轴和x 轴上运动,O 为原点,OP ―→=13OA ―→+23OB ―→,则动点P 的轨迹方程是( )A.x 24+y 2=1 B .x 2+y 24=1C.x 29+y 2=1 D .x 2+y 29=1解析:设P (x ,y ),A (0,y 0),B (x 0,0), 由已知得(x ,y )=13(0,y 0)+23(x 0,0),即x =23x 0,y =13y 0,所以x 0=32x ,y 0=3y .因为|AB ―→|=3,所以x 20+y 20=9,即⎝ ⎛⎭⎪⎫32x 2+(3y )2=9, 化简整理得动点P 的轨迹方程是x 24+y 2=1.答案:A9.已知双曲线x 29-y 216=1的左、右焦点分别是F 1,F 2,P 是双曲线上的一点,若|PF 1|=7,则△PF 1F 2最大内角的余弦值为( )A .-17B.17C.59117D.1113解析:由双曲线定义知|PF 2|=|PF 1|±2a . 所以|PF 2|=13或|PF 2|=1<c -a =2(舍去)又|F 1F 2|=10,所以△PF 1F 2的最大内角为∠PF 1F 2, cos ∠PF 1F 2=102+72-1322×10×7=-17.答案:A10.设双曲线C :x 2a2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点,则双曲线C 的离心率e 的取值范围为( )A.⎝⎛⎭⎪⎪⎫62,2 B .(2,+∞)C.⎝ ⎛⎭⎪⎪⎫62,+∞ D.⎝⎛⎭⎪⎪⎫62,2∪(2,+∞) 解析:由⎩⎪⎨⎪⎧x 2a 2-y 2=1,x +y =1消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0.由于直线与双曲线相交于两个不同的点,则1-a 2≠0⇒a 2≠1,且此时Δ=4a 2(2-a 2)>0⇒a 2<2,所以a 2∈(0,1)∪(1,2).另一方面e =1a 2+1,则a 2=1e 2-1,从而e ∈⎝⎛⎭⎪⎪⎫62,2∪(2,+∞).答案:D11.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8解析:设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2.∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p24+5,∴p =4(负值舍去).∴C 的焦点到准线的距离为4. 答案:B12.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B.12 C.23D.34解析:如图所示,由题意得A (-a,0),B (a,0),F (-c,0). 设E (0,m ),由PF ∥OE ,得|MF ||OE |=|AF ||AO |,则|MF |=m a -ca.①又由OE ∥MF ,得12|OE ||MF |=|BO ||BF |,则|MF |=m a +c2a.②由①②得a -c =12(a +c ),即a =3c ,∴e =c a =13.答案:A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A ,B 两点,若|F 2A |=|AB |=6,则|F 2B |=________.解析:由椭圆定义知|F 1A |+|F 2A |=|F 1B |+|F 2B |=2a =10,所以|F 1A |=10-|F 2A |=4,|F 1B |=|AB |-|F 1A |=2,故|F 2B |=10-|F 1B |=8.答案:814.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A的坐标是⎝ ⎛⎭⎪⎫72,4,则|PA |+|PM |的最小值是________.解析:设抛物线焦点为F ,则|PM |=|PF |-12,∴|PA |+|PM |=|PA |+|PF |-12.∴当且仅当A ,P ,F 共线时|PA |+|PF |取最小值为|AF |=5,∴|PA |+|PM |最小值为92.答案:9215.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.解析:由椭圆的定义知|PF 1|+|PF 2|=10,|PF 1|=10-|PF 2|,|PM |+|PF 1|=10+|PM |-|PF 2|,易知M 点在椭圆外,连接MF 2并延长交椭圆于点P ,此时|PM |-|PF 2|取最大值|MF 2|,故|PM |+|PF 1|的最大值为10+|MF 2|=10+6-32+42=15.答案:1516.已知动点P 与双曲线x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-13,则动点P 的轨迹方程为____________.解析:∵x 2-y 2=1,∴c = 2.设|PF 1|+|PF 2|=2a (常数a >0),2a >2c =22, ∴a > 2. 由余弦定理有cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=|PF 1|+|PF 2|2-2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|=2a 2-4|PF 1||PF 2|-1, ∵|PF 1||PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=a 2, ∴当且仅当|PF 1|=|PF 2|时, |PF 1||PF 2|取得最大值a 2.此时cos ∠F 1PF 2取得最小值2a 2-4a2-1.由题意2a 2-4a 2-1=-13,解得a 2=3,∴b 2=a 2-c 2=3-2=1.∴P 点的轨迹方程为x 23+y 2=1.答案:x 23+y 2=1三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设F (1,0),M 点在x 轴上,P 点在y轴上,且MN ―→=2MP ―→,PM ―→⊥PF ―→,当点P 在y 轴上运动时,求N 点的轨迹C 的方程.解:∵MN ―→=2MP ―→,故P 为MN 中点.又∵PM ―→⊥PF ―→,P 在y 轴上,F 为(1,0), 故M 在x 轴的负方向上.设N (x ,y ),则M (-x,0),P ⎝ ⎛⎭⎪⎫0,y 2,(x >0).∴PM ―→=⎝ ⎛⎭⎪⎫-x ,-y 2,PF ―→=⎝⎛⎭⎪⎫1,-y 2.∵PM ―→⊥PF ―→,∴PM ―→·PF―→=0,即-x +y 24=0.∴y 2=4x (x >0)是轨迹C 的方程.18.(本小题满分12分)已知双曲线C 的两个焦点坐标分别为F 1(-2,0),F 2(2,0),双曲线C 上一点P 到F 1,F 2距离差的绝对值等于2.(1)求双曲线C 的标准方程;(2)经过点M (2,1)作直线l 交双曲线C 的右支于A ,B 两点,且M 为AB 的中点,求直线l 的方程.解:(1)依题意,得双曲线C 的实半轴长为a =1,焦半距为c =2,所以其虚半轴长b =c 2-a 2= 3.又其焦点在x 轴上,所以双曲线C 的标准方程为x 2-y 23=1.(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),则⎩⎪⎨⎪⎧3x 21-y 21=3,3x 22-y 22=3,两式相减,得3(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)=0. 因为M (2,1)为AB 的中点,所以⎩⎪⎨⎪⎧x 1+x 2=4,y 1+y 2=2.所以12(x 1-x 2)-2(y 1-y 2)=0,即k AB =y 1-y 2x 1-x 2=6.故AB 所在直线l 的方程为y -1=6(x -2), 即6x -y -11=0.19.(本小题满分12分)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由. 解:(1)如图,由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t . 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t , 故直线ON 的方程为y =ptx ,将其代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t2p.因此H ⎝⎛⎭⎪⎫2t 2p,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点. 理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.20.(本小题满分12分)设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据a 2-b 2=c 2及题设知M ⎝⎛⎭⎪⎫c ,b 2a ,b 2a 2c =34,得2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,ca=-2(舍去).故C 的离心率为12.(2)设直线MN 与y 轴的交点为D ,由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2-c -x 1=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及a 2-b 2=c 2代入②得9a 2-4a 4a 2+14a=1. 解得a =7,b 2=4a =28, 故a =7,b =27.21.(本小题满分12分)已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求直线l 的方程;若不存在,说明理由.解:(1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, 所以p =2.故所求抛物线C 的方程为y 2=4x , 其准线方程为x =-1.(2)假设存在符合题意的直线l , 设其方程为y =-2x +t ,由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x ,消去x ,得y 2+2y -2t =0.因为直线l 与抛物线C 有公共点, 所以Δ=4+8t ≥0,解得t ≥-12.由直线OA 与l 的距离d =55可得|t |5=15,解得t =±1.因为-1∉⎣⎢⎡⎭⎪⎫-12,+∞,1∈⎣⎢⎡⎭⎪⎫-12,+∞,所以符合题意的直线l 存在,其方程为2x +y -1=0.22.(2017·全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP ―→= 2 NM―→.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP ―→·P Q ―→=1.证明:过点P 且垂直于O Q 的直线l 过C 的左焦点F .解:(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP ―→=(x -x 0,y ),NM ―→=(0,y 0).由NP ―→= 2 NM ―→,得x 0=x ,y 0=22y .因为M (x 0,y 0)在椭圆C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q(-3,t ),P (m ,n ), 则O Q ―→=(-3,t ),PF ―→=(-1-m ,-n ),O Q ―→·PF―→=3+3m -tn , OP ―→=(m ,n ),P Q ―→=(-3-m ,t -n ). 由OP ―→·P Q ―→=1,得-3m -m 2+tn -n 2=1,又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以O Q ―→·PF ―→=0,即O Q ―→⊥PF ―→. 又过点P 存在唯一直线垂直于O Q ,所以过点P 且垂直于O Q 的直线l 过C 的左焦点F .。
高中数学 第二章 圆锥曲线与方程 2.5 直线与圆锥曲线学案(含解析)新人教B版选修2-1-新人教B
§2.5直线与圆锥曲线学习目标 1.通过类比直线与圆的位置关系,学会判断直线与椭圆、双曲线、抛物线的位置关系.2.会求直线与圆锥曲线相交所得弦的长,以及直线与圆锥曲线的综合问题.知识点一直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系直线与圆锥曲线联立,消元得方程ax2+bx+c=0.方程特征交点个数位置关系直线与椭圆a≠0,Δ>02相交a≠0,Δ=1相切a≠0,Δ<00相离直线与双曲线a=01直线与双曲线的渐近线平行且两者相交a≠0,Δ>02相交a≠0,Δ=1相切a≠0,Δ<00相离直线与抛物线a=01直线与抛物线的对称轴重合或平行且两者相交a≠0,Δ>02相交a≠0,Δ=1相切a≠0,Δ<00相离知识点二 弦长公式若直线l :y =kx +b 与圆锥曲线交于两点A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2|x 2-x 1|=1+k2[x 1+x 22-4x 1x 2].1.直线与圆锥曲线有且只有一个公共点时,直线与圆锥曲线相切.( × ) 2.直线与圆锥曲线交点的个数就是它们的方程联立方程组的解的个数.( √ )题型一 直线与圆锥曲线的位置关系判定例1 已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点? 解 直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m ,①x 24+y22=1,②将①代入②,整理得9x 2+8mx +2m 2-4=0,③ 这个关于x 的一元二次方程的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)由Δ>0,得-32<m <3 2.于是,当-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不同的公共点. (2)由Δ=0,得m =±3 2.也就是当m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)由Δ<0,得m <-32或m >3 2.从而当m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l与椭圆C 没有公共点.反思感悟 在讨论直线与圆锥曲线的位置关系时,要先讨论得到的方程二次项系数为零的情况,再考虑Δ的情况,而且不要忽略直线斜率不存在的情形.跟踪训练1 已知双曲线C :x 2-y 22=1,直线l 的斜率为k 且直线l 过点P (1,1),当k 为何值时,直线l 与双曲线C :(1)有一个公共点;(2)有两个公共点;(3)无公共点? 解 设直线l :y -1=k (x -1),即y =kx +(1-k ).由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y 22=1,得(k 2-2)x 2-2k (k -1)x +k 2-2k +3=0.(*)当k 2-2=0,即k =±2时,(*)式只有一解,直线l 与双曲线相交,只有一个公共点. 当k 2-2≠0时,Δ=24-16k ,若Δ=0,即k =32,方程(*)只有一解,直线与双曲线相切,只有一个公共点;若Δ>0,即k <32且k ≠±2,方程(*)有两解,直线与双曲线相交,有两个公共点;若Δ<0,即k >32,方程(*)无解,直线与双曲线无公共点.综上,(1)当k =±2或k =32时,直线l 与双曲线只有一个公共点;(2)当k <32且k ≠±2时,直线l 与双曲线有两个公共点;(3)当k >32时,直线l 与双曲线无公共点.题型二 中点弦及弦长问题例2 已知点A (-1,0),B (1,0),直线AM ,BM 相交于点M ,且k MA ·k MB =-2. (1)求点M 的轨迹C 的方程;(2)过定点(0,1)作直线PQ 与曲线C 交于P ,Q 两点,且|PQ |=322,求直线PQ 的方程.解 (1)设M (x ,y ),则k MA =y x +1,k MB =yx -1(x ≠±1), ∴yx +1×yx -1=-2,∴x 2+y 22=1(x ≠±1). (2)当直线PQ 的斜率不存在,即PQ 是椭圆的长轴时,其长为22,显然不合题意,即直线PQ 的斜率存在,设直线PQ 的方程是y =kx +1,P (x 1,y 1),Q (x 2,y 2), 则y 1-y 2=k (x 1-x 2),联立⎩⎪⎨⎪⎧x 2+y 22=1,y =kx +1,消去y 得(k 2+2)x 2+2kx -1=0.∵Δ=4k 2+4(k 2+2)=8(k 2+1)>0,∴k ∈R ,x 1+x 2=-2k k 2+2,x 1x 2=-1k 2+2, ∴|PQ |=x 1-x 22+y 1-y 22=1+k 2[x 1+x 22-4x 1x 2]=22·k 2+1k 2+2,∴|PQ |=322=22·k 2+1k 2+2,k 2=2,k =±2,∴直线PQ 的方程是y ±2x -1=0.反思感悟 直线和圆锥曲线相交问题的通法就是利用两个方程联立得到的一元二次方程,利用弦长公式和根与系数的关系解决(要考虑特殊情形);对于中点弦问题可采用点差法,但要验证得到的直线是否适合题意.跟踪训练2 中心在原点、对称轴为坐标轴的椭圆与直线x +y -1=0相交于A ,B ,C 是AB 中点,若|AB |=22,OC 的斜率为22,求椭圆的方程. 解 设椭圆方程为ax 2+by 2=1(a >0,b >0,a ≠b ). 设A (x 1,y 1),B (x 2,y 2),代入椭圆方程并作差得,a (x 1+x 2)(x 1-x 2)+b (y 1+y 2)(y 1-y 2)=0,而y 1-y 2x 1-x 2=-1,y 1+y 2x 1+x 2=k OC =22, 代入上式可得b =2a , 再由|AB |=2|x 2-x 1|=22,其中x 1,x 2是方程(a +b )x 2-2bx +b -1=0的两根, 故⎝⎛⎭⎪⎫2b a +b 2-4·b -1a +b =4,将b =2a 代入得a =13,∴b =23.∴所求椭圆的方程是x 2+2y 2=3. 题型三 圆锥曲线中的最值及范围问题例3 已知△AOB 的一个顶点为抛物线y 2=2x 的顶点O ,A ,B 两点都在抛物线上,且∠AOB =90°.(1)求证:直线AB 必过一定点; (2)求△AOB 面积的最小值.(1)证明 设OA 所在直线的方程为y =kx (易知k ≠0),则直线OB 的方程为y =-1kx .由⎩⎪⎨⎪⎧y =kx ,y 2=2x ,得A ⎝ ⎛⎭⎪⎫2k2,2k ,由⎩⎪⎨⎪⎧y =-1k x ,y 2=2x ,得B (2k 2,-2k ).∴直线AB 所在直线方程为(y +2k )⎝ ⎛⎭⎪⎫2k 2-2k 2=⎝ ⎛⎭⎪⎫2k +2k (x -2k 2),化简得x -⎝ ⎛⎭⎪⎫1k -k y -2=0,∴直线过定点P (2,0).(2)解 由于直线AB 所在直线方程过定点P (2,0), ∴可设直线AB 的方程为x =my +2.由⎩⎪⎨⎪⎧x =my +2,y 2=2x ,得y 2-2my -4=0.∴|y 1-y 2|=2m 2+16=4m 2+16.∴S △AOB =12|y 1|·|OP |+12|y 2|·|OP |=12|OP |·|y 1-y 2|=|y 1-y 2|=4m 2+16≥4.∴△AOB 面积的最小值为4. 反思感悟 (1)求参数范围的方法根据已知条件建立等式或不等式的函数关系,再求参数范围. (2)求最值问题的方法 ①几何法题目中给出的条件有明显的几何特征,则考虑用图象来解决. ②代数法题目中给出的条件和结论几何特征不明显,则可以建立目标函数,再求这个函数的最值,求最值的常见方法是均值不等式法,单调性法等. 跟踪训练3 如图,过抛物线y 2=x 上一点A (4,2)作倾斜角互补的两条直线AB ,AC 交抛物线于B ,C 两点,求证:直线BC 的斜率是定值.证明 设k AB =k (k ≠0), ∵直线AB ,AC 的倾斜角互补,∴k AC =-k (k ≠0),∴AB 的方程是y =k (x -4)+2.由方程组⎩⎪⎨⎪⎧y =k x -4+2,y 2=x ,消去y 后,整理得k 2x 2+(-8k 2+4k -1)x +16k 2-16k +4=0.∵A (4,2),B (x B ,y B )是上述方程组的解. ∴4·x B =16k 2-16k +4k 2,即x B =4k 2-4k +1k2, 设C (x C ,y C ),以-k 代换x B 中的k ,得x C =4k 2+4k +1k2, ∴k BC =y B -y C x B -x C =k x B -4+2-[-k x C -4+2]x B -x C=k x B +x C -8x B -x C=k ⎝ ⎛⎭⎪⎫8k 2+2k 2-8-8kk 2=-14.∴直线BC 的斜率为定值.1.过点P (0,1)与抛物线y 2=x 有且只有一个交点的直线有( ) A .4条B .3条C .2条D .1条考点 直线与抛物线的位置关系 题点 直线与抛物线公共点个数问题 答案 B解析 当直线垂直于x 轴时,满足条件的直线有1条; 当直线不垂直于x 轴时,满足条件的直线有2条,故选B.2.若直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是( )A .m >1B .m ≥1或0<m <1C .0<m <5且m ≠1D .m ≥1且m ≠5答案 D解析 ∵直线y =kx +1恒过(0,1)点,若5>m ,则m ≥1, 若5<m ,则必有公共点,∴m ≥1且m ≠5.3.抛物线y =4x 2上一点到直线y =4x -5的距离最短,则该点坐标为( )A .(1,2)B .(0,0) C.⎝ ⎛⎭⎪⎫12,1D .(1,4) 答案 C解析 因为y =4x 2与y =4x -5不相交, 设与y =4x -5平行的直线方程为y =4x +m .由⎩⎪⎨⎪⎧y =4x 2,y =4x +m ,得4x 2-4x -m =0.(*)设此直线与抛物线相切,有Δ=0, 即Δ=16+16m =0,∴m =-1. 将m =-1代入(*)式,得x =12,y =1,所求点的坐标为⎝ ⎛⎭⎪⎫12,1. 4.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________. 答案 53解析 由已知可得直线方程为y =2x -2,联立方程得方程组⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得A (0,-2),B ⎝ ⎛⎭⎪⎫53,43.∴S △AOB =12|OF ||y A -y B |=53.5.过点A (6,1)作直线l 与双曲线x 216-y 24=1相交于两点B ,C ,且A 为线段BC 的中点,则直线l 的方程为________________. 答案 3x -2y -16=0解析 设B (x 1,y 1),C (x 2,y 2),则⎩⎪⎨⎪⎧x 2116-y 214=1,x 2216-y224=1,∴x 21-x 2216-y 21-y 224=0.∴y 1-y 2x 1-x 2=x 1+x 24y 1+y 2=124×2=32. 即k BC =32,∴直线l 的方程是y -1=32(x -6).即3x -2y -16=0,经验证符合题意.1.解决直线与圆锥曲线的交点问题时,主要方法是构建一元二次方程,判断其解的个数.确定斜率与直线的倾斜角时,应特别注意斜率为0和斜率不存在的两种情形,以及在双曲线和抛物线中,直线和圆锥曲线有一个公共点并不一定相切. 2.与弦中点有关的问题,求解的方法有两种:(1)一般方法:利用根与系数的关系及中点坐标公式来求解;(2)点差法:利用端点在曲线上,坐标满足方程,将端点坐标分别代入曲线方程,然后作差构造出中点坐标和斜率的关系.3.在探求最值时,常结合几何图形的直观性,充分利用平面几何结论,借助于函数的单调性、均值不等式等使问题获解.同时,要注意未知数的取值范围、最值存在的条件.一、选择题1.已知双曲线C :x 2-y 2=1,F 是其右焦点,过F 的直线l 只与双曲线的右支有唯一的交点,则直线l 的斜率等于( ) A .1B .-1C .±1D.±2 答案 C解析 结合题意,F (2,0),且渐近线为y =±x ,欲使直线l 与其右支有唯一交点,只需其斜率与渐近线斜率相等.2.已知双曲线x 2-y 23=1,过P (2,1)点作一直线交双曲线于A ,B 两点,并使P 为AB 的中点,则直线AB 的斜率为( ) A .3B .4C .5D .6 答案 D解析 设A (x 1,y 1),B (x 2,y 2),则由x 21-y 213=1与x 22-y 223=1得k AB =y 1-y 2x 1-x 2=3x 1+x 2y 1+y 2=6.3.对于抛物线C :y 2=4x ,我们称满足y 20<4x 0的点M (x 0,y 0)在抛物线的内部,若点M (x 0,y 0)在抛物线的内部,则直线l :y 0y =2(x +x 0)与拋物线C ( )A .恰有一个公共点B .恰有两个公共点C .可能有一个公共点也可能有两个公共点D .没有公共点 答案 D解析 C 与l 联立得y 0y =2⎝ ⎛⎭⎪⎫y 24+x 0,即y 2-2y 0y +4x 0=0,Δ=4y 20-16x 0, 由题意y 20<4x 0,∴Δ<0,没有公共点.4.已知M (a,2)是抛物线y 2=2x 上的一定点,直线MP ,MQ 的倾斜角之和为π,且分别与抛物线交于P ,Q 两点,则直线PQ 的斜率为( ) A .-14B .-12C.14D.12答案 B解析 由题意得M (2,2).设P ⎝ ⎛⎭⎪⎫y 212,y 1,Q ⎝ ⎛⎭⎪⎫y 222,y 2, 由k MP =-k MQ , 得y 1-2y 212-2=-y 2-2y 222-2, 则y 1+y 2=-4,故k PQ =2y 1+y 2=-12. 5.设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) A.2B.3C.3+12 D.5+12答案 D解析 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),如图所示,双曲线的一条渐近线方程为y =bax ,而k BF =-bc.∴b a ·⎝ ⎛⎭⎪⎫-b c=-1,整理得b 2=ac .∴c 2-a 2-ac =0.两边同除以a 2,得e 2-e -1=0, 解得e =1+52或e =1-52(舍去),故选D.6.直线y =x -3与抛物线y 2=4x 交于A ,B 两点,过A ,B 两点向抛物线的准线作垂线,垂足分别为P ,Q ,则梯形APQB 的面积为( ) A .48B .56C .64D .72 答案 A解析 由⎩⎪⎨⎪⎧y =x -3,y 2=4x ,得x 2-10x +9=0,解得⎩⎪⎨⎪⎧x =1,y =-2或⎩⎪⎨⎪⎧x =9,y =6.设|AP |=10,|BQ |=2,又|PQ |=8, ∴梯形APQB 的面积为S =12(|AP |+|BQ |)×|PQ |=12(10+2)×8=48.7.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ) A.x 28+y 22=1B.x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=1 答案 D解析 ∵椭圆的离心率为32,∴c a =a 2-b 2a =32,∴a =2b .∴椭圆方程为x 2+4y 2=4b 2.∵双曲线x 2-y 2=1的渐近线方程为x ±y =0,∴渐近线x ±y =0与椭圆x 2+4y 2=4b 2在第一象限的交点为⎝⎛⎭⎪⎫255b ,255b ,∴由圆锥曲线的对称性得四边形在第一象限部分的面积为255b ×255b =4,∴b 2=5,∴a 2=4b 2=20.∴椭圆C 的方程为x 220+y 25=1. 8.已知椭圆x 2a 2+y 2b2=1(a >b >0)被抛物线y 2=4x 的准线截得的弦长为3,以坐标原点为圆心,以椭圆的长半轴长为半径的圆与直线y =x +22相切,则椭圆的离心率为( ) A.12B.22C.23D.24 答案 A解析 由题意得抛物线准线方程为x =-1,且椭圆被抛物线截得的弦长为3, 故椭圆过点⎝ ⎛⎭⎪⎫-1,32,将该点代入椭圆方程,得1a 2+94b2=1,① 又点(0,0)到x -y +22=0的距离为a , 即|0-0+22|12+-12=a ,②由②得a =2,代入①得b = 3. 故c =a 2-b 2=1,所以其离心率e =c a =12.二、填空题9.椭圆x 24+y 2=1的左、右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-263,263解析 设椭圆上一点P 的坐标为(x ,y ), 则F 1P →=(x +3,y ),F 2P →=(x -3,y ). ∵∠F 1PF 2为钝角,∴F 1P →·F 2P →<0, 即x 2-3+y 2<0,(*)∵y 2=1-x 24,代入(*)式得x 2-3+1-x 24<0,34x 2<2,∴x 2<83. 解得-263<x <263,∴x ∈⎝ ⎛⎭⎪⎫-263,263.10.已知F 是抛物线C :y 2=4x 的焦点,A ,B 是抛物线C 上的两个点,线段AB 的中点为M (2,2),则△ABF 的面积为________. 答案 2解析 设A (x 1,y 1),B (x 2,y 2),则y 21=4x 1,y 22=4x 2. ∴(y 1+y 2)(y 1-y 2)=4(x 1-x 2). ∵x 1≠x 2,∴y 1-y 2x 1-x 2=4y 1+y 2=1. ∴直线AB 的方程为y -2=x -2,即y =x . 将其代入y 2=4x ,得A (0,0),B (4,4). ∴|AB |=4 2.又F (1,0)到y =x 的距离为22, ∴S △ABF =12×22×42=2.11.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹,给出下列三个结论:①曲线C 过坐标原点;②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中所有正确结论的序号是__________. 答案 ②③ 解析设曲线C 上任一点P (x ,y ),由|PF 1|·|PF 2|=a 2,可得x +12+y 2·x -12+y 2=a 2(a >1),将原点(0,0)代入,等式不成立,故①不正确.∵点P (x ,y )在曲线C 上,∴点P 关于原点的对称点为P ′(-x ,-y ),将P ′代入曲线C 的方程,等式成立,故②正确.设∠F 1PF 2=θ,则12F PF S=12|PF 1||PF 2|·sin θ=12a 2sin θ≤12a 2,故③正确.三、解答题12.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,其中左焦点为F (-2,0).(1)求椭圆C 的方程;(2)若直线y =x +m 与椭圆C 交于不同的两点A ,B 且线段AB 的中点M 在圆x 2+y 2=1上,求m 的值.解 (1)由题意,得⎩⎪⎨⎪⎧c a =22,c =2,a 2=b 2+c 2,解得⎩⎨⎧a =22,b =2.∴椭圆C 的方程为x 28+y 24=1.(2)设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧x 28+y 24=1,y =x +m ,消去y 得,3x 2+4mx +2m 2-8=0,Δ=96-8m 2>0,∴-23<m <23,∵x 0=x 1+x 22=-2m 3,∴y 0=x 0+m =m3,∵点M (x 0,y 0)在圆x 2+y 2=1上, ∴⎝ ⎛⎭⎪⎫-2m 32+⎝ ⎛⎭⎪⎫m 32=1,∴m =±355.13.已知直线l :y =k (x +1)与抛物线y 2=-x 交于A ,B 两点,O 为坐标原点. (1)若△OAB 的面积为10,求k 的值; (2)求证:以弦AB 为直径的圆必过原点.(1)解 设A (x 1,y 1),B (x 2,y 2),原点O 到直线AB 的距离为d ,联立得⎩⎪⎨⎪⎧y =k x +1,y 2=-x ,化简整理得k 2x 2+(2k 2+1)x +k 2=0,由题意知k ≠0, 由根与系数的关系得,x 1+x 2=-2k 2+1k2,x 1x 2=1.由弦长公式,得|AB |=1+k 2|x 1-x 2| =1+k 2·1k4+4k2,由点到直线距离公式得d =|k |1+k2,得S △OAB =12|AB |·d =121k 2+4=10,解得k =±16.(2)证明 ∵k OA =y 1x 1,k OB =y 2x 2,∴k OA ·k OB =y 1y 2x 1x 2. ∵y 21=-x 1,y 22=-x 2,∴x 1x 2=(y 1y 2)2, ∴k OA ·k OB =1y 1y 2,由⎩⎪⎨⎪⎧y =k x +1,y 2=-x ,得ky 2+y -k =0,∴y 1y 2=-1, 即k OA ·k OB =-1,∴OA ⊥OB , ∴以弦AB 为直径的圆必过原点.14.有一动圆P 恒过定点F (a,0)(a >0)且与y 轴相交于点A ,B ,若△ABP 为正三角形,则点P 的轨迹为( )A .直线B .圆C .椭圆D .双曲线 答案 D解析 设P (x ,y ),动圆P 的半径为R ,由于△ABP 为正三角形. ∴P 到y 轴的距离d =32R ,即|x |=32R . 而R =|PF |=x -a 2+y 2, ∴|x |=32·x -a2+y 2.整理得(x +3a )2-3y 2=12a 2,即x +3a212a2-y 24a2=1. ∴点P 的轨迹为双曲线.15.在平面直角坐标系xOy 中,F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,B 为短轴的一个端点,E 为椭圆C 上的一点,满足OE →=OF 1→+22OB →,且△EF 1F 2的周长为2(2+1).(1)求椭圆C 的方程;(2)设点M 是线段OF 2上的一点,过点F 2且与x 轴不垂直的直线l 交椭圆C 于P ,Q 两点,若△MPQ 是以M 为顶点的等腰三角形,求点M 到直线l 的距离的取值范围. 解 (1)由已知得F 1(-c,0),不妨设B (0,b ), 则OF 1→=(-c,0),OB →=(0,b ), 所以OE →=⎝ ⎛⎭⎪⎫-c ,22b ,即E ⎝ ⎛⎭⎪⎫-c ,22b .又点E 在椭圆C 上,所以c 2a 2+12b 2b2=1,得c a =22.① 又△EF 1F 2的周长为2(2+1), 所以2a +2c =2+22.②由①②,得c =1,a =2,所以b =1. 所以所求椭圆C 的方程为x 22+y 2=1.(2)设点M (m,0)(0<m <1),直线l 的方程为y =k (x -1)(k ≠0).由⎩⎪⎨⎪⎧y =k x -1,x 2+2y 2=2,消去y ,得(1+2k 2)x 2-4k 2x +2k 2-2=0. 设P (x 1,y 1),Q (x 2,y 2),PQ 中点为N (x 0,y 0),则x 1+x 2=4k 21+2k 2,所以y 1+y 2=k (x 1+x 2-2)=-2k1+2k2, 所以x 0=x 1+x 22=2k 21+2k2, y 0=y 1+y 22=-k 1+2k2,即N ⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2. 因为△MPQ 是以M 为顶点的等腰三角形, 所以MN ⊥PQ ,即k 2m 1+2k 2-2k 2=-1. 所以m =k 21+2k2=12+1k 2∈⎝ ⎛⎭⎪⎫0,12. 设点M 到直线l :kx -y -k =0的距离为d ,则d 2=k2m -12k 2+1=k 2k 2+11+2k 22<14k 2+k 2+121+2k22=14, 所以d ∈⎝ ⎛⎭⎪⎫0,12.(或k 2=m 1-2m 且m ∈⎝ ⎛⎭⎪⎫0,12,所以d 2=k 2m -12k 2+1=m (1-m )<14⇒d ∈⎝ ⎛⎭⎪⎫0,12. 即点M 到直线l 的距离的取值范围是⎝ ⎛⎭⎪⎫0,12.。
高中数学圆锥曲线总结
数学圆锥曲线总结1、圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值”与<|F F|不可忽视。
若=|F F|,则轨迹是以F,F为端点的两条射线,若﹥|F F|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
Attention:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,,在双曲线中,最大,。
4.圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。
(2)(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤离心率:,双曲线,等轴双曲线,越小,开口越小,越大,开口越大;⑥两条渐近线:。
(3)抛物线(以为例):①范围:;②焦点:一个焦点,其中的几何意义是:焦点到准线的距离;③对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);④准线:一条准线;⑤离心率:,抛物线。
过点的直线与圆锥曲线有且仅有一个交点的判别方法
二 、直 线 与 双 曲线
直线 与双 曲线 有且仅有一 个交点 有 两种 能 , n J 圳 线与双 曲线相 切 或直线 与 双 曲线 的渐 近线平 行 且 }双 | j
曲线 相 交.
① 点 P在椭 圆内 , 存在 ; 不
点 P在 椭 圆上 , 只有 一 条 直 线 , + / : l 即 2 = ; =
t2( 1 )
一
一
以上是数列求 和 的常 用方 法 , 另外 还有 导 数 法 、 侍
2 1 一 +( 1十 1) … [ +( 1十 1) 一 +
1  ̄ (~ - I -2 一
.
~
定系数法 、 组合 数 法 、 限法 求和 、 纳猜 想 i 极 归 正明法 、 仃
i 、 i ・ 一 i , 一 、 ‘ ’ ’
【 1 求 过 点 P( , ) 椭 圆 + 一 1有 且 仅 例 】 04与
’ . .
’
’
百
、 一
百
—q
’。
、 ;
4
、 二
・
,
{ ’ i ,数 6的 项 , 一一 ( 即 列{} 前 和丁一 i 7 J
限差 分法 、 递推 法 、 阶差 法 、 理化 法 等方 法. 有 当解 决 桀
具体 问题时 , 选用恰 当的方 法可 以提高解 决此 问题 的
八 、 用 周 期 性 求 和 利
效率.
( 任编辑 责 金 铃 J
若 数 列 { 郁 有 UI 一“J其 中 ”∈ N -f  ̄ J ( N 为 给 的 . .
解 :‘ ・ i . -) i i, ( 4 - -
竺+: ( 弓 6 …1一8r) 3+ + ) ( 2。1 一. :2 『. _ : .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2012· 广东高考)在平面直角坐标系xOy中,已知椭圆 x2 y2 C1: 2 + 2 =1(a>b>0)的左焦点为F1(-1,0),且点P(0,1) a b 在C1上. (1)求椭圆C1的方程; (2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求 直线l的方程.
高 考 体 验 · 明 考 情
【解析】 1), 又点(1,1)在椭圆内部,故直线与椭圆相交. 【答案】
菜 单
) B.相切 D.不确定
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
直线y=kx-k+1=k(x-1)+1恒过定点(1,
课 后 作 业
A
新课标 ·文科数学(安徽专用)
自 主 落 实 · 固 基 础
x2 y2 2.若直线y=kx与双曲线 - =1相交,则k的取值范 9 4 围是( ) 2 2 A.(0, ) B.(- ,0) 3 3 2 2 2 2 C.(- , ) D.(-∞,- )∪( ,+∞) 3 3 3 3
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
把②代入①解得k2>3,即k> 3或k<- 3, π π π 2π ∴直线l的倾斜角的取值范围为( , )∪( , ). 3 2 2 3
课 后 作 业
菜
单
新课标 ·文科数学(安徽专用)
自 主 落 实 · 固 基 础
1.解答本题(2)时,也可设M(x1,y1),N(x2,y2),代 y2-y1 入椭圆方程,两式相减,再把 =k,x1+x2=-1,y1 x2-x1 +y2=2m-k代入求解. 2.(1)凡涉及到弦中点问题常用“点差法”,也可以 将直线方程代入曲线方程,得到一个一元二次方程,利用 根与系数关系求解.(2)与抛物线焦点弦长相关的问题,要 注意抛物线定义的运用.
课 后 作 业
菜
单
新课标 ·文科数学(安徽专用)
自 主 落 实 · 固 基 础
【思路点拨】
(1)由c=1,点P(0,1)在椭圆C1 上,求
关于a,b的方程;(2)利用待定系数法设l的方程,联立曲线
方程,根据判别式Δ=0求待定参数.
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
【尝试解答】 (1)椭圆C1的左焦点为F1(-1,0),∴c =1, 又点P(0,1)在曲线C1上, 0 1 ∴ 2+ 2=1,得b=1,则a2=b2+c2=2, a b x2 2 所以椭圆C1的方程为 +y =1. 2
1 2 【解析】 因为y= x ,所以y′=x,易知P(4,8), 2 Q(-2,2),所以在P、Q两点处切线的斜率的值为4或-2. 所以这两条切线的方程为l1:4x-y-8=0,l2:2x+y +2=0, 将这两个方程联立方程组求得y=-4.
【答案】 -4
课 后 作 业
菜
单
新课标 ·文科数学(安徽专用)
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
课 后 作 业
菜
单
新课标 ·文科数学(安徽专用)
自 主 落 实 · 固 基 础
典 例 探 究 · 提 知 能
(2013· 烟台模拟)已知椭圆的两个焦点分别为F1(0,- 2 2 2 2),F2(0,2 2),离心率为e= . 3 (1)求椭圆方程; (2)一条不与坐标轴平行的直线l与椭圆交于不同的两点 1 M、N,且线段MN中点的横坐标为- ,求直线l的倾斜角 2 的取值范围. c 【思路点拨】 (1)已知c和 a ,可直接求a、b,注意焦 点在y轴上.(2)可将直线方程和椭圆方程联立,利用根与 系数的关系求解,也可利用点差法求解.
y2=4x, 由 消去y得k2x2+(2km-4)x+m2=0. y=kx+m,
高 考 体 验 · 明 考 情
课 后 作 业
菜
单
新课标 ·文科数学(安徽专用)
自 主 落 实 · 固 基 础
因为直线l与抛物线C2相切, 所以Δ2=(2km-4)2-4k2m2=0, 整理得km=1.② 2 2 k= , k=- , 2 2 综合①②,解得 或 m= 2, m=- 2. 2 2 所以直线l的方程为y= x+ 2或y=- x- 2. 2 2
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
课 后 作 业
【解】 (1)将(1,-2)代入y2=2px,得(-2)2=2p· 1, 所以p=2. 故所求的抛物线C的方程为y2=4x,其准线方程为x= -1.
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
课 后 作 业
菜
单
新课标 ·文科数学(安徽专用)
自 主 落 实 · 固 基 础
(2)假设存在符合题意的直线l,其方程为y=-2x+t.
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
2.圆锥曲线的弦长 设斜率为k(k≠0)的直线l与圆锥曲线C相交于A、B两 1+k2|x2-x1| 点,A(x1,y1),B(x2,y2),则|AB|=_________________= 1 1+ 2|y2-y1|. k
菜 单
课 后 作 业
新课标 ·文科数学(安徽专用)
自 主 落 实 · 固 基 础
1.直线与圆锥曲线有一个公共点是直线与圆锥曲线相 切的什么条件? 【提示】 必要不充分条件.直线与圆锥曲线相切时,
高 考 体 验 · 明 考 情
二者只有一个公共点,但反过来不成立.如在抛物线y2 = 2px(p>0)中,过抛物线上任一点作平行于对称轴的直线,则 该直线与抛物线有且只有一个交点,但此时直线与抛物线相
【答案】 16
课 后 作 业
菜
单
新课标 ·文科数学(安徽专用)
自 主 落 实 · 固 基 础
4.(2012·辽宁高考)已知P,Q为抛物线x2=2y上两点,
点P,Q的横坐标分别为4,-2,过P,Q分别作抛物线的切
线,两切线交于点A,则点A的纵坐标为________.
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
菜
单
新课标 ·文科数学(安徽专用)
自 主 落 实 · 固 基 础
已知抛物线C:y2=2px(p>0)过点A(1,-2). (1)求抛物线C的方程,并求其准线方程; (2)是否存在平行于OA(O为坐标原点)的直线l,使得直 5 线l与抛物线C有公共点,且直线OA与l的距离等于 ?若 5 存在,求出直线l的方程;若不存在,说明理由.
课 后 作 业
菜
单
新课标 ·文科数学(安徽专用)
自 主 落 实 · 固 基 础
典 例 探 究 · 提 知 能
(2)由题意可知,直线l的斜率显然存在且不等于0,设 直线l的方程为y=kx+m, 2 x +y2=1, 由 2 消去y得(1+2k2)x2+4kmx+2m2-2= y=kx+m, 0. 因为直线l与椭圆C1相切, 所以Δ1=16k2m2-4(1+2k2)(2m2-2)=0. 整理得2k2-m2+1=0.①
线x2 =4y的焦点,且与抛物线相交于A、B两点,则弦AB的
长为________.
【解析】
直线l的方程为y= 3x+1,
高 考 体 验 · 明 考 情
y= 3x+1 由 2 得y2-14y+1=0. x =4y
典 例 探 究 · 提 知 能
设A(x1,y1),B(x2,y2),则y1+y2=14, ∴|AB|=y1+y2+p=14+2=16.
典 例 探 究 · 提 知 能
a a ∴B点的坐标为(0,a),故M点的坐标为(- , ), 2 2 代入椭圆方程得a2=3b2, 6 2 2 ∴c =2b ,∴e= . 3
课 后 作 业
【答案】
菜 单
6 3
新课标 ·文科数学(安徽专用)
自 主 落 实 · 固 基 础
典 例 探 究 · 提 知 能
菜 单
高 考 体 验 · 明 考 情
课 后 作 业
新课标 ·文科数学(安徽专用)
自 主 落 实 · 固 基 础
-2km 设M(x1,y1),N(x2,y2),则x1+x2= 2 , k +9 1 ∵线段MN中点的横坐标为- , 2 k2+9 1 -2km 1 ∴ · 2 =- ,即m= ② 2 k +9 2 2k
课 后 作 业
菜
单
新课标 ·文科数学(安徽专用)
(2)当a=0,b≠0时,即得到一个一元一次方程,则直线l
自 主 落 实 · 固 基 础
与圆锥曲线E相交,且只有一个交点,
①若E为双曲线,则直线l与双曲线的渐近线的位置关系
平行 是______; ②若E为抛物线,则直线l与抛物线的对称轴的位置关系 平行或重合 是_____________.
自 主 落 实 · 固 基 础
x2 y2 5.(2013· 揭阳模拟)过椭圆 2 + 2 =1(a>b>0)的左顶 a b 点且斜率为1的直线与椭圆的另一个交点为M,与y轴的交 点为B,若|AM|=|MB|,则该椭圆的离心率为________.
高 考 体 验 · 明 考 情
【解析】 x+a,
由题意A点的坐标(-a,0),l的方程为y=
典 例 探 究 · 提 知 能
交,而非相切.
2.过抛物线y2 =2px(p>0)焦点的弦中最短弦的弦长是 多少? 【提示】
菜 单
课 后 作 业
当弦垂直于x轴时,弦长最短为2p.
新课标 ·文科数学(安徽专用)
自 主 落 实 · 固 基 础
x2 1.(人教A版教材习题改编)直线y=kx-k+1与椭圆 9 y2 + =1的位置关系为( 4 A.相交 C.相离
菜 单
高 考 体 验 · 明 考 情
课 后 作 业
新课标 ·文科数学(安徽专用)