八年级下册数学分式方程应用题及答案

合集下载

八年级下册数学分式方程应用题及答案

八年级下册数学分式方程应用题及答案
17、在争创全国卫生城市的活动中,我市一“青年突击队”决定义务清运一堆重达100吨的垃圾.开工后,附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成任务,问“青年突击队”原计划每小时清运多少吨垃圾?
18、我国温(州)福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间.
经检验:x=5是原方程的解。
5、解:⑴设4月份销售价为每件x元,则 解,得x=50
经检验:x=50是原方程的解。
⑵4月份销售件数:2000÷50=40(件);每件进价:(2000-800)÷40=30(元)
5月份销售这种纪念品获利:(2000+700)-30×(40+20)=900(元)
答:4月份销售价为每件50元,5月份销售这种纪念品获利900元。
⑵该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?
11、用价值100元的甲种涂料与价值240元的乙种涂料配制成一种新涂料,其每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元,求这种新涂料每千克的售价。
27、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的 ,求甲、乙两个施工队单独完成此项工程各需多少天?
28、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤 m,则得方程为.

(word完整版)八年级数学下册分式方程应用题专题训练(答案)

(word完整版)八年级数学下册分式方程应用题专题训练(答案)

1.(2018•哈尔滨模拟)某市对一段全长2000米的道路进行改造,为了尽量减少施工对城市交通所造成的影响,实际施工时,若每天修路比原来计划提高效率25%,就可以提前5天完成修路任务.(1)求修这段路计划用多少天?(2)有甲、乙两个工程队参与修路施工,其中甲队每天可修路120米,乙队每天可修路80米,若每天只安排一个工程队施工,在保证至少提前5天完成修路任务的前提下,甲工程队至少要修路多少天?【解答】解:(1)设原计划每天修x米,由题意得﹣=5解得x=80,经检验x=80是原方程的解,则=25天,答:修这段路计划用20天。

(2)设甲工程队至少要修路a天,则乙工程队要修路20﹣a天,根据题意得120a+80(20﹣a)≥2000,解得a≥10,所以a最小等于10.答:甲工程队至少要修路10天.2.(2018•南岗区一模)某商店用640元钱购进水果销售,过了一段时间,又用1600元钱购进这种水果,所购数量是第一次购进数量的2倍,但每千克水果的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的50千克水果按标价的六折优惠销售.若两次购进水果全部售完,利润不低于400元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【解答】解:(1)设该商店第一次购进水果x千克,根据题意得:﹣=2,解得:x=80,经检验,x=80是原方程的解,答:该商店第一次购进水果80千克.(2)设每千克水果的标价是y元,则(80+160﹣50)y+50×60%y﹣640﹣1600≥400,解得:y≥12,答:每千克水果的标价至少是12元.3.(2018•雨城区校级模拟)为了迎接“五•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?该专卖店要获得最大利润应如何进货?【解答】解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得:m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案.设总利润为W,则W=(240﹣100)x+80(200﹣x)=60x+16000(95≤x≤105),所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.4.(2018•松北区一模)某学校九年级举行乒乓球比赛,准备发放一些奖品进行奖励,奖品设为一等奖和二等奖.已知购买一个一等奖奖品比购买一个二等奖奖品多用20元.若用400元购买一等奖奖品的个数是用160元购买二等奖奖品个数的一半.(1)求购买一个一等奖奖品和一个二等奖奖品各需多少元?(2)经商谈,商店决定给予该学校购买一个一等奖奖品即赠送一个二等奖奖品的优惠,如果该学校需要二等奖奖品的个数是一等奖奖品个数的2倍还多8个,且该学校购买两个奖项奖品的总费用不超过670元,那么该学校最多可购买多少个一等奖奖品?【解答】解:(1)设购买一个二等奖奖品需x元,则购买一个一等奖奖品需(x+20)元,根据题意得:=•,解得:x=5,经检验,x=5是原分式方程的解,∴x+20=25.答:购买一个二等奖奖品需5元,购买一个一等奖奖品需25元.(2)设该学校可购买a个一等奖奖品,则可购买(2a+8)个二等奖奖品,根据题意得:15a+5(2a+8﹣a)≤670,解得:a≤21.答:该学校最多可购买21个一等奖奖品.5.(2018•黄岛区一模)学校计划选购甲、乙两种图书作为校园图书节的奖品,已知甲种图书的单价是乙种图书单价的1.5倍,用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,要使购买的甲种图书数量不少于乙种图书的数量的一半,如何购买使得所需费用最少?最少费用是多少?【解答】解:(1)设乙种图书的单价为x元/本,则甲种图书的单价为1.5x元/本,根据题意得:﹣=10,解得:x=20,经检验,x=20是原方程的根,且符合题意,∴1.5x=30.答:甲种图书的单价为30x元/本,乙种图书的单价为20元/本.(2)设购买甲种图书m本,则购买乙种图书(40﹣m)本,根据题意得:m≥(40﹣m),解得:m≥,∵m为整数,∴m≥14.设购书费用为y元,则y=30m+20(40﹣m)=10m+800,∵10>0,∴y随m的增大而增大,∴当m=14时,y取最小值,最小值=10×14+800=940.答:购买14本甲种图书、26本乙种图书费用最少,最少费用为940元.6.(2018•道外区一模)某工厂签了1200件商品订单,要求不超过15天完成.现有甲、乙两个车间来完成加工任务.已知甲车间的加工能力是乙车间加工能力的1.5倍,并且加工240件需要的时间甲车间比乙车间少用2天.(1)求甲、乙每个车间的加工能力每天各是多少件?(2)甲、乙两个车间共同生产了若干天后,甲车间接到新任务,留下乙车间单独完成剩余工作,求甲、乙两车间至少合作多少天,才能保证完成任务.【解答】解:(1)设乙车间的加工能力每天是x件,则甲车间的加工能力每天是1.5x 件.根据题意得:﹣=2,解得:x=40.经检验x=40是方程的解,则1.5x=60.答:甲、乙每个车间的加工能力每天分别是60件和40件;(2)设甲、乙两车间合作m天,才能保证完成任务.根据题意得:m+[1200﹣(40+60)m]÷40≤15,解得m≥10.答:甲、乙两车间至少合作10天,才能保证完成任务.7.(2018•东莞市校级一模)人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于371元,请通过计算求出该商场购进甲、乙两种牛奶各自多少件?【解答】解:(1)设乙种牛奶的进价为x元/件,则甲种牛奶的进价为(x﹣5)元/件,根据题意得:=,解得:x=50,经检验,x=50是原分式方程的解,且符合实际意义,∴x﹣5=45.答:乙种牛奶的进价是50元/件,甲种牛奶的进价是45元/件.(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,根据题意得:(49﹣45)(3y﹣5)+(55﹣50)y=371,解得:y=23,∴3y﹣5=64.答:该商场购进甲种牛奶64件,乙种牛奶23件.8.(2018•阿城区模拟)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1.2倍,数量比第一批多了10支.(1)求第一批每支钢笔的进价是多少元?(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?【解答】解:(1)设第一批每只文具盒的进价是x元,根据题意得:﹣=10,解得:x=15,经检验,x=15是方程的解,答:第一批文具盒的进价是15元/只;(2)设销售y只后开始打折,根据题意得:(24﹣15×1.2)y+(﹣y)(24×80%﹣15×1.2)≥1440×20%,解得:y≥40.答:至少销售40只后开始打折.9.(2018•铁西区模拟)A,B两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A,B两地同时出发匀速前往B,A两地,乙车速度是甲车速度的倍,乙车比甲车早到45分钟.(1)求甲车速度;(2)乙车到达A地停留半小时后以来A地时的速度匀速返回B地,甲车到达B地后立即提速匀速返回A地,若乙车返回到B地时甲车距A地不多于30千米,求甲车至少提速多少千米/时?【解答】解:(1)设甲车速度为x千米/时,则乙车的速度是x千米/时,依题意得:=+,解得:x=60.经检验:x=60是原方程的解.答:设甲车速度为60千米/时;(2)设甲车提速y千米/时,依题意得:180﹣(×2+)(60+y)≤30,解得:y≥15.所以甲车至少提速15千米/时.10.(2018•长春模拟)甲乙两地相距72千米,李磊骑自行车往返两地一共用了7小时,已知他去时的平均速度比返回时的平均速度快,求李磊去时的平均速度是多少?小芸同学解法如下:解:设李磊去时的平均速度是x千米/时,则返回时的平均速度是(1﹣)x千米/时,由题意得:+=7,…你认为小芸同学的解法正确吗?若正确,请写出该方程所依据的等量关系,并完成剩下的步骤;若不正确,请说明原因,并完整地求解问题.【解答】解:小芸同学的解法不正确.理由为:“去时的平均速度比返回时的平均速度快”并不等于“返回时的平均速度比去时的平均速度慢”.正确的解法是:设返回时的平均速度为x千米/时,则去时的平均速度为(1+)x 千米/时,根据题意得:+=7,解得:x=18,经检验,x=18是原分式方程的解,∴(1+)x=(1+)×18=24.答:李磊去时的平均速度是24千米/时.11.(2017秋•福州期末)在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式:(Ⅰ)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(Ⅱ)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)【解答】解:(Ⅰ)设这种篮球的标价为x元.由题意:﹣=5,解得:x=50,经检验:x=50是原方程的解.答:这种篮球的标价为50元.(Ⅱ)购买购买100个篮球,所需的最少费用为3850元.方案:在A超市分两次购买,每次45个,费用共为3450元,在B超市购买10个,费用400元,两超市购买100个篮球,所需的最少费用为3850元.12.(2017秋•青山区期末)张明和李强两名运动爱好者周末相约到东湖绿道进行跑步锻炼.(1)周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的绿道落雁岛入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,求张明和李强的速度分别是多少米/分?(2)两人到达绿道后约定先跑6千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.①当m=12,n=5时,求李强跑了多少分钟?②张明的跑步速度为米/分(直接用含m,n的式子表示).【解答】解:(1)设李强的速度为x米/分,则张明的速度为(x+220)米/分,根据题意得:=,解得:x=80,经检验,x=80是原方程的根,且符合题意,∴x+220=300.答:李强的速度为80米/分,张明的速度为300米/分.(2)①∵m=12,n=5,∴5÷(12﹣1)=(分钟).故李强跑了分钟;②李强跑了的时间:分钟,张明跑了的时间:+n=分钟,张明的跑步速度为:6000÷=米/分.故答案为:.13.(2017秋•汶上县期末)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?【解答】解:(1)设零售价为5x元,团购价为4x元,则解得,,经检验:x=是原分式方程的解,5x=2.5答:零售价为2.5元;(2)学生数为=38(人)答:王老师的班级里有38名学生.。

八年级数学下册分式方程应用题专题训练(答案)

八年级数学下册分式方程应用题专题训练(答案)

1.(2018?哈尔滨模拟)某市对一段全长2000米的道路进行改造,为了尽量减少施工对城市交通所造成的影响,实际施工时,若每天修路比原来计划提高效率25%,就可以提前5天完成修路任务.(1)求修这段路计划用多少天?(2)有甲、乙两个工程队参与修路施工,其中甲队每天可修路120米,乙队每天可修路80米,若每天只安排一个工程队施工,在保证至少提前5天完成修路任务的前提下,甲工程队至少要修路多少天?【解答】解:(1)设原计划每天修x米,由题意得﹣=5解得x=80,经检验x=80是原方程的解,则=25天,答:修这段路计划用20天。

(2)设甲工程队至少要修路a天,则乙工程队要修路20﹣a天,根据题意得120a+80(20﹣a)≥2000,解得a≥10,所以a最小等于10.答:甲工程队至少要修路10天.2.(2018?南岗区一模)某商店用640元钱购进水果销售,过了一段时间,又用1600元钱购进这种水果,所购数量是第一次购进数量的2倍,但每千克水果的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的50千克水果按标价的六折优惠销售.若两次购进水果全部售完,利润不低于400元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【解答】解:(1)设该商店第一次购进水果x千克,根据题意得:﹣=2,解得:x=80,经检验,x=80是原方程的解,答:该商店第一次购进水果80千克.(2)设每千克水果的标价是y元,则(80+160﹣50)y+50×60%y﹣640﹣1600≥400,解得:y≥12,答:每千克水果的标价至少是12元.3.(2018?雨城区校级模拟)为了迎接“五?一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?该专卖店要获得最大利润应如何进货?【解答】解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得:m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案.设总利润为W,则W=(240﹣100)x+80(200﹣x)=60x+16000(95≤x≤105),所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.4.(2018?松北区一模)某学校九年级举行乒乓球比赛,准备发放一些奖品进行奖励,奖品设为一等奖和二等奖.已知购买一个一等奖奖品比购买一个二等奖奖品多用20元.若用400元购买一等奖奖品的个数是用160元购买二等奖奖品个数的一半.(1)求购买一个一等奖奖品和一个二等奖奖品各需多少元?(2)经商谈,商店决定给予该学校购买一个一等奖奖品即赠送一个二等奖奖品的优惠,如果该学校需要二等奖奖品的个数是一等奖奖品个数的2倍还多8个,且该学校购买两个奖项奖品的总费用不超过670元,那么该学校最多可购买多少个一等奖奖品?【解答】解:(1)设购买一个二等奖奖品需x元,则购买一个一等奖奖品需(x+20)元,根据题意得:=?,解得:x=5,经检验,x=5是原分式方程的解,∴x+20=25.答:购买一个二等奖奖品需5元,购买一个一等奖奖品需25元.(2)设该学校可购买a个一等奖奖品,则可购买(2a+8)个二等奖奖品,根据题意得:15a+5(2a+8﹣a)≤670,解得:a≤21.答:该学校最多可购买21个一等奖奖品.5.(2018?黄岛区一模)学校计划选购甲、乙两种图书作为校园图书节的奖品,已知甲种图书的单价是乙种图书单价的 1.5倍,用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,要使购买的甲种图书数量不少于乙种图书的数量的一半,如何购买使得所需费用最少?最少费用是多少?【解答】解:(1)设乙种图书的单价为x元/本,则甲种图书的单价为 1.5x元/本,根据题意得:﹣=10,解得:x=20,经检验,x=20是原方程的根,且符合题意,∴1.5x=30.答:甲种图书的单价为30x元/本,乙种图书的单价为20元/本.(2)设购买甲种图书m本,则购买乙种图书(40﹣m)本,根据题意得:m≥(40﹣m),解得:m≥,∵m为整数,∴m≥14.设购书费用为y元,则y=30m+20(40﹣m)=10m+800,∵10>0,∴y随m的增大而增大,∴当m=14时,y取最小值,最小值=10×14+800=940.答:购买14本甲种图书、26本乙种图书费用最少,最少费用为940元.6.(2018?道外区一模)某工厂签了1200件商品订单,要求不超过15天完成.现有甲、乙两个车间来完成加工任务.已知甲车间的加工能力是乙车间加工能力的 1.5倍,并且加工240件需要的时间甲车间比乙车间少用2天.(1)求甲、乙每个车间的加工能力每天各是多少件?(2)甲、乙两个车间共同生产了若干天后,甲车间接到新任务,留下乙车间单独完成剩余工作,求甲、乙两车间至少合作多少天,才能保证完成任务.【解答】解:(1)设乙车间的加工能力每天是x件,则甲车间的加工能力每天是 1.5x 件.根据题意得:﹣=2,解得:x=40.经检验x=40是方程的解,则1.5x=60.答:甲、乙每个车间的加工能力每天分别是60件和40件;(2)设甲、乙两车间合作m天,才能保证完成任务.根据题意得:m+[1200﹣(40+60)m]÷40≤15,解得m≥10.答:甲、乙两车间至少合作10天,才能保证完成任务.7.(2018?东莞市校级一模)人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于371元,请通过计算求出该商场购进甲、乙两种牛奶各自多少件?【解答】解:(1)设乙种牛奶的进价为x元/件,则甲种牛奶的进价为(x﹣5)元/件,根据题意得:=,解得:x=50,经检验,x=50是原分式方程的解,且符合实际意义,∴x﹣5=45.答:乙种牛奶的进价是50元/件,甲种牛奶的进价是45元/件.(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,根据题意得:(49﹣45)(3y﹣5)+(55﹣50)y=371,解得:y=23,∴3y﹣5=64.答:该商场购进甲种牛奶64件,乙种牛奶23件.8.(2018?阿城区模拟)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的 1.2倍,数量比第一批多了10支.(1)求第一批每支钢笔的进价是多少元?(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?【解答】解:(1)设第一批每只文具盒的进价是x元,根据题意得:﹣=10,解得:x=15,经检验,x=15是方程的解,答:第一批文具盒的进价是15元/只;(2)设销售y只后开始打折,根据题意得:(24﹣15×1.2)y+(﹣y)(24×80%﹣15×1.2)≥1440×20%,解得:y≥40.答:至少销售40只后开始打折.9.(2018?铁西区模拟)A,B两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A,B两地同时出发匀速前往B,A两地,乙车速度是甲车速度的倍,乙车比甲车早到45分钟.(1)求甲车速度;(2)乙车到达A地停留半小时后以来A地时的速度匀速返回B地,甲车到达B地后立即提速匀速返回A地,若乙车返回到B地时甲车距A地不多于30千米,求甲车至少提速多少千米/时?【解答】解:(1)设甲车速度为x千米/时,则乙车的速度是x千米/时,依题意得:=+,解得:x=60.经检验:x=60是原方程的解.答:设甲车速度为60千米/时;(2)设甲车提速y千米/时,依题意得:180﹣(×2+)(60+y)≤30,解得:y≥15.所以甲车至少提速15千米/时.10.(2018?长春模拟)甲乙两地相距72千米,李磊骑自行车往返两地一共用了7小时,已知他去时的平均速度比返回时的平均速度快,求李磊去时的平均速度是多少?小芸同学解法如下:解:设李磊去时的平均速度是x千米/时,则返回时的平均速度是(1﹣)x千米/时,由题意得:+=7,…你认为小芸同学的解法正确吗?若正确,请写出该方程所依据的等量关系,并完成剩下的步骤;若不正确,请说明原因,并完整地求解问题.【解答】解:小芸同学的解法不正确.理由为:“去时的平均速度比返回时的平均速度快”并不等于“返回时的平均速度比去时的平均速度慢”.正确的解法是:设返回时的平均速度为x千米/时,则去时的平均速度为(1+)x 千米/时,根据题意得:+=7,解得:x=18,经检验,x=18是原分式方程的解,∴(1+)x=(1+)×18=24.答:李磊去时的平均速度是24千米/时.11.(2017秋?福州期末)在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式:(Ⅰ)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(Ⅱ)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)【解答】解:(Ⅰ)设这种篮球的标价为x元.由题意:﹣=5,解得:x=50,经检验:x=50是原方程的解.答:这种篮球的标价为50元.(Ⅱ)购买购买100个篮球,所需的最少费用为3850元.方案:在A超市分两次购买,每次45个,费用共为3450元,在B超市购买10个,费用400元,两超市购买100个篮球,所需的最少费用为3850元.12.(2017秋?青山区期末)张明和李强两名运动爱好者周末相约到东湖绿道进行跑步锻炼.(1)周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为 4.5千米和1.2千米的绿道落雁岛入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,求张明和李强的速度分别是多少米/分?(2)两人到达绿道后约定先跑6千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.①当m=12,n=5时,求李强跑了多少分钟?②张明的跑步速度为米/分(直接用含m,n的式子表示).【解答】解:(1)设李强的速度为x米/分,则张明的速度为(x+220)米/分,根据题意得:=,解得:x=80,经检验,x=80是原方程的根,且符合题意,∴x+220=300.答:李强的速度为80米/分,张明的速度为300米/分.(2)①∵m=12,n=5,∴5÷(12﹣1)=(分钟).故李强跑了分钟;②李强跑了的时间:分钟,张明跑了的时间:+n=分钟,张明的跑步速度为:6000÷=米/分.故答案为:.13.(2017秋?汶上县期末)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?【解答】解:(1)设零售价为5x元,团购价为4x元,则解得,,经检验:x=是原分式方程的解,5x=2.5答:零售价为 2.5元;(2)学生数为=38(人)答:王老师的班级里有38名学生.。

(完整版)八年级下册数学分式方程应用题与答案

(完整版)八年级下册数学分式方程应用题与答案

5 1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要 40 分完工;若甲、乙共同整理 20 分钟后,乙需要再单独整理 20 分才能完工。

问:乙单独整理需多少分钟完工? 解:设乙单独整理需 x 分钟完工,则20 + 20 + 20 = 1 解,得 x =80 40 x经检验:x =80 是原方程的解。

答:乙单独整理需 80 分钟完工。

2、有两块面积相同的试验田,分别收获蔬菜 900 千克和 1500 千克,已知第一块试验田每亩收获蔬菜比第二块少 300 千克,求第一块试验田每亩收获蔬菜多少千克? 解:设第一块试验田每亩收获蔬菜 x 千克,则900 = x 1500x + 300解,得 x =450 经检验:x =450 是原方程的解。

答:第一块试验田每亩收获蔬菜 450 千克。

3、甲、乙两地相距 19 千米,某人从甲地去乙地,先步行 7 千米,然后改骑自行车,共用了 2 小时到达乙地。

已知这个人骑自行车的速度是步行速度的 4 倍。

求步行的速度和骑自行车的速度。

解:设步行速度是 x 千米/时,则7 + 19 - 7 = 2 解,得 x =5 x 4x经检验:x =5 是原方程的解。

进尔 4x =20(千米/时)答:步行速度是 5 千米/时,骑自行车的速度是 20 千米/时。

4、小兰的妈妈在供销大厦用 12.50 元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜 0.2 元,因此,当第二次买酸奶时,便到百货商场去买,结果用去 18.40 元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶? 解:⑴设她第一次在供销大厦买了 x 瓶酸奶,则12.5 = x 18.40 ⎛1 + 3 ⎫x + 0.2 解,得 x =5⎪⎝ ⎭经检验:x =5 是原方程的解。

答:她第一次在供销大厦买了 5 瓶酸奶。

5、某商店经销一种纪念品,4 月份的营业额为 2000 元,为扩大销售,5 月份该商店对这种纪念品打九折销售,结果销售量增加 20 件,营业额增加 700 元。

初二数学分式方程经典应用题(含答案)

初二数学分式方程经典应用题(含答案)

分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?通过这段对话,请你求出该地驻军原来每天加固的米数.10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.1、解:设通车后火车从福州直达温州所用的时间为x 小时. 1分 依题意,得29833122x x =⨯+. 5分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时.10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=350 4分 化简得x 2-10x -1200=0 5分解方程得x 1=40,x 2=-30(不合题意舍去) 6分答: 每盒粽子的进价为40元. 8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分341040%1.05x x-= 解得56x ≈ 5分 经检验,56x ≈是原方程的解 6分1.0559x ∴≈ 答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天约为1.05x 万吨) (2)解:59(120%)70.8⨯+= 8分70.870%49.⨯= 9分 49.563415.-= 答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+x x . 3分去分母,得 1200+4200=18x (或18x =5400) 5分解得 300x =.6分 9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天,根据题意,得 10x +1245x=1 解这个方程,得x =25 ………………6分10、22402240220x x-=- 11、解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分12、240024008(120)x x-=+% 13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 解80x =. 5分80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=.则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 解得 30x =. 经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ∴31=+x18、 20。

初二数学分式方程经典应用题(含答案)

初二数学分式方程经典应用题(含答案)

分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009 年6 月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短 2 小时.已知福州至温州的高速公路长331 千米,火车的设计时速是现行高速公路上汽车行驶时速的 2 倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400 元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50 盒;节日过后每盒以低于进价 5 元作为售价,售完余下的粽子,整个买卖过程共盈利350 元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作 2 天完成总量的三分之一,这时增加了乙队,两队又共同工作了 1 天,总量全部完成.那么乙队单独完成总量需要()A.6 天B.4 天C.3 天D.2 天5、炎炎夏日,甲安装队为 A 小区安装66 台空调,乙安装队为 B 小区安装60 台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装 2 台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是()A.66 60x x 2 B.66 60x 2 xC.66 60x x 2D.66 60x 2 x6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300 本图书所用的时间相同,且李强平均每分钟比张明多清点10 本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg,根据题意,可得方程()A.900 1500x 300 xB.900 1500x x 300C.900 1500x x 300D.900 1500x 300 x8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:我们加固600 米后,采用新的加固模你们是用9 天完成4800 米式,这样每天加固长度是原来的 2 倍.长的大坝加固任务的?通过这段对话,请你求出该地驻军原来每天加固的米数.9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的求甲、乙两个施工队单独完成此项工程各需多少天?4 5,10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m,则得方程为.11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润售利润价进价,利润率100%进价)12、某市在旧城改造过程中,需要整修一段全长2400m的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m,则根据题意可得方程.13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用71小8时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的 3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A、B两地相距18公里,甲工程队要在A、B两地间铺设一条输送天然气管道,乙工程队要在A、B两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是千米/时.1、解:设通车后火车从福州直达温州所用的时间为x 小时.1 分依题意,得298 2 331x x 2148x .1.6491. 5 分答:通车后火车从福州直达温州所用的时间约为1.64小时.10 分2、解:设每盒粽子的进价为x 元,由题意得 1 分240020%x×50 (50)×5 350 4 分x2 10x 1200 0 5 分化简得x解方程得x1 40,x2 30(不合题意舍去) 6 分答:每盒粽子的进价为40 元.8 分3、解:(1)设2006 年平均每天的污水排放量为x万吨,则2007 年平均每天的污水排放量为1.05x 万吨,依题意得: 1 分3 4 1 01.05 x x40% 解得x 56 5 分经检验,x 56 是原方程的解 6 分1 . 0x5 5 9答:2006年平均每天的污水排放量约为56 万吨,2007年平均每天的污水排放量约为59 万吨.7 分x (可以设2007 年平均每天污水排放量约为x 万吨,2007年的平均每天约为1.05(2)解:59 (1 20%) 70.8 8分万吨)7 0 . 8 7 0 % 4 9 . 9 分4 9 .56 3 4 1 5 .答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56 万吨.4、D5、D6、解:设张明平均每分钟清点图书x本,则李强平均每分钟清点(x 10) 本,依题意,得200 300x x 10. 3 分解得x 20 .注:此题将方程列为300 x200 x200 10 或其变式,同样得分.7、C8、解:设原来每天加固x米,根据题意,得1分600 x 48002x6009 . 3 分去分母,得1200+4200=18x(或18x=5400) 5 分解得x 300 . 6 分49、解:设甲施工队单独完成此项工程需x天,则乙施工队单独完成此项工程需5x 天,10 12根据题意,得+=1 解这个方程,得x=25 ⋯⋯⋯⋯⋯⋯6分x 45x10、2240 2240x 20 x211、解:设这种计算器原来每个的进价为x元, 1 分%48 x 48 (1 4 ) x根据题意,得% % %. 5 分100 5 100%x (1 4 ) x解这个方程,得x 40 .8 分12、2400 2400x (1 20%) x813、解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x+40)公里/时.根据题意,得:1 5 0 0 1500 15-= ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分x x 40 82+40x-32000=0,去分母,整理得: x解之,得: x1=160,x2=-200,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分经检验,x1=160,x2=-200 都是原方程的解,但x2=-200<0,不合题意,舍去.∴x=160,x+40=200.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分答:第五次提速后的平均时速为160 公里/时,第六次提速后的平均时速为200 公里/时.15、解法一:设列车提速前的速度为x千米/时,则提速后的速度为3.2x 千米/时,根据题意,得1280 1280x 3.2 x11.解x 80 . 5 分80 3.2 256 (千米/时).所以,列车提速后的速度为256千米/时. 7 分解法二:设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(x 11) 小时,根据题意,得1280 12803.2x 11 x.x 5.则列车提速后的速度为=256(千米/时)答:列车提速后的速度为256 千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x天.根据题意得 1 分1 1 1,解得x30 .x 2x 2 0经检验x30 是原方程的解,且x 30 ,2x 60 都符合题意. 5 分应付甲队30 1000 30000 (元).应付乙队30 2 550 33000 (元).公司应选择甲工程队,应付工程总费用30000 元.8 分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道( x 1)公里18 18根据题意, 得 3x x 1 ⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分解得 2x ,x2 3 经检验x1 2 ,x2 3都是原方程的根1但x 3不符合题意 ,舍去∴x 1 3218、 20。

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析

初二数学分式方程试题答案及解析1.若关于的分式方程有增根,则.【答案】2.【解析】方程两边都乘(x﹣3),得m =2+x﹣3,∵原方程有增根,∴最简公分母,x﹣3=0,解得x=3,当x=3时,m=2.故答案是2.【考点】分式方程的增根.2.某蔬菜店第一次用400元购进某种蔬菜,由于销售状况良好,该店又用700元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有2% 的损耗,第二次购进的蔬菜有3% 的损耗,若该蔬菜店售完这些蔬菜获利不低于944元,则该蔬菜每千克售价至少为多少元?【答案】(1)4;(2)7.【解析】(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据两次购买的数量之间的关系建立方程求出其解即可;(2)先根据(1)的结论分别求出两次购买的数量,设该蔬菜每千克售价为y元,由销售问题的数量关系建立不等式求出其解即可.试题解析:(1)设第一次所购该蔬菜的进货价是每千克x元,则第二次购进时的价格为(x-0.5)元,根据题意,得,解得:x=4.经检验x=4是原方程的根,答:第一次所购该蔬菜的进货价是每千克4元;(2)由(1)知,第一次所购该蔬菜数量为:400÷4=100第二次所购该蔬菜数量为:100×2=200设该蔬菜每千克售价为y元,根据题意,得[100(1-2%)+200(1-3%)]y-400-700≥944.解得:y≥7.答:该蔬菜每千克售价至少为7元.【考点】1.分式方程的应用;2.一元一次不等式的应用.3.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?【答案】方案(3)最节省.【解析】设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.再看费用情况:方案(1)、(3)不耽误工期,符合要求,可以求费用,方案(2)显然不符合要求.试题解析:设规定日期x天完成,则有:,解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.方案(1):20×1.5=30(万元),方案(2):25×1.1=27.5(万元),方案(3):4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案(3)最节省.【考点】分式方程的应用.4.列分式方程解应用题为提升晚高峰车辆的通行速度,北京市交通委路政局积极设置潮汐车道,首条潮汐车道于2013年9月11日开始启用,试点路段为京广桥至慈云寺桥,全程约2.5千米.该路段实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度平均提高了25%,行驶时间平均减少了1.5分钟.该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶多少千米?【答案】20.【解析】设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,则实行潮汐车道后,在晚高峰期间,通过该路段的车辆的行驶速度为(1+25%)x千米/小时,根据实行潮汐车道前后的时间关系建立方程求出其解即可.试题解析:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶x千米,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴原分式方程的解是x=20.答:设该路段实行潮汐车道之前,在晚高峰期间通过该路段的车辆平均每小时行驶20千米.考点: 分式方程的应用.5. 2011年雨季,一场大雨导致一条全长为550米的污水排放管道被冲毁,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,问原计划每天铺设多少米管道?(列方程解应用题)【答案】原计划每天铺设10m管道【解析】设原计划每天铺设x米管道,根据实际施工时,每天的工效比原计划增加10%,表示出现在每天铺设的米数,根据现在比原计划提前5天,用全长除以每天铺设的米数分别表示出原计划及现在的时间,两时间相减等于5即可列出所求的方程, -=5,解方程x=10.试题解析:设原计划每天铺设xm的管道,则实际每天铺设(1+10%)xm的管道,由题意列方程:-=5,化简得1.1×550-550=5×1.1x,x =10,检验:当x=10时,1.1x≠0,∴ x=10是原方程的根,答:原计划每天铺设10m管道.【考点】由实际问题抽象出分式方程.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【答案】(1)90天(2)甲、乙合作完成最省钱【解析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.解:(1)设乙队单独完成需x天.(1分)根据题意,得:×20+(+)×24=1解这个方程得:x=90.(4分)经检验,x=90是原方程的解.∴乙队单独完成需90天.(5分)(2)设甲、乙合作完成需y天,则有(+)y=1.解得y=36,(6分)甲单独完成需付工程款为60×3.5=210(万元).乙单独完成超过计划天数不符题意,甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).(7分)答:在不超过计划天数的前提下,由甲、乙合作完成最省钱点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.7.若关于x的方程有正数解,则k的取值为A.k>1B.k>3C.k≠3D.k>1且k≠3【答案】D【解析】先解方程得到用含k的代数式表示x的形式,再结合方程有正数解及分式的分母不能为0求解即可.解方程得由题意得且解得且故选D.【考点】解分式方程点评:此类问题是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.8.解方程:【答案】x="3"【解析】先去分母,再移项、合并同类项,化系数为1,注意解分式方程最后要写检验.经检验x=3是原方程的解.【考点】解分式方程点评:解方程是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分.9.某超市用5000元购进一批新品种的苹果试销,由于销售状况良好,超市决定再用11000元购进该种苹果,但这次进货价比试销时多了0.5元,购进苹果数量是试销时的两倍。

初二数学分式方程经典应用题(含答案)

初二数学分式方程经典应用题(含答案)

分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:通过这段对话,请你求出该地驻军原来每天加固的米数.9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.1、解:设通车后火车从福州直达温州所用的时间为x 小时.1分 依题意,得29833122x x =⨯+. 5分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=350 4分 化简得x 2-10x -1200=0 5分解方程得x 1=40,x 2=-30(不合题意舍去) 6分答: 每盒粽子的进价为40元. 8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分341040%1.05x x-= 解得56x ≈ 5分 经检验,56x ≈是原方程的解 6分1.0559x ∴≈答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天约为1.05x 万吨) (2)解:59(120%)70.8⨯+= 8分70.870%49.56⨯= 9分49.563415.56-=答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+xx . 3分 去分母,得 1200+4200=18x (或18x =5400)5分 解得 300x =. 6分9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天,根据题意,得 10x +1245x=1 解这个方程,得x =25 ………………6分10、22402240220x x -=- 11、解:设这种计算器原来每个的进价为x 元, 1分根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分12、240024008(120)x x-=+% 13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 解80x =. 5分 80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x ⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 解得 30x =. 经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ∴31=+x18、 20。

(完整版)八年级数学下册分式方程应用题专题训练(答案)

(完整版)八年级数学下册分式方程应用题专题训练(答案)

1.(2018•哈尔滨模拟)某市对一段全长2000米的道路进行改造,为了尽量减少施工对城市交通所造成的影响,实际施工时,若每天修路比原来计划提高效率25%,就可以提前5天完成修路任务.(1)求修这段路计划用多少天?(2)有甲、乙两个工程队参与修路施工,其中甲队每天可修路120米,乙队每天可修路80米,若每天只安排一个工程队施工,在保证至少提前5天完成修路任务的前提下,甲工程队至少要修路多少天?【解答】解:(1)设原计划每天修x米,由题意得﹣=5解得x=80,经检验x=80是原方程的解,则=25天,答:修这段路计划用20天。

(2)设甲工程队至少要修路a天,则乙工程队要修路20﹣a天,根据题意得120a+80(20﹣a)≥2000,解得a≥10,所以a最小等于10.答:甲工程队至少要修路10天.2.(2018•南岗区一模)某商店用640元钱购进水果销售,过了一段时间,又用1600元钱购进这种水果,所购数量是第一次购进数量的2倍,但每千克水果的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的50千克水果按标价的六折优惠销售.若两次购进水果全部售完,利润不低于400元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【解答】解:(1)设该商店第一次购进水果x千克,根据题意得:﹣=2,解得:x=80,经检验,x=80是原方程的解,答:该商店第一次购进水果80千克.(2)设每千克水果的标价是y元,则(80+160﹣50)y+50×60%y﹣640﹣1600≥400,解得:y≥12,答:每千克水果的标价至少是12元.3.(2018•雨城区校级模拟)为了迎接“五•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?该专卖店要获得最大利润应如何进货?【解答】解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得:m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案.设总利润为W,则W=(240﹣100)x+80(200﹣x)=60x+16000(95≤x≤105),所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.4.(2018•松北区一模)某学校九年级举行乒乓球比赛,准备发放一些奖品进行奖励,奖品设为一等奖和二等奖.已知购买一个一等奖奖品比购买一个二等奖奖品多用20元.若用400元购买一等奖奖品的个数是用160元购买二等奖奖品个数的一半.(1)求购买一个一等奖奖品和一个二等奖奖品各需多少元?(2)经商谈,商店决定给予该学校购买一个一等奖奖品即赠送一个二等奖奖品的优惠,如果该学校需要二等奖奖品的个数是一等奖奖品个数的2倍还多8个,且该学校购买两个奖项奖品的总费用不超过670元,那么该学校最多可购买多少个一等奖奖品?【解答】解:(1)设购买一个二等奖奖品需x元,则购买一个一等奖奖品需(x+20)元,根据题意得:=•,解得:x=5,经检验,x=5是原分式方程的解,∴x+20=25.答:购买一个二等奖奖品需5元,购买一个一等奖奖品需25元.(2)设该学校可购买a个一等奖奖品,则可购买(2a+8)个二等奖奖品,根据题意得:15a+5(2a+8﹣a)≤670,解得:a≤21.答:该学校最多可购买21个一等奖奖品.5.(2018•黄岛区一模)学校计划选购甲、乙两种图书作为校园图书节的奖品,已知甲种图书的单价是乙种图书单价的1.5倍,用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,要使购买的甲种图书数量不少于乙种图书的数量的一半,如何购买使得所需费用最少?最少费用是多少?【解答】解:(1)设乙种图书的单价为x元/本,则甲种图书的单价为1.5x元/本,根据题意得:﹣=10,解得:x=20,经检验,x=20是原方程的根,且符合题意,∴1.5x=30.答:甲种图书的单价为30x元/本,乙种图书的单价为20元/本.(2)设购买甲种图书m本,则购买乙种图书(40﹣m)本,根据题意得:m≥(40﹣m),解得:m≥,∵m为整数,∴m≥14.设购书费用为y元,则y=30m+20(40﹣m)=10m+800,∵10>0,∴y随m的增大而增大,∴当m=14时,y取最小值,最小值=10×14+800=940.答:购买14本甲种图书、26本乙种图书费用最少,最少费用为940元.6.(2018•道外区一模)某工厂签了1200件商品订单,要求不超过15天完成.现有甲、乙两个车间来完成加工任务.已知甲车间的加工能力是乙车间加工能力的1.5倍,并且加工240件需要的时间甲车间比乙车间少用2天.(1)求甲、乙每个车间的加工能力每天各是多少件?(2)甲、乙两个车间共同生产了若干天后,甲车间接到新任务,留下乙车间单独完成剩余工作,求甲、乙两车间至少合作多少天,才能保证完成任务.【解答】解:(1)设乙车间的加工能力每天是x件,则甲车间的加工能力每天是1.5x件.根据题意得:﹣=2,解得:x=40.经检验x=40是方程的解,则1.5x=60.答:甲、乙每个车间的加工能力每天分别是60件和40件;(2)设甲、乙两车间合作m天,才能保证完成任务.根据题意得:m+[1200﹣(40+60)m]÷40≤15,解得m≥10.答:甲、乙两车间至少合作10天,才能保证完成任务.7.(2018•东莞市校级一模)人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于371元,请通过计算求出该商场购进甲、乙两种牛奶各自多少件?【解答】解:(1)设乙种牛奶的进价为x元/件,则甲种牛奶的进价为(x﹣5)元/件,根据题意得:=,解得:x=50,经检验,x=50是原分式方程的解,且符合实际意义,∴x﹣5=45.答:乙种牛奶的进价是50元/件,甲种牛奶的进价是45元/件.(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,根据题意得:(49﹣45)(3y﹣5)+(55﹣50)y=371,解得:y=23,∴3y﹣5=64.答:该商场购进甲种牛奶64件,乙种牛奶23件.8.(2018•阿城区模拟)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1.2倍,数量比第一批多了10支.(1)求第一批每支钢笔的进价是多少元?(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?【解答】解:(1)设第一批每只文具盒的进价是x元,根据题意得:﹣=10,解得:x=15,经检验,x=15是方程的解,答:第一批文具盒的进价是15元/只;(2)设销售y只后开始打折,根据题意得:(24﹣15×1.2)y+(﹣y)(24×80%﹣15×1.2)≥1440×20%,解得:y≥40.答:至少销售40只后开始打折.9.(2018•铁西区模拟)A,B两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A,B两地同时出发匀速前往B,A两地,乙车速度是甲车速度的倍,乙车比甲车早到45分钟.(1)求甲车速度;(2)乙车到达A地停留半小时后以来A地时的速度匀速返回B地,甲车到达B地后立即提速匀速返回A地,若乙车返回到B地时甲车距A地不多于30千米,求甲车至少提速多少千米/时?【解答】解:(1)设甲车速度为x千米/时,则乙车的速度是x千米/时,依题意得:=+,解得:x=60.经检验:x=60是原方程的解.答:设甲车速度为60千米/时;(2)设甲车提速y千米/时,依题意得:180﹣(×2+)(60+y)≤30,解得:y≥15.所以甲车至少提速15千米/时.10.(2018•长春模拟)甲乙两地相距72千米,李磊骑自行车往返两地一共用了7小时,已知他去时的平均速度比返回时的平均速度快,求李磊去时的平均速度是多少?小芸同学解法如下:解:设李磊去时的平均速度是x千米/时,则返回时的平均速度是(1﹣)x千米/时,由题意得:+=7,…你认为小芸同学的解法正确吗?若正确,请写出该方程所依据的等量关系,并完成剩下的步骤;若不正确,请说明原因,并完整地求解问题.【解答】解:小芸同学的解法不正确.理由为:“去时的平均速度比返回时的平均速度快”并不等于“返回时的平均速度比去时的平均速度慢”.正确的解法是:设返回时的平均速度为x千米/时,则去时的平均速度为(1+)x千米/时,根据题意得:+=7,解得:x=18,经检验,x=18是原分式方程的解,∴(1+)x=(1+)×18=24.答:李磊去时的平均速度是24千米/时.11.(2017秋•福州期末)在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式:(Ⅰ)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(Ⅱ)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)【解答】解:(Ⅰ)设这种篮球的标价为x元.由题意:﹣=5,解得:x=50,经检验:x=50是原方程的解.答:这种篮球的标价为50元.(Ⅱ)购买购买100个篮球,所需的最少费用为3850元.方案:在A超市分两次购买,每次45个,费用共为3450元,在B超市购买10个,费用400元,两超市购买100个篮球,所需的最少费用为3850元.12.(2017秋•青山区期末)张明和李强两名运动爱好者周末相约到东湖绿道进行跑步锻炼.(1)周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的绿道落雁岛入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,求张明和李强的速度分别是多少米/分?(2)两人到达绿道后约定先跑6千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.①当m=12,n=5时,求李强跑了多少分钟?②张明的跑步速度为 米/分(直接用含m,n的式子表示).【解答】解:(1)设李强的速度为x米/分,则张明的速度为(x+220)米/分,根据题意得:=,解得:x=80,经检验,x=80是原方程的根,且符合题意,∴x+220=300.答:李强的速度为80米/分,张明的速度为300米/分.(2)①∵m=12,n=5,∴5÷(12﹣1)=(分钟).故李强跑了分钟;②李强跑了的时间:分钟,张明跑了的时间:+n=分钟,张明的跑步速度为:6000÷=米/分.故答案为:.13.(2017秋•汶上县期末)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?【解答】解:(1)设零售价为5x元,团购价为4x元,则解得,,经检验:x=是原分式方程的解,5x=2.5答:零售价为2.5元;(2)学生数为=38(人)答:王老师的班级里有38名学生.。

初二八年级数学下册分式方程应用题训练题含答案

初二八年级数学下册分式方程应用题训练题含答案

分式方程应用题一、单选题(共4题;共8分)1.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用万元购买甲型机器人和用万元购买乙型机器人的台数相同,两型号机器人的单价和为万元.若设甲型机器人每台万元,根据题意,所列方程正确的是()A. B.C. D.2.某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路公里,根据题意列出的方程正确的是()A. B.C. D.3.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A. B. C. D.4.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣个物件,则可列方程为()A. B. C. D.二、填空题(共2题;共2分)5.某班学生从学校出发前往科技馆参观,学校距离科技馆15km,一部分学生骑自行车先走,过了15min 后,其余学生乘公交车出发,结果同时到达科技馆.已知公交车的速度是自行车速度的1.5倍,那么学生骑自行车的速度是________km/h.6.甲、乙两辆汽车同时从A地出发,开往相距200km的B地,甲、乙两车的速度之比是4:5,结果乙车比甲车早30分钟到达B地,则甲车的速度为________ km/h.三、计算题(共1题;共10分)7.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,己知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?四、解答题(共11题;共55分)8.列方程(组)解应用题绿水青山就是金山银山,为了创造良好的生态环境,防止水土流失,某村计划在荒坡上种树棵,由于青年志愿者支援,实际每天种树的棵树是原计划的倍,结果提前天完成任务,则原计划每天种树多少棵?9.甲、乙两同学的家与某科技馆的距离均为4000m.甲、乙两人同时从家出发去科技馆,甲同学先步行800m,然后乘公交车,乙同学骑自行车.已知乙骑自行车的速度是甲步行速度的4倍,公交车的速度是乙骑自行车速度的2倍,结果甲同学比乙同学晚到2.5min.求乙到达科技馆时,甲离科技馆还有多远.10.佳佳文具店购进A,B两种款式的笔袋,其中A种笔袋的单价比B种袋的单价低10%.已知店主购进A 种笔袋用了810元,购进B种笔袋用了600元,且所购进的A种笔袋的数量比B种笔袋多20个.请问:文具店购进A,B两种款式的笔袋各多少个?11.甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.12.甲、乙两人每小时共做个零件,甲做个零件所用的时间与乙做个零件所用的时间相等.甲、乙两人每小时各做多少个零件?13.列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.14.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.15.在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?16.列方程解应用题:小明和小刚约定周末到某体育公园打羽毛球.他们两家到体育公园的距离分别是1200米,3000米,小刚骑自行车的速度是小明步行速度的3倍,若二人同时到达,则小明需提前4分钟出发,求小明和小刚两人的速度.17.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,求该工厂原来平均每天生产多少台机器?18.为建国70周年献礼,某灯具厂计划加工9000套彩灯。

初二数学分式方程经典应用题(含答案)

初二数学分式方程经典应用题(含答案)

分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:92天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价) 12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.1、解:设通车后火车从福州直达温州所用的时间为x 小时. 1分 依题意,得29833122x x =⨯+. 5分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=350 4分 化简得x 2-10x -1200=0 5分解方程得x 1=40,x 2=-30(不合题意舍去) 6分答: 每盒粽子的进价为40元. 8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分341040%1.05x x-= 解得56x ≈ 5分 经检验,56x ≈是原方程的解 6分答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天约为1.05x 万吨) (2)解:59(120%)70.8⨯+= 8分70.870%49.⨯= 9分 答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+x x . 3分去分母,得 1200+4200=18x (或18x =5400)5分解得 300x =. 6分9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天,根据题意,得 10x +1245x=1 解这个方程,得x =25 ………………6分10、22402240220x x-=- 11、解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分12、240024008(120)x x-=+% 13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 解80x =. 5分 80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 解得 30x =. 经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ∴31=+x18、20。

八年级下学期数学分式方程应用题(精选)

八年级下学期数学分式方程应用题(精选)

分式方程应用题1.(11·柳州)某校为了创建书香校园,去年又购进了一批图书.经了解,科普书的单价比文学书的单价多4元,用1200元购进的科普书与用800元购进的文学书本数相等.(1)求去年购进的文学羽和科普书的单价各是多少元?(2)若今年文学书和科普书的单价和去年相比保持不变,该校打算用1000元再购进一批文学书和科普书,问购进文学书55本后至多还能购进多少本科普书?2.(2011江苏徐州,22,6分)徐州至上海的铁路里程为650km。

从徐州乘“G”字头列车A、“D” 字头列车B都可直达上海,已知A车的平均速度为B车的2倍,且行驶的时间比B车少2.5h。

(1)设B车的平均速度为x kn/h,根据题意,可列分式方程:;(2)求A车的平均速度及行驶时间。

3.(2011辽宁本溪,21,10分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数.商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?4.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.5. (2011贵州黔南,21,10分)为了美化都匀市环境,打造中国优秀旅游城市,现欲将剑江河进行清淤疏通改造,现有两家清淤公司可供选择,这两家公司提供信息如表所示:单位清淤费用(元/m3)清淤处理费(元)甲公司185000乙公司200(1)若剑江河首批需要清除的淤泥面积大约为1.2万平方米,平均厚度约为0。

初二数学分式方程经典应用题含答案

初二数学分式方程经典应用题含答案

分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( )A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900k g 和1500k g ,已知第一块试验田每亩收获蔬菜比第二块少300k g ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x k g ,根据题意,可得方程( )A .9001500300x x=+ B .9001500300x x =-C .9001500300x x =+D .9001500300x x =- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位预备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提升了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价) 12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提升了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有水平承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.1、解:设通车后火车从福州直达温州所用的时间为x 小时. 1分依题意,得29833122x x =⨯+. 5分148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=350 4分 化简得x 2-10x -1200=0 5分解方程得x 1=40,x 2=-30(不合题意舍去) 6分答: 每盒粽子的进价为40元. 8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分341040%1.05x x-= 解得56x ≈ 5分 经检验,56x ≈是原方程的解 6分答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分 (可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天约为1.05x 万吨) (2)解:59(120%)70.8⨯+= 8分70.870%49.56⨯= 9分答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本,依题意,得20030010x x =+. 3分 解得20x =.注:此题将方程列为30020020010x x -=⨯或其变式,同样得分. 7、C8、解:设原来每天加固x 米,根据题意,得 1分926004800600=-+x x . 3分 去分母,得 1200+4200=18x (或18x =5400) 5分解得 300x =. 6分9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天, 根据题意,得 10x +1245x =1 解这个方程,得x =25 ………………6分 10、22402240220x x-=- 11、解:设这种计算器原来每个的进价为x 元, 1分根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分12、240024008(120)x x -=+% 13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 解80x =. 5分 80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x ⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 解得 30x =. 经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x 经检验21=x ,32-=x 都是原方程的根 但32-=x 不符合题意,舍去 ∴31=+x。

分式方程应用题(及答案)

分式方程应用题(及答案)

分式方程应用题1、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.解:设每盒粽子的进价为x 元,由题意得20%x ×50-(x2400-50)×5=350化简得x 2-10x -1200=0 解方程得x 1=40,x 2=-30(不合题意舍去) 经检验,x 1=40,x 2=-30都是原方程的解, 但x 2=-30不合题意,舍去. 答: 每盒粽子的进价为40元.2、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量. 解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本,依题意,得20030010xx =+.解得x=20. 经检验x=20是原方程的解. 答:张明平均每分钟清点图书20本.3、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天,根据题意,得 10x +1245x =1解这个方程,得x =25 经检验,x =25是所列方程的根 当x =25时,45x =20答:甲、乙两个施工队单独完成此项工程分别需25天和20天.4、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)解:设这种计算器原来每个的进价为x 元,根据题意,得4848(14)1005100(14)x x x x ---⨯+=⨯-%%%%%.解这个方程,得x=40.经检验,x=40是原方程的根.答:这种计算器原来每个的进价是40元.5、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815, 去分母,整理得:x 2+40x -32000=0, 解之,得:x 1=160,x 2=-200,经检验,x 1=160,x 2=-200都是原方程的解, 但x 2=-200<0,不合题意,舍去. ∴x =160,x +40=200.答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.6、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元. 根据题意得:1200150010 1.2x x+=解得:5x =经检验5x =是原方程的解 所以第一次购书为12002405=(本).第二次购书为24010250+=(本) 第一次赚钱为240(75)480⨯-=(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元) 所以两次共赚钱48040520+=(元) 答:该老板两次售书总体上是赚钱了,共赚了520元.7、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11 小时,求列车提速后的速度.解:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据12801280113.2x x-=.解这个方程,得80x =. 经检验,80x =是所列方程的根.80 3.2256∴⨯=(千米/时).所以,列车提速后的速度为256千米/时.8、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元? 解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得111220x x +=, 解得x=30.经检验x=30是原方程的解,且x=30,2x=60都符合题意. ∴应付甲队30100030000⨯=(元). 应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元.9、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道? 解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里 根据题意, 得311818=+-x x 解得21=x ,32-=x经检验21=x ,32-=x 都是原方程的根 但32-=x 不符合题意,舍去 ∴31=+x答: 甲工程队每周铺设管道2公里,则乙工程队每周铺设管道3公里.10、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .240024008(120)x x-=+%11、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .22402240220x x-=-12、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千 米,则轮船在静水中的速度是 20 千米/时.。

初二分式方程应用题及答案

初二分式方程应用题及答案

初二分式方程应用题及答案
题目:某工厂生产一批零件,甲车间单独完成需要15天,乙车间单
独完成需要20天。

现在甲乙两个车间合作,共同完成这批零件的生产,问需要多少天?
解答:
设甲车间每天完成这批零件的\( \frac{1}{15} \),乙车间每天完成
这批零件的\( \frac{1}{20} \)。

设甲乙两个车间合作完成这批零件
需要\( x \)天。

根据题意,甲乙两个车间合作\( x \)天完成的零件数等于这批零件的
总数,即:
\[ \frac{1}{15}x + \frac{1}{20}x = 1 \]
为了解这个方程,我们首先找到两个分数的最小公倍数,即60,然后
将方程两边同时乘以60,得到:
\[ 4x + 3x = 60 \]
合并同类项,得到:
\[ 7x = 60 \]
解得:
\[ x = \frac{60}{7} \]
所以,甲乙两个车间合作需要\( \frac{60}{7} \)天完成这批零件的生产。

答案:甲乙两个车间合作需要\( \frac{60}{7} \)天完成这批零件的生产。

人教版八年级下册数学分式方程解应用题常见类型题及答案

人教版八年级下册数学分式方程解应用题常见类型题及答案

人教版八年级下册数学分式方程解应用题常见类型题及答案分式方程解应用题常见类型题及答案1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?解:设乙单独整理需x分钟完工,则2021 20 1 解,得x=80 40x经检验:x=80是原方程的解。

答:乙单独整理需80分钟完工。

2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x千克,则9001500 解,得x=450 xx 300经检验:x=450是原方程的解。

答:第一块试验田每亩收获蔬菜450千克。

3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行的速度和骑自行车的速度。

解:设步行速度是x千米/时,则719 7 2 解,得x=5 x4x经检验:x=5是原方程的解。

进尔4x=20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。

4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x瓶酸奶,则12.518.40 0.2 解,得x=5 x 3 1 x 5经检验:x=5是原方程的解。

答:她第一次在供销大厦买了5瓶酸奶。

5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。

⑴ 求这种纪念品4月份的销售价格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下分式方程应用练习1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

问:乙单独整理需多少分钟完工?2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。

已知这个人骑自行车的速度是步行速度的4倍。

求步行的速度和骑自行车的速度。

4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。

⑴求这种纪念品4月份的销售价格。

⑵若4月份销售这种纪念品获利800元,问:5月份销售这种纪念品获利多少元?6、、某一项工程在招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队款1.5万元,乙工程队款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案一:甲队单独完成这项工程刚好如期完成;方案二:乙队单独完成这项工程要比规定日期多用5天;方案三:若甲、乙两队合做4天,余下的工程由乙队单独完成,也正好如期完成。

试问:在不耽误工期的情况下,你觉得哪一种施工方案最节省工程款?请说明理由。

7、一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求原分数。

8、今年某市遇到百年一遇的大旱,全市人民齐心协力积极抗旱。

某校师生也行动起来捐款打井抗旱,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?9、、某超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进价比试销时的进价每千克多了0.5元,购进苹果数量是试销时的2倍。

⑴试销时该品种苹果的进价是每千克多少元?⑵如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元?10、某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导。

⑴甲、乙两个工厂每天各能加工多少件产品?⑵该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?11、用价值100元的甲种涂料与价值240元的乙种涂料配制成一种新涂料,其每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元,求这种新涂料每千克的售价。

12、为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。

如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成,现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成。

问原来规定修好这条公路需多长时间?13、某中学到离学校15千米的西山春游,先遣队与大队同时出发,行进速度1小时到达目的地做准备工作,求先遣队与大队的是大队的1.2倍,以便提前2速度各是多少?14、一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定3天,现在由甲、乙两队合作2天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?15、某市今年1月1日起调整居民用水价格,每立方米水费上涨25%.小明家去年12月份的水费是18元,而今年5月份的水费是36元.已知小明家今年5月份的用水量比去年12月份多6m3,求该市今年居民用水的价格.16.小明家、王老师家、学校在同一条路上,小明家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米,由于小明的父母战斗在抗“非典”第一线,为了使他能按时到校,王老师每天骑自行车接小明上学。

已知王老师骑自行车的速度是步行速度的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车速度各是多少千米/时?17、在争创全国卫生城市的活动中,我市一“青年突击队”决定义务清运一堆重达100吨的垃圾.开工后,附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成任务,问“青年突击队”原计划每小时清运多少吨垃圾?18、我国温(州)福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间.19、(某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.20、南宁市2006年的污水处理量为10万吨/天,2007年的污水处理量为34万吨/天,2007年平均每天的污水排放量是2006年平均每天污水排放量的1.05倍,若2007年每天的污水处理率比2006年每天的污水处理率提高40%(污水处理率=污水处理量污水排放量). (1)求南宁市2006年、2007年平均每天的污水排放量分别是多少万吨?(结果保留整数)(2)预计我市2010年平均每天的污水排放量比2007年平均每天污水排放量增加20%,按照国家要求“2010年城市的污水处理率不低于70%”,那么我市2010年每天污水处理量在2007年每天污水处理量的基础上至少还需要增加多少万吨,才能符合国家规定的要求?21、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( )A.6天 B.4天 C.3天 D.2天22、甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =- B .66602x x=- C .66602x x =+ D .66602x x=+ 23、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.24、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?25、有两块面积相同的试验田,分别收获蔬菜900和1500,已知第一块试验田每亩收获蔬菜比第二块少300,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =-C .9001500300x x =+D .9001500300x x=- 26、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:27、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的,求甲、乙两个施工队单独完成此项通过这段对话,请你求出该地驻军原来每天加固的米数.工程各需多少天?28、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .29、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)30、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .31、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?32、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?33、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.34、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?答案;1、解:设乙单独整理需x 分钟完工,则120204020=++x解,得x =80经检验:x =80是原方程的解。

相关文档
最新文档