2020九年级数学上册 第21章一元二次方程中的商品销售问题课时专练 (新版)新人教版

合集下载

九年级数学上册 第二十一章 21.1 一元二次方程课时练 (新版)新人教版

九年级数学上册 第二十一章 21.1 一元二次方程课时练 (新版)新人教版

21.1 一元二次方程学校:姓名:班考号:,则()A. m=±2B. m=2C. m=-2 D. m≠±22. 若一元二次方程(m-3)x2+2x+m2-9=0的常数项为0,则m的值为()A. 3B. -3C.±3 D. ±93. 已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是()A. -3B. 3C.0 D. 0或34. 把方程2x(x+5)=10化为一般形式后,二次项系数、一次项系数、常数项分别是()A. 2,5,10B. 2,5,-10C.2,1,5 D. 2,10,-105. 若ax2-5x+3=0是一元二次方程,则不等式3a+6>0的解集是()A. a>-2B. a<-2C. a>-D. a>-2且a≠06. 已知实数a,b满足a2-3a+1=0,b2-3b+1=0,则关于一元二次方程x2-3x+1=0的根的说法中正确的是()A. x=a,x=b都不是该方程的解 B. x=a是该方程的解,x=b不是该方程的解C. x=a不是该方程的解,x=b是该方程的解D. x=a,x=b都是该方程的解7. 已知整式x2-x的值为6,则2x2-5x+6的值为( )A. 9B. 12C.18 D. 24二、填空题2 28. 关于x 的一元二次方程(x -1)2+b (x -1)+c =0整理成一般形式后为x 2-3x -1=0,则b 的值为 .9. 把方程(2x -1)(3x -2)=x 2+4化为ax 2+bx +c =0形式后,其二次项系数、一次项系数、常数项分别为 .10. 若一元二次方程ax 2-bx-2015=0有一根为x=-1,则a+b= . 11. 已知如下一元二次方程: 第1个方程:3x 2+2x -1=0; 第2个方程:5x 2+4x -1=0;第3个方程:7x 2+6x -1=0; …;按照上述方程的二次项系数、一次项系数、常数项的排列规律,则第8个方程为 . 12. 已知x =2是关于x 的方程x 2-2a =0的一个解,则一次函数y =ax -1的图象不经过第___象限 13. 若x =-1是关于x 的一元二次方程x 2+3x +m +1=0的一个解,则m 的为__________. 14. 已知如图所示的图形的面积为24,根据图中的条件,可列出方程:________.三、解答题15. (新定义题)我们规定:x ※y =x 2-y .如:2※1=22-1,※2=()2-2.试判断x =3是否是方程x ※x =2的一个解.16. 根据下列问题,列出关于x 的方程,并将其化成ax 2+bx +c =0(a ≠0)的形式: (1)一个长方形的宽比长少3,面积是75,求长方形的长x ; (2)两个连续偶数的积为168,求较小的偶数x ;(3)一个直角三角形的两条直角边的长的和是20,面积是25,求其中一条直角边的长x . 17. 小刚在写作业时,一不小心,方程3x 2-□x -5=0的一次项系数被墨水盖住了,但从题目的答案中,他知道方程的一个解为x =5,请你帮助小刚求出被覆盖住的数.18. 一天,老师在黑板上布置了这样一道题目:如果2y a-b-3y 2a+b+8=0是关于y 的一元二次方程,你能试着求出a ,b 的值吗?下面是小明和小敏两位同学的解法:小明:根据题意得解方程组得小敏:根据题意得或解方程组得或你认为上述两位同学的解法是否正确?为什么?若都不正确,你能给出正确的解答吗? 19. 根据题意列出方程,化为一般式,不解方程.(1)一个大正方形的边长比一个小正方形边长的3倍多1,若两正方形面积和为53,求这两正方形的边长.(2)2014年某超市销售一种品牌童装,平均每天可售出30件,每件盈利40元.面对下半年市场竞争激烈,超市采用降价措施,每件童装每降价2元,平均每天就多售出6件.要使平均每天销售童装利润为1 000元,那么每件童装应降价多少元?20. 已知:方程(a+9)x|a|-7+8x+1=0是一元二次方程,求a的值.参考答案1. 【答案】B【解析】由题意可得,由①得,m=±2,由②得,m≠-2,从而m=2,∴选择B.2. 【答案】B【解析】常数项为0,则有时,方程的二次项系数变为0,不和题意,所以本题属于易错题,容易忽视二次项系数不为零的条件.3. 【答案】A【解析】有题意知x=2适合方程x2+mx+2=0,则得到关于m的一元一次方程:4+2m+2=0,2m=-6,m=-3,所以选择A.4. 【答案】D【解析】原方程去括号、移项得2x2+10x-10=0,则二次项系数、一次项系数、常数项分别是2,10,-10.故选D.5. 【答案】D【解析】解不等式3a+6>0得a>-2,∵ax2-5x+3=0是一元二次方程,∴a≠0.故a 的取值范围是a>-2且a≠0.故选D.6. 【答案】D【解析】由方程根的定义知,a,b都适合方程x2-3x+1=0.选D.7. 【答案】C【解析】2x2-5x+6=2+6=2×6+6=12+6=18.故选C.8. 【答案】-19. 【答案】5,-7,-210. 【答案】201511. 【答案】17x2+16x-1=012. 【答案】二13. 【答案】114. 【答案】或(x+1)x+x×1=24.答案不唯一15. 【答案】解法一:由题意知x※x=2可化为x2-x=2,当x=3时,x2-x=32-3=6≠2,所以x=3不是方程x※x=2的一个解.解法二:因为3※3=,所以x=3不是方程x※x=2的一个解.16. 【答案】根据题意列出方程x(20-x)=25,化成ax2+bx+c=0(a≠0)的形式为:x2-20x+50=0.17. 【答案】设被墨水盖住的数字为a,∵x=5是方程3x2-ax-5=0的一个解,所以3×52-5a-5=0,解得a=14,即被覆盖住的数是14.18. 【答案】两位同学的解法都不正确,因为都考虑不全面.正确解答:要使2y a-b-3y2a+b+8=0是关于y的一元二次方程,则有:或或或或解得或或或或19. 【答案】设每件童装降价x元,则每天多售出3x件.降价后每天销售件数为(30+3x),则每件利润为(40-x)元.根据题意可列方程为(30+3x)(40-x)=1 000,化简得3x2-90x-200=0.20. 【答案】∵方程(a+9)x|a|-7+8x+1=0是一元二次方程,∴解得故a=9.注意:二次项系数不为0是一元二次方程的前提条件,本题容易忽视a≠-9这一个条件,而导致错误.。

2020-2021学年人教版九年级上数学第21章《一元二次方程》练习题及答案 (45)

2020-2021学年人教版九年级上数学第21章《一元二次方程》练习题及答案 (45)

2020-2021学年人教版九年级上数学
第21章《一元二次方程》练习题
45.2018年非洲猪瘟疫情暴发后,今年猪肉价格不断走高,引起了民众与政府的高度关注,据统计:今年7月20日猪肉价格比今年年初上涨了60%,某市民今年7月20日在某超市购买1千克猪肉花了80元钱.
(1)问:今年年初猪肉的价格为每千克多少元?
(2)某超市将进货价为每千克65元的猪肉,按7月20日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪内每天有1560元的利润,并且可能让顾客得到实惠,猪肉的售价应该下降多少元?
解:(1)设今年年初猪肉的价格为每千克x元,
依题意,得:(1+60%)x=80,
解得:x=50.
答:今年年初猪肉的价格为每千克50元.
(2)设猪肉的售价应该下降y元,则每日可售出(100+10y)千克,
依题意,得:(80﹣65﹣y)(100+10y)=1560,
整理,得:y2﹣5y+6=0,
解得:y1=2,y2=3.
∵让顾客得到实惠,
∴y=3.
答:猪肉的售价应该下降3元.
第1页共1页。

人教版九年级上册数学课时专练 第21章 一元二次方程认识及解法

人教版九年级上册数学课时专练 第21章 一元二次方程认识及解法

人教版九年级上册数学课时专练第21章一元二次方程认识及解法一元二次方程认识及解法1、下列方程中是关于x的一元二次方程的是()A. B.C.D.2、若关于x的一元二次方程x2-x-m=0的一个根是x=1,则m的值是()A、1B、0C、-1D、23、若x2-6x+11=(x-m)2+n,则m,n的值分别是()A.m=3,n=-2 B.m=3,n=2 C.m=-3,n=-2 D.m=-3,n=24、将方程x2+6x=1配方后,原方程变为()A.(x+3)2=5 B.(x+6)2=7 C.(x+3)2=10 D.(x+6)2=95、方程x(x-2)=0的根为()A.x=0 B.x=2 C.x1=0,x2=2 D.x1=0,x2=-26、若方程(m-2)x|m|-2x+1=0是一元二次方程,则方程的根是()A.B.C.D.以上答案都不对7、方程x(x+1)=(x+1)的根为()(1)是一元二次方程;(2)是一元一次方程;(3)若x=-2是它的一个根,求m的值.16、用适当方法解下列方程:(1)(3x-1)2=1;(2)2(x+1)2=x2-1;(3)(2x-1)2+2(2x-1)=3;(4)(y+3)(1-3y)=1+2y2.17、已知关于x的一元二次方程ax2-bx-6=0与ax2+2bx-15=0都有一个根是3,试求出a、b的值,并分别求出两个方程的另一个根.18、观察以下方程:①x2+x-2=0;②2x2-x-1=2;③3x2-4x+1=0;④4x2-7x+3=0.(1)上面四个方程的各系数有一个共同特点,你知道是什么吗?(2)若上述方程的一般形式为ax2+bx+c=0(a≠0),请用代数式表示它们的共同特点;(3)由(2)可知,上述各方程必有一个公共根,你知道这个公共根吗?19、试证明关于x的方程(a2-8a+20)x2+2ax+1=0无论a取何值,该方程都是一元二次方程.20、x2a+b-2x a+b+3=0是关于x的一元二次方程,求a与b的值.参考答案1、C2、B3、B4、C5、C6、B7、A8、D9、10、____a≠1__.11、12、13、解:由题意知,方程(m-3)x2+5x+m2-3m-18=0的常数项为m2-3m-18,所以m2-3m-18=0,解得:m=6或-3.14、15、16、17、18、解:(1)方程的二次项次数、一次项系数以及常数项的和是1;(2)a+b+c=1;(3)方程必有一个公共根是:x=1.19、证明:∵a2-8a+20=(a-4)2+4≥4,∴无论a取何值,a2-8a+20≥4,即无论a取何值,原方程的二次项系数都不会等于0,∴关于x的方程(a2-8a+20)x2+2ax+1=0,无论a取何值,该方程都是一元二次方程.20、。

人教版九年级数学上册综合题练习卷:第21章 一元二次方程(包含答案)

人教版九年级数学上册综合题练习卷:第21章  一元二次方程(包含答案)

第21章一元二次方程1.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?2.某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?3.关于x的一元二次方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0(1)求方程的解;(2)若方程的解为整数,求k值.4.某市为推进养老服务工作的深入开展,在扩大社区养老覆盖率、规范机构养老、科学规划养老服务布局等方面作了大量工作.该市的养老机构拥有的养老床位数从2016年底的2万个增长到2018年底的2.88万个.(1)求该市这两年养老床位数的年平均增长率:(2)该市2018年底正在筹建一社区养老中心,按照规划拟建造三类养老专用房间(一个养老床位的单人间、两个养老床位的双人间、三个养老床位的三人间)共100间,若按规划需要建造的单人间的房间数为m(12≤m≤15),双人间的房间数是单人间的2倍,求该养老中心建成后最多可提供养老床位多少个?最少提供养老床位多少个?5.为进一步弘扬“爱国、进步、民主、科学”的五四精神,倡导“我运动、我健康、我快乐”的生活方式,某县团委准备组织一次共青团员青年足球赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排5场比赛,则该县团委应邀请多少个足球队参赛?6.已知关于x的一元二次方程x2﹣5x+2m=0有实数根.(1)求m的取值范围;(2)当m=时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.7.(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:8.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.9.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.10.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.11.已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=3,求k的值及方程的根.12.已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且+=x1•x2,试求k的值.13.HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.14.(1)关于x,y的方程组满足x+y=5,求m的值.(2)关于x的一元二次方程x2﹣(m﹣1)x﹣m=0的两个根x1,x2满足x12+x22=5,求的值.15.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.16.已知关于x的一元二次方程x2﹣(m+3)x+m+2=0,(1)求证:无论实数m取得何值,方程总有两个实数根;(2)若方程有一个根的平方等于1,求m的值.17.(1)解方程:x2﹣2x﹣1=0.(2)解不等式组:18.已知关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0.(1)求证:不论m为何值,方程必有实数根.(2)当m为整数时,方程是否有有理根?若有,求出m的值:若没有,请说明理由.19.建造一个面积为130m2的长方形养鸡场,鸡场的一边靠墙,墙长为a米,另三边用竹篱笆围成,如果篱笆总长为33米.(1)求养鸡场的长与宽各为多少米?(2)若10≤a<18,题中的解的情况如何?20.2019长春国际马拉松于5月26日上午在长春体育中心鸣枪开跑.某公司为赛事赞助了5000瓶矿泉水,计划以后每年逐年增加,到2021年达到7200瓶,若该公司每年赞助矿泉水数量增加的百分率相同.(1)求平均每年增加的百分率;(2)假设2022年该公司赞助矿泉水增加的百分率与前两年相同,请你预测2022年该公司赞助的矿泉水的数量.参考答案1.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.2.【分析】(1)可设甲种商品的进价是x元,乙种商品的进价是y元,根据等量关系:①一件甲种商品和一件乙种商品的进价之和为30元;②购买8件甲种商品和6件乙种商品一共用了262元;列出方程组求解即可;(2)根据该经销商每天销售甲、乙两种商品获取的利润共2500元,列出方程求解即可.【解答】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.3.【分析】(1)根据一元二次方程的定义,利用因式分解法可解;(2)根据(1),利用整数根可解.【解答】解:(1)∵该方程是关于x的一元二次方程,∴k≠6,k≠9∵(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0∴[(6﹣k)x﹣9][(9﹣k)x﹣6]=0解得x=或∴方程的解为x=或.(2)∵方程的解为x=或.若方程的解为整数,①当6﹣k=±1,±3,±9时,x是整数,此时k=7、5、3、9、15、﹣3;②当9﹣k=±1,±2,±3,±6时,x是整数,此时k=10、8、11、7、12、6、15、3.综上可知,k=3、7、15时原方程的解为整数.【点评】本题考查了一元二次方程的定义及整数根的求解问题,难度中等.4.【分析】(1)设该市这两年(从2016年度到2018年底)拥有的养老床位数的平均年增长率为x,根据“2018年的床位数=2016年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于m的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.【解答】解:(1)设该市这两年拥有的养老床位数的平均年增长率为,由题意可列出方程:2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,三人间的房间数为100﹣3m,设该养老中心建成后能提供养老床位y个,由题意得:y=m+4m+3(100﹣3m)=﹣4m+300∵y随m的增大而减小∴当m=12时,y的最大值为252.当m=15时,y的最小值为240.答:该养老中心建成后最多提供养老床位252个,最少提供养老床位240个.【点评】本题考查了一次函数的应用、一元二次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.5.【分析】关系式为:球队总数×每支球队需赛的场数=9×5,把相关数值代入即可.【解答】解:该县团委应邀请x个足球队参赛.每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=9×5.整理,得x2﹣x﹣90=0.解得x1=﹣9(不合题意,舍去),x2=10.答:该县团委应邀请10个足球队参赛.【点评】本题考查了一元二次方程的应用,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.6.【分析】(1)由根的判别式列出不等式,解不等式可得m的取值范围;(2)由根与系数的关系可得x1+x2=5、x1x2=5,该矩形外接圆的直径是矩形的对角线AC,根据勾股定理可得结论.【解答】(本题6分)解:(1)∵方程有实数根,∴△=(﹣5)2﹣4×1×2m≥0,(1分)m≤,(2分)∴当m≤时,原方程有实数根;(3分)(2)当m=时,原方程可化为:x2﹣5x+5=0,设方程的两个根分别为x1、x2,则x1+x2=5,x1•x2=5,(4分)∵该矩形外接圆的直径是矩形的对角线AC,如图所示,∴AC====,(5分)∴该矩形外接圆的直径是.(6分)【点评】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握根与系数的关系和进行变形是解题的关键.7.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1=﹣,x2=1;(2)∵解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3.【点评】本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.8.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.9.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.11.【分析】(1)由于关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,可知△>0,据此进行计算即可;(2)利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△>0,∴(2k+1)2﹣4(k2+1)>0,整理得,4k﹣3>0,解得:k>,故实数k的取值范围为k>;(2)∵方程的两个根分别为x1,x2,∴x1+x2=2k+1=3,解得:k=1,∴原方程为x2﹣3x+2=0,∴x1=1,x2=2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.12.【分析】(1)根据一元二次方程x2﹣2x+2k﹣1=0有两个不相等的实数根得到△=(﹣2)2﹣4(2k﹣1)≥0,求出k的取值范围即可;(2)根据根与系数的关系得出方程解答即可.【解答】(1)解:∵原方程有实数根,∴b2﹣4ac≥0∴(﹣2)2﹣4(2k﹣1)≥0∴k≤1(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1+x2 =2,x1 •x2 =2k﹣1又∵+=x1•x2,∴∴(x1+x2)2﹣2x1 x2 =(x1 •x2)2∴22﹣2(2k﹣1)=(2k﹣1)2解之,得:.经检验,都符合原分式方程的根∵k≤1∴.【点评】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.13.【分析】(1)设2018年甲类芯片的产量为x万块,由题意列出方程,解方程即可;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的熟练为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,得出丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,由题意得出400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),即可得出答案.【解答】解:(1)设2018年甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:2018年甲类芯片的产量为400万块;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,则:400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,400(1+t)2+2×400(1+t﹣1)2+8000=28000×(1+10%),整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片2020年的产量为8000万块,m=400.【点评】本题考查了一元二次方程的应用、一元一次方程的应用以及一元二次方程和一元一次方程的解法;弄清数量关系列出方程是解题的关键.14.【分析】(1)观察到方程组两方程相加,左边出现3(x+y),把x+y作为一个整体来计算.(2)根据韦达定理求出用m表示x1+x2和x1x2的值,利用完全平方公式的变形得到x12+x22的式子,进而得到关于m的方程.【解答】解:(1)根据题意把方程组两式相加得:2x+y+x+2y=m+3m+13(x+y)=4m+1∴x+y=又∵x+y=5∴解得:m=(2)∵a=1,b=﹣(m﹣1),c=﹣m∴△=[﹣(m﹣1)]2﹣4•(﹣m)=m2﹣2m+1+4m=m2+2m+1=(m+1)2≥0∴无论m为何值时,方程一定有实数根.∵x1+x2==m﹣1,x1x2==﹣m∴x12+x22=(x1+x2)2﹣2x1x2=(m﹣1)2+2m∵x12+x22=5∴(m﹣1)2+2m=5解得:m=±2当m=2时,==当m=﹣2时,==∴的值为或【点评】本题考查了解二元一次方程,一元二次方程根与系数的关系,完全平方公式,分式的加减.15.【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的两个实数根”是解题的关键.16.【分析】(1)求出△=[﹣(m+3)]2﹣4(m+2)=(m+1)2,再判断即可;(2)求出方程的根是±1,再代入方程,即可求出答案.)【解答】(1)证明:x2﹣(m+3)x+m+2=0,△=[﹣(m+3)]2﹣4(m+2)=(m+1)2≥0,所以无论实数m取得何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于1,∴此根是±1,当根是1时,代入得:1﹣(m+3)+m+2=0,即0=0,此时m为任何数;当根是﹣1时,1+(m+3)+m+2=0,解得:m=﹣3.【点评】本题考查了解一元二次方程和根的判别式,能熟记根的判别式的内容是解此题的关键.17.【分析】(1)利用配方法解方程;(2)分别解两个一次不等式得到x>﹣2和x≤2,然后根据确定不等式组的解集.【解答】解:(1)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1=,所以x1=1+,x2=1﹣;(2)解①得x>﹣2,解②得x≤2,所以不等式组的解集为﹣2<x≤2.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了解一元一次不等式组.18.【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出方程总有两个不相等的实数根;(2)先计算出△并且设△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4=n2(n为整数),整系数方程有有理根的条件是△为完全平方数.解不定方程,讨论m的存在性.变形为(2m﹣1)2﹣n2=4,(2m﹣1﹣n)(2m﹣1+n)=﹣4,利用m,n都为整数进行讨论即可.【解答】(1)证明:①当2m﹣1=0即m=时,此时方程是一元一次方程,其根为x=,符合题意;②当2m﹣1≠0即m≠时,△=[﹣(2m+1)]2﹣4(2m﹣1)=(2m﹣1)2+4>0,∴当m≠时,方程总有两个不相等的实数根;综上所述,不论m为何值,方程必有实数根.(2)当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.理由如下:①当m为整数时,假设关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0有有理根,则要△=b2﹣4ac为完全平方数,而△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4,设△=n2(n为整数),即(2m﹣1)2+4=n2(n为整数),所以有(2m﹣1﹣n)(2m﹣1+n)=﹣4,∵2m﹣1与n的奇偶性相同,并且m、n都是整数,所以或,解得m=,②2m﹣1=0时,m=(不合题意舍去).所以当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.【点评】考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式为△=b2﹣4ac.△=b2﹣4ac为完全平方数是方程的根为有理数的充要条件.同时考查了不定方程特殊解的求法.19.【分析】(1)设养鸡场的宽为x米,则长为(33﹣2x)米,利用厂房的面积公式结合养鸡场的面积为130m2,即可得出关于x的一元二次方程,解之即可得出结论;(2)由(1)的结论结合10≤a<18,可得出长方形的长为13米宽为10米.【解答】解:(1)设养鸡场的宽为x米,则长为(33﹣2x)米,依题意,得:(33﹣2x)x=130,解得:x1=6.5,x2=10,∴33﹣2x=20或13.答:养鸡场的长为20米宽为6.5米或长为13米宽为10米.(2)∵10≤a<18,∴33﹣2x=13,∴养鸡场的长为13米宽为10米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【分析】(1)设平均每年增加的百分率为x,根据该公式2019年及2021年赞助矿泉水的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据2022年该公司赞助的矿泉水数量=2021年该公司赞助的矿泉水数量×(1+增长率),即可求出结论.【解答】解:(1)设平均每年增加的百分率为x,依题意,得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:平均每年增加的百分率为20%.(2)7200×(1+20%)=8640(瓶).答:预测2022年该公司赞助矿泉水8640瓶.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。

人教版九年级数学 第21章《一元二次方程》实际应用之提分专项解答题必练题型 (二)

人教版九年级数学 第21章《一元二次方程》实际应用之提分专项解答题必练题型 (二)

第21章《一元二次方程》实际应用之提分专项解答题必练题型(二)1.一家水果店以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤.(1)若将这种水果每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,且保证每天至少售出260斤,那么水果店需将每斤的售价降低多少元?2.如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发那么几秒后,PQ的长度等于cm?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.3.如图,在△ABC中,AB=6cm,BC=7cm,∠ABC=30°,点P从A点出发,以1cm/s的速度向B点移动,点Q从B点出发,以2cm/s的速度向C点移动.如果P、Q两点同时出发,经过几秒后△PBQ的面积等于4cm2?4.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?5.宜春三中学校团委爱心社组织学生为高三学生进行献爱心活动,学生踊跃捐款.初三年级第一天收到捐款1000元,第三天收到1210元.(1)求这两天收到捐款的平均增长率.(2)按照(1)中的增长速度,第四天初三年级能收到多少捐款?6.如图,要设计一幅宽20cm,长30cm的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3.如果要使彩条所占面积是图案面积的19%,求竖彩条的宽度.7.一次篮球联赛,每两个队之间都要进行一场比赛,总共要比赛36场,你能计算出有多少个队参加比赛吗?8.某地有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?9.如图,用长6m的铝合金条制成“日“字形窗框,请问宽和高各是多少时,窗户的透光面积为1.5m2(铝合金条的宽度不计)?10.永定土楼是世界文化遗产“福建土楼”的组成部分,是闽西的旅游胜地.“永定土楼”模型深受游客喜爱.图中折线(AB∥CD∥x轴)反映了某种规格土楼模型的单价y(元)与购买数量x(个)之间的函数关系.(1)求当10≤x≤20时,y与x的函数关系式;(2)已知某旅游团购买该种规格的土楼模型总金额为2625元,问该旅游团共购买这种土楼模型多少个?(总金额=数量×单价)参考答案1.解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x (斤);(2)根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x1=,x2=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.答:水果店需将每斤的售价降低1元.2.(1)设x秒后,PQ=2BP=5﹣x BQ=2x∵BP2+BQ2=PQ2∴(5﹣x)2+(2x)2=(2)2解得:x1=3,x2=﹣1(舍去)∴3秒后,PQ的长度等于2;(2)△PQB的面积不能等于7cm2,原因如下:设t秒后,PB=5﹣t QB=2t又∵S△PQB=×BP×QB=7×(5﹣t)×2t=7∴t2﹣5t+7=0△=52﹣4×1×7=25﹣28=﹣3<0∴方程没有实数根∴△PQB的面积不能等于7cm2.3.解:如图,过点Q作QE⊥PB于E,则∠QEB=90°.∵∠ABC=30°,∴2QE=QB.∴S△PQB=•PB•QE.设经过t秒后△PBQ的面积等于4cm2,则PB=6﹣t,QB=2t,QE=t.根据题意,•(6﹣t)•t=4.t2﹣6t+8=0.t 1=2,t2=4.当t=4时,2t=8,8>7,不合题意舍去,取t=2.当点Q到达C点时,S△PQB=××(6﹣t)=4∴t=答:经过2秒或秒后△PBQ的面积等于4cm2.4.解:(1)设二、三这两个月的月平均增长率为x,根据题意可得:256(1+x)2=400,解得:x1=,x2=﹣(不合题意舍去).答:二、三这两个月的月平均增长率为25%;(2)设当商品降价m元时,商品获利4250元,根据题意可得:(40﹣25﹣m)(400+5m)=4250,解得:m1=5,m2=﹣70(不合题意舍去).答:当商品降价5元时,商品获利4250元.5.解:(1)捐款增长率为x,根据题意得:1000(1+x)2=1210,解得:x 1=0.1,x 2=﹣2.1(舍去).则x =0.1=10%.答:捐款的增长率为10%.(2)根据题意得:1210×(1+10%)=1331(元).答:第四天该校能收到的捐款是1331元.6.解:设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,则(30﹣3x )(20﹣2x )=20×30×(1﹣19%),解得x 1=1,x 2=19(舍去).所以3x =3.答:竖彩条的宽度是3cm .7.解:设有x 个队参加比赛,每个队都要比赛(x ﹣1)次,但两队只比赛一次.则:,解得x 1=9,x 2=﹣8(舍去).答:有9个队参加比赛.8.解:设每轮传染中平均每个人传染了x 人,依题意得1+x +x (1+x )=121,∴x =10或x =﹣12(不合题意,舍去).所以,每轮传染中平均一个人传染了10个人.9.解:设宽为xm ,则高为m ,由题意得:x ×=1.5,解得:x 1=x 2=1,高是=1.5(米).答:宽为1米,高为1.5米.10.解:(1)当10≤x ≤20时,设y =kx +b (k ≠0)(11分)依题意,得(3分)解得(5分) ∴当10≤x ≤20时,y =﹣5x +250;(6分)(2)∵10×200<2625<20×150∴10<x <20(8分)依题意,得xy =x (﹣5x +250)=2625(10分) 即x 2﹣50x +525=0解得x 1=15,x 2=35(舍去)∴只取x =15.(12分)答:该旅游团共购买这种土楼模型15个.(13分)。

(含答案)九年级数学人教版上册课时练第21章《21.1 一元二次方程》(2)

(含答案)九年级数学人教版上册课时练第21章《21.1 一元二次方程》(2)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练第21章一元二次方程21.1一元二次方程一、选择题(本大题共9小题,共27分)1.下列方程是关于x的一元二次方程的是()A.+2=1B.2+−1=2C.2+3=8D.2−5=02.若关于x的方程(a-2)2-2x+2=0是一元二次方程,则a的值是()A.2B.−2C.0D.不等于2的任意实数3.一元二次方程22+5x-1=0的二次项系数、一次项系数、常数项分别为()A.2,5,1B.2,5,−1C.2,5,0D.22,5,−14.下列各数:-1,0,1,2中,是方程2-x-2=0的根的是()A.−1B.2C.−1,2D.1,25.若x=1是关于x的一元二次方程2+ax+2b=0的一个根,则2a+4b等于()A.−2B.−3C.−1D.−66.某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为()A.(−11)=180B.2+2(−11)=180C.(+11)=180D.2+2(+11)=1807.已知关于x的一元二次方程(m-2)2+3x+2-4=0有一根为0,则m的值是()A.2B.−2C.2D.−2或28.已知关于x的一元二次方程x2+ax+b=0有一个非零根-b,则a-b的值为()A.1B.−1C.0D.−29.王叔叔从市场上买了一块长80cm,宽70cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长为cm的正方形后,剩余的部分刚好能围成一个底面积为30002的无盖长方体工具箱.根据题意可列方程为()A.(80−)(70−)=3000B.80×70−42=3000C.(80−2)(70−2)=3000D.80×70−42−(70+80)=3000二、填空题(本大题共9小题,共27分)10.关于x的方程(2-1)2+(m+1)x+3=0.(1)当m=时,是一元一次方程;(2)当m≠时,是一元二次方程.11.填空方程一般形式二次项系数一次项系数常数项22+5=4x4x(x+3)=0(5+x)(x-5)=02x-1)(x+5)=x(3x-2)12.下列数-1,-2,-3,2,3是一元二次方程2-2x=3的根是.13.若关于x的一元二次方程2+mx+2n=0有一个根是2,则m+n=.14.已知x=-1是方程ax2+bx+c=0的根(b≠0.15.已知m是方程2-2x-1=0的一个根,则4m-22=.16.x支球队参加篮球赛,参赛的每两个队之间都要比赛一场,一共进行了36场比赛,求参赛的篮球队支数x.根据问题,列出关于x的方程:,并将其化为一般形式:.17.关于x的一元二次方程(m+1)2+2x+2-1=0的常数项为0,则m的值为.18.根据下列问题列方程,并将方程化为一般形式:(1)新年里,一个小组有若干人,若每人给小组其他成员赠送一张贺年卡,则全组共送贺年卡72张,设此小组人数为x人,则可列方程,化为一般形式.(2)在一次同学聚会时,同学见面后每两人握一次手,共握手28次,设参加聚会的同学有x人,则可列方程为,化为一般形式.(3)在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,如果雕像的高为2m,设雕像下部为xm,则列方程,并化成一般形式.三、解答题(本大题共4小题,共46分)19.当方程(m-1)2+1-(m+1)x-2=0是一元二次方程时,求m的值.20.关于x的一元二次方程2+bx+c=0的一个根是1,a,b满足b=−2+2−-1,12+c=0的解为.421.已知a是方程2-2017x+1=0的一个根,求2-2018a+2+1的值.201722.已知m为方程2+x-1=0的一个根,求3+22-3的值.参考答案1.D2.D3.B4.C5.A6.C7.B8.A9.C10.(1)1;(2)±111.22-4+5=0;2;-4;5;42+12=0;4;12;0;2-25=0;1;0;-25;2-11+5=0;1;-11;512.-1,3.13.-214.115.-216.12x (x -1)=36;122-12x -36=0(或2-x -72=0)17.118.(1)x (x -1)=72,2-x -72=0;(2)12x (x -1)=28,2-x -56=0;(3)2=2(2-x ),2+2x -4=019.解:∵−12+1−+1−2=0是一元二次方程,∴m 2+1=2,解得m =±1,又∵m -1≠0,∴m≠1,∴m=-1.20.y1=2,y2=-221.解:∵a是方程2-2017x+1=0的一个根,∴2-2017a+1=0,∴2-2018a=2-2017a+1-a-1=-a-1,2+1=2017a,∴原式=-a-1+2017=-a-1+a=-1.201722.解:把x=m代入方程得:m2+m-1=0,整理得:m2+m=1,∴m3+2m2-3=2++2−3=×1+2−3=1−3=-2.。

2020年人教版九年级数学上册第21章 《一元二次方程实际应用》综合训练测试【含答案】

2020年人教版九年级数学上册第21章 《一元二次方程实际应用》综合训练测试【含答案】

2020年人教版九年级数学上册第21章 《一元二次方程实际应用》综合训练测试1.商场销售某种冰箱,该种冰箱每台进价为2500元,已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了x 元. (1)填表(不需化简):每天的销售量/台每台销售利润/元降价前 8 400 降价后(2)商场为使这种冰箱平均每天的销售利润达到5000元,则每台冰箱的实际售价应定为多少元?2.阅读理解:给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的一半,则这个矩形是给定矩形的“减半”矩形.如图,矩形A 1B 1C 1D 1是矩形ABCD 的“减半”矩形.请你解决下列问题:(1)当矩形的长和宽分别为1,7时,它是否存在“减半”矩形?请作出判断,并说明理由.(2)边长为a 的正方形存在“减半”正方形吗?如果存在,求出“减半”正方形的边长;如果不存在,请说明理由.3.某楼盘准备以每平方米6000元的均价对外销售,新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?4.在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB 围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为50元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?5.重庆市旅游文化商店自制了一款文化衫,每件成本价为20元,每天销售150件:(1)若要每天的利润不低于2250元,则销售单价至少为多少元?(2)为了回馈广大游客,同时也为了提高这种文化衫的认知度,商店决定在“五一”节当天开展促销活动,若销售单价在(1)中的最低销售价的基础上再降低m%,则日销售量可以在150件基础上增加m件,结果当天的销售额达到5670元;要使销售量尽可能大,求出m的值.6.某旅行社为吸引市民组团去旅游,推出了如下收费标准:某单位组织员工参加该旅行社旅游,共支付该旅行社旅游费用15750元,请问:(1)该单位这次去旅游,员工有没有超过20人?(2)该单位这次共有多少员工去旅游?7.某商场销售一批名牌衬衫,平均每天可售出30件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1 500元,每件衬衫应降价多少元?8.某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量y(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y与销售单价x之间的函数关系式.(2)若某月该茶叶点销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x为多少元.9.为打造“文化九中,书香校园”,阜阳九中积极开展“图书漂流”活动,旨在让全体师生共建共享,校团委学生处在对上学期学生借阅登记簿进行统计时发现,在4月份有1000名学生借阅了名著类书籍,5月份人数比4月份增加10%,6月份全校借阅名著类书籍人数比5月份增加340人.(1)求6月份全校借阅名著类书籍的学生人数;(2)列方程求从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率.10.某青年旅社有60间客房供游客居住,在旅游旺季,当客房的定价为每天200元时,所有客房都可以住满.客房定价每提高10元,就会有1个客房空闲,对有游客入住的客房,旅社还需要对每个房间支出20元/每天的维护费用,设每间客房的定价提高了x元.(1)填表(不需化简)入住的房间数量房间价格总维护费用提价前60 200 60×20提价后(2)若该青年旅社希望每天纯收入为14000元且能吸引更多的游客,则每间客房的定价应为多少元?(纯收入=总收入﹣维护费用)答案1.解:(1)填表如下:每天的销售量/台每台销售利润/元降价前8 400降价后8+4×400﹣x(2)根据题意,可得:(400﹣x)(8+4×)=5000,化简,整理得:x2﹣300x+22500=0,即(x﹣150)2=0,解得:x=150,∴实际售价定为:2900﹣150=2750(元),答:每台冰箱的实际售价应定为2750元.2.解:(1)存在.假设存在,不妨设“减半”矩形的长和宽分别为x,y,则,由①得:y=4﹣x,③把③代入②,得,解得,.所以“减半”矩形长和宽分别为与.(2)不存在.因为两个正方形是相似图形,当它们的周长比为时,面积比必定是,所以正方形不存在“减半”正方形.3.解:(1)设平均每次下调的百分率为x,依题意,得6000(1﹣x)2=4860,解得x1=0.1=10%,x2=1.9(不合题意,舍去),答:平均每次下调的百分率为10%;(2)方案①可优惠:4860×100×(1﹣98%)=9720元;方案②可优惠:100×80=8000元,∵9720>8000,∴方案①更划算.4.解:(1)设AC=xm,则BC=(20﹣x)m,由题意得:x(20﹣x)=96,x2﹣20x+96=0,(x﹣12)(x﹣8)=0,x=12或x=8,当AC=12时,BC=8,当AC=8时,BC=12,答:这底面矩形的较长的边为12米;(2)分两种情况:①若选用规格为0.80×0.80(单位:m)的地板砖:=15×10=150(块),150×50=7500(元),②若选用规格为1.00×1.00(单位:m)的地板砖:=96(块),96×80=7680(元),∵7500<7680,∴选用规格为0.80×0.80(单位:m)的地板砖费用较少.5.解:(1)设销售单价至少为x元,根据题意列方程得,150(x﹣20)=2250,解得x=35,答:销售单价至少为35元;(2)由题意得:35×(1﹣m%)(150+m)=5670,150+m﹣150×m%﹣m%×m=162,m ﹣m 2=12,60m ﹣3m 2=192,m 2﹣20m +64=0, m 1=4,m 2=16,∵要使销售量尽可能大, ∴m =16.6.解:(1)设该单位这次共有x 名员工去旅游.因为600×20=12000<15750,所以员工人数一定超过20人.(2)设该单位这次共有x 名员工去旅游,根据题意列方程得: [600﹣10(x ﹣20)]x =15750. 整理得x 2﹣80x +1575=0, 即(x ﹣45)(x ﹣35)=0, 解得x 1=45,x 2=35.当x 1=45时,600﹣10(x ﹣20)=350<420,故舍去x 1; 当x 2=35时,600﹣10(x ﹣20)=450>420,符合题意. 答:该单位这次共有35名员工去旅游. 7.解:(1)设每件衬衫应降价x 元,根据题意,得:(40﹣x )(30+2x )=1500, 整理,得:x 2﹣25x +150=0, 解之得:x 1=15,x 2=10,因题意要尽快减少库存,所以x 取15. 答:每件衬衫应降价15元.8.解:(1)设一次函数解析式为y =kx +b , 把(90,100),(100,80)代入y =kx +b 得,,解得,,y 与销售单价x 之间的函数关系式为y =﹣2x +280.(2)根据题意得:(x ﹣80)(﹣2x +280)=﹣2x 2+440x ﹣22400=1350; 解得(x ﹣110)2=225, 解得x 1=95,x 2=125.答:销售单价为95元或125元. 9.解:(1)由题意,得5月份借阅了名著类书籍的人数是:1000×(1+10%)=1100(人), 则6月份借阅了名著类书籍的人数为:1100+340=1440(人);(2)设平均增长率为x . 1000(1+x )2=1440 解得:x =0.2答:从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率为20%.10.解:(1)∵增加10元,就有一个房间空闲,增加20元就有两个房间空闲,以此类推,空闲的房间为,∴入住的房间数量=60﹣,房间价格是(200+x )元,总维护费用是(60﹣)×20.故答案是:60﹣;200+x ;(60﹣)×20;(2)依题意得:(200+x )(60﹣)﹣(60﹣)×20=14000,整理,得x 2﹣420x +32000=0,解得x 1=320,x 2=100.当x =320时,有游客居住的客房数量是:60﹣=28(间). 当x =100时,有游客居住的客房数量是:60﹣=50(间).所以当x =100时,能吸引更多的游客,则每个房间的定价为200+100=300(元). 答:每间客房的定价应为300元.。

九年级数学上册第21章一元二次方程一元二次方程中的商品销售问题课时专练新版新人教版

九年级数学上册第21章一元二次方程一元二次方程中的商品销售问题课时专练新版新人教版

一元二次方程中的销售问题一.选择题(共10小题)1.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,即在确保盈利的前提下,尽量增加销售量,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价()元.A.3 B.2.5 C.2 D.52.某专卖店销售一种机床,三月份每台售价为2万元,共销售60台.根据市场调查知:这种机床每台售价每增加0.1万元,就会少售出1台.四月份该专卖店想将销售额提高25%,则这种机床每台的售价应定为()A.3万元B.5万元C.8万元D.3万元或5万元3.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,为了赚得8000元的利润,商品售价应为()A.60元B.80元C.60元或80元 D.30元4.某商品的售价为100元,连续两次降价x%后售价降低了36元,则x为()A.8 B.20 C.36 D.185.广州亚运会的某纪念品原价188元,连续两次降价a%,后售价为118元,下列所列方程中正确的是()A.188(1+a%)2=118 B.188(1﹣a%)2=118C.188(1﹣2a%)=118 D.188(1﹣a2%)=1186.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为()A.8% B.18% C.20% D.25%7.甲公司前年缴税a万元,去年和今年缴税的年平均增长率均为b,则今年该公司应缴税()万元.A.a(1+b%)2 B.a(1+b)2 C.a(ab%)2 D.a(1﹣b%)28.某服装原价200元,连续两次涨价,每次都涨a%后的价格为242元,则a是()A.20 B.15 C.10 D.59.某种商品零售价经过两次降价后,每件的价格由原来的100元降为现在的81元,则平均每次降价的百分率为()A.10% B.12% C.15% D.17%10.政府近几年下大力气降低药品价格,希望广大人民群众看得起病吃得起药,某种针剂的单价由100元经过两次降低,降至64元,则平均每次降低的百分率是()A.36% B.64% C.20% D.40%二.解答题(共7小题)11.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?12.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?13.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.14.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定为多少元?15.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?16.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?17.中秋节前夕,某公司的李会计受公司委派去超市购买若干盒美心月饼,超市给出了该种月饼不同购买数量的价格优惠,如图,折线ABCD表示购买这种月饼每盒的价格y(元)与盒数x(盒)之间的函数关系.(1)当购买这种月饼盒数不超过10盒时,一盒月饼的价格为240 元;(2)求出当10<x<25时,y与x之间的函数关系式;(3)当时李会计支付了3600元购买这种月饼,那么李会计买了多少盒这种月饼?18.巴蜀中学在厦天到来之际,很多学生需要更换夏季校服,欲购买校服T恤.男生的T恤每件价格50元,女生的T恤每件价格45元,第一批共购买600件.(1)第一批购买的校服的总费用不超过28000元,求女生T恤最少购买多少件?(2)箅二批购买校服,男女生购买校服的件数比为3:2,价格保持第一批的价格不变;第三批购买男生的价格在第一批购买的价格上每件减少了元,女生的价格比第一批购买的价格上每件增加了元,男生T恤的数量比第二批增加了m%,女生T恤的数量比第二批减少了m%,第二批与第三批购买校服的总费用相同,求m的值.参考答案一.选择题(共15小题)1.A.2.D.3.C.4.B.5.B.6.C.7.B.8.C.9.A.10.C.二.解答题(共7小题)11.解:(1)(14﹣10)÷2+1=3(档次).答:此批次蛋糕属第三档次产品.(2)设烘焙店生产的是第x档次的产品,根据题意得:(2x+8)×(76+4﹣4x)=1080,整理得:x2﹣16x+55=0,解得:x1=5,x2=11(不合题意,舍去).答:该烘焙店生产的是第五档次的产品.12.解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100﹣m)=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.13.解:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)(500﹣10×)=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.14.解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,(60﹣x﹣40)(300+20x)=6080,解得x1=1,x2=4,又顾客得实惠,故取x=4,即定价为56元,答:应将销售单价定为56元.15.解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x(斤);(2)根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x=或x=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.答:张阿姨需将每斤的售价降低1元.16.解:由题意得出:200(10﹣6)+(10﹣x﹣6)(200+50x)+(4﹣6)[(600﹣200)﹣(200+50x)]=1250,即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1250,整理得:x2﹣2x+1=0,解得:x1=x2=1,∴10﹣1=9.答:第二周的销售价格为9元.17.(1)∵当0≤x≤10时,y=240.故答案为:240.(2)当10<x<25时,设y=kx+b(其中k、b为常数且k≠0),将B(10,240)、C(25,150)代入y=kx+b中,得:,解得:,∴当10<x<25时,y=﹣6x+300.(3)∵3600÷240=15(盒),3600÷150=24(盒),∴收费标准在BC段.根据题意得:(﹣6x+300)x=3600,解得:x1=20,x2=30(不合题意,舍去).答:李会计买了20盒这种月饼.18.解:(1)设购买女生T恤x件,则购买男生T恤(600﹣x)件,根据题意得:45x+50(600﹣x)≤28000,解得:x≥400.答:女生T恤最少购买400件.(2)设第二批购进女生T恤2y件,则购进男生T恤3y件,根据题意得:45×2y+50×3y=(45+m)×2y(1﹣m%)+(50﹣m)×3y(1+m%),整理得:m2﹣50m=0,解得:m1=0(舍去),m2=50.答:m的值为50.。

人教版九年级数学上册 第21章专题 练习 一元二次方程的应用(含答案)

人教版九年级数学上册 第21章专题 练习 一元二次方程的应用(含答案)

专题:一元二次方程的应用一、 增长率问题1. 我市某楼盘准备以每平方 10000 元的均价对外销售由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方 8100 元的均价开盘销售,则平均每次下调的百分率是( )A. 8%B. 9%C. 10%D. 11%2. 某服装原价为 300 元,连续两次涨价a%后,售价为 363 元,则a 的值为()A. 5B. 10C. 15D. 203. 与去年同期相比我国石油进口量增长了a%,而单价增长了%2a,总费用增长了%5.15,则 a ( )A. 5B. 10C. 15D. 204. 一件产品原来每件的成本是 1000 元,在市场售价不变的情况下,由于连续两次降低成本,现在利润每件增加了 190 元,则平均每次降低成本的( )A. 10%B. 9.5%C. 9%D. 8.5%5. 某商品经过连续两次降价,销售单价由原来的 125 元降到 80 元,则两次降价的平均百分率为( )A. 10%B. 15%C. 20%D. 25%二、 传播问题6. 某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是 43,则这种植物每个支干长出的小分支个数是( )A. 4B. 5C. 6D. 77. 有一个人收到短信后,再用手机转发短消息,每人只转发一次,经过两轮转发后共有 133 人收到短消息,问每轮转发中平均一个人转发给()个人. A. 9B. 10C. 11D. 128. 有一人患流感,经过两轮传染后,共有 121 人患上了流感,那么每轮传染中,平均一个人传染的人数为( )A. 8人B. 9人C. 10人D. 11人9. 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是 31,每个支干长出小分支的数量是()A. 5B. 6C. 5或6D. 710.有一人患了红眼病,经过两轮传染后共有144 人患了红眼病,那每轮传染中平均一个人传染的人数为()人.A. 10B. 11C. 12D. 1311.有一个人患了流感,经过两轮传染后得知第二次被传染的有420 人,如果每轮传染率都相同,那么每轮传染中平均一个人传染了个人.专题:一元二次方程的应用三、互动问题12.元旦节时,九年级一班有若干同学聚会共庆新年的来临,他们每两人均互送贺卡一张,已知他们共送出贺卡90 张,则参加此次同学聚会的人数是()A.9 B.10 C.12 D.1813.毕业典礼后,九年级(1)班有若干人,若每人给全班的其他成员赠送一张毕业纪念卡,则全班送贺卡共1190 张,九年级(1)班人数为()A.34 B.35 C.36 D.3714.重庆一中初二年级要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21 场比赛,应该邀请的球队个数为()A.6 B.7 C.8 D.915.一个小组新年互送贺卡,若全组共送贺卡42 张,则这个小组有()人.A.6 B.7 C.8 D.916.一个小组有若干人,新年互送贺年卡一张,已知全组共送贺年卡72 张,则这个小组有()A.12 人B.18 人C.9 人D.10 人17.要组织一次篮球场地,赛制为单循环形式,计划安排15 场比赛,应邀请()支球队参加比赛.A.3 B.4 C.5 D.6四、数字问题18.已知一个两位数,个位上的数字比十位上的数字少 4,这个两位数十位和个位交换位置后,新两位数与原两位数的积为 1612,那么原数中较大的两位数是()A .95B .59C .26D .6219.若两个连续整数的积为 56,则这两个连续整数的和为()A .15B .15-C .15±D .1-20.两个连续偶数之积为 168,则这两个连续偶数之和为()A .26B .26-C .26±D .都不对 21.已知两数之差为 4,积等于 45,则这两个数是() A .5 和 9B .9-和5-C .5 和5-或9-和 9D .5 和 9 或9-和5-专题:一元二次方程的应用六、 面积问题22.如图,要设计一幅宽cm 20,长cm 30的图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:1,如果要使彩条所占面积是图案面积的7519,则竖彩条宽度为( ) A .cm 1B .cm 2C .cm 19D .cm 1或cm 1923.如图,有一长方形鸡场,鸡场的一边靠墙(墙长 18 米),另三边用竹篱笆围成,竹篱笆的总长为 35 米,与墙平行的边留有 1 米宽的门(门用其它材料做成),若鸡场的面积为 160 平方米,则鸡场与墙垂直的边长为()A .7.5 米B .8 米C .10 米D .10 米或 8 米24.如图所示,某小区在宽cm 20,长cm 32的矩形地面上修筑同样宽的人行道(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540cm ,则道路的宽为() A .cm 50B .cm 5C .cm 2D .cm 125.如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第 1 个黑色形由 3 个正方形组成,第 2 个黑色形由 7 个正方形组成,那么组成第 12 个黑色形的正方形个数是A .44B .45C .46D .4726.如图,利用一面长 18 米的墙,用篱笆围成一个矩形场地ABCD ,设AD 长为x 米,AB 长为y 米,矩形的面积为S 平方米.(1)若篱笆的长为 32 米,求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)在(1)的条件下,求S 与x 的函数关系式,并求出使矩形场地的面积为 120 平方米的围法.27.某社区决定把一块长m 50,宽m 30的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小、形状都相同的矩形),空白区域为活动区,且四周的 4 个出口宽度相同,当绿化区较长边x 为何值时,活动区的面积达到21341m ?28.阳光小区附近有一块长m 100,宽m 80的长方形空地,在空地上有两条相同宽度的步道(一纵一横)和一个边长为步道宽度 7 倍的正方形休闲广场,两条步道的总面积与正方形休闲广场的面积相等,如图 1 所示,设步道的宽为)(m a .(1)求步道的宽;(2)为了方便市民进行跑步健身,现按如图 2 所示方案增建塑胶跑道.已知塑胶跑道的宽为m 1,长方形区域甲的面积比长方形区域乙大2441m ,且区域丙为正方形,求塑胶跑道的总面积.29.如图,若要建一个矩形鸡场,鸡场的一面靠墙,墙长18 米,墙对面有一个2 米宽的门,另三边用竹篱笆围成,篱笆总长33 米,且围成的鸡场面积为150 平方米,则鸡场的长和宽各为多少米?专题:一元二次方程的应用七、降价促销问题30.随着夏季的到来,各类水果自然也成了大众喜爱的消费产品.已知某水果店第一次售出苹果和芒果共200千克,其中苹果的售价为24 元/千克,芒果的售价为20 元/千克,总销售额为4320 元.(1)求水果店第一次售出苹果和芒果各多少千克;(2)通过最近的调查发现消费者更加青睐于购买芒果,经销售统计发现与第一次相比,芒果的售价每降低1 元,销量就增加20 千克,苹果的售价和销量均保持不变,如果第二次的苹果和芒果全部售完比第一次的总销售额多980 元,求第二次芒果的售价.31.家乐商场销售某种衬衣,每件进价100 元,售价160 元,平均每天能售出30 件为了尽快减少库存,商场采取了降价措施.调查发现,这种衬衣每降价1 元,其销量就增加3 件.商场想要使这种衬衣的销售利润平均每天达到3600 元,每件衬衣应降价多少元?32.某商场今年年初以每件25 元的进价购进一批商品.当商品售价为40 元时,三月份销售128 件,四、五月份该商品的销售量持续走高,在售价不变的前提下,五月份的销量达到200 件.假设四、五两个月销售量的月平均增长率不变(1)求四、五两个月销售量的月平均增长率;(2)从六月起,商场采用降价促销方式回馈顾客,经调查发现,该商品每降 1 元,销售量增加 5 件,当商品降价多少元时,商场可获利2250 元?33.某商店经销A、B两种商品,现有如下信息:信息1:A、B两种商品的进货单价之和是3 元;信息2:A A商品零售单价比进货单价多1 元,B商品零售单价比进货单价的2 倍少 1 元;信息3:按零售单价购买A商品3 件和B商品2 件,共付12 元.请根据以上信息,解答下列问题:(1)求A、B两种商品的零售单价;(2)该商店平均每天卖出A商品500 件和B商品1500 件.经调查发现,A种商品零售单价每降0.1 元,A种商品每天可多销售 100 件.商店决定把 商品的零售单价下降)0( m m 元,B 商品的零售单价和销量都不变,在不考虑其他因素的条件下,当m 为多少时,商品每天销售A 、B 两种商品获取的总利润为 2000 元?34.某商场销售一批鞋子,平均每天可售出 20 双,每双盈利 50 元.为了扩大销售,增加盈利,商场决定采取降价措施,调查发现,每双鞋子每降价 1 元,商场平均每天可多售出 2 双. (1)若每双鞋子降价 20 元,商场平均每天可售出多少双鞋子?(2)若商场每天要盈利 1750 元,且让顾客尽可能多得实惠,每双鞋子应降价多少元?35.一商品销售某种商品,平均每天可售出 20 件,每件盈利 50 元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于 25 元的前提下,经过一段时间销售,发现销售单价每降低 1 元,平均每天可多售出 2 件. (1)若每件商品降价 2 元,则平均每天可售出 件;(2)当每件商品降价多少元时,该商品每天的销售利润为 1600 元?36.某超市销售一种饮料,平均每天可售出100 箱,每箱利润12 元,为了扩大销售,增加利润,超市准备适当降价.据测算,每箱每降价1 元,平均每天可多售出20 箱.(1)若每箱降价3 元,每天销售该饮料可获利多少元?(2)若要使每天销售该饮料获利1400 元,则每箱应降价多少元?(3)能否使每天销售该饮料获利达到1500 元?若能,请求出每箱应降价多少元;若不能,请说明理由.37.涡阳某童装专卖店在销售中发现,一款童装每件进价为60 元,销售价为100 元时,每天可售出30 件,为了迎接“六·一”儿童节,商店决定采取适当的降价措施,以扩大销售量增加利润,经市场调查发现,如果每件童装降价1 元,那么平均可多售出3 件.(1)若每件童装降价x元,每天可售出件,每件盈利元(用含的代数式表示).(2)每件童装降价多少元时,能让利于顾客并且商家平均每天能赢利1800 元.38.某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为 30 元,每件甲种商品的利润是 4 元,每件乙种商品的售价比其进价的 2 倍少 11 元,小明在该商店购买 8 件甲种商品和 6 件乙种商品一共用了 262 元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品 400 件和乙种商品 300 件,如果将甲种商品的售价每提高 0.1 元,则每天将少售出 7 件甲种商品;如果将乙种商品的售价每提高 0.1 元,则每天将少售出 8 件乙种商品.经销商决定把两种商品的价格都提高a 元,在不考虑其他因素的条件下,当a 为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共 2500 元?39.某公司销售一种产品,进价为 20 元 件,售价为 80 元 件,公司为了促销,规定凡一次性购买 10 万件以上的产品,每多买 1 万件,每件产品的售价就减少 2 元,但售价最低不能低于 50 元/件,设一次性购买x 万件)0(>x (1)若15=x ,则售价应是 元/件;(2)一次性购买多少件产品时,该公司的销售总利润为 728 万元;40.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已经成为国内外游客最喜欢的旅游目的地城市之一,在著名“网红打卡地”磁器口,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经过测算知,该小面成本为每碗 6 元,借鉴以往经验:若每碗卖 25 元,平均每天将销售 300 碗,若价格每降低 1 元,则平均每天可多售 30 碗.(1)若该小面店每天至少卖出 360 碗,则每碗小面的售价不超过多少元?(2)为了更好的维护重庆城市形象,店家规定每碗售价不得超过20 元,则当每碗售价定为多少元时,店家才能实现每天利润6300 元.参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.40.。

【重点推荐】九年级数学上册 第21章一元二次方程中的商品销售问题课时专练 (新版)新人教版

【重点推荐】九年级数学上册 第21章一元二次方程中的商品销售问题课时专练 (新版)新人教版

一元二次方程中的销售问题一.选择题(共10小题)1.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,即在确保盈利的前提下,尽量增加销售量,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价()元.A.3 B.2.5 C.2 D.52.某专卖店销售一种机床,三月份每台售价为2万元,共销售60台.根据市场调查知:这种机床每台售价每增加0.1万元,就会少售出1台.四月份该专卖店想将销售额提高25%,则这种机床每台的售价应定为()A.3万元B.5万元C.8万元D.3万元或5万元3.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,为了赚得8000元的利润,商品售价应为()A.60元B.80元C.60元或80元 D.30元4.某商品的售价为100元,连续两次降价x%后售价降低了36元,则x为()A.8 B.20 C.36 D.185.广州亚运会的某纪念品原价188元,连续两次降价a%,后售价为118元,下列所列方程中正确的是()A.188(1+a%)2=118 B.188(1﹣a%)2=118C.188(1﹣2a%)=118 D.188(1﹣a2%)=1186.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为()A.8% B.18% C.20% D.25%7.甲公司前年缴税a万元,去年和今年缴税的年平均增长率均为b,则今年该公司应缴税()万元.A.a(1+b%)2 B.a(1+b)2 C.a(ab%)2 D.a(1﹣b%)28.某服装原价200元,连续两次涨价,每次都涨a%后的价格为242元,则a是()A.20 B.15 C.10 D.59.某种商品零售价经过两次降价后,每件的价格由原来的100元降为现在的81元,则平均每次降价的百分率为()A.10% B.12% C.15% D.17%10.政府近几年下大力气降低药品价格,希望广大人民群众看得起病吃得起药,某种针剂的单价由100元经过两次降低,降至64元,则平均每次降低的百分率是()A.36% B.64% C.20% D.40%二.解答题(共7小题)11.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?12.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?13.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.14.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定为多少元?15.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?16.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?17.中秋节前夕,某公司的李会计受公司委派去超市购买若干盒美心月饼,超市给出了该种月饼不同购买数量的价格优惠,如图,折线ABCD表示购买这种月饼每盒的价格y(元)与盒数x(盒)之间的函数关系.(1)当购买这种月饼盒数不超过10盒时,一盒月饼的价格为240 元;(2)求出当10<x<25时,y与x之间的函数关系式;(3)当时李会计支付了3600元购买这种月饼,那么李会计买了多少盒这种月饼?18.巴蜀中学在厦天到来之际,很多学生需要更换夏季校服,欲购买校服T恤.男生的T 恤每件价格50元,女生的T恤每件价格45元,第一批共购买600件.(1)第一批购买的校服的总费用不超过28000元,求女生T恤最少购买多少件?(2)箅二批购买校服,男女生购买校服的件数比为3:2,价格保持第一批的价格不变;第三批购买男生的价格在第一批购买的价格上每件减少了元,女生的价格比第一批购买的价格上每件增加了元,男生T恤的数量比第二批增加了m%,女生T恤的数量比第二批减少了m%,第二批与第三批购买校服的总费用相同,求m的值.参考答案一.选择题(共15小题)1.A.2.D.3.C.4.B.5.B.6.C.7.B.8.C.9.A.10.C.二.解答题(共7小题)11.解:(1)(14﹣10)÷2+1=3(档次).答:此批次蛋糕属第三档次产品.(2)设烘焙店生产的是第x档次的产品,根据题意得:(2x+8)×(76+4﹣4x)=1080,整理得:x2﹣16x+55=0,解得:x1=5,x2=11(不合题意,舍去).答:该烘焙店生产的是第五档次的产品.12.解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100﹣m)=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.13.解:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)(500﹣10×)=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.14.解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,(60﹣x﹣40)(300+20x)=6080,解得x1=1,x2=4,又顾客得实惠,故取x=4,即定价为56元,答:应将销售单价定为56元.15.解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x (斤);(2)根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x=或x=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.答:张阿姨需将每斤的售价降低1元.16.解:由题意得出:200(10﹣6)+(10﹣x﹣6)(200+50x)+(4﹣6)[(600﹣200)﹣(200+50x)]=1250,即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1250,整理得:x2﹣2x+1=0,解得:x1=x2=1,∴10﹣1=9.答:第二周的销售价格为9元.17.(1)∵当0≤x≤10时,y=240.故答案为:240.(2)当10<x<25时,设y=kx+b(其中k、b为常数且k≠0),将B(10,240)、C(25,150)代入y=kx+b中,得:,解得:,∴当10<x<25时,y=﹣6x+300.(3)∵3600÷240=15(盒),3600÷150=24(盒),。

人教版九年级数学上册第21章 《一元二次方程》课时同步练:(含答案)

人教版九年级数学上册第21章 《一元二次方程》课时同步练:(含答案)

课时同步练:第21章 《一元二次方程》一.选择题1.下列方程中是一元二次方程的是( ) A .2x +1=0B .x 2+y =1C .x 2+2=0D .=12.用配方法解方程x 2+6x +4=0时,原方程变形为( ) A .(x +3)2=9B .(x +3)2=13C .(x +3)2=5D .(x +3)2=43.一元二次方程x 2+4x +5=0的根的情况是( ) A .无实数根B .有一个实根C .有两个相等的实数根D .有两个不相等的实数根4.受非洲猪瘟及其他因素影响,2019年9月份猪肉价格两次大幅度上涨,瘦肉价格由原来23元/千克,连续两次上涨x %后,售价上升到60元/千克,则下列方程中正确的是( ) A .23(1﹣x %)2=60 B .23(1+x %)2=60 C .23(1+x 2%)=60D .23(1+2x %)=605.一元二次方程x 2﹣6x +5=0的两根分别是x 1、x 2,则x 1•x 2的值是( ) A .5B .﹣5C .6D .﹣66.关于x 的一元二次方程ax 2+5x +3=0有两个不相等的实数根,则实数a 的取值范围是( ) A .a <且a ≠0 B .a > C .a ≤且a ≠0D .a ≥7.设方程x 2+x ﹣2=0的两个根为α,β,那么α+β﹣αβ的值等于( ) A .﹣3B .﹣1C .1D .38.2020年,新型冠状病毒感染的肺炎疫情牵动着全国人民的心.雅礼中学某学生写了一份预防新型冠状病毒倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请n 个好友转发倡议书,每个好友转发倡议书,又邀请n 个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有931人参与了传播活动,则方程列为( ) A .(1+n )2=931B .n (n ﹣1)=931C .1+n +n 2=931D .n +n 2=9319.已知关于x 的一元二次方程x 2+mx +3=0有两个实数根x 1=1,x 2=n ,则代数式(m +n )2020的值为( )A .1B .0C .32020D .7202010.已知x 1,x 2是关于x 的一元二次方程x 2+kx ﹣1=0的两个根,且满足+=﹣2,则k 的值为( )A .2B .﹣2C .1D .﹣111.若x 1是方程ax 2﹣2x ﹣c =0(a ≠0)的一个根,设p =(ax 1﹣1)2,q =ac +1.5,则p 与q 的大小关系为( ) A .p <qB .p =qC .p >qD .不能确定12.如图,某中学计划靠墙围建一个面积为80m 2的矩形花圃(墙长为12m ),围栏总长度为28m ,则与墙垂直的边x 为( )A .4m 或10mB .4mC .10mD .8m二.填空题13.关于x 的方程kx 2﹣4x =0有两个实数根,则k 的取值范围是 .14.若一元二次方程x 2﹣2x ﹣3=0的两根分别为a ,b ,则(a +1)(b +1)= . 15.受疫情影响,我县居民投资房产热情有所降低,据调查,今年1月份我县一房地产公司的住房销售量为100套,3月份的住房销售量为64套,若该公司这两个月住房销售量的平均下降率相同,设该公司这两个月住房销售量的平均下降率为x ,根据题意所列方程为 .16.已知关于x 的一元二次方程2x 2﹣kx ﹣24=0的一个根为x =﹣3,则k 的值是 . 17.在元旦前夕,某通讯公司的每位员工都向本公司的其他员工发出了1条祝贺元旦的短信.已知全公司共发出2450条短信,那么这个公司有员工 人.三.解答题18.用恰当的方法解下列方程:(1)x 2+4x ﹣2=0; (2)4x 2﹣25=0;(3)(2x +1)2+4(2x +1)+4=0; (4)(x ﹣1)(x ﹣3)=8.19.如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC上用其他材料做了宽为1米的两扇小门.若花圃的面积刚好为45平方米,则此时花圃的AB段长为多少?20.有一张长40cm,宽30cm的长方形硬纸片(如图1),截去四个全等的小正方形之后,折成无盖的纸盒(如图2).若纸盒的底面积为600cm2,求纸盒的高.21.已知关于x的方程x2﹣6x+k+1=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两个实数根x1,x2满足,求k的值.22.近年来,在市委市政府的宏观调控下,我市的商品房成交均价涨幅控制在合理范围内,由2017年的均价5000元/m2上涨到2019年的均价6050元/m2.(1)试求这两年我市商品房成交均价的年平均增长率;(2)如果房价继续上涨,按(1)中上涨的百分率,请预测2020年我市的商品房成交均价.23.(1)2018年,绿云花市的张老板一共销售A,B两个品种的绿色植物共900盆.其中A 品种每盆20元,B品种每盆30元,总销售额为23000元,请求出销售的A,B品种绿色植物的数量;(2)2019年,A品种绿色植物比上一年的价格优惠a%,B品种绿色植物比上一年的价格优惠a%.由于市民对绿色植物的需求量持续增加,张老板售出的A品种绿色植物比上一年的数量增加了a%,售出的B品种绿色植物比上一年的数量增加了a%,总销售额比上一年增加了a%,求a的值.参考答案一.选择题1.解:A、该方程是一元一次方程,故本选项错误.B、该方程是二元二次方程,故本选项错误.C、该方程是一元二次方程,故本选项正确.D、该方程分式方程,故本选项错误.故选:C.2.解:由x2+6x+4=0可得:x2+6x=﹣4,则x2+6x+9=﹣4+9,即:(x+3)2=5,故选:C.3.解:∵△=42﹣4×5=﹣4<0,∴方程无实数根.故选:A.4.解:当猪肉第一次提价x%时,其售价为23+23x%=23(1+x%);当猪肉第二次提价x%后,其售价为23(1+x%)+23(1+x%)x%=23(1+x%)2.∴23(1+x%)2=60.故选:B.5.解:∵一元二次方程x2﹣6x+5=0的两根分别是x1、x2,∴x1•x2===5,故选:A.6.解:∵关于x的一元二次方程ax2+5x+3=0有两个不相等的实数根,∴△=b2﹣4ac=52﹣4×a×3=25﹣12a>0,解得:a<,∵方程ax2+5x+3=0是一元二次方程,∴a≠0,∴a的范围是:a<且a≠0.7.解:∵α,β是方程x2+x﹣2=0的两个根,∴α+β=﹣1,αβ=﹣2,∴原式=﹣1﹣(﹣2)=1.故选:C.8.解:由题意,得n2+n+1=931,故选:C.9.解:∵关于x的一元二次方程x2+mx+3=0有两个实数根x1=1,x2=n,∴1+n=﹣m,解得:m+n=﹣1,故(m+n)2020=1.故选:A.10.解:∵x1,x2是关于x的一元二次方程x2+kx﹣1=0的两个根,∴x1+x2=﹣k,x1x2=﹣1,∵+=﹣2,∴=﹣2,故=﹣2,解得:k=﹣2.故选:B.11.解:∵x1是方程ax2﹣2x﹣c=0(a≠0)的一个根,∴ax12﹣2x1=c,则p﹣q=(ax1﹣1)2﹣(ac+1.5)=a2x12﹣2ax1+1﹣ac﹣1.5=a(ax12﹣2x1)﹣ac﹣0.5=ac﹣ac﹣0.5 =﹣0.5,∴p﹣q<0,故选:A.12.解:∵与墙垂直的边为xm,∴与墙平行的边为(28﹣2x)m.依题意,得:x(28﹣2x)=80,整理,得:x2﹣14x+40=0,解得:x1=4,x2=10.当x=4时,28﹣2x=20>12,不合题意,舍去;当x=10时,28﹣2x=8.故选:C.二.填空题(共5小题)13.解:当k=0时,方程为﹣4x﹣=0,显然有解;当k≠0时,根据题意得(﹣4)2﹣4×k×(﹣)≥0,解得k≥﹣6且k≠0;综上,k≥﹣6.故答案为:k≥﹣6.14.解:∵一元二次方程x2﹣2x﹣3=0的两根分别为a,b,∴a+b=2,ab=﹣3,∴(a+1)(b+1)=ab+a+b+1=﹣3+2+1=0.故答案为:0.15.解:由题意可得,100(1﹣x)2=64,故答案为:100(1﹣x)2=64.16.解:把x=﹣3代入方程2x2﹣kx﹣24=0,可得2×9+3k﹣24=0,即k=2,故答案为:2.17.解:设这个公司有员工x人,则每人需发送(x﹣1)条祝贺元旦的短信,依题意,得:x(x﹣1)=2450,解得:x1=50,x2=﹣49(不合题意,舍去).故答案为:50.三.解答题(共6小题)18.解:(1)∵a =1,b =4,c =﹣2, ∴△=42﹣4×1×(﹣2)=24>0, 则x ==﹣2±, 即x 1=﹣2+,x 2=﹣2﹣;(2)∵4x 2=25, ∴x 2=,解得x 1=,x 2=﹣; (3)令2x +1=a , 则a 2+4a +4=0, ∴(a +2)2=0, 解得a =﹣2, ∴2x +1=﹣2, 解得x 1=x 2=﹣1.5;(4)方程整理为一般式,得:x 2﹣4x ﹣5=0, 解得:(x ﹣5)(x +1)=0, 则x ﹣5=0或x +1=0, 解得x 1=5,x 2=﹣1.19.解:设AB =x 米,则BC =(22﹣3x +2)米, 依题意,得:x (22﹣3x +2)=45, 整理,得:x 2﹣8x +15=0, 解得:x 1=3,x 2=5.当x =3时,22﹣3x +2=15>14,不合题意,舍去; 当x =5时,22﹣3x +2=9,符合题意.答:若花圃的面积刚好为45平方米,则此时花圃的AB 段长为5米.20.解:设纸盒的高是xcm .则纸盒的底面为长(40﹣2x )cm ,宽(30﹣2x )cm 的长方形, 依题意,得:(40﹣2x )(30﹣2x )=600, 整理,得:x 2﹣35x +150=0,解得x 1=5,x 2=30(不合题意,舍去). 答:纸盒的高为5cm .21.解:(1)根据题意得△=(﹣6)2﹣4(k +1)≥0, 解得k ≤8;(2)根据题意得x 1+x 2=6,x 1x 2=k +1, ∵,∴=﹣,即=﹣,∴k =﹣13.22.解:(1)设这两年我市商品房成交均价的年平均增长率是x ,根据题意得: 5000(1+x )2=6050, (1+x )2=1.21,解得:x 1=10%,x 2=﹣2.1(不合题意,舍去). 答:这两年我市商品房成交均价的年平均增长率是10%;(2)2020年我市的商品房成交均价为:6050(1+10%)=6655(元). 答:2020年我市的商品房成交均价是6655元.23.解:(1)设前年已购置的A 、B 品种的数量分别为x 盆和y 盆,由题意得:解得:.答:前年已购置的A 品种400盆,B 品种500盆. (2)由题意得:20(1﹣a %)×400(1+a %)+30(1﹣a %)×500(1+a %)=23000(1+a %)设a %=t则20(1﹣t )×400(1+t )+30(1﹣t )×500(1+t )=23000(1+t )化简得:﹣10t 2+3t =0 ∴t (﹣10t +3)=0∴t1=0(舍),t2=.∴a%=.∴a=30答:a的值为30.。

人教版九年级数学上册综合题练习卷:第21章 一元二次方程(包含答案)

人教版九年级数学上册综合题练习卷:第21章  一元二次方程(包含答案)

第21章一元二次方程1.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?2.某商店经销甲、乙两种商品,已知一件甲种商品和一件乙种商品的进价之和为30元,每件甲种商品的利润是4元,每件乙种商品的售价比其进价的2倍少11元,小明在该商店购买8件甲种商品和6件乙种商品一共用了262元.(1)求甲、乙两种商品的进价分别是多少元?(2)在(1)的前提下,经销商统计发现,平均每天可售出甲种商品400件和乙种商品300件,如果将甲种商品的售价每提高0.1元,则每天将少售出7件甲种商品;如果将乙种商品的售价每提高0.1元,则每天将少售出8件乙种商品.经销商决定把两种商品的价格都提高a元,在不考虑其他因素的条件下,当a为多少时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元?3.关于x的一元二次方程(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0(1)求方程的解;(2)若方程的解为整数,求k值.4.某市为推进养老服务工作的深入开展,在扩大社区养老覆盖率、规范机构养老、科学规划养老服务布局等方面作了大量工作.该市的养老机构拥有的养老床位数从2016年底的2万个增长到2018年底的2.88万个.(1)求该市这两年养老床位数的年平均增长率:(2)该市2018年底正在筹建一社区养老中心,按照规划拟建造三类养老专用房间(一个养老床位的单人间、两个养老床位的双人间、三个养老床位的三人间)共100间,若按规划需要建造的单人间的房间数为m(12≤m≤15),双人间的房间数是单人间的2倍,求该养老中心建成后最多可提供养老床位多少个?最少提供养老床位多少个?5.为进一步弘扬“爱国、进步、民主、科学”的五四精神,倡导“我运动、我健康、我快乐”的生活方式,某县团委准备组织一次共青团员青年足球赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排9天,每天安排5场比赛,则该县团委应邀请多少个足球队参赛?6.已知关于x的一元二次方程x2﹣5x+2m=0有实数根.(1)求m的取值范围;(2)当m=时,方程的两根分别是矩形的长和宽,求该矩形外接圆的直径.7.(1)解方程:2x2﹣x﹣1=0;(2)解不等式组:8.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.9.关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.10.已知关于x的一元二次方程x2+(2m+1)x+m2﹣2=0.(1)若该方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1﹣x2)2+m2=21,求m的值.11.已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根x1,x2.(1)求k的取值范围;(2)若x1+x2=3,求k的值及方程的根.12.已知关于x的方程x2﹣2x+2k﹣1=0有实数根.(1)求k的取值范围;(2)设方程的两根分别是x1、x2,且+=x1•x2,试求k的值.13.HW公司2018年使用自主研发生产的“QL”系列甲、乙、丙三类芯片共2800万块,生产了2800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.14.(1)关于x,y的方程组满足x+y=5,求m的值.(2)关于x的一元二次方程x2﹣(m﹣1)x﹣m=0的两个根x1,x2满足x12+x22=5,求的值.15.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,求实数m的取值范围.16.已知关于x的一元二次方程x2﹣(m+3)x+m+2=0,(1)求证:无论实数m取得何值,方程总有两个实数根;(2)若方程有一个根的平方等于1,求m的值.17.(1)解方程:x2﹣2x﹣1=0.(2)解不等式组:18.已知关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0.(1)求证:不论m为何值,方程必有实数根.(2)当m为整数时,方程是否有有理根?若有,求出m的值:若没有,请说明理由.19.建造一个面积为130m2的长方形养鸡场,鸡场的一边靠墙,墙长为a米,另三边用竹篱笆围成,如果篱笆总长为33米.(1)求养鸡场的长与宽各为多少米?(2)若10≤a<18,题中的解的情况如何?20.2019长春国际马拉松于5月26日上午在长春体育中心鸣枪开跑.某公司为赛事赞助了5000瓶矿泉水,计划以后每年逐年增加,到2021年达到7200瓶,若该公司每年赞助矿泉水数量增加的百分率相同.(1)求平均每年增加的百分率;(2)假设2022年该公司赞助矿泉水增加的百分率与前两年相同,请你预测2022年该公司赞助的矿泉水的数量.参考答案1.【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.【点评】本题考查了一元二次方程的应用以及一次函数的应用,解题的关键是:(1)根据表格内的数据,利用待定系数法求出一次函数关系式;(2)找准等量关系,正确列出一元二次方程.2.【分析】(1)可设甲种商品的进价是x元,乙种商品的进价是y元,根据等量关系:①一件甲种商品和一件乙种商品的进价之和为30元;②购买8件甲种商品和6件乙种商品一共用了262元;列出方程组求解即可;(2)根据该经销商每天销售甲、乙两种商品获取的利润共2500元,列出方程求解即可.【解答】解:(1)设甲种商品的进价是x元,乙种商品的进价是y元,依题意有,解得.故甲种商品的进价是16元,乙种商品的进价是14元;(2)依题意有:(400﹣10a×7)(4+a)+(300﹣10a×8)(14×2﹣11﹣14+a)=2500,整理,得150a2﹣180a=0,解得a1=,a2=0(舍去).故当a为时,才能使该经销商每天销售甲、乙两种商品获取的利润共2500元.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.3.【分析】(1)根据一元二次方程的定义,利用因式分解法可解;(2)根据(1),利用整数根可解.【解答】解:(1)∵该方程是关于x的一元二次方程,∴k≠6,k≠9∵(6﹣k)(9﹣k)x2﹣(117﹣15k)x+54=0∴[(6﹣k)x﹣9][(9﹣k)x﹣6]=0解得x=或∴方程的解为x=或.(2)∵方程的解为x=或.若方程的解为整数,①当6﹣k=±1,±3,±9时,x是整数,此时k=7、5、3、9、15、﹣3;②当9﹣k=±1,±2,±3,±6时,x是整数,此时k=10、8、11、7、12、6、15、3.综上可知,k=3、7、15时原方程的解为整数.【点评】本题考查了一元二次方程的定义及整数根的求解问题,难度中等.4.【分析】(1)设该市这两年(从2016年度到2018年底)拥有的养老床位数的平均年增长率为x,根据“2018年的床位数=2016年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于m的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.【解答】解:(1)设该市这两年拥有的养老床位数的平均年增长率为,由题意可列出方程:2(1+x)2=2.88,解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)设规划建造单人间的房间数为m(12≤m≤15),则建造双人间的房间数为2m,三人间的房间数为100﹣3m,设该养老中心建成后能提供养老床位y个,由题意得:y=m+4m+3(100﹣3m)=﹣4m+300∵y随m的增大而减小∴当m=12时,y的最大值为252.当m=15时,y的最小值为240.答:该养老中心建成后最多提供养老床位252个,最少提供养老床位240个.【点评】本题考查了一次函数的应用、一元二次方程的应用,解题的关键是:(1)根据数量关系列出关于x的一元二次方程;(2)根据数量关系找出y关于t的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或函数关系式)是关键.5.【分析】关系式为:球队总数×每支球队需赛的场数=9×5,把相关数值代入即可.【解答】解:该县团委应邀请x个足球队参赛.每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=9×5.整理,得x2﹣x﹣90=0.解得x1=﹣9(不合题意,舍去),x2=10.答:该县团委应邀请10个足球队参赛.【点评】本题考查了一元二次方程的应用,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.6.【分析】(1)由根的判别式列出不等式,解不等式可得m的取值范围;(2)由根与系数的关系可得x1+x2=5、x1x2=5,该矩形外接圆的直径是矩形的对角线AC,根据勾股定理可得结论.【解答】(本题6分)解:(1)∵方程有实数根,∴△=(﹣5)2﹣4×1×2m≥0,(1分)m≤,(2分)∴当m≤时,原方程有实数根;(3分)(2)当m=时,原方程可化为:x2﹣5x+5=0,设方程的两个根分别为x1、x2,则x1+x2=5,x1•x2=5,(4分)∵该矩形外接圆的直径是矩形的对角线AC,如图所示,∴AC====,(5分)∴该矩形外接圆的直径是.(6分)【点评】本题主要考查一元二次方程根的判别式、根与系数的关系,熟练掌握根与系数的关系和进行变形是解题的关键.7.【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)2x2﹣x﹣1=0,(2x+1)(x﹣1)=0,2x+1=0,x﹣1=0,x1=﹣,x2=1;(2)∵解不等式①得:x>﹣4,解不等式②得:x≤3,∴不等式组的解集为﹣4<x≤3.【点评】本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集求出不等式组的解集是解(2)的关键.8.【分析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.9.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.10.【分析】(1)利用判别式的意义得到△=(2m+1)2﹣4(m2﹣2)≥0,然后解不等式得到m的范围,再在此范围内找出最小整数值即可;(2)利用根与系数的关系得到x1+x2=﹣(2m+1),x1x2=m2﹣2,再利用(x1﹣x2)2+m2=21得到(2m+1)2﹣4(m2﹣2)+m2=21,接着解关于m的方程,然后利用(1)中m的范围确定m的值.【解答】解:(1)根据题意得△=(2m+1)2﹣4(m2﹣2)≥0,解得m≥﹣,所以m的最小整数值为﹣2;(2)根据题意得x1+x2=﹣(2m+1),x1x2=m2﹣2,∵(x1﹣x2)2+m2=21,∴(x1+x2)2﹣4x1x2+m2=21,∴(2m+1)2﹣4(m2﹣2)+m2=21,整理得m2+4m﹣12=0,解得m1=2,m2=﹣6,∵m≥﹣,∴m的值为2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.11.【分析】(1)由于关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,可知△>0,据此进行计算即可;(2)利用根与系数的关系得出x1+x2=2k+1,进而得出关于k的方程求出即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不相等的实数根,∴△>0,∴(2k+1)2﹣4(k2+1)>0,整理得,4k﹣3>0,解得:k>,故实数k的取值范围为k>;(2)∵方程的两个根分别为x1,x2,∴x1+x2=2k+1=3,解得:k=1,∴原方程为x2﹣3x+2=0,∴x1=1,x2=2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.12.【分析】(1)根据一元二次方程x2﹣2x+2k﹣1=0有两个不相等的实数根得到△=(﹣2)2﹣4(2k﹣1)≥0,求出k的取值范围即可;(2)根据根与系数的关系得出方程解答即可.【解答】(1)解:∵原方程有实数根,∴b2﹣4ac≥0∴(﹣2)2﹣4(2k﹣1)≥0∴k≤1(2)∵x1,x2是方程的两根,根据一元二次方程根与系数的关系,得:x1+x2 =2,x1 •x2 =2k﹣1又∵+=x1•x2,∴∴(x1+x2)2﹣2x1 x2 =(x1 •x2)2∴22﹣2(2k﹣1)=(2k﹣1)2解之,得:.经检验,都符合原分式方程的根∵k≤1∴.【点评】本题主要考查了根的判别式以及根与系数关系的知识,解答本题的关键是根据根的判别式的意义求出k 的取值范围,此题难度不大.13.【分析】(1)设2018年甲类芯片的产量为x万块,由题意列出方程,解方程即可;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的熟练为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,得出丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,由题意得出400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),即可得出答案.【解答】解:(1)设2018年甲类芯片的产量为x万块,由题意得:x+2x+(x+2x)+400=2800,解得:x=400;答:2018年甲类芯片的产量为400万块;(2)2018年万块丙类芯片的产量为3x+400=1600万块,设丙类芯片的产量每年增加的数量为y万块,则1600+1600+y+1600+2y=14400,解得:y=3200,∴丙类芯片2020年的产量为1600+2×3200=8000万块,2018年HW公司手机产量为2800÷10%=28000万部,则:400(1+m%)2+2×400(1+m%﹣1)2+8000=28000×(1+10%),设m%=t,400(1+t)2+2×400(1+t﹣1)2+8000=28000×(1+10%),整理得:3t2+2t﹣56=0,解得:t=4,或t=﹣(舍去),∴t=4,∴m%=4,∴m=400;答:丙类芯片2020年的产量为8000万块,m=400.【点评】本题考查了一元二次方程的应用、一元一次方程的应用以及一元二次方程和一元一次方程的解法;弄清数量关系列出方程是解题的关键.14.【分析】(1)观察到方程组两方程相加,左边出现3(x+y),把x+y作为一个整体来计算.(2)根据韦达定理求出用m表示x1+x2和x1x2的值,利用完全平方公式的变形得到x12+x22的式子,进而得到关于m的方程.【解答】解:(1)根据题意把方程组两式相加得:2x+y+x+2y=m+3m+13(x+y)=4m+1∴x+y=又∵x+y=5∴解得:m=(2)∵a=1,b=﹣(m﹣1),c=﹣m∴△=[﹣(m﹣1)]2﹣4•(﹣m)=m2﹣2m+1+4m=m2+2m+1=(m+1)2≥0∴无论m为何值时,方程一定有实数根.∵x1+x2==m﹣1,x1x2==﹣m∴x12+x22=(x1+x2)2﹣2x1x2=(m﹣1)2+2m∵x12+x22=5∴(m﹣1)2+2m=5解得:m=±2当m=2时,==当m=﹣2时,==∴的值为或【点评】本题考查了解二元一次方程,一元二次方程根与系数的关系,完全平方公式,分式的加减.15.【分析】根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的两个实数根”是解题的关键.16.【分析】(1)求出△=[﹣(m+3)]2﹣4(m+2)=(m+1)2,再判断即可;(2)求出方程的根是±1,再代入方程,即可求出答案.)【解答】(1)证明:x2﹣(m+3)x+m+2=0,△=[﹣(m+3)]2﹣4(m+2)=(m+1)2≥0,所以无论实数m取得何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于1,∴此根是±1,当根是1时,代入得:1﹣(m+3)+m+2=0,即0=0,此时m为任何数;当根是﹣1时,1+(m+3)+m+2=0,解得:m=﹣3.【点评】本题考查了解一元二次方程和根的判别式,能熟记根的判别式的内容是解此题的关键.17.【分析】(1)利用配方法解方程;(2)分别解两个一次不等式得到x>﹣2和x≤2,然后根据确定不等式组的解集.【解答】解:(1)x2﹣2x=1,x2﹣2x+1=2,(x﹣1)2=2,x﹣1=,所以x1=1+,x2=1﹣;(2)解①得x>﹣2,解②得x≤2,所以不等式组的解集为﹣2<x≤2.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了解一元一次不等式组.18.【分析】(1)根据方程的系数结合根的判别式,即可得出△=1>0,由此即可证出方程总有两个不相等的实数根;(2)先计算出△并且设△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4=n2(n为整数),整系数方程有有理根的条件是△为完全平方数.解不定方程,讨论m的存在性.变形为(2m﹣1)2﹣n2=4,(2m﹣1﹣n)(2m﹣1+n)=﹣4,利用m,n都为整数进行讨论即可.【解答】(1)证明:①当2m﹣1=0即m=时,此时方程是一元一次方程,其根为x=,符合题意;②当2m﹣1≠0即m≠时,△=[﹣(2m+1)]2﹣4(2m﹣1)=(2m﹣1)2+4>0,∴当m≠时,方程总有两个不相等的实数根;综上所述,不论m为何值,方程必有实数根.(2)当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.理由如下:①当m为整数时,假设关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0有有理根,则要△=b2﹣4ac为完全平方数,而△=(2m+1)2﹣4(2m﹣1)=4m2﹣4m+5=(2m﹣1)2+4,设△=n2(n为整数),即(2m﹣1)2+4=n2(n为整数),所以有(2m﹣1﹣n)(2m﹣1+n)=﹣4,∵2m﹣1与n的奇偶性相同,并且m、n都是整数,所以或,解得m=,②2m﹣1=0时,m=(不合题意舍去).所以当m为整数时,关于x的方程(2m﹣1)x2﹣(2m+1)x+1=0没有有理根.【点评】考查了一元二次方程ax2+bx+c=0(a≠0)根的判别式为△=b2﹣4ac.△=b2﹣4ac为完全平方数是方程的根为有理数的充要条件.同时考查了不定方程特殊解的求法.19.【分析】(1)设养鸡场的宽为x米,则长为(33﹣2x)米,利用厂房的面积公式结合养鸡场的面积为130m2,即可得出关于x的一元二次方程,解之即可得出结论;(2)由(1)的结论结合10≤a<18,可得出长方形的长为13米宽为10米.【解答】解:(1)设养鸡场的宽为x米,则长为(33﹣2x)米,依题意,得:(33﹣2x)x=130,解得:x1=6.5,x2=10,∴33﹣2x=20或13.答:养鸡场的长为20米宽为6.5米或长为13米宽为10米.(2)∵10≤a<18,∴33﹣2x=13,∴养鸡场的长为13米宽为10米.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20.【分析】(1)设平均每年增加的百分率为x,根据该公式2019年及2021年赞助矿泉水的数量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据2022年该公司赞助的矿泉水数量=2021年该公司赞助的矿泉水数量×(1+增长率),即可求出结论.【解答】解:(1)设平均每年增加的百分率为x,依题意,得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:平均每年增加的百分率为20%.(2)7200×(1+20%)=8640(瓶).答:预测2022年该公司赞助矿泉水8640瓶.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.。

九年级数学上册 第二十一章 21.3 实际问题与一元二次方程课时练 (新版)新人教版

九年级数学上册 第二十一章 21.3 实际问题与一元二次方程课时练 (新版)新人教版

21.3 实际问题与一元二次方程学校:姓名:班考号:.那么每轮传染中平均一个人传染的人数为()A. 10B. 9C.8 D. 72. 直角三角形两直角边长之和为7,其面积为6,则斜边长为()A. 5B.C.7 D.3. 如图所示,在长为100米,宽为80米的矩形场地上修建两条宽相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7 644平方米,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A. 100×80-100x-80x=7 644B. (100-x)(80-x)+x2=7 644C. (100-x)(80-x)=7 644D.100x+80x=7 6444. (易错题)某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A. 50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C. 50(1+2x)=182D.50+50(1+x)+50(1+2x)=1825. 如图所示是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A. 32B. 126C.135 D. 1442 26. (易错题)若两个连续整数的积是20,那么这两个整数的和是 ( )A. 9B. -9C. 9或-9 D. 12或-127. 从一块正方形的木板上锯掉2 m 宽的长方形木条,剩下的面积是48 m 2,则原来这块木板的面积是 ( )A. 100 m 2B. 64 m 2C. 121 m 2D. 144 m 28. 为了迎接校庆,初三年级组织乒乓球比赛,赛制为单循环形式(每两个选手之间都必须赛一场),全年级共进行了28场比赛,这次参赛的选手有 ( )A. 7位B. 8位C. 9位 D. 10位二、填空题a ,b 的矩形纸片的四个角都剪去一个边长为x 的正方形.当a =6,b =4,且剪去部分的面积等于剩余部分的面积时,正方形的边长为 .10. 如图所示,邻边不等的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是8 m.若矩形的面积为6m 2,则AB 的长度是 (可利用的围墙长度超过8m).11. 据调查,某市2011年的房价为4 000元/平方米,预计2013年将达到4 840元/平方米,求这两年的年平均增长率,设年平均增长率为x ,根据题意,所列方程为 .12. 两个数的和是16,积是48,则这两个数分别为 .13. 某种植物的主干长出若干数目的枝干,每个枝干又长出相同数目的小分支,若小分支、枝干和主干的总数是73,则每个枝干长出个小分支.14. 如图,一块四周镶有宽度相等的花边的长方形十字绣,它的长为120 cm,宽为80 cm,如果十字绣中央长方形图案的面积为6 000 cm 2,则花边宽为 cm .15. 一块矩形菜地的面积是120 m 2,如果它的长减少2 m,那么菜地就变成正方形,则原菜地的长是 m .3三、解答题,进价为每个6元,第一周以每个10元的价格售出200个;第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x 元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?17. 某单位在“三八”妇女节期间组织女职工到温泉“星星竹海”观光旅游.下面是领队与旅行社导游就收费标准的一段对话:导游:如果人数不超过25 人,人均旅游费用为100 元.领队:超过25 人怎样优惠呢?导游:如果超过25 人,每增加1 人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团游览“星星竹海”结束后,共支付给旅行社2700 元,请你根据上述信息,求该单位这次到“星星竹海”观光旅游的人数.18. (6分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12 m 的住房墙,另外三边用25 m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1 m 宽的门.所围矩形猪舍的长、宽分别为多少时,猪舍面积为80 m 2?参考答案1. 【答案】D 【解析】设每轮传染中平均一个人传染的人数为x 人.第一轮流感病人传染了x 人,加上自己共有1+x 个感染源,每一个感染源都能新增x 个感染源,则每一个感染源经过第二轮传染后扩散为1+x 个感染源,所以二轮传染后共有个感染源,根据题意,得:再注意到x 不能为负数,轻松可得1+x =8,x =7.故选D.2. 【答案】A 【解析】解法一:勾股数3,4,5构成的三角形,两直角边恰为7,面积恰为6,所以斜边长为5.解法二:设两直角边为x ,y 由题意知x +y =7,xy =12,所以斜边长为解法三:接解法二,x ,y 适合方程,方程的两根为3,4,由勾股定理可得斜边长为5.3. 【答案】C 【解析】被道路隔开的四块场地可以组成一个大的矩形,其长为100-x ,宽为80-x .据此列出算式C.4. 【答案】B 【解析】第二季度指得是4,5,6三个月,注意不要与四季混淆,冬季12,1,2三个月,春季3,4,5三个月.本题中182万个是3个月的总量.根据题意得50+50(1+x )+50(1+x )2=182.故选B.本题容易找错等量关系误选A.5. 【答案】D 【解析】解法一:设最小数为x ,则最大数为(x +16).根据题意,可列出一元二次方程:x (x +16)=192,解之得:x 1=-24(不合题意,舍去),x 2=8.所以这9个数分别是:8,9,10,15,16,17,22,23,24.中间数:16,因此这9个数的和为:16×9=144.故选D.解法二:圈出的矩形9个数中,我们假设中心位置的数为a ,则最小数为a -8,最大数为a +8.由题意知(a -8)(a +8)=192.解得a =16(舍去负值).中心对称位置两数和为中心数的2倍,总共有4组,再加上中心数,共有9a =16*9=144.6. 【答案】C 【解析】设较小整数为x ,根据题意,得:x (x +1)=20,x 1=4,x 2=-5.整数中还有负整数,所以两根皆可.当x =4时,另一个整数为5,和为9;当x =-5时,另一个整数为-4,和为-9.故选C.本题易漏掉负根的情况.4 4 7. 【答案】B 【解析】设原来正方形木板的边长为x m.由“正方形的面积-锯掉的长方形面积=48”得x 2-2 x =48,解得x 1=8,x 2=-6(不合题意,舍去).则原来这块木板的面积是8×8=64(m 2).故选B.8. 【答案】B 【解析】假设这次参赛的选手有x 位,由“全年级共进行了28场比赛”得x (x -1)=28,解得x 1=8,x 2=-7(舍去).故选B9. 【答案】10. 【答案】1 m 或3 m11. 【答案】4 000(1+x )2=4 84012. 【答案】12和413. 【答案】814. 【答案】1015. 【答案】1216. 【答案】由题意得出:200×(10-6)+(10-x -6)(200+50x )+(4-6)[600-200-(200+50x )]=1250,即800+(4-x )(200+50x )-2(200-50x )=1250,整理得:x 2-2x +1=0,解得:x 1=x 2=1,代回有第一周销售200个,第二周销售250个,售价为10-1=9元,第三周销售150个,符合实际.答:第二周每个旅游纪念品的销售价格为9元.17. 【答案】因为25×100=2 500(元),2 500<2 700,所以旅游的人数超过25人,设该单位这次到“星星竹海”观光旅游的共有x 人,则平均每人的费用为[100-2(x -25)]元.根据题意,得x [100-2(x -25)]=2 700.解得x 1=30,x 2=45.又因为人均费用不低于70元,所以100-2(x -25)≥70.解不等式得x ≤40,所以x =45不合题意,舍去,x 取30.即该单位这次到“星星竹海”观光旅游的共有30人.18. 【答案】设矩形猪舍垂直于住房墙的一边长为x m,则矩形猪舍的另一边长为(26-2x ) m . 1分依题意,得x (26-2x )=80. 3分化简,得x 2-13x+40=0.解这个方程,得x 1=5,x 2=8. 5分当x=5时,26-2x=16>12(舍去);当x=8时,26-2x=10<12.答:所建矩形猪舍的长为10 m,宽为8 m . 6分。

2020九年级数学上册 第21章 一元二次方程 21.1 一元二次方程课时专练 (新版)新人教版

2020九年级数学上册 第21章 一元二次方程 21.1 一元二次方程课时专练 (新版)新人教版

21.1 一元二次方程一.填空题1.若关于x的方程(a+3)x|a|﹣1﹣3x+2=0是一元二次方程,则a的值为.2.已知方程mx﹣(m+1)x+m2=0是关于x的一元二次方程,则m的值为.3.将一元二次方程3x2﹣2x=5x+6化成一般形式为.4.一元二次方程2x2﹣x=1的一次项系数是.5.附加题:已知m,n都是方程x2+2007x﹣2009=0的根,则(m2+2007m﹣2008)(n2+2007n﹣2010)的值为.6.若m为实数,方程x2﹣3x+m=0的一个根的相反数是方程x2+3x﹣3=0的一个根,则x2﹣3x+m=0的根是.7.若a是方程x2﹣3x+1=0的根,计算:a2﹣3a+= .二.选择题8.下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1③x2++5=0;④x2﹣2+5x3﹣6=0;⑤3x2=3(x ﹣2)2;⑥12x﹣10=0是一元二次方程的个数是()A.1 B.2 C.3 D.49.若关于x的方程(m﹣3)x2+mx﹣1=0是一元二次方程.则m的取值范围是()A.m≥3 B.m≠3 C.m=3 D.m≠010.下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;(5)=x ﹣1,一元二次方程的个数是()A.1 B.2 C.3 D.411.下列方程是关于x的一元二次方程的是()A.2x+1=0 B.y2﹣2x+1=0 C.D.3(x+1)2=2(x+1)12.将一元二次方程﹣3x2﹣2=﹣4x化成一般形式ax2+bx+c=0(a>0)后,一次项和常数项分别是()A.﹣4,2 B.﹣4x,2 C.4x,﹣2 D.3x2,213.若一元二次方程(2m+6)x2+m2﹣9=0的常数项是0,则m等于()A.﹣3 B.3 C.3或﹣3 D.914.方程x(x﹣2)=6化为ax2+bx+c=0形式后,a、b、c的值分别为()A.1、﹣2、12 B.1、2、﹣6 C.1、﹣2、﹣6 D.﹣1、2、﹣615.一元二次方程(4x+1)(2x﹣3)=5x2+1化成一般形式ax2+bx+c=0(a≠0)后a,b,c的值分别为()A.3,﹣10,﹣4 B.3,﹣12,﹣2 C.8,﹣10,﹣2 D.8,﹣12,416.若方程x2﹣3x﹣1=0的两根也是方程x4+ax2+bx+c=0的根,则a+b﹣2c的值为()A.﹣13 B.﹣9 C.6 D.017.已知x=1是二次方程(m2﹣1)x2﹣mx+m2=0的一个根,那么m的值是()A.或﹣1 B.﹣或1 C.或1 D.﹣18.已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6 B.8 C.10 D.8或1019.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1 B.2 C.﹣1 D.﹣2三.解答题(共3小题)20.若关于x的二次方程(m+1)x2+5x+m2﹣3m=4的常数项为0,求m的值.21.当m是何值时,关于x的方程(m2+2)x2+(m﹣1)x﹣4=3x2(1)是一元二次方程;(2)是一元一次方程;(3)若x=﹣2是它的一个根,求m的值.22.已知关于x的一元二次方程(a+1)x2﹣x+a2﹣2a﹣2=0有一根是1,求a的值.参考答案一.填空题(共7小题)1.3.2.﹣1.3.3x2﹣7x﹣6=04.﹣1.5.﹣1.6..7.0.二.选择题(共12小题)8.A.9.B.10.B.11.D.12.B.13.B.14.C.15.A.16.A.17.D.18.C.19.D.三.解答题(共3小题)20.解:∵关于x的二次方程(m+1)x2+5x+m2﹣3m﹣4=0的常数项为0,∴m2﹣3m﹣4=0,即(m﹣4)(m+1)=0,解得:m=4或m=﹣1,当m=﹣1时,方程为5x=0,不合题意;则m的值为4.21.解:原方程可化为(m2﹣1)x2+(m﹣1)x﹣4=0,(1)当m2﹣1≠0,即m≠±1时,是一元二次方程;(2)当m2﹣1=0,且m﹣1≠0,即m=﹣1时,是一元一次方程;(3)x=﹣2时,原方程化为:2m2﹣m﹣3=0,解得,m1=,m2=﹣1.22.解:将x=1代入,得:(a+1)﹣1+a2﹣2a﹣2=0,解得:a1=﹣1,a2=2.∵a+1≠0,∴a≠﹣1,∴a=2.。

2020九年级数学上册 第21章21.2 解一元二次方程(公式法)课时专练 (新版)新人教版

2020九年级数学上册 第21章21.2 解一元二次方程(公式法)课时专练 (新版)新人教版

解一元二次方程(公式法)一.填空题(共5小题)1.方程x2﹣6x﹣4=0的两根为x1= ,x2= ,x1+x2= ,x1•x2= .2.若a2+ab﹣b2=0且ab≠0,则的值为.3.(1)解下列方程:①x2﹣2x﹣2=0;②2x2+3x﹣1=0;③2x2﹣4x+1=0;④x2+6x+3=0;(2)上面的四个方程中,有三个方程的一次项系数有共同特点,请你用代数式表示这个特点,并推导出具有这个特点的一元二次方程的求根公式.4.方程2x2﹣6x﹣1=0的负数根为.5.方程x2+x﹣1=0的根是.二.选择题(共10小题)6.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣4x2+3=5x,下列叙述正确的是()A.a=﹣4,b=5,c=3 B.a=﹣4,b=﹣5,c=3C.a=4,b=5,c=3 D.a=4,b=﹣5,c=﹣37.用公式法解方程4y2=12y+3,得到()A.y=B.y=C.y=D.y=8.关于x的一元二次方程的两根应为()A.B.,C.D.9.方程x2﹣3|x|﹣2=0的最小一个根的负倒数是()A.B.C.D.10.若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<bC.a<m<b<n D.m<a<n<b11.一元二次方程x2+2x﹣6=0的根是()A.x1=x2= B.x1=0,x2=﹣2C.x1=,x2=﹣3 D.x1=﹣,x2=312.方程mx2﹣4x+1=0(m<0)的根是()A. B.C. D.13.用公式法解一元二次方程3x2﹣2x+3=0时,首先要确定a、b、c的值,下列叙述正确的是()A.a=3,b=2,c=3 B.a=﹣3,b=2,c=3C.a=3,b=2,c=﹣3 D.a=3,b=﹣2,c=314.已知b2﹣4ac是一元二次方程ax2+bx+c=0(a≠0)的一个实数根,则ab的取值范围为()A.ab≥B.ab≤C.ab≥D.ab≤15.若x2+bx+c=0的两个实数根中较小的一个根是m(m≠0),则=()A.m B.﹣m C.2m D.﹣2m三.解答题(共3小题)16.用公式法解方程:x2﹣5x+3=0.21.17.解方程:3x2=6x﹣2.18.(探究题)如图所示用火柴棒摆出的一系列三角形图案,设每边上的火柴棒为x,则围成图案中火柴棒根数为×3;(1)当围成的图案每边为6根火柴棒时,它是第个图案.(2)当第n个图案中火柴棒为165根时,得出方程×3=165,整理得x2+x﹣110=0.请根据下列列表探求方程的解x= .x ﹣12 ﹣11 ﹣10 10 11 12x2+x﹣110参考答案一.填空题(共5小题)1.x1=3+,x2=3﹣ x1+x2=6,x1•x2=﹣4.2..3.(1)①解方程x2﹣2x﹣2=0①,∵a=1,b=﹣2,c=﹣2,∴x===1,∴x1=1+,x2=1.②解方程2x2+3x﹣l=0,∵a=2,b=3,c=﹣1,∴x==,∴x1=,x2=.(2分)③解方程2x2﹣4x+1=0,∵a=2,b=﹣4,c=1,∴x===,x1=,x2=.(3分)④解方程x2+6x+3=0,∵a=1,b=6,c=3,∴x===﹣3,∴x1=,x2=.(4分)(2)其中方程①③④的一次项系数为偶数2n(n是整数).(8分)一元二次方程ax2+bx+c=0,其中b2﹣4ac≥0,b=2n,n为整数.∵b2﹣4ac≥0,即(2n)2﹣4ac≥0,∴n2﹣ac≥0,∴x====(11分)∴一元二次方程ax2+2nx+c=0(n2﹣ac≥0)的求根公式为.(12分)4.x=.5.x=﹣.二.选择题(共10小题)6.B.7.C.8.B.9.A.10.A.11.C.12.B.13.D.14.B.15.D.三.解答题(共3小题)16.解:∵x2﹣5x+3=0.21,∴x2﹣5x+2.79=0,∴a=1,b=﹣5,c=2.79,△=b2﹣4ac=(﹣5)2﹣4×1×2.79=13.84>0,∴x==,∴,.17.解:3x2=6x﹣2,3x2﹣6x+2=0,b2﹣4ac=(﹣6)2﹣4×3×2=12,x=,x1=,x2=.18.解:(1)根据图形是第6个图案.(2)根据题意解方程式×3=165,解之得x1=﹣11,x2=10.又因为火柴棒数量不能为负,故x=10.故本题答案为:(1)第6个图案;(2)x=10.。

九年级数学上册第二十一章21.2解一元二次方程课时练(

九年级数学上册第二十一章21.2解一元二次方程课时练(

21.2 解一元二次方程学校:姓名:班考号:A. x=-4B. x=5C. x1=-4,x2=5 D. 以上结论都不对2. 方程ax(x-b)+(b-x)=0的根是()A. x1=b,x2=a B. x1=b,x2= C.x 1=a,x2= D. x1=a2,x2=b23. 如果一元二次方程ax2+bx+c=0(a≠0)能用公式法求解,那么必须满足的条件是()A. b2-4ac≥0B. b2-4ac≤0C. b2-4ac>0D. b2-4ac<04. 若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是()A. k>-1B. k<1且k≠0C. k≥-1且k≠0D. k>-1且k≠05. 用配方法解关于x的方程x2+bx+c=0时,此方程可变形为()A. B. C.D.6. 对形如(x+m)2=n的方程,下列说法正确的为()A. 可用直接开平方法求得根x=±B. 当n≥0时,x=±-mC. 当n≥0时,x=±+mD. 当n≥0时,x=±7. 若在实数范围内定义一种运算“*”,使a*b=(a+1)2-ab,则方程(x+2)*5=0的解为()A. -2B. -2,3 C. , D. ,2 8. 已知命题“关于x 的一元二次方程x 2+bx +1=0,当b <0时必有实数解”,能说明这个命题是假命题的一个反例可以是( )A. b =-1B. b =2C. b =-2D. b =09. 解方程(x -1)2-5(x -1)+4=0时,我们可以将x -1看成一个整体,设x -1=y ,则原方程可化为y 2-5y +4=0,解得y 1=1,y 2=4.当y =1时,即x -1=1,解得x =2;当y =4时,即x -1=4,解得x =5,所以原方程的解为x 1=2,x 2=5.则利用这种方法求得方程(2x +5)2-4(2x +5)+3=0的解为 ( ) A. x 1=1,x 2=3 B. x 1=-2,x 2=3 C.x 1=-3,x 2=-1 D. x 1=-1,x 2=-210. 关于x 的一元二次方程x 2+2(m -1)x +m 2=0的两个实数根分别为x 1,x 2,且x 1+x 2>0,x 1x 2>0,则m 的取值范围是( )A. m ≤B. m ≤且m ≠0C. m <1D. m <1且m ≠0二、填空题11. 若|b -1|+=0,且一元二次方程kx 2+ax +b =0有两个实数根,则k 的取值范围是 . 12. 设a ,b 是一个直角三角形两直角边的长,且(a 2+b 2-3)(a 2+b 2+1)=0,则这个直角三角形的斜边长为 .13. 若关于x 的一元二次方程ax 2+bx +c =0中二次项系数与常数项之和等于一次项系数,那么方程必有一根为 .14. (规律探究题)下表是按一定规律排列的一列方程,仔细观察,大胆猜想,科学推断,完成练习.(1)这列方程中第10个方程的两个根分别是x1=,x2=.(2)这列方程中第n个方程为.15. 若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一.个.符合题意的一元二次方程________.16. 已知关于x的方程x2-(a+b)x+ab-1=0,x1,x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③<a2+b2.则正确结论的序号是________.(填上你认为正确结论的所有序号)17. 已知m,n是方程x2+2x-5=0的两个实数根,则m2-mn+3m+n=___________.三、解答题(1)(3x+8)2-(2x-3)2=0;(2)2x2-6x+3=0.19. 已知关于x的方程x2-(k+2)x+2k=0.(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求△ABC的周长.20. 已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2.4 (1)求实数k 的取值范围.(2)是否存在实数k 使得x 1·x 2-≥0成立? 若存在,请求出k 的值;若不存在,请说明理由.参考答案1. 【答案】D 【解析】解法一:原方程化为,利用求根公式有,明显A,B,C 中没有方程的根,选D.解法二:无论是x =-4还是x =5,代入到方程里,等式左边都是0,而右边为1,所以这两个都不是方程的根.2. 【答案】B 【解析】等式左边可以提出公因式(x -b ),所以有(x -b )(ax -1)=0.所以x 1=b ,x 2=.故选B.3. 【答案】A 【解析】考查方程有实数根则应有判别式∆=b 2-4ac ≥0.4. 【答案】D 【解析】由题意知,方程的判别式∆=b 2-4ac =4+4k >0,且k ≠0,解得:k >-1且k ≠0.故选D.注意:二次项系数不等于0.5. 【答案】A 【解析】移项,得x 2+bx =-c .配方,得x 2+bx +()2=-c +()2=,即(x +)2=.故选A.6. 【答案】B 【解析】解形如(x +m )2=n 的方程时,只有当n ≥0时,方程有实数解.否则,方程没有实数解.7. 【答案】D 【解析】∵a*b =(a +1)2-ab , ∴(x +2)*5=(x +2+1)2-5(x +2)= x 2+x -1, ∵(x +2)*5=0, ∴x 2+x -1=0,解得x 1=,x 2=.故选D.8. 【答案】A 【解析】一元二次方程x 2+bx +1=0中Δ=b 2-4,A.当b =-1时,Δ=-3<0,此时方程无实数解,可证明原命题是假命题;B.当b =2时,与b <0不符,不能说明原命题的真假;C.当b =-2时,Δ=0,此时方程有两个相等的实数解,不能说明原命题是假命题;D.当b =0时,与b <0不符,不能说明原命题的真假,故选A.9. 【答案】D 【解析】设y =2x +5,则原方程可化为y 2-4y +3=0, 解得y 1=3,y 2=1. 当y =3时,即2x +5=3,解得x =-1; 当y =1时,即2x +5=1,解得x =-2.所以原方程的解为x 1=-1,x 2=-2. 故选D.10. 【答案】B 【解析】根据一元二次方程的根与系数的关系可知:方程的两根x 1+x 2=-2(m -1)>0,可得m <1.x 1x 2=m 2>0,可得m ≠0.又因为Δ=4(m -1)2-4m 2≥0,即m ≤.所以m ≤且m ≠0.故选B. 11. 【答案】k ≤4且k ≠0 12. 【答案】 13. 【答案】-114. 【答案】(1)-10;30 (2)x 2-2nx -3n 2=015. 【答案】x 2-5x +6=0(答案不唯一) 16. 【答案】①② 17. 【答案】818.(1) 【答案】(3x +8+2x -3)(3x +8-2x +3)=5(x +1)(x +11)=0,∴x +1=0或x +11=0,∴x 1=-1,x 2=-11.(2) 【答案】∵a =2,b =-6,c =3,∴b 2-4ac =36-24=12.∴x =,∴x 1=,x 2=.19.(1) 【答案】证明:证法一:因为方程的判别式为∆=[-(k +2)]2-4×1×2k =(k -2)2≥0, ∴无论k 取任何实数值,方程总有实数根.证法二:方程可以因式分解为,方程的两根为2,k ,所以命题得证.(2) 【答案】解法一:①当b =c 时,∆=(k -2)2=0,∴k =2,∴b +c =k +2=2+2=4,又b =c ,∴b =c =2,∵2,2,1符合三角形的三边关系,∴△ABC 的周长=4+1=5;②当b ,c 中有一个与a相等时,不妨设b =a =1,∵1是方程x 2-(k +2)x +2k =0的一个根,∴12-(k +2)×1+2k =0,解得k =1,∴b +c =k +2=1+2=3,∴c =3-b =3-1=2,∵2,1,1不符合三角形的三边关系,∴a 不能为△ABC的腰长.综上所述,△ABC 的周长为5.解法二:由题意得另两边长分别为2,k ,因为为一个等腰三角形,所以k =1,或k =2,但k =1时构不成三角形,所以k =2.此时三角形的周长为1+2+2=5.20.(1) 【答案】∵x 2-(a +b )x +ab -1=0有两个实数根,∴Δ= [-(2k +1)]2-4(k 2+2k )≥0,整理得1-4k ≥0,解得k ≤. 故当k ≤时,原方程有两个实数根.(2) 【答案】假设存在实数k 使得x 1·x 2-≥0成立. ∵x 2-(2k +1)x +k 2+2k =0有两个实数根x 1,x 2, ∴x 1+x 2=2k +1,x 1·x 2=k 2+2k. ∵x 1·x 2-≥0,即3x 1·x 2-(x 1+x 2)2≥0, ∴3(k 2+2k )-(2k +1)2≥0,整理得-(k -1)2≥0, ∴只有当k =1时,上式才能成立. 又由第1问知k ≤,故不存在实数k 使得x 1·x 2-≥0成立.。

人教版九年级数学上册第二十一章《一元二次方程》课时练习题(含答案)

人教版九年级数学上册第二十一章《一元二次方程》课时练习题(含答案)

人教版九年级数学上册第二十一章《一元二次方程》课时练习题(含答案)一、单选题1.一元二次方程2410x x --=中,二次项系数和一次项系数分别是( ) A .1,4 B .1,4- C .1,1- D .2x ,4x 2.将一元二次方程2213x x -=化成一般形式后,二次项系数和一次项系数分别是( ) A .2,﹣1 B .2,0 C .2,3 D .2,﹣3 3.已知1x =是关于x 的方程()2210m x x m -++=的根,则m 的值是( ) A .1- B .0 C .1或0 D .1-或0 4.下列方程一定是关于x 的一元二次方程的是( )A .ax 2+bx+c=0B .m 2x+5m+6=0C .2x 3-3x -1=0D .(k 2+3)x 2+2x -1=0 5.下列方程中,属于一元二次方程的是( )A .21x y -=B 0=C .2110x -= D .21023xx --=二、填空题6.已知x =1是一元二次方程x 2﹣mx+1=0的一个解,则m 的值是_____. 7.将方程()()3152x x x -=+化为一元二次方程的一般式______.8.若一元二次方程220210ax bx --=有一根为1x =-,则a b +=______.三、解答题9.把下列方程中的各项系数化为整数,二次项系数化为正数,并求出各项的系数: (1)23420x x --+=;(2)21530234x x -+-=.10.已知x 是一元二次方程2210x x +-=的实数根,求代数式22311-⎛⎫÷-- ⎪++⎝⎭x x x x x 的值;11.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.(1)方程220x x --=______(填“是”或“不是”)倍根方程.(2)若()()20x mx n --=是倍根方程,求代数式2245m mn n -+值.(3)若点()p q ,在反比例函数2y x =的图像上,则关于x 的方程230px x q ++=是倍根方程吗?请说明理由.参考答案1.B2.D3.D4.D5.D6.27.238100x x --=8.20219.(1)23420x x +-=,各项的系数分别是:3a =,4b =,2c =-;(2)262090x x -+=,各项的系数分别是:6a =,20b =-,9c =. 10.111.(1)不是;(2)0;(3)230px x q ++=是倍根方程。

九年级数学上册 第二十一章 一元二次方程21.3《实际问题与一元二次方程(3)》课时练习(新版)新人

九年级数学上册 第二十一章 一元二次方程21.3《实际问题与一元二次方程(3)》课时练习(新版)新人

《实际问题与一元二次方程(3)》课时练习一.积累·整合1.某一商人进货价便宜8%,而售价不变,那么他的利润(按进货价而定)可由目前x增加到(x+10%),则x是().A.12% B.15% C.30% D.50%2.某次商品交易会上,所有参加会议的商家之间都签订了一份合同,共签订合同36份,则共有商家参加了交易会.3.一个产品原价为a元,受市场经济影响,先提价20%后又降价15%,现价比原价多_______%.4.长方形的长比宽多4cm,面积为60cm2,则它的周长为________.二.拓展·应用5.一个容器盛满纯药液63L,第一次倒出一部分纯药液后用水加满,•第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L,设每次倒出液体xL,•则列出的方程是________.6.从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().A.8cm B.64cm C.8cm2 D.64cm27.如图所示的一防水坝的横截面(梯形),坝顶宽3m,背水坡度为1:2,迎水坡度为1:1,若坝长30m,完成大坝所用去的土方为4500m2,问水坝的高应是多少?(说明:•背水坡度CFBF=12,迎水坡度11DEAE)(精确到0.1m)8.在一块长12m,宽8m的长方形平地中央,划出地方砌一个面积为8m2•的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?9.将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若银行存款的利率不变,到期后得本金和利息共1155元,求这种存款方式的年利率.三、探索·创新10.用同样规格黑白两色的正方形瓷砖铺设矩形地面,观察下列图形,并解答有关问题(1)在第n个图形中,每一个横行共有块瓷砖,每一竖列共有块瓷砖共有块黑瓷砖。

(均用含n的式子表示)(2)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求n的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程中的销售问题一.选择题(共10小题)1.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,为占有市场份额,即在确保盈利的前提下,尽量增加销售量,且经市场调查:每降价1元,每星期可多卖出20件.现在要使利润为6120元,每件商品应降价()元.A.3 B.2.5 C.2 D.52.某专卖店销售一种机床,三月份每台售价为2万元,共销售60台.根据市场调查知:这种机床每台售价每增加0.1万元,就会少售出1台.四月份该专卖店想将销售额提高25%,则这种机床每台的售价应定为()A.3万元B.5万元C.8万元D.3万元或5万元3.将进货单价为40元的商品按50元出售时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,为了赚得8000元的利润,商品售价应为()A.60元B.80元C.60元或80元 D.30元4.某商品的售价为100元,连续两次降价x%后售价降低了36元,则x为()A.8 B.20 C.36 D.185.广州亚运会的某纪念品原价188元,连续两次降价a%,后售价为118元,下列所列方程中正确的是()A.188(1+a%)2=118 B.188(1﹣a%)2=118C.188(1﹣2a%)=118 D.188(1﹣a2%)=1186.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为()A.8% B.18% C.20% D.25%7.甲公司前年缴税a万元,去年和今年缴税的年平均增长率均为b,则今年该公司应缴税()万元.A.a(1+b%)2 B.a(1+b)2 C.a(ab%)2 D.a(1﹣b%)28.某服装原价200元,连续两次涨价,每次都涨a%后的价格为242元,则a是()A.20 B.15 C.10 D.59.某种商品零售价经过两次降价后,每件的价格由原来的100元降为现在的81元,则平均每次降价的百分率为()A.10% B.12% C.15% D.17%10.政府近几年下大力气降低药品价格,希望广大人民群众看得起病吃得起药,某种针剂的单价由100元经过两次降低,降至64元,则平均每次降低的百分率是()A.36% B.64% C.20% D.40%二.解答题(共7小题)11.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产每提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?12.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?13.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.14.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定为多少元?15.水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?16.某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?17.中秋节前夕,某公司的李会计受公司委派去超市购买若干盒美心月饼,超市给出了该种月饼不同购买数量的价格优惠,如图,折线ABCD表示购买这种月饼每盒的价格y(元)与盒数x(盒)之间的函数关系.(1)当购买这种月饼盒数不超过10盒时,一盒月饼的价格为240 元;(2)求出当10<x<25时,y与x之间的函数关系式;(3)当时李会计支付了3600元购买这种月饼,那么李会计买了多少盒这种月饼?18.巴蜀中学在厦天到来之际,很多学生需要更换夏季校服,欲购买校服T恤.男生的T恤每件价格50元,女生的T恤每件价格45元,第一批共购买600件.(1)第一批购买的校服的总费用不超过28000元,求女生T恤最少购买多少件?(2)箅二批购买校服,男女生购买校服的件数比为3:2,价格保持第一批的价格不变;第三批购买男生的价格在第一批购买的价格上每件减少了元,女生的价格比第一批购买的价格上每件增加了元,男生T恤的数量比第二批增加了m%,女生T恤的数量比第二批减少了m%,第二批与第三批购买校服的总费用相同,求m的值.参考答案一.选择题(共15小题)1.A.2.D.3.C.4.B.5.B.6.C.7.B.8.C.9.A.10.C.二.解答题(共7小题)11.解:(1)(14﹣10)÷2+1=3(档次).答:此批次蛋糕属第三档次产品.(2)设烘焙店生产的是第x档次的产品,根据题意得:(2x+8)×(76+4﹣4x)=1080,整理得:x2﹣16x+55=0,解得:x1=5,x2=11(不合题意,舍去).答:该烘焙店生产的是第五档次的产品.12.解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100﹣m)=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.13.解:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)(500﹣10×)=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.14.解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,(60﹣x﹣40)(300+20x)=6080,解得x1=1,x2=4,又顾客得实惠,故取x=4,即定价为56元,答:应将销售单价定为56元.15.解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x(斤);(2)根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x=或x=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(斤).∵每天至少售出260斤,∴x=1.答:张阿姨需将每斤的售价降低1元.16.解:由题意得出:200(10﹣6)+(10﹣x﹣6)(200+50x)+(4﹣6)[(600﹣200)﹣(200+50x)]=1250,即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1250,整理得:x2﹣2x+1=0,解得:x1=x2=1,∴10﹣1=9.答:第二周的销售价格为9元.17.(1)∵当0≤x≤10时,y=240.故答案为:240.(2)当10<x<25时,设y=kx+b(其中k、b为常数且k≠0),将B(10,240)、C(25,150)代入y=kx+b中,得:,解得:,∴当10<x<25时,y=﹣6x+300.(3)∵3600÷240=15(盒),3600÷150=24(盒),∴收费标准在BC段.根据题意得:(﹣6x+300)x=3600,解得:x1=20,x2=30(不合题意,舍去).答:李会计买了20盒这种月饼.18.解:(1)设购买女生T恤x件,则购买男生T恤(600﹣x)件,根据题意得:45x+50(600﹣x)≤28000,解得:x≥400.答:女生T恤最少购买400件.(2)设第二批购进女生T恤2y件,则购进男生T恤3y件,根据题意得:45×2y+50×3y=(45+m)×2y(1﹣m%)+(50﹣m)×3y(1+m%),整理得:m2﹣50m=0,解得:m1=0(舍去),m2=50.答:m的值为50.。

相关文档
最新文档