2017-2018学年辽宁省大连市旅顺第二高级中学、大连市第三中学高三数学上第二次联考(理)试题(附答案)
辽宁省2017-2018学年度中小学三好学生、优秀干部名单
辽宁省大连市2017-2018学年高三二模数学试卷(理科) Word版含解析
辽宁省大连市2017-2018学年高考数学二模试卷(理科)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={2,3},B={x|x2﹣4x+3=0},则A∩B等于( )A.{2} B.{3} C.{1} D.{1,3}2.已知复数z的共轭复数为,若||=4,则z•=( )A.4 B.2 C.16 D.±23.对变量x、y有观测数据(x i,y i)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关4.有4名男医生、3名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A.A•A B.C•CC.C﹣﹣C•C D.A﹣﹣A•A5.在△ABC中,D为BC边的中点,若=(2,0),=(1,4),则=( ) A.(﹣2,﹣4)B.(0,﹣4)C.(2,4)D.(0,4)6.如图为一个观览车示意图,该观览车圆半径为4.8m,圆上最低点与地面距离为0.8m,图中OA与地面垂直,以OA为始边,逆时针转动θ(θ>0)角到OB,设B点与地面距离为h,则h与θ的关系式为( )A.h=5.6+4.8sinθB.h=5.6+4.8cosθC.h=5.6+4.8cos(θ+)D.h=5.6+4.8sin(θ﹣)7.如图所示的流程图,最后输出n的值是( )A.3 B.4 C.5 D.68.设F为抛物线C:y2=2px的焦点,过F且倾斜角为60°的直线交曲线C于A,B两点(B 点在第一象限,A点在第四象限),O为坐标原点,过A作C的准线的垂线,垂足为M,则|OB|与|OM|的比为( )A.B.2 C.3 D.49.用一个平面去截正四面体,使它成为形状,大小都相同的两个几何体,则这样的平面的个数有( )A.6个B.7个C.10个D.无数个10.已知某几何体的三视图如图所示,三视图是边长为1的等腰直角三角形和边长为1的正方形,则该几何体的体积为( )A.B.C.D.11.定义表示不超过X的最大整数.设n∈N*,且M=(n+1)2+n﹣2,则下列不等式恒成立的是( )A.M2≥2n+1B.当n≥2时,2M≥4n﹣2C.M2≥2n+1 D.当n≥3时,2M≥2n+212.对∀x∈(0,),下列四个:①sinx+tanx>2x;②sinx•tanx>x2;③sinx+tanx>x;④sinx•tanx>2x2,则正确的序号是( )A.①、②B.①、③C.③、④D.②、④二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.如图,设抛物线y=﹣x2+1的顶点为A,与x轴正半轴的交点为B,设抛物线与两坐标轴正半轴围成的区域为M,随机往M内投一点,则点P落在△AOB内的概率是__________.14.若(1﹣3x)2015=a0+a1x+a2x2+…+a2015x2015,则++…+的值为__________.15.设点P在曲线y=x2+1(x≥0)上,点Q在曲线y=(x≥1)上,则|PQ|的最小值为__________.16.已知双曲线C:﹣=1(a>0,b>0)左右顶点为A1,A2,左右焦点为F1,F2,P为双曲线C上异于顶点的一动点,直线PA1斜率为k1,直线PA2斜率为k2,且k1k2=1,又△PF1F2内切圆与x轴切于点(1,0),则双曲线方程为__________.三.解答题:(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知两个数列{a n},{b n},其中{a n}是等比数列,且a2=,a5=﹣,b n=(1﹣a n).(Ⅰ)求{b n}的通项公式;(Ⅱ)设{b n}的前n项和为S n,求证:S n≥+.18.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,结果如表:甲厂:分组一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={2,3},B={x|x2﹣4x+3=0},则A∩B等于( )A.{2} B.{3} C.{1} D.{1,3}考点:交集及其运算.专题:集合.分析:求出B中方程的解确定出B,找出A与B的交集即可.解答:解:由B中方程变形得:(x﹣1)(x﹣3)=0,解得:x=1或x=3,即B={1,3},∵A={2,3},∴A∩B={3},故选:B.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.已知复数z的共轭复数为,若||=4,则z•=( )A.4 B.2 C.16 D.±2考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:先设出复数z=a+bi(a、b∈R),再求出共轭复数,由已知||=4,则z•的答案可求.解答:解:设则=a﹣bi,∵||=,∴z•=(a+bi)•(a﹣bi)=a2+b2=42=16.故选:C.点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念及共轭复数的求法,是基础题.3.对变量x、y有观测数据(x i,y i)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关考点:散点图.专题:数形结合法.分析:通过观察散点图可以知道,y随x的增大而减小,各点整体呈下降趋势,x与y负相关,u随v的增大而增大,各点整体呈上升趋势,u与v正相关.解答:解:由题图1可知,y随x的增大而减小,各点整体呈下降趋势,x与y负相关,由题图2可知,u随v的增大而增大,各点整体呈上升趋势,u与v正相关.故选C点评:本题考查散点图,是通过读图来解决问题,考查读图能力,是一个基础题,本题可以粗略的反应两个变量之间的关系,是不是线性相关,是正相关还是负相关.4.有4名男医生、3名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A.A•A B.C•CC.C﹣﹣C•C D.A﹣﹣A•A考点:排列、组合的实际应用.专题:排列组合.分析:根据题意,分2步分析,先从4名男医生中选2人,再从3名女医生中选出1人,由分步计数原理计算可得答案解答:解:根据题意,先从4名男医生中选2人,有C42种选法,再从3名女医生中选出1人,有C31种选法,则不同的选法共有C42C31种;故选:B点评:本题考查分步计数原理的应用,注意区分排列、组合的不同5.在△ABC中,D为BC边的中点,若=(2,0),=(1,4),则=( )A.(﹣2,﹣4)B.(0,﹣4)C.(2,4)D.(0,4)考点:平面向量的坐标运算.专题:平面向量及应用.分析:根据向量的几何意义和向量的坐标运算计算即可解答:解:=﹣=﹣=(1,4)﹣(2,0)=(1,4)﹣(1,0)=(0,4),故选:D.点评:本题考查了向量的坐标运算,属于基础题.6.如图为一个观览车示意图,该观览车圆半径为4.8m,圆上最低点与地面距离为0.8m,图中OA与地面垂直,以OA为始边,逆时针转动θ(θ>0)角到OB,设B点与地面距离为h,则h与θ的关系式为( )A.h=5.6+4.8sinθB.h=5.6+4.8cosθC.h=5.6+4.8cos(θ+)D.h=5.6+4.8sin(θ﹣)考点:在实际问题中建立三角函数模型.专题:三角函数的求值.分析:本题需要过点O作平行与地面的直线l,过点B作l的垂线,根据三角函数来求解.解答:解:过点O作平行于地面的直线l,再过点B作l的垂线,垂足为P,则∠BOP=θ﹣,根据三角函数的定义得:BP=OBsin(θ﹣)=4.8sin(θ﹣)h=4.8+0.8+BP=5.6+4.8sin(θ﹣)故选:D点评:本题考查了在实际问题中建立三角函数模型的能力.7.如图所示的流程图,最后输出n的值是( )A.3 B.4 C.5 D.6考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的n的值,当n=5时,满足条件2n=32>n2=25,退出循环,输出n的值为5.解答:解:模拟执行程序框图,可得n=1,n=2不满足条件2n>n2,n=3不满足条件2n>n2,n=4不满足条件2n>n2,n=5满足条件2n=32>n2=25,退出循环,输出n的值为5.故选:C.点评:本题主要考查了循环结构的程序框图,正确依次写出每次循环得到的n的值是解题的关键,属于基础题.8.设F为抛物线C:y2=2px的焦点,过F且倾斜角为60°的直线交曲线C于A,B两点(B 点在第一象限,A点在第四象限),O为坐标原点,过A作C的准线的垂线,垂足为M,则|OB|与|OM|的比为( )A.B.2 C.3 D.4考点:直线与圆锥曲线的关系.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:求得抛物线的焦点和准线方程,设出直线AB的方程,代入抛物线方程,消去x,求得y1=﹣p,y2=p,运用两点的距离公式,计算即可得到结论.解答:解:抛物线C:y2=2px的焦点F(,0),准线为x=﹣,设直线AB:y=(x﹣),联立抛物线方程,消去x,可得y2﹣2py﹣p2=0,设A(x1,y1),B(x2,y2),则y1=﹣p,y2=p,由M(﹣,y1),则|OM|===p,|OB|====p,即有|OB|=3|OM|.故选C.点评:本题考查抛物线的方程和性质,主要考查抛物线的焦点和准线方程的运用,同时考查直线和抛物线联立,求得交点,考查运算能力,属于中档题.9.用一个平面去截正四面体,使它成为形状,大小都相同的两个几何体,则这样的平面的个数有( )A.6个B.7个C.10个D.无数个考点:棱锥的结构特征.专题:空间位置关系与距离.分析:根据几何体的性质判断正四面体是中心对称几何体,利用中心对称几何体的性质判断即可.解答:解:∵正四面体是中心对称图形,∴平面过正四面体的中心,则分成为形状,大小都相同的两个几何体,可判断这样的平面有无数个,故选;D点评:本题考查了常见的几何体的性质,关键是确定几何体的性质为中心对称,难度不大,属于中档题.10.已知某几何体的三视图如图所示,三视图是边长为1的等腰直角三角形和边长为1的正方形,则该几何体的体积为( )A.B.C.D.考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是棱长为1的正方体中的三棱锥,画出该三棱锥的直观图,求出它的体积.解答:解:根据几何体的三视图,得;该几何体是棱长为1的正方体中一三棱锥P﹣ABC,如图所示;∴该三棱锥的体积为××12×1=.故选:A.点评:本题考查了几何体的三视图的应用问题,解题的关键是根据三视图得出该几何体的结构特征,是基础题目.11.定义表示不超过X的最大整数.设n∈N*,且M=(n+1)2+n﹣2,则下列不等式恒成立的是( )A.M2≥2n+1B.当n≥2时,2M≥4n﹣2C.M2≥2n+1 D.当n≥3时,2M≥2n+2考点:基本不等式.专题:不等式.分析:分析:首先理解所表示的含义,然后把]2(进行化简,得到M=n>0,再分别判断各选项是否正确,问题得以解决.解答:解:∵则n是正整数,∴2=2=(n+1)2等式成立,∴M=(n+1)2+n﹣(n+1)2=n>0,对于选项A:M2=n2≥2n+1当n=1不成立,对于选项B:2M=2n≥4n﹣2,当n=3时,不成立对于选项C:M2=n2≥2n+1当n=1不成立,对于选项D:2M=2n≥2n+2,分别画出y=2x与y=2x+1的图象,如图所示,由图象可知,当n≥3时,2M≥2n+2恒成立,故选:D点评:本题主要考查取整函数的知识点,解答本题的关键之处是把]2进化简成(n+1)2,只要此步有思路了,本题就迎刃而解了.12.对∀x∈(0,),下列四个:①sinx+tanx>2x;②sinx•tanx>x2;③sinx+tanx>x;④sinx•tanx>2x2,则正确的序号是( )A.①、②B.①、③C.③、④D.②、④考点:同角三角函数基本关系的运用.专题:导数的综合应用;三角函数的图像与性质;不等式的解法及应用.分析:①令f(x)=sinx+tanx﹣2x,求得导数,判断单调性,即可判断;②令f(x)=sinxtanx﹣x2,求得导数,再令g(x)=sinx+﹣2x,求得导数,判断单调性,即可判断f(x)的单调性,进而得到结论;③令x=,求出不等式左右两边的数值,即可判断;④令x=,求出不等式左右两边的数值,即可判断.解答:解:①令f(x)=sinx+tanx﹣2x,求导f′(x)=cosx+sec2x﹣2=,∵x∈(0,),∴0<cosx<1,∴f′(x)>0,即函数单调递增,又f(0)=0,∴f(x)>0,∴sinx+tanx﹣2x>0,即sinx+tanx>2x,故①正确;②令f(x)=sinxtanx﹣x2,f′(x)=cosxtanx+sinxsec2x﹣2x=sinx+﹣2x,g(x)=sinx+﹣2x,g′(x)=cosx+﹣2=cosx+﹣2+,由0<x<,则cosx∈(0,1),cosx+>2,则g′(x)>0,g(x)在(0,)递增,即有g(x)>g(0)=0,即f′(x)>0,f(x)在(0,)递增,即有f(x)>f(0)=0,故②正确;③令x=,则sinx+tanx=sin+tan=,x=,由>,故③错误;④令x=,则sinxtanx=,2x2=,<,故④错误.故选A.点评:此题考查了三角不等式的恒成立问题,主要考查三角函数的图象和性质,运用导数判断单调性,进而得到大小和特殊值法判断,是解题的关键.二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.如图,设抛物线y=﹣x2+1的顶点为A,与x轴正半轴的交点为B,设抛物线与两坐标轴正半轴围成的区域为M,随机往M内投一点,则点P落在△AOB内的概率是.考点:几何概型;二次函数的性质.专题:概率与统计.分析:首先分别求出区域M和△AOB的面积,利用几何概型公式解答.解答:解:由已知区域M的面积为=,△AOB的面积为=,由几何概型可得点P落在△AOB内的概率是;故答案为:.点评:本题考查了定积分以及几何概型公式的运用;关键是分别求出两个区域的面积,利用定积分解答.14.若(1﹣3x)2015=a0+a1x+a2x2+…+a2015x2015,则++…+的值为﹣1.考点:二项式系数的性质.专题:二项式定理.分析:分别在已知的二项式中取x=0和,得到a0=1,,则答案可求.解答:由(1﹣3x)2015=a0+a1x+a2x2+…+a2015x2015,取x=0,得a0=1,再取x=,得,∴.故答案为:﹣1.点评:本题考查了二项式系数的性质,关键是在已知的二项式中对x值的选取,是基础题.15.设点P在曲线y=x2+1(x≥0)上,点Q在曲线y=(x≥1)上,则|PQ|的最小值为.考点:两点间距离公式的应用;二次函数的性质.专题:计算题;函数的性质及应用;圆锥曲线的定义、性质与方程.分析:曲线y=的图象在第一象限,要使曲线y=x2+1上的点与曲线y=上的点取得最小值,点P应在曲线y=x2+1的第一象限内的图象上,分析可知y=x2+1(x≥0)与y=互为反函数,它们的图象关于直线y=x对称,所以,求出y=上点Q到直线y=x的最小值,乘以2即可得到|PQ|的最小值.解答:解:由y=x2+1,得:x2=y﹣1,x=.所以,y=x2+1(x≥0)与y=互为反函数.它们的图象关于y=x对称.P在曲线y=x2+1上,点Q在曲线y=上,设P(x,1+x2),Q(x,)要使|PQ|的距离最小,则P应在y=x2+1(x≥0)上,又P,Q的距离为P或Q中一个点到y=x的最短距离的两倍.以Q点为例,Q点到直线y=x的最短距离d===.所以当=,即x=时,d取得最小值,则|PQ|的最小值等于2×=.故答案为:.点评:本题考查了反函数,考查了互为反函数图象之间的关系,考查了数学转化思想,解答此题的关键是把求两曲线上点的最小距离问题,转化为求一支曲线上的动点到定直线的最小距离问题,此题是中档题.16.已知双曲线C:﹣=1(a>0,b>0)左右顶点为A1,A2,左右焦点为F1,F2,P为双曲线C上异于顶点的一动点,直线PA1斜率为k1,直线PA2斜率为k2,且k1k2=1,又△PF1F2内切圆与x轴切于点(1,0),则双曲线方程为x2﹣y2=1.考点:双曲线的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:设点P是双曲线右支上一点,按双曲线的定义,|PF1|﹣|PF2|=2a,设三角形PF1F2的内切圆心在横轴上的投影为A(x,0),B、C分别为内切圆与PF1、PF2的切点.由同一点向圆引得两条切线相等知|PF1|﹣|PF2|=(PB+BF1)﹣(PC+CF2),由此得到△PF1F2的内切圆的圆心横坐标.即为a=1,再由直线的斜率公式和点P满足双曲线方程,化简整理,即可得到b=1,进而得到双曲线方程.解答:解:设点P是双曲线右支上一点,∴按双曲线的定义,|PF1|﹣|PF2|=2a,若设三角形PF1F2的内切圆心在横轴上的投影为A(x,0),该点也是内切圆与横轴的切点.设B、C分别为内切圆与PF1、PF2的切点.考虑到同一点向圆引的两条切线相等:则有:PF1﹣PF2=(PB+BF1)﹣(PC+CF2)=BF1﹣CF2=AF1﹣F2A=(c+x)﹣(c﹣x)=2x=2a,即x=a所以内切圆的圆心横坐标为a.由题意可得a=1,顶点A1(﹣1,0),A2(1,0),设P(m,n),则m2﹣=1,即n2=b2(m2﹣1),k1k2=1,可得•=1,即有=b2=1,即有双曲线的方程为x2﹣y2=1.故答案为:x2﹣y2=1.点评:本题考查双曲线的定义、方程和性质,主要考查定义法的运用,以及直线的斜率公式的运用,切线的性质,考查运算能力,属于中档题.三.解答题:(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知两个数列{a n},{b n},其中{a n}是等比数列,且a2=,a5=﹣,b n=(1﹣a n).(Ⅰ)求{b n}的通项公式;(Ⅱ)设{b n}的前n项和为S n,求证:S n≥+.考点:数列的求和;等比数列的性质.专题:等差数列与等比数列.分析:(Ⅰ)利用a3=可得公比q,进而可得a n的表达式,计算可得结论;(Ⅱ)通过计算可得S n=+,对n分奇、偶数讨论即可.解答:(Ⅰ)解:∵a3==,∴q=﹣,∴a n=a2•q n﹣2=•=,∴b n=;(Ⅱ)证明:S n=b1+b2+…+b n=﹣=﹣•=+,当n为奇数时,S n=+(1+)>+;当n为偶数时,S n=+(1﹣)≥+×=+;综上:S n≥+.点评:本题考查等比数列的性质,通项公式及求和公式,考查分类讨论的思想,注意解题方法的积累,属于中档题.18.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,结果如表:甲厂:分组在△ACD中,∵M为AC中点,DM⊥AC,∴AD=CD.∠ADC=120°,∴,∴.在等腰直角△PAB中,PA=AB=4,PB=,∴,∴,∴MN∥PD.又MN⊄平面PDC,PD⊂平面PDC,∴MN∥平面PDC.(Ⅲ)∵∠BAD=∠BAC+∠CAD=90°,∴AB⊥AD,分别以AB,AD,AP为x轴,y轴,z轴建立如图的空间直角坐标系,∴B(4,0,0),C,,P(0,0,4).由(Ⅱ)可知,为平面PAC的法向量.,.设平面PBC的一个法向量为,则,即,令z=3,得x=3,,则平面PBC的一个法向量为,设二面角A﹣PC﹣B的大小为θ,则.所以二面角A﹣PC﹣B余弦值为.点评:熟练掌握正三角形的性质、线面垂直的判定与性质定理、平行线分线段成比例在三角形中的逆定理应用、通过建立空间直角坐标系并利用两个平面的法向量的夹角得到二面角的平面角是解题的关键.20.如图,已知椭圆C中心在原点,焦点在x轴上,F1,F2分别为左右焦点,椭圆的短轴长为2,过F2的直线与椭圆C交于A,B两点,三角形F1BF2面积的最大值为(a>1).(Ⅰ)求椭圆C的方程(用a表示);(Ⅱ)求三角形F1AB面积的最大值.考点:直线与圆锥曲线的综合问题.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)确定c=,即可求椭圆C的方程(用a表示);(Ⅱ)设直线方程,代入椭圆方程,求出三角形F1AB面积,分类讨论,即可求出最大值.解答:解:(Ⅰ)由题意,椭圆的上顶点为(0,1),下顶点为(0,﹣1),当B与上(或下)顶点重合时,三角形F1BF2面积最大S==,∴c=,∴椭圆C的方程为;(Ⅱ)三角形F1AB面积S==c•AB•sinα(α为F2B与x轴正向所成的角)设F2(c,0),A(x1,y1),B(x2,y2),AB:y=k(x﹣c),代入椭圆方程可得(1+a2k2)x2﹣2a2k2cx+a2k2c2﹣a2=0,∴x1+x2=,x1x2=∴AB=|x1﹣x2|=,∴S=c•AB•sinα=,a时,S≤=a;1<a<时,S≤=.点评:本题考查椭圆的方程和性质,主要考查椭圆的方程的运用,联立直线方程,运用韦达定理,同时考查求最值,属于中档题.21.已知函数f(x)=e x﹣ax2+(a﹣e+1)x﹣1,(e=2.71828…是自然对数的底数,a为常数).(Ⅰ)当a=0时,求f(x)的单调区间;(Ⅱ)若函数g(x)=f(x)﹣x•f′(x)在区间;(Ⅲ)假设函数f(x)在区间(0,1)上有零点;即存在x∈(0,1),使得e x﹣ax2+(a﹣e+1)x﹣1=0;即,记;①若h(x)<1,∴,即:;由于x∈(0,1),有x2﹣x<0;即证e x﹣x2+(2﹣e)x﹣1>0在x∈(0,1)恒成立;令H(x)=e x﹣x2+(2﹣e)x﹣1,x∈(0,1);H′(x)=e x﹣2x+2﹣e,H″=e x﹣2;当x∈(0,ln2),H″(x)<0,当x∈(ln2,1),H″(x)>0;∴当x∈(0,ln2),H′(x)单调递减,x∈(ln2,1),H′(x)单调递增;而H′(0)=1﹣0+2﹣e>0,H′(1)=e﹣2+2﹣e=0,H′(ln2)=e ln2﹣2ln2+2﹣e=4﹣e﹣2ln2<0;故在(0,ln2)上存在唯一的实数x0使得H′(x0)=0;所以,在(0,x0)上H(x)单调递增,在(x0,1)上H(x)单调递减;而H(0)=0,H(1)=0;故H(x)>0在(0,1)成立;即成立;②若h(x)>e﹣2;∴,即;由于x∈(0,1),有x2﹣x<0;即证e x+(e﹣2)x2﹣x﹣1<0在x∈(0,1)恒成立;令H(x)=e x﹣(e﹣2)x2﹣x﹣1,H′(x)=e x﹣2(e﹣2)x﹣1,H″(x)=e x﹣2(e﹣2);当x∈(0,ln2(e﹣2)),H″(x)<0,H′(x)单调递减;当x∈(ln2(e﹣2),1),H″(x)>0,H′(x)单调递增;而H′(0)=0,H′(1)=3﹣e>0;∴在(ln2(e﹣2),1)上存在唯一的实数x0使得H′(x0)=0;所以,在(0,x0)上H(x)单调递减,在(x0,1)上H(x)单调递增;又H(0)=0,H(1)=0;故H(x)<0在(0,1)成立,即成立.由①②可得,a∈(e﹣2,1)时,h(x)存在零点.点评:考查根据函数导数符号求函数单调区间的方法,函数导数符号和函数单调性的关系,函数单调性定义的运用,会正确求导,会求二阶导数并能运用二阶导数,函数零点的概念,以及掌握本题在证明函数存在零点时用到的方法.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.选修4-1:几何证明选讲22.如图,⊙O内切于△ABC的边于D,E,F,AB=AC,连接AD交⊙O于点H,直线HF 交BC的延长线于点G.(1)求证:圆心O在直线AD上.(2)求证:点C是线段GD的中点.考点:圆的切线的性质定理的证明.专题:证明题.分析:(1)根据题意,易得CD=BD,又由△ABC是等腰三角形,即AD是∠CAB的角分线,即可证明;(2)连接DF,由(I)知,DH是⊙O的直径,结合圆切线的性质,易得CG=CF=CD,即可证明.解答:证明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CF=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分线∴圆心O在直线AD上.(II)连接DF,由(I)知,DH是⊙O的直径,∴∠HFD=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O与AC相切于点F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴点C是线段GD的中点.点评:本题利用了切线的性质,四边形的内角和为360度及圆周角定理求解.选修4-4:坐标系与参数方程23.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C2的参数方程为(β为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1和C2的极坐标方程;(2)已知射线l1:θ=α(0<α<),将l1逆时针旋转得到l2:θ=α+,且l1与C1交于O,P两点,l2与C2交于O,Q两点,求|OP|•|OQ|取最大值时点P的极坐标.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)先将参数方程转化为普通方程,然后利用极坐标方程和普通方程之间的关系进行转化即可;(2)设极坐标方程,结合三角函数的最值性质进行求解即可.解答:解:(1)曲线C1的直角坐标方程为(x﹣2)2+y2=4,所以C1极坐标方程为ρ=4cosθ,曲线C2的直角坐标方程为x2+(y﹣1)2=4,所以C2极坐标方程为ρ=4sinθ(2)设点P极点坐标(ρ1,4cosα),即ρ1=4cosα,点Q极坐标为(ρ2,4sin(α+)),即ρ2=4sin(α+),则|OP||OQ|=ρ1ρ1=4cosα•4sin(α+)=16cosα(sinα+cosα)=8sin(2α+)+4∵α∈(0,),∴2α+∈(,),当2α+=,即α=时,|OP|•|OQ|取最大值,此时P极点坐标(2,).点评:本题主要考查参数方程,极坐标方程和普通方程的转化,将参数方程和极坐标方程转化为普通方程是解决参数方程的基本方法.选修4-5:不等式选讲24.已知a和b是任意非零实数.(1)求的最小值.(2)若不等式|2a+b|+|2a﹣b|≥|a|(|2+x|+|2﹣x|)恒成立,求实数x的取值范围.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(1)由条件利用绝对值三角不等式求得的最小值.(2)由条件利用绝对值三角不等式|2+x|+|2﹣x|≤4,再根据绝对值的意义可得|2+x|+|2﹣x|≥4,从而得到|2+x|+|2﹣x|=4,由此利用绝对值的意义求得x的范围.解答:解:(1)∵=||+||=|2+|+|2﹣|≥|(2+)+(2﹣)|=4,所以的最小值为4.(2)∵|2a+b|+|2a﹣b|≥|2a+b+2a﹣b|=4|a|,不等式|a+b|+|a﹣b|≥|a|(|2+x|+|2﹣x|)恒成立,∴4|a||≥|a|(|2+x|+|2﹣x|),即|2+x|+|2﹣x|≤4.而|2+x|+|2﹣x|表示数轴上的x对应点到﹣2、2对应点的距离之和,它的最小值为4,故|2+x|+|2﹣x|=4,∴﹣2≤x≤2,即实数x的取值范围为:.点评:本题主要考查绝对值的意义,绝对值不等式的解法,绝对值三角不等式,函数的恒成立问题,体现了等价转化的数学思想,属于基础题.。
旅顺口区高中2018-2019学年上学期高三数学期末模拟试卷含答案
旅顺口区高中2018-2019学年上学期高三数学期末模拟试卷含答案 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )A .x ﹣y+1=0,2x ﹣y=0B .x ﹣y ﹣1=0,x ﹣2y=0C .x+y+1=0,2x+y=0D .x ﹣y+1=0,x+2y=02. 已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x+2y=5B .4x ﹣2y=5C .x+2y=5D .x ﹣2y=53. 如果集合 ,A B ,同时满足{}{}{}{}1,2,3,41,1,1A B B A B =≠≠ ,A =,就称有序集对(),A B 为“ 好集对”. 这里有序集对(),A B 是指当A B ≠时,(),A B 和(),B A 是不同的集对, 那么“好集对” 一共有( )个A .个B .个C .个D .个4. 已知函数f (x )=,则的值为( )A .B .C .﹣2D .35. 四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .06. 已知双曲线kx 2﹣y 2=1(k >0)的一条渐近线与直线2x+y ﹣3=0垂直,则双曲线的离心率是( )A .B .C .4D .7. 函数f (x )=3x +x 的零点所在的一个区间是( ) A .(﹣3,﹣2) B .(﹣2,﹣1) C .(﹣1,0)D .(0,1)8. 已知函数f (x )=﹣log 2x ,在下列区间中,包含f (x )零点的区间是( ) A .(0,1) B .(1,2) C .(2,4) D .(4,+∞)9. 对于函数f (x ),若∀a ,b ,c ∈R ,f (a ),f (b ),f (c )为某一三角形的三边长,则称f (x )为“可构造三角形函数”,已知函数f (x )=是“可构造三角形函数”,则实数t 的取值范围是( )A . C . D .10.直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为( )A .2x+y ﹣2=0B .2x ﹣y ﹣6=0C .x ﹣2y ﹣6=0D .x ﹣2y+5=011.设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④ D .①③12.O 为坐标原点,F 为抛物线的焦点,P 是抛物线C 上一点,若|PF|=4,则△POF 的面积为( )A .1B .C .D .2二、填空题13.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .14.已知函数f (x )=恰有两个零点,则a 的取值范围是 .15.长方体1111ABCD A BC D -中,对角线1AC 与棱CB 、CD 、1CC 所成角分别为α、β、, 则222sin sin sin αβγ++= . 16.已知双曲线﹣=1(a >0,b >0)的一条渐近线方程是y=x ,它的一个焦点在抛物线y 2=48x 的准线上,则双曲线的方程是 .17.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .18.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .三、解答题19.已知函数f(x)的定义域为{x|x≠kπ,k∈Z},且对定义域内的任意x,y都有f(x﹣y)=成立,且f(1)=1,当0<x<2时,f(x)>0.(1)证明:函数f(x)是奇函数;(2)试求f(2),f(3)的值,并求出函数f(x)在[2,3]上的最值.20.已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}(1)若a=,求A∩B.(2)若A∩B=∅,求实数a的取值范围.21.(1)直线l的方程为(a+1)x+y+2﹣a=0(a∈R).若l在两坐标轴上的截距相等,求a的值;(2)已知A(﹣2,4),B(4,0),且AB是圆C的直径,求圆C的标准方程.22.如图,在四棱锥P﹣ABCD中,底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2,PA⊥PD,Q为PD的中点.(Ⅰ)证明:CQ∥平面PAB;(Ⅱ)若平面PAD⊥底面ABCD,求直线PD与平面AQC所成角的正弦值.23.在△ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB.(1)求B;(2)若b=2,求△ABC面积的最大值.24.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.(1)证明:EF∥平面PAC;(2)证明:AF⊥EF.旅顺口区高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1. 【答案】C【解析】解:圆x 2+y 2﹣2x+4y=0化为:圆(x ﹣1)2+(y+2)2=5,圆的圆心坐标(1,﹣2),半径为,直线l 将圆 x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 经过圆心与坐标原点.或者直线经过圆心,直线的斜率为﹣1,∴直线l 的方程是:y+2=﹣(x ﹣1),2x+y=0,即x+y+1=0,2x+y=0.故选:C .【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题.2. 【答案】B【解析】解:线段AB 的中点为,k AB ==﹣,∴垂直平分线的斜率 k==2,∴线段AB 的垂直平分线的方程是 y ﹣=2(x ﹣2)⇒4x ﹣2y ﹣5=0,故选B .【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法.3. 【答案】B 【解析】试题分析:因为{}{}{}{}1,2,3,41,1,1A B B A B =≠≠ ,A =,所以当{1,2}A =时,{1,2,4}B =;当{1,3}A =时,{1,2,4}B =;当{1,4}A =时,{1,2,3}B =;当{1,2,3}A =时,{1,4}B =;当{1,2,4}A =时,{1,3}B =;当{1,3,4}A =时,{1,2}B =;所以满足条件的“好集对”一共有个,故选B.考点:元素与集合的关系的判断.【方法点晴】本题主要考查了元素与集合关系的判断与应用,其中解答中涉及到集合的交集和集合的并集运算与应用、元素与集合的关系等知识点的综合考查,着重考查了分类讨论思想的应用,以及学生分析问题和解答问题的能力,试题有一定的难度,属于中档试题,本题的解答中正确的理解题意是解答的关键.1111] 4.【答案】A【解析】解:∵函数f(x)=,∴f()==﹣2,=f(﹣2)=3﹣2=.故选:A.5.【答案】B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法种数为2A44=48.故选B.【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.6.【答案】A【解析】解:由题意双曲线kx2﹣y2=1的一条渐近线与直线2x+y+1=0垂直,可得渐近线的斜率为,又由于双曲线的渐近线方程为y=±x故=,∴k=,∴可得a=2,b=1,c=,由此得双曲线的离心率为,故选:A.【点评】本题考查直线与圆锥曲线的关系,解题的关键是理解一条渐近线与直线2x+y+1=0垂直,由此关系求k,熟练掌握双曲线的性质是求解本题的知识保证.7.【答案】C【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,又f(﹣1)=﹣1<0,f(0)=30+0=1>0,∴f(﹣1)f(0)<0,可知:函数f(x)的零点所在的区间是(﹣1,0).故选:C.【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.8.【答案】C【解析】解:∵f(x)=﹣log2x,∴f(2)=2>0,f(4)=﹣<0,满足f(2)f(4)<0,∴f(x)在区间(2,4)内必有零点,故选:C9.【答案】D【解析】解:由题意可得f(a)+f(b)>f(c)对于∀a,b,c∈R都恒成立,由于f(x)==1+,①当t﹣1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满足条件.②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,同理1<f(b)<t,1<f(c)<t,由f(a)+f(b)>f(c),可得2≥t,解得1<t≤2.③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,同理t<f(b)<1,t<f(c)<1,由f(a)+f(b)>f(c),可得2t≥1,解得1>t≥.综上可得,≤t≤2,故实数t的取值范围是[,2],故选D.【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题.10.【答案】B【解析】解:∵直线x+2y﹣3=0的斜率为﹣,∴与直线x+2y﹣3=0垂直的直线斜率为2,故直线l的方程为y﹣(﹣2)=2(x﹣2),化为一般式可得2x﹣y﹣6=0故选:B【点评】本题考查直线的一般式方程和垂直关系,属基础题.11.【答案】B【解析】解:由m、n是两条不同的直线,α,β,γ是三个不同的平面:在①中:若m⊥α,n∥α,则由直线与平面垂直得m⊥n,故①正确;在②中:若α∥β,β∥γ,则α∥γ,∵m⊥α,∴由直线垂直于平面的性质定理得m⊥γ,故②正确;在③中:若m⊥α,n⊥α,则由直线与平面垂直的性质定理得m∥n,故③正确;在④中:若α⊥β,m⊥β,则m∥α或m⊂α,故④错误.故选:B.12.【答案】C【解析】解:由抛物线方程得准线方程为:y=﹣1,焦点F(0,1),又P为C上一点,|PF|=4,可得y P=3,代入抛物线方程得:|x|=2,P∴S△POF=|0F|•|x P|=.故选:C.二、填空题13.【答案】(﹣4,).【解析】解:∵抛物线方程为y 2=﹣8x ,可得2p=8, =2.∴抛物线的焦点为F (﹣2,0),准线为x=2. 设抛物线上点P (m ,n )到焦点F 的距离等于6,根据抛物线的定义,得点P 到F 的距离等于P 到准线的距离,即|PF|=﹣m+2=6,解得m=﹣4,∴n 2=8m=32,可得n=±4,因此,点P 的坐标为(﹣4,).故答案为:(﹣4,).【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.14.【答案】 (﹣3,0) .【解析】解:由题意,a ≥0时, x <0,y=2x 3﹣ax 2﹣1,y ′=6x 2﹣2ax >0恒成立,f (x )在(0,+∞)上至多一个零点; x ≥0,函数y=|x ﹣3|+a 无零点, ∴a ≥0,不符合题意;﹣3<a <0时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点, 函数y=2x 3﹣ax 2﹣1在(﹣∞,0)上无零点,符合题意;a=﹣3时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点, 函数y=2x 3﹣ax 2﹣1在(﹣∞,0)上有零点﹣1,不符合题意;a <﹣3时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点, 函数y=2x 3﹣ax 2﹣1在(﹣∞,0)上有两个零点,不符合题意;综上所述,a 的取值范围是(﹣3,0). 故答案为(﹣3,0).15.【答案】 【解析】试题分析:以1AC 为斜边构成直角三角形:1111,,AC D AC B AC A ∆∆∆,由长方体的对角线定理可得:2222221111222111sin sin sin BC DC AC AC AC AC αβγ++=++2221212()2AB AD AA AC ++==.考点:直线与直线所成的角.【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键.16.【答案】【解析】解:因为抛物线y2=48x的准线方程为x=﹣12,则由题意知,点F(﹣12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为.故答案为:.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键.17.【答案】.【解析】解:不等式组的可行域为:由题意,A(1,1),∴区域的面积为=(x3)=,由,可得可行域的面积为:1=,∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为:=故答案为:.【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积.18.【答案】30°.【解析】解:取AD的中点G,连接EG,GF则EG DC=2,GF AB=1,故∠GEF即为EF与CD所成的角.又∵FE⊥AB∴FE⊥GF∴在Rt△EFG中EG=2,GF=1故∠GEF=30°.故答案为:30°【点评】此题的关键是作出AD的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.三、解答题19.【答案】【解析】(1)证明:函数f(x)的定义域为{x|x≠kπ,k∈Z},关于原点对称.又f(x﹣y)=,所以f(﹣x)=f[(1﹣x)﹣1]======,故函数f(x)奇函数.(2)令x=1,y=﹣1,则f(2)=f[1﹣(﹣1)]==,令x=1,y=﹣2,则f(3)=f[1﹣(﹣2)]===,∵f(x﹣2)==,∴f(x﹣4)=,则函数的周期是4.先证明f(x)在[2,3]上单调递减,先证明当2<x<3时,f(x)<0,设2<x<3,则0<x﹣2<1,则f(x﹣2)=,即f(x)=﹣<0,设2≤x1≤x2≤3,则f(x1)<0,f(x2)<0,f(x2﹣x1)>0,则f(x1)﹣f(x2)=,∴f(x1)>f(x2),即函数f(x)在[2,3]上为减函数,则函数f(x)在[2,3]上的最大值为f(2)=0,最小值为f(3)=﹣1.【点评】本题主要考查了函数奇偶性的判断,以及函数的最值及其几何意义等有关知识,综合性较强,难度较大.20.【答案】【解析】解:(1)当a=时,A={x|},B={x|0<x<1}∴A∩B={x|0<x<1}(2)若A∩B=∅当A=∅时,有a﹣1≥2a+1∴a≤﹣2当A≠∅时,有∴﹣2<a≤或a≥2综上可得,或a≥2【点评】本题主要考查了集合交集的求解,解题时要注意由A∩B=∅时,要考虑集合A=∅的情况,体现了分类讨论思想的应用.21.【答案】【解析】解:(1)当a=﹣1时,直线化为y+3=0,不符合条件,应舍去;当a≠﹣1时,分别令x=0,y=0,解得与坐标轴的交点(0,a﹣2),(,0).∵直线l在两坐标轴上的截距相等,∴a﹣2=,解得a=2或a=0;(2)∵A(﹣2,4),B(4,0),∴线段AB的中点C坐标为(1,2).又∵|AB|=,∴所求圆的半径r=|AB|=.因此,以线段AB为直径的圆C的标准方程为(x﹣1)2+(y﹣2)2=13.22.【答案】【解析】(Ⅰ)证明:取PA的中点N,连接QN,BN.∵Q,N是PD,PA的中点,∴QN∥AD,且QN=AD.∵PA=2,PD=2,PA⊥PD,∴AD=4,∴BC=AD.又BC∥AD,∴QN∥BC,且QN=BC,∴四边形BCQN为平行四边形,∴BN∥CQ.又BN⊂平面PAB,且CQ⊄平面PAB,∴CQ∥平面PAB.(Ⅱ)解:取AD的中点M,连接BM;取BM的中点O,连接BO、PO.由(Ⅰ)知PA=AM=PM=2,∴△APM为等边三角形,∴PO⊥AM.同理:BO⊥AM.∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,∴PO⊥平面ABCD.以O为坐标原点,分别以OB,OD,OP所在直线为x轴,y轴,z轴建立空间直角坐标系,则D(0,3,0),A(0,﹣1,0),P(0,0,),C(,2,0),Q(0,,).∴=(,3,0),=(0,3,﹣),=(0,,).设平面AQC的法向量为=(x,y,z),∴,令y=﹣得=(3,﹣,5).∴cos<,>==﹣.∴直线PD与平面AQC所成角正弦值为.23.【答案】【解析】(本小题满分12分)解:(1)∵bsinA=,由正弦定理可得:sinBsinA=sinAcosB,即得tanB=,∴B=…(2)△ABC的面积.由已知及余弦定理,得.又a2+c2≥2ac,故ac≤4,当且仅当a=c时,等号成立.因此△ABC面积的最大值为…24.【答案】【解析】(1)证明:如图,∵点E,F分别为CD,PD的中点,∴EF∥PC.∵PC⊂平面PAC,EF⊄平面PAC,∴EF∥平面PAC.(2)证明:∵PA⊥平面ABCD,CD⊂平面ABCD,又ABCD是矩形,∴CD⊥AD,∵PA∩AD=A,∴CD⊥平面PAD.∵AF⊂平面PAD,∴AF⊥CD.∵PA=AD,点F是PD的中点,∴AF⊥PD.又CD∩PD=D,∴AF⊥平面PDC.∵EF⊂平面PDC,∴AF⊥EF.【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题.。
辽宁省大连市2018届高三上学期期末数学理科试题 含解析
2017-2018学年度上学期期末考试高三年级数学科(理科)试卷第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. )D.【答案】B所以的虚部是B.2. )【答案】C故选C)B. C.【答案】B为第二象限角,所以故选B.4. 已知向量与的夹角为,则)【答案】B故选B.5. 某四棱锥的三视图如图所示,则该四棱锥的外接球半径为()D.【答案】B的正方形,一条长为侧棱与底面垂的正方体,则棱锥的外接球就是正方体的外接球,正方体外接球,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点. 观察三视图并将其“翻译”成直观图是解题的关键,做题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.6. 已知数列)【答案】D【解析】两式相减可得,D.7. )A. -2B. 0C. 2D. 4【答案】C【解析】,由图可知平移直线当直线经过点时,所以,的最大值为故选C.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8. 把四个不同的小球放入三个分别标有1~3号的盒子中,不允许有空盒子的放法有()A. 12种B. 24种C. 36种D. 48种【答案】C【解析】种方法,(包括复合元素)种放法,所以四个不同的小球放入三个分别标有1〜3号的盒子中,不C.9. 已知函数的图象向左平移再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,的图象,()C.【答案】A为,再将所得图象上各点的横坐标缩短为原来的标不变,得到的图象对应的函数解析式为故选A点睛:本题主要考查了三角函数的图象变换及三角函数性质,属于基础题;图象的伸缩变换的规律:(1则所得图像对应的解析式为(2)把函数10. 已知椭圆、的直线,若)D.【答案】A【解析】由题意可得椭圆的半焦距,且由可知点在以线段为直径的圆上,则.....................A不正确故选A11. 某班有三个小组,甲、乙、丙三人分属不同的小组.某次数学考试成绩公布情况如下:甲和三人中的第3小组那位不一样,丙比三人中第1小组的那位的成绩低,三人中第3小组的那位比乙分数高.若甲、乙、丙三人按数学成绩由高到低排列,正确的是()A. 甲、乙、丙B. 甲、丙、乙C. 乙、甲、丙D. 丙、甲、乙【答案】B数高,说明乙不在第3组,说明丙在第3组,又第3组成绩低于第1组,大于乙,这时可得乙为第2组,甲为第1组,那么成绩从高到低为:甲、丙、乙,故选B.12. 已知函数()B. C. D.【答案】D递减,则在上为减函数故选D点睛:本题考查函数极值问题,转化到不等式恒成立问题.不等式恒成立问题常见方法:①分);②数形结合).第Ⅱ卷二、填空题(本大题共4小题,每题5分,共20分,把答案填在答卷纸的相应位置上)13. 已知实数.14. __________.【答案】11【解析】执行程序框图,当输入第一次循环,第二次循环,第三次循环,第四次循环,第五次循环,【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.15. 、为__________.【解析】∵双曲线的两个焦点为点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确16. 等比数列项和记为.,故答案为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17. 中,角的对边分别为(1(2.【答案】【解析】试题分析:(1,根据两角和的正弦公式可得;(2)结合(1),配方后可其求得试题解析:(1.(218. 甲、乙两名同学准备参加考试,在正式考试之前进行了十次模拟测试,测试成绩如下:甲:137,121,131,120,129,119,132,123,125,133乙:110,130,147,127,146,114,126,110,144,146(1)画出甲、乙两人成绩的茎叶图,求出甲同学成绩的平均数和方差,并根据茎叶图,写出甲、乙两位同学平均成绩以及两位同学成绩的中位数的大小关系的结论:(2)规定成绩超过127为“良好”,现在老师分别从甲、乙两人成绩中各随机选出一个,求【答案】(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)根据根据所给数据,利用茎叶图的作法可得茎叶图,根据茎叶图可(2)0,1,2,.. 试题解析:(1)茎叶图如图以甲的中位数大于乙的中位数,甲的平均成绩小于乙的平均成绩;(20,1,2,分布列为:【方法点睛】本题主要考查茎叶图的画法、方差与平均值的求法、中位数的定义以及离散型随机变量的分布列与数学期望,属于中档题. 求解该离散型随机变量的分布列与数学期望,首项要理解问题的关键,其次要准确无误的随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.19. 中,,(1,求证:(2)求直线.【答案】(1)证明见解析;【解析】试题分析:(1)由三角形中位线定理可得利用线面平行的判定定理可得(2),,由此可以点为原点,直线量夹角余弦公式.试题解析:(1(2)∵底面是菱形,,则以点的法向量为,有得,则,设直线与平面所成角为∴直线与平面所成角的正弦值为【方法点晴】本题主要考查线面平行的性质与判定以及利用空间向量求线面角,属于难题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20. 已知直线与抛物线.(1(2,若矩形的外接圆圆心为.【答案】(2)30.【解析】试题分析:(1),可列出关于从而可得结果;(2),从而可得矩形.试题解析:(1)与,∴,满足题意.(2∴,,∴∴面积为21. 已知函数(1(2均恒成立,求实数.【答案】(1)单调增区间是,单调减区间是【解析】试题分析:(1)上是单调递减函数,由(2简不等式,化简不等式,利用函数的导数,通过导函数的符号,时,在上单调递增,试题解析:(1上是单调递减函数,(2;时,在上单调递增点睛:通过导数证明不等式或研究不等式恒成立问题的基本思路是:以导函数和不等式为基础,单调性为主线,最(极)值为助手,从数形结合、分类讨论等多视角进行探究,经常是把不等式问题转化为判断函数的单调性、求函数的最值,利用最值得出相应结论,其中分类讨论是经常用到的数学思想方法.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.做答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.22.为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.已知直线两点,且(1(2轴交于【答案】(2)4.【解析】试题分析:(12)根据投影可得得结果试题解析:(1323. 已知函数(1(2)若存在成立,求.【答案】【解析】试题分析:(1)当时,原不等式可化为论,去掉式中的绝对值符号,解相应的不等式,最后取并即可;(2)由试题解析:(1)由已知时,解得;则(2.,解之得。
旅顺口区第二中学2018-2019学年高三上学期11月月考数学试卷含答案
旅顺口区第二中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知集合,,则( ){| lg 0}A x x =≤1={|3}2B x x ≤≤A B =I A .B .C .D .(0,3](1,2](1,3]1[,1]2【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力.2. 如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为()A .0°B .45°C .60°D .90°3. 已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是()A .B .C .D .4. 某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( )A .80B .40C .60D .205. 已知a 为常数,则使得成立的一个充分而不必要条件是()A .a >0B .a <0C .a >eD .a <e6. 已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( )A .垂直B .平行C .重合D .相交但不垂直7. 已知复数z 满足(3+4i )z=25,则=( )A .3﹣4iB .3+4iC .﹣3﹣4iD .﹣3+4i 8. 已知,则f{f[f (﹣2)]}的值为( )A .0B .2C .4D .89. 已知函数f (x )=2x ﹣+cosx ,设x 1,x 2∈(0,π)(x 1≠x 2),且f (x 1)=f (x 2),若x 1,x 0,x 2成等差数列,f ′(x )是f (x )的导函数,则( )A .f ′(x 0)<0B .f ′(x 0)=0班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .f ′(x 0)>0D .f ′(x 0)的符号无法确定10.(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( )A .(1,+∞)B .(﹣∞,﹣1)C .D .11.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形12.数列{a n }满足a 1=, =﹣1(n ∈N *),则a 10=()A .B .C .D .二、填空题13.设f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1]上,f (x )=其中a ,b∈R .若=,则a+3b 的值为 .14.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .15.【2017-2018第一学期东台安丰中学高三第一次月考】函数的单调递增区间为__________.()2ln f x x x =-16.已知函数是定义在R 上的奇函数,且当时,,则在R 上的解析式为 ()f x 0x ≥2()2f x x x =-()y f x =17.在复平面内,复数与对应的点关于虚轴对称,且,则____.18.已知关于的不等式20x ax b ++<的解集为(1,2),则关于的不等式210bx ax ++>的解集为___________.三、解答题19.已知直线l 的方程为y=x+4,圆C 的参数方程为(θ为参数),以原点为极点,x 轴正半轴为极轴.建立极坐标系.(Ⅰ)求直线l 与圆C 的交点的极坐标;(Ⅱ)若P 为圆C 上的动点.求P 到直线l 的距离d 的最大值. 20.已知抛物线C :x 2=2y 的焦点为F .(Ⅰ)设抛物线上任一点P (m ,n ).求证:以P 为切点与抛物线相切的方程是mx=y+n ;(Ⅱ)若过动点M (x 0,0)(x 0≠0)的直线l 与抛物线C 相切,试判断直线MF 与直线l 的位置关系,并予以证明. 21.已知命题p :x 2﹣3x+2>0;命题q :0<x <a .若p 是q 的必要而不充分条件,求实数a 的取值范围. 22.已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)若,求函数的单调递增区间.23.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在岁间,旅游途中导游发现该[10,60]旅游散团人人都会使用微信,所有团员的年龄结构按分成5组,分[10,20),[20,30),[30,40),[40,50),[50,60]别记为,其频率分布直方图如下图所示.,,,,A B C D E(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;(Ⅱ)该团导游首先在三组中用分层抽样的方法抽取了名团员负责全团协调,然后从这6名团员中,,C D E 6随机选出2名团员为主要协调负责人,求选出的2名团员均来自组的概率.C 24.如图,直三棱柱ABC ﹣A 1B 1C 1中,D 、E 分别是AB 、BB 1的中点,AB=2,(1)证明:BC 1∥平面A 1CD ;(2)求异面直线BC 1和A 1D 所成角的大小;(3)求三棱锥A 1﹣DEC 的体积.旅顺口区第二中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】D【解析】由已知得,故,故选D .{}=01A x x <£A B I 1[,1]22. 【答案】C【解析】解:连结A 1D 、BD 、A 1B ,∵正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,∴EF ∥A 1D ,∵A 1B ∥D 1C ,∴∠DA 1B 是CD 1与EF 所成角,∵A 1D=A 1B=BD ,∴∠DA 1B=60°.∴CD 1与EF 所成角为60°.故选:C .【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养. 3. 【答案】B【解析】解:∵lga+lgb=0∴ab=1则b=从而g (x )=﹣log b x=log a x ,f (x )=a x 与∴函数f (x )与函数g (x )的单调性是在定义域内同增同减结合选项可知选B ,故答案为B 4. 【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B .【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果. 5. 【答案】C【解析】解:由积分运算法则,得=lnx=lne﹣ln1=1因此,不等式即即a>1,对应的集合是(1,+∞)将此范围与各个选项加以比较,只有C项对应集合(e,+∞)是(1,+∞)的子集∴原不等式成立的一个充分而不必要条件是a>e故选:C【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题.6.【答案】A【解析】解:由题意可得直线l1的斜率k1==1,又∵直线l2的倾斜角为135°,∴其斜率k2=tan135°=﹣1,显然满足k1•k2=﹣1,∴l1与l2垂直故选A7.【答案】B解析:∵(3+4i)z=25,z===3﹣4i.∴=3+4i.故选:B.8.【答案】C【解析】解:∵﹣2<0∴f(﹣2)=0∴f(f(﹣2))=f(0)∵0=0∴f(0)=2即f(f(﹣2))=f(0)=2∵2>0∴f(2)=22=4即f{f[(﹣2)]}=f(f(0))=f(2)=4故选C.9.【答案】A【解析】解:∵函数f(x)=2x﹣+cosx,设x1,x2∈(0,π)(x1≠x2),且f(x1)=f(x2),∴,∴存在x1<a<x2,f'(a)=0,∴,∴,解得a=,假设x1,x2在a的邻域内,即x2﹣x1≈0.∵,∴,∴f(x)的图象在a的邻域内的斜率不断减少小,斜率的导数为正,∴x0>a,又∵x>x0,又∵x>x0时,f''(x)递减,∴.故选:A.【点评】本题考查导数的性质的应用,是难题,解题时要认真审题,注意二阶导数和三阶导数的性质的合理运用.10.【答案】C【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立,即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立若m+1=0,显然不成立若m+1≠0,则解得a.故选C.【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.11.【答案】A【解析】解:∵(acosB+bcosA)=2csinC,∴(sinAcosB+sinBcosA)=2sin2C,∴sinC=2sin2C,且sinC>0,∴sinC=,∵a+b=8,可得:8≥2,解得:ab≤16,(当且仅当a=b=4成立)∵△ABC的面积的最大值S△ABC=absinC≤=4,∴a=b=4,则此时△ABC的形状为等腰三角形.故选:A.12.【答案】C【解析】解:∵=﹣1(n∈N*),∴﹣=﹣1,∴数列是等差数列,首项为=﹣2,公差为﹣1.∴=﹣2﹣(n﹣1)=﹣n﹣1,∴a n=1﹣=.∴a10=.故选:C.【点评】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.二、填空题13.【答案】 ﹣10 .【解析】解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.14.【答案】 异面 .【解析】解:把展开图还原原正方体如图,在原正方体中直线AB与CD的位置关系是异面.故答案为:异面.15.【答案】⎛ ⎝【解析】16.【答案】222,02,0x x x y x x x ⎧-≥⎪=⎨--<⎪⎩【解析】试题分析:令,则,所以,又因为奇函数满足,0x <0x ->()()()2222f x x x x x -=---=+()()f x f x -=-所以,所以在R 上的解析式为。
高考数学 玩转压轴题 专题3.1 复杂数列的通项公式求解问题(1)
专题3.1 复杂数列的通项公式求解问题一.方法综述数列的通项公式是数列高考中的热点问题,求数列通项公式时会渗透多种数学思想.因此求解过程往往方法多、灵活性大、技巧性强,但万变不离其宗,只要熟练掌握各个类型的特点即可.在考试中时常会考查一些压轴小题,如数阵(数表)问题、点列问题、函数问题中、由复杂递推公式求解数列通项公式问题、两边夹问题中的数列通项公式问题、下标为n a 形式的数列通项公式问题中都有所涉及,本讲就这类问题进行分析. 二.解题策略类型一 数阵(数表)中涉及到的数列通项公式问题【例1】【2017安徽马鞍山二模】如图所示的“数阵”的特点是:每行每列都成等差数列,则数字73在图中出现的次数为____.【答案】12【指点迷津】1.本题主要考查等差数列通项与整数解问题.根据每行每列都成等差数列,先从第一行入手求出第一行数组成的数列),2,1(1⋯⋯=j A j 的通项公式,再把第一行的数当成首项,再次根据等差数列这一性质求出第j 数列组成的数列),2,1(⋯⋯=i A ij ,最后根据整数解方程的解法列举所有解即可.2.数阵:由实数排成一定形状的阵型(如三角形,矩形等),来确定数阵的规律及求某项.对于数阵首先要明确“行”与“列”的概念.横向为“行”,纵向为“列”,在项的表示上通常用二维角标ij a 进行表示,其中i 代表行,j 代表列.例如:34a 表示第3行第4列.在题目中经常会出现关于某个数的位置问题,解决的方法通常为先抓住选取数的特点,确定所求数的序号,再根据每行元素个数的特点(数列的通项),求出前n 行共含有的项的个数,从而确定该数位于第几行,然后再根据数之间的规律确定是该行的第几个,即列.【举一反三】【2017江西瑞昌二中第二次段考】把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{}n a ,若2015n a =,则n =__________.【答案】1030类型二 点列问题中涉及到的数列通项公式问题【例2】已知点1122(1,),(2,),,(,),n n A y A y A n y 顺次为直线11412y x =+上的点,点1122(,0),(,0),,(,0),n nB x B xB x 顺次为x 轴上的点,其中1(01)x a a =<<.对于任意*n N ∈,点1,,n n n B A B +构成以n A 为顶点的等腰三角形.则数列{}n x 的通项公式为____________.【答案】,(1,(n n a n x n a n -⎧=⎨+-⎩为偶数)为奇数)【指点迷津】对于点列问题,要根据图像上点与点之间的关系,以及平面几何知识加以分析,找出关系式即可,本题是直线上的点列,已知点列n A 的通项公式,求点列n B 的通项公式,并研究等腰三角形是否为特殊的等腰直角三角形.【举一反三】在直角坐标平面中,已知点列111,2A ⎛⎫-⎪⎝⎭,2212,2A ⎛⎫ ⎪⎝⎭,3313,2A ⎛⎫- ⎪⎝⎭,…,1,(1)2n n n A n ⎛⎫- ⎪⎝⎭,…,其中n 是正整数.连接12A A 的直线与x 轴交于点()11,0B x ,连接23A A 的直线与x 轴交于点()22,0B x ,…,连接1n n A A +的直线与x 轴交于点(),0n n B x ,….则数列{}n x 的通项公式为___________.【解析】直线1n n A A +的斜率为11121(1)(1)3(1)222n n n n n n k ++++---=-=, 所以111(1)3(1):()22n n n n n n A A y x n +++-⋅--=-,23n x n =+. 【答案】23n x n =+类型三 函数问题中涉及到的数列通项公式问题【例3】【全国名校大联考2017-2018年度高三第三次联考】设函数()f x 是定义在()0,+∞上的单调函数,且对于任意正数,x y 有()()()f xy f x f y =+,已知112f ⎛⎫=-⎪⎝⎭,若一个各项均为正数的数列{}n a 满足()()()()*11n n n f S f a f a n N =++-∈,其中n S 是数列{}n a 的前n 项和,则数列{}n a 中第18项18a =( ) A.136B. 9C. 18D. 36【答案】C【指点迷津】本题主要考查抽象函数的解析式以及数列通项与前n 项和之间的关系以及公式()12n n n a S S n -=-≥的应用,属于难题.已知n S 求n a 的一般步骤:(1)当1n =时,由11a S =求1a 的值;(2)当2n ≥时,由1n n n a S S -=-,求得n a 的表达式;(3)检验1a 的值是否满足(2)中的表达式,若不满足则分段表示n a ;(4)写出n a 的完整表达式.【举一反三】【北京西城35中2017届高三上学期期中数学】已知()112F x f x ⎛⎫=+- ⎪⎝⎭是R 上的奇函数, ()()()*12101n n a f f f f f n N n n n -⎛⎫⎛⎫⎛⎫=+++++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则数列{}n a 的通项公式为( ). A. n a n = B. 2n a n = C. 1n a n =+ D. 223n a n n =-+【解析】∵()112F x f x ⎛⎫=+- ⎪⎝⎭是奇函数,∴11022F F ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,令12x =, ()1112F f ⎛⎫=- ⎪⎝⎭, 令12x =-, ()1012F f ⎛⎫-=- ⎪⎝⎭,∴()()012f f +=,∴()()1012a f f =+=,令112x n =-,∴11112F f n n ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,令112x n =-,∴11112n F f n n -⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭, ∵1111022F F n n ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,∴112n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,同理可得222n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,332n f f n n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,∴1221(n n a n n N n +-=+⨯=+∈), 故选C【答案】C类型四 由复杂递推公式求解数列通项公式问题【例4】【重庆市第一中学2018届高三上学期第一次月考】我们把满足的数列叫做牛顿数列,已知函数,且数列为牛顿数列,设,则( )A.B.C. D.【答案】C【指点迷津】对于复杂的递推公式,关键是进行化简和变形,适当的时候需要换元,本题通过题意,可求得 即数列{a n }是以2为公比的等比数列,又a 1=2,利用等比数列的通项公式即可求得答案.【举一反三】【辽宁省大连市旅顺中学、旅顺第二高级中学、大连市第三中学2018届高三第二次联考】设数列{}n a 中, 11222,,11n n n n n a a a b a a ++===+-, *n N ∈,则数列{}n b 的通项公式为__________. 【解析】111222124222211111n n n n n n n n n n a a a a b b a a a a ++++++++====⨯=--+--+,所以2q =, 12b =,所以12n n b +=.【答案】12n +类型五 两边夹问题中的数列通项公式问题【例5】【2017届浙江省杭州地区(含周边)重点中学联考】设数列{}n a 满足123a =,且对任意的*n N ∈,满足22n n n a a +-≤, 452nn n a a +-≥⨯,则2017a =_________【答案】201723【答案】201723【指点迷津】解题的关键是要通过所给的不等关系找到数列的项的特征,即452nn n a a +-=⨯,然后经过恰当的变形,将求2017a 的问题转化为数列求和的问题去处理,对于求和问题要把握准数列的公比和数列的项数,这是比较容易出现错误的地方.【举一反三】【福建省莆田第六中学2017届高三下学期第一次模拟】已知各项都为整数的数列{}n a 中,12a =,且对任意的*N n ∈,满足1n n a a +-< 122n +, 2n n a a +- 321n >⨯-,则2017a =__________.【答案】20172类型六 下标为n a 形式的数列通项公式问题【例6】【浙江省湖州、衢州、丽水三市2017届高三4月联考】已知等差数列{}n a ,等比数列{}n b 的公比为()*,q n q N ∈,设{}n a , {}n b 的前n 项和分别为n S ,n T .若21n n q T S +=,则n a __________. 【答案】21n a n =-【解析】()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭, ()1111111n n n b q b bT q q q q -==-⋅---,因为21n n q T S +=,所以2211111122n n n b b d d q q a q q q ⎛⎫-⋅+=+- ⎪--⎝⎭,这是关于n 的恒等式,所以111101{0212b qda b d q +=--=-=-,解得12{1d a ==,所以()12121n a n n =+-=-.【指点迷津】本题要求等差数列的通项公式,既没有首项也没有公差,有的只是等差数列与等比数列的一个关系21n n q T S +=,这是一个关于正整数n 的恒等式,因此我们可把等差数列与等比数列的前n 项用基本量表示,并化已知等式为nq 的恒等式,利用恒等式的知识求解1,a d . 【举一反三】【2018届安徽皖江名校联盟12月份联考改编】等差数列和等比数列的各项均为正整数,且的前项和为,数列是公比为16的等比数列,.则}{n b 的通项公式____________.【答案】14-=n n b三.强化训练1.【山东省、湖北省部分重点中学2018届高三第二次(12月)联考】已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i 行,第j 列的数记为,i j a ,比如3242549,15,23a a a ===,,,,若,2017i j a =,则i j +=( )A. 64B. 65C. 71D. 72 【答案】D【解析】奇数数列2120171009n a n n =-=⇒=,即2017为底1009个奇数.按照蛇形排列,第1行到第i 行末共有()1122i i i ++++=个奇数,则第1行到第44行末共有990个奇数;第1行到第45行末共有1035个奇数;则2017位于第45行;而第45行是从右到左依次递增,且共有45个奇数;故2017位于第45行,从右到左第19列,则45,2772i j i j ==⇒+=,故选D.2.【湖南省衡阳县2018届高三12月联考】在数列{}n a 中, ()()()112141nn n n na n a n n +-+=+++,且11a =,记22ini n i a T i =+=∑,则( )A. 19T 能被41整除B. 19T 能被43整除C. 19T 能被51整除D. 19T 能被57整除 【答案】A3.【”超级全能生”2018届高考全国卷26省9月联考乙卷】已知数列{}n a 满足*1*,2{ ,2n n n na d N a nqa N ++∉=∈(q 为非零常数),若{}n a 为等比数列,且首项为()0a a ≠,公比为q ,则{}n a 的通项公式为( )A. n a a =或1n n a q -= B. ()11n n a a -=- C. n a a =或()11n n a a -=- D. 1n n a q -=【答案】C4.【浙江省湖州市2017届高三联考】对任意的n∈N *,数列{a n }满足21cos 3n a n ≤﹣且22sin 3n a n +≤,则a n 等于( ) A.22sin 3n - B. 22sin 3n - C. 21cos 3n - D. 21cos 3n + 【答案】A 【解析】∵21cos 3n a n ≤﹣且22sin 3n a n +≤,∴2211cos 33n n a cos n -≤≤+, 2222sin sin 33n n a n --≤≤-+,即2251cos cos 33n n a n -≤≤-,∴2212cos sin 33n a n n =-=-,故选A.5.【2016届河北省衡水中学高三下学期猜题】已知数列{}n a 的首项为11a =,且满足对任意的*n N ∈,都有12n n n a a +-≤,232n n n a a +-≥⨯成立,则2014a =( ) A .201421- B .201421+ C .201521- D .201521+【答案】A. 【解析】试题分析:∵12n n n a a +-≤,∴1212n n n a a +++-≤,两式相加,可得122232n n nn n a a ++-≤+=⋅,又∵232n n n a a +-≥⨯,∴需232n n n a a +-=⋅,等号成立的条件为:12n n n a a +-=, ∴2n ≥时,1112111(21)()()2212121n n n n n n a a a a a a --⋅-=-+⋅⋅⋅+-+=+⋅⋅⋅++==--,∴2014201421a =-,故选A.6.【湖北省武汉市2017届高三四月调研】已知数列{}n a 满足11a =, 213a =,若()()*1111232,n n n n n a a a a a n n N -+-++=⋅≥∈,则数列{}n a 的通项n a =( )A.112n - B. 121n - C. 113n - D. 1121n -+ 【答案】B7.【九江市2017年第三次高考模拟统一考试】意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数: 1,1,2,3,5,8,…,该数列的特点是:前两个数均为 1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{}n a 称为斐波那契数列.则()8822111i i i i i a a a++==-=∑∑( )A. 0B. 1-C. 1D. 2 【答案】A【解析】由题意,得2221322433541211,1341,2591a a a a a a a a a -=⨯-=-=⨯-=--=⨯-=,222465810938251,,2155341a a a a a a -=⨯-=-⋅⋅⋅-=⨯-=-,所以()88221110i i i i i a a a ++==-=∑∑;故选A.6.8.【天津市第一中学2018届高三上学期第二次月考改编】已知数列{}n a 满足22,{2,n n n a n a a n ++=为奇数为偶数,且*12,1,2n N a a ∈==.则{}n a 的通项公式__________.【答案】()()2{2n n n n a n ∴=为奇数为偶数9. 【2016届西藏日喀则一中高三下学期二模改编】已知正项数列{}n a 的前n 项和为n S ,且21111,n n n a S S a ++=+=,数列{}n b 满足13n a n n b b +⋅=,且11b =.则{}n b 的通项公式__________.【答案】()()1223{3n n n n b n -=为奇数为偶数【解析】∵,①()212n n n S S a n -+=≥,②①-②得:2211n n n n a a a a +++=-,∴()()1110n n n n a a a a +++--=,∵,∴10n n a a ++≠,∴()11,2n n a a n +-=≥ 又由得,即22220aa --=,∴222,1a a ==-(舍去).∴211a a -=,∴{}n a 是以1为首项,1为公差的等差数列, ∴n a n =. 又∵13na n nb b +⋅=③()1132n n n b b n --⋅=≥④③④得:又由,可求,故是首项为1,公比为3的等比数列,是首项为3,公比为3的等比数列.∴112123,333n n nn n b b ---==⋅=.∴()()1223{3n n n n b n -=为奇数为偶数.10.【湖北省黄石市第三中学(稳派教育)2018届高三阶段性检测】下表给出一个“三角形数阵”:18 14, 18 38, 316, 332……已知每一列的数成等差数列;从第三行起,每一行的数成等比数列,每一行的公比都相等.记第i 行第j 列的数为i j a -,则(1)83a -=_________;(2)前20行中14这个数共出现了________次. 【答案】14411.【2017届吉林省吉林市普通中学高三毕业班第二次调研测试】艾萨克·牛顿(1643年1月4日----1727年3月31日)英国皇家学会会长,英国著名物理学家,同时在数学上也有许多杰出贡献,牛顿用“作切线”的方法求函数零点时给出一个数列:满足,我们把该数列称为牛顿数列.如果函数有两个零点1,2,数列为牛顿数列,设,已知,,则的通项公式__________.【答案】12.【2017届河南郑州一中网校高三入学测试】设数列{}n a是首项为0的递增数列,()()[]*11sin,,,n n n n f x x a x a a n N n+=-∈∈,满足:对于任意的[)()0,1,n b f x b ∈=总有两个不同的根,则{}n a 的通项公式为_________ 【答案】()12n n n a π-=。
旅顺口区第三中学2018-2019学年高三上学期11月月考数学试卷含答案
第 1 页,共 13 页
11.已知数列{an}满足 a1=1,a2=2,an+2=(1+cos2 A.89 B.76 C.77 D.35
)an+sin2
,则该数列的前 10 项和为(
)
12.设集合 A x R | 2 x 2 , B x | x 1 0 ,则 A I (ð R B) ( A. x |1 x 2 B. x | 2 x 1 C.
b ,1} ,又可表示成 {a 2 , a b,0} ,则 a
a 2003 b 2004
.
16.某工程队有 5 项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成 后立即进 行那么安排这 5 项工程的不同排法种数是 .(用数字作答) 17.【盐城中学 2018 届高三上第一次阶段性考试】已知函数 f(x)=lnx- 最小值 4,则 m=________. 18.在数列 中,则实数 a= ,b= .
2
)
2. 已知集合 A y | y x 5 , B x | y A. 1, B. 1,3 C. 3,5 D. 3,5
x 3 , AI B (
)
【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力. 3. 已知集合 A {x| lgx 0} , B ={x | A. (0,3] B. (1, 2]
m (m∈R)在区间[1,e]上取得 x
三、解答题
19.(1)设不等式 2x﹣1>m(x2﹣1)对满足﹣2≤m≤2 的一切实数 m 的取值都成立,求 x 的取值范围 ; (2)是否存在 m 使得不等式 2x﹣1>m(x2﹣1)对满足﹣2≤x≤2 的实数 x 的取值都成立.
辽宁省大连市2017-2018学年高三上学期期末数学试卷(理科)Word版含解析
辽宁省大连市2017-2018学年高三上学期期末数学试卷(理科)一、选择题(每题5分,共60分)1.设U=R,M={y|y=2x+1,﹣≤x≤},N={x|y=lg(x2+3x)},则(∁UM)∩N=()A.(﹣∞,﹣3]∪(2,+∞)B.(﹣∞,﹣3)∪(0,+∞) C.(﹣∞,﹣3)∪(2,+∞)D.(﹣∞,0)∪(2,+∞)2.抛物线x2=﹣8y的准线方程是()A.x=B.y=2 C.y=D.y=﹣23.已知动点P,定点M(1,0)和N(3,0),若|PM|﹣|PN|=2,则点P的轨迹是()A.双曲线B.双曲线的一支C.两条射线D.一条射线4.等差数列{an }中,a1+a4+a7=39,a3+a6+a9=27,则数列{an}前9项的和S9等于()A.99 B.66 C.144 D.2975.已知α,β都是锐角,sinα=,cosβ=,则sin(β﹣α)=()A.﹣B.C.﹣D.6.设a,b是两条不同的直线,α,β是两个不同的平面,a⊂α,b⊥β,则α∥β是a⊥b 的()A.充分不必要条件B.必要不充分条件C.充要条件D.即非充分又非必要条件7.在△ABC中,若|+|=|﹣|,AB=2,AC=1,E,F为BC边的三等分点,则•=()A.B.C.D.8.已知点A、B、C、D均在球O上,AB=BC=,AC=3,若三棱锥D﹣ABC体积的最大值为,则球O的表面积为()A.36πB.16πC.12πD.π9.一个几何体的三视图如图所示,则该几何体的体积为()A .B .C .D .10.设m ,n ∈R ,若直线(m+1)x+(n+1)y ﹣2=0与圆(x ﹣1)2+(y ﹣1)2=1相切,则m+n 的取值范围是(A .(﹣∞,2﹣2]∪[2+2,+∞) B .(﹣∞,2]∪[2,+∞)C .[2﹣2,2+2] D .(﹣∞,﹣2]∪[2,+∞)11.已知函数f (x )=asinx ﹣bcosx (a ,b 常数,a ≠0,x ∈R )在x=处取得最小值,则函数y=f (﹣x )是( )A .偶函数且它的图象关于点(π,0)对称B .偶函数且它的图象关于点(,0)对称C .奇函数且它的图象关于点(,0)对称D .奇函数且它的图象关于点(π,0)对称12.已知f (x )为偶函数,且f (x )=f (x ﹣4),在区间[0,2]上,f (x )=,g (x )=()|x|+a ,若F (x )=f (x )﹣g (x )恰好有4个零点,则a 的取值范围是( )A .(2,)B .(2,3)C .(2,]D .(2,3]二、填空题(每题5分,共20分)13.已知等比数列{a n }前n 项和为S n ,a 1+a 2=,a 4+a 5=6,则S 6= .14.椭圆C 的中点在原点,焦点在x 轴上,若椭圆C 的离心率等于,且它的一个顶点恰好是抛物线x 2=8y 的焦点,则椭圆C 的标准方程为 .15.设直线x ﹣3y+m=0(m ≠0)与双曲线=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA|=|PB|,则该双曲线的离心率是 . 16.下列命题中:(1)a=4,A=30°,若△ABC 唯一确定,则0<b ≤4.(2)若点(1,1)在圆x 2+y 2+mx ﹣y+4=0外,则m 的取值范围是(﹣5,+∞);(3)若曲线+=1表示双曲线,则k 的取值范围是(1,+∞]∪(﹣∞,﹣4];(4)将函数y=cos (2x ﹣)(x ∈R )的图象向左平移个单位,得到函数y=cos2x 的图象.(5)已知双曲线方程为x 2﹣=1,则过点P (1,1)可以作一条直线l 与双曲线交于A ,B两点,使点P 是线段AB 的中点.正确的是 (填序号)三、解答题(本大题共有6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.已知函数f (x )=|2x ﹣a|+|x+1|. (Ⅰ)当a=1时,解不等式f (x )<3; (Ⅱ)若f (x )的最小值为1,求a 的值.18.已知函数f (x )=2cos 2x+sin (2x ﹣)(1)求函数f (x )的单调增区间;最大值,以及取得最大值时x 的取值集合;(2)已知△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,若f (A )=,b+c=2,求实数a 的取值范围.19.已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足a n =,(n ≥2)(1)求证:数列{}是等差数列;(2)求:前n 项和公式S n ;(3)证明:当n ≥2时,S 1+S 2+S 3+…+S n <.20.如图,在四棱锥P ﹣ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,PD=PA ,已知AB=2DC=10,BD=AD=8.(1)设M 是PC 上的一点,求证:平面MBD ⊥平面PAD ;(2)当三角形PAD 为正三角形时,点M 在线段PC (不含线段端点)上的什么位置时,二面角P ﹣AD ﹣M 的大小为.21.已知F 1,F 2是椭圆=1的两焦点,P 是椭圆在第一象限弧上一点,且满足=1过点P 作倾斜角互补的两条直线PA 、PB 分别交椭圆于A ,B 两点, (1)求点P 坐标;(2)求证:直线AB 的斜率为定值; (3)求△PAB 面积的最大值.22.已知函数f (x )=(1)当a ≥1时,求f (x )在[0,e](e 为自然对数的底数)上的最大值;(2)对任意的正实数a ,问:曲线y=f (x )上是否存在两点P ,Q ,使得△POQ (O 为坐标原点)是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?辽宁省大连市2017-2018学年高三上学期期末数学试卷(理科)参考答案一、选择题(每题5分,共60分)1.设U=R,M={y|y=2x+1,﹣≤x≤},N={x|y=lg(x2+3x)},则(∁UM)∩N=()A.(﹣∞,﹣3]∪(2,+∞)B.(﹣∞,﹣3)∪(0,+∞) C.(﹣∞,﹣3)∪(2,+∞)D.(﹣∞,0)∪(2,+∞)【考点】交、并、补集的混合运算.【分析】由全集U=R,先求出CU M,再由集合N能够求出N∩(∁UM).【解答】解:∵全集U=R,M={y|y=2x+1,﹣≤x≤}=[0,2],∴CUM=(﹣∞,0)∪(2,+∞),∵x2+3x>0,解得x>0或x<﹣3∴集合N=(﹣∞,﹣3)∪(0,+∞)∴N∩(∁UM)=(﹣∞,﹣3)∪(2,+∞)故选C.2.抛物线x2=﹣8y的准线方程是()A.x=B.y=2 C.y=D.y=﹣2【考点】抛物线的简单性质.【分析】由抛物线x2=﹣8y可得:2p=8,即可其准线方程.【解答】解:由抛物线x2=﹣8y可得:2p=8,∴=2,其准线方程是y=2.故选:B.3.已知动点P,定点M(1,0)和N(3,0),若|PM|﹣|PN|=2,则点P的轨迹是()A.双曲线B.双曲线的一支C.两条射线D.一条射线【考点】轨迹方程.【分析】先计算|MN|,从而有|PM|﹣|PN|=|MN|,故可确定点P的轨迹.【解答】解:由题意,|MN|=3﹣1=2∵|PM|﹣|PN|=2∴|PM|﹣|PN|=|MN|∴点P的轨迹是射线NP故选D.4.等差数列{an }中,a1+a4+a7=39,a3+a6+a9=27,则数列{an}前9项的和S9等于()A.99 B.66 C.144 D.297【考点】等差数列的前n项和.【分析】由等差数列的性质可得a4=13,a6=9,可得a4+a6=22,再由等差数列的求和公式和性质可得S9=,代值计算可得.【解答】解:由等差数列的性质可得a1+a7=2a4,a3+a9=2a6,又∵a1+a4+a7=39,a3+a6+a9=27,∴a1+a4+a7=3a4=39,a3+a6+a9=3a6=27,∴a4=13,a6=9,∴a4+a6=22,∴数列{an }前9项的和S9====99故选:A5.已知α,β都是锐角,sinα=,cosβ=,则sin(β﹣α)=()A.﹣B.C.﹣D.【考点】两角和与差的正弦函数.【分析】利用同角三角函数基本关系式可求cosα,sinβ的值,进而利用两角差的正弦函数公式即可计算得解.【解答】解:∵α,β都是锐角,sinα=,cosβ=,∴cosα==,sin=,∴sin(β﹣α)=sinβcosα﹣cosβsinα=﹣=.故选:B.6.设a,b是两条不同的直线,α,β是两个不同的平面,a⊂α,b⊥β,则α∥β是a⊥b 的()A.充分不必要条件B.必要不充分条件C.充要条件D.即非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据面面平行和线面垂直的性质,利用充分条件和必要条件的定义即可得到结论.【解答】解:若a⊥b,∵b⊥β,∴a∥β或a⊂β,此时α∥β或α与β相交,即必要性不成立,若α∥β,∵b⊥β,∴b⊥α,∵a⊂α,∴a⊥b,即充分性成立,故α∥β是a⊥b的充分不必要条件,故选:A.7.在△ABC中,若|+|=|﹣|,AB=2,AC=1,E,F为BC边的三等分点,则•=()A.B.C.D.【考点】平面向量数量积的运算.【分析】运用向量的平方即为模的平方,可得=0,再由向量的三角形法则,以及向量共线的知识,化简即可得到所求.【解答】解:若|+|=|﹣|,则=,即有=0,E,F为BC边的三等分点,则=(+)•(+)=()•()=(+)•(+)=++=×(1+4)+0=.故选B.8.已知点A、B、C、D均在球O上,AB=BC=,AC=3,若三棱锥D﹣ABC体积的最大值为,则球O的表面积为()A.36πB.16πC.12πD.π【考点】球内接多面体.【分析】确定∠BAC=120°,S△ABC=,利用三棱锥D﹣ABC的体积的最大值为,可得D 到平面ABC的最大距离,再利用勾股定理,即可求出球的半径,即可求出球O的表面积.【解答】解:设△ABC的外接圆的半径为r,则∵AB=BC=,AC=3,∴∠ABC=120°,S△ABC=,∴2r==2∵三棱锥D﹣ABC的体积的最大值为,∴D到平面ABC的最大距离为3,设球的半径为R,则R2=3+(3﹣R)2,∴R=2,∴球O的表面积为4πR2=16π.故选:B.9.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【考点】由三视图求面积、体积.【分析】该几何体可视为正方体截去两个三棱锥,可得其体积.【解答】解:该几何体可视为正方体截去两个三棱锥,如图所示,所以其体积为.故选D.10.设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n 的取值范围是(A.(﹣∞,2﹣2]∪[2+2,+∞)B.(﹣∞,2]∪[2,+∞)C.[2﹣2,2+2] D.(﹣∞,﹣2]∪[2,+∞)【考点】直线与圆的位置关系.【分析】根据题意可得圆心(1,1)到直线(m+1)x+(n+1)y﹣2=0的距离等于半径,整理得mn=m+n+1,由可求得m+n的范围.【解答】解:由直线与圆相切,可得圆心(1,1)到直线(m+1)x+(n+1)y﹣2=0的距离等于半径,即=1,化简可得|m+n|=,整理得mn=m+n+1,由可知,m+n+1≤,解得m+n∈(﹣∞,2﹣2]∪[2+2,+∞),故选:A.11.已知函数f(x)=asinx﹣bcosx(a,b常数,a≠0,x∈R)在x=处取得最小值,则函数y=f(﹣x)是()A.偶函数且它的图象关于点(π,0)对称B.偶函数且它的图象关于点(,0)对称C.奇函数且它的图象关于点(,0)对称D.奇函数且它的图象关于点(π,0)对称【考点】正弦函数的对称性;三角函数中的恒等变换应用.【分析】根据函数f(x)在x=处取得最小值,求得a=b,f(x)=asin(x﹣),可得f(﹣x)=asinx,从而得出结论.【解答】解:由于函数f(x)=asinx﹣bcosx=sin(x+θ)(a,b常数,a≠0,x∈R),根据函数f(x)在x=处取得最小值,则f()=a+b=﹣,∴a=b,∴f(x)=asinx﹣acosx=asin(x﹣),∴f(﹣x)=asin(﹣x﹣)=﹣asinx,故函数f(x)为奇函数且它的图象关于点(π,0)对称,故选:D.12.已知f(x)为偶函数,且f(x)=f(x﹣4),在区间[0,2]上,f(x)=,g(x)=()|x|+a,若F(x)=f(x)﹣g(x)恰好有4个零点,则a的取值范围是()A.(2,)B.(2,3)C.(2,] D.(2,3]【考点】根的存在性及根的个数判断.【分析】由函数f(x)为偶函数且f(x)=f(x﹣4),则f(x)=f(﹣x),函数的周期为4,求得在区间[﹣2,0]上,f (x )的解析式,作出f (x )和g (x )的图象,通过平移,即可得到所求a 的范围.【解答】解:由函数f (x )为偶函数且f (x )=f (x ﹣4), 则f (x )=f (﹣x ),函数的周期为4,则在区间[﹣2,0]上,有f (x )=,分别作出函数y=f (x )在[﹣2,2]的图象, 并左右平移4个单位,8个单位,可得y=f (x )的图象,再作y=g (x )的图象,注意上下平移.当经过A (1,)时,a==2,经过B (3,)时,a=2,5﹣=.则平移可得2<a <时,图象共有4个交点,即f (x )﹣g (x )恰好有4个零点,故选:A .二、填空题(每题5分,共20分)13.已知等比数列{a n }前n 项和为S n ,a 1+a 2=,a 4+a 5=6,则S 6= . 【考点】等比数列的前n 项和.【分析】设等比数列{a n }的公比为q ,运用通项公式,列出方程,解得公比和首项,再由求和公式,即可得到所求值.【解答】解:设等比数列{a n }的公比为q ,由于,即a 1+a 1q=,a 1q 3+a 1q 4=6,两式相除,可得,q=2,a 1=.则S 6==.故答案为:14.椭圆C 的中点在原点,焦点在x 轴上,若椭圆C 的离心率等于,且它的一个顶点恰好是抛物线x 2=8y 的焦点,则椭圆C 的标准方程为.【考点】椭圆的标准方程.【分析】由题意设椭圆C 的标准方程为,a >b >0,由已知得,由此能求出椭圆C 的标准方程.故答案为:.【解答】解:由题意设椭圆C 的标准方程为,a >b >0,∵抛物线x 2=8y 的焦点为F (0,2),∴由已知得,解得a=4,b=2,∴椭圆C 的标准方程为.故答案为:.15.设直线x ﹣3y+m=0(m ≠0)与双曲线=1(a >0,b >0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.【考点】双曲线的简单性质.【分析】先求出A,B的坐标,可得AB中点坐标为(,),利用点P(m,0)满足|PA|=|PB|,可得=﹣3,从而可求双曲线的离心率.【解答】解:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x﹣3y+m=0联立,可得A(,),B(﹣,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=﹣3,∴a=2b,∴=b,∴e==.故答案为:.16.下列命题中:(1)a=4,A=30°,若△ABC唯一确定,则0<b≤4.(2)若点(1,1)在圆x2+y2+mx﹣y+4=0外,则m的取值范围是(﹣5,+∞);(3)若曲线+=1表示双曲线,则k的取值范围是(1,+∞]∪(﹣∞,﹣4];(4)将函数y=cos(2x﹣)(x∈R)的图象向左平移个单位,得到函数y=cos2x的图象.(5)已知双曲线方程为x 2﹣=1,则过点P (1,1)可以作一条直线l 与双曲线交于A ,B两点,使点P 是线段AB 的中点.正确的是 (2),(5) (填序号) 【考点】命题的真假判断与应用.【分析】由正弦定理求得sinB ,举例说明(1)错误;把点的坐标代入圆的方程说明(2)正确;由双曲线的方程可得关于k 的不等式,求得k 值说明(3)错误;由函数图形的平移可得(4)错误;利用点差法求出直线l 的方程说明(5)正确.【解答】解:对于(1),由,得sinB=.当b=8时,sinB=1,B=90°,C=60°,△ABC 唯一确定,故(1)错误;对于(2),点(1,1)在圆x 2+y 2+mx ﹣y+4=0外,则12+12+m ﹣1+4>0,即m >﹣5,故(2)正确;对于(3),若曲线+=1表示双曲线,则(4+k )(1﹣k )<0,解得k >1或k <﹣4,即k 的取值范围是(1,+∞)∪(﹣∞,﹣4),故(3)错误;对于(4),将函数y=cos (2x ﹣)(x ∈R )的图象向左平移个单位,得到函数图象的解析式为y=cos[2(x+)]=cos (2x+),故(4)错误;对于(5),设A (x 1,y 1),B (x 2,y 2),则,,两式作差得:,∴,∴k AB =2,此时直线方程为y ﹣1=2(x ﹣2),即y=2x ﹣3,联立,得2x 2﹣12x+11=0,△=144﹣88=56>0,故(5)正确.∴正确命题的序号是(2),(5). 故答案为:(2),(5).三、解答题(本大题共有6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.已知函数f (x )=|2x ﹣a|+|x+1|.(Ⅰ)当a=1时,解不等式f(x)<3;(Ⅱ)若f(x)的最小值为1,求a的值.【考点】绝对值不等式的解法.【分析】(Ⅰ)当a=1时,求出函数的分段函数形式,然后求解不等式f(x)<3的解集即可;(Ⅱ)利用绝对值的几何意义求出f(x)的最小值的表达式,利用最小值为1,求a的值.【解答】解:(Ⅰ)因为f(x)=|2x﹣1|+|x+1|=;且f(1)=f(﹣1)=3,所以,f(x)<3的解集为{x|﹣1<x<1};…(Ⅱ)|2x﹣a|+|x+1|=|x﹣|+|x+1|+|x﹣|≥|1+|+0=|1+|当且仅当(x+1)(x﹣)≤0且x﹣=0时,取等号.所以|1+|=1,解得a=﹣4或0.…18.已知函数f(x)=2cos2x+sin(2x﹣)(1)求函数f(x)的单调增区间;最大值,以及取得最大值时x的取值集合;(2)已知△ABC中,角A、B、C的对边分别为a,b,c,若f(A)=,b+c=2,求实数a的取值范围.【考点】三角函数的最值;正弦函数的单调性.【分析】(1)化简可得解析式f(x)=sin(2x+)+1,从而可求函数f(x)的单调增区间;函数f(x)的最大值,并写出f(x)取最大值时x的取值集合;(2)由题意,f(A)=sin(2A+)+1=,化简可求得A的值,在△ABC中,根据余弦定理,由b+c=2,知bc≤1,即a2≥1.又由b+c>a得a<2,即可求实数a的取值范围.【解答】解:(1)f(x)=2cos2x+sin(2x﹣)=cos2x+sin2x+1=sin(2x+)+1,2kπ﹣≤2x+≤2kπ+,可得函数f(x)的单调增区间[kπ﹣,kπ+](k∈Z),函数f(x)的最大值为2.当且仅当sin(2x+)=1,即2x+=2kπ+,即x=kπ+(k∈Z)时取到.所以函数最大值为2时x 的取值集合为{x|x=k π+,k ∈Z}.…(2)由题意,f (A )=sin (2A+)+1=,化简得sin (2A+)=.∵A ∈(0,π),∴2A+=,∴A=.在△ABC 中,根据余弦定理,得a 2=b 2+c 2﹣bc=(b+c )2﹣3bc . 由b+c=2,知bc ≤1,即a 2≥1. ∴当b=c=1时,取等号. 又由b+c >a 得a <2.所以a 的取值范围是[1,2 ).…19.已知数列{a n }中,a 1=1,其前n 项和为S n ,且满足a n =,(n ≥2)(1)求证:数列{}是等差数列;(2)求:前n 项和公式S n ;(3)证明:当n ≥2时,S 1+S 2+S 3+…+S n <. 【考点】数列递推式;数列的求和.【分析】(1)当n ≥2时,,S n ﹣1﹣S n =2S n S n ﹣1,由此能证明数列{}是以1为首项,2为公差的等差数列.(2)由=1+(n ﹣1)×2=2n ﹣1,能求出前n 项和公式S n .(3)由==,利用裂项求和法能证明S 1+S 2+S 3+…+S n <.【解答】证明:(1)∵数列{a n }中,a 1=1,其前n 项和为S n ,且满足a n =,(n ≥2)∴当n ≥2时,,S n ﹣1﹣S n =2S n S n ﹣1,∴当n ≥2时,,∴数列{}是以1为首项,2为公差的等差数列.解:(2)由(1)得=1+(n ﹣1)×2=2n ﹣1,∴S n =.证明:(3)由(2)知:当n ≥2时,==,∴S 1+S 2+S 3+…+S n <1+(1﹣)<﹣<.∴S 1+S 2+S 3+…+S n <.20.如图,在四棱锥P ﹣ABCD 中,平面PAD ⊥平面ABCD ,AB ∥DC ,PD=PA ,已知AB=2DC=10,BD=AD=8.(1)设M 是PC 上的一点,求证:平面MBD ⊥平面PAD ;(2)当三角形PAD 为正三角形时,点M 在线段PC (不含线段端点)上的什么位置时,二面角P ﹣AD ﹣M 的大小为.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定.【分析】(1)通过证明BD ⊥平面PAD ,利用直线与平面垂直的判定定理证明平面MBD ⊥平面PAD .(2)以OA 、OE 、OP 为x ,y ,z 轴,建空间直角坐标系,求出点O ,A ,D ,B ,P ,C 的坐标,设(0<λ<1),平面PAD 的法向量可取:,求出平面MAD 的法向量为,利用空间向量的数量积,结合二面角P ﹣AD ﹣M 的大小为.求出.【解答】(本小题满分12分)解:(1)证明:因为BD=AD=8,得BD=8,AD=6,又AB=10, 所以有AD 2+BD 2=AB 2,即AD ⊥BD ,又因为平面PAD ⊥平面ABCD ,且交线为AD ,所以PD ⊥平面PAD , BD ⊂平面BDM ,故平面MBD ⊥平面PAD .(2)由条件可知,三角形PAD 为正三角形,所以取AD 的中点O ,连PO ,则PO 垂直于AD , 由于平面PAD ⊥平面ABCD ,所以PO 垂直于平面ABCD ,过O 点作BD 的平行线,交AB 于点E ,则有OE ⊥AD ,所以分别以OA 、OE 、OP 为x ,y ,z 轴,建空间直角坐标系所以点O (0,0,0),A (3,0,0),D (﹣3,0,0),B (﹣3,8,0),P (0,0,3),由于AB ∥DC 且AB=2DC ,得到C (﹣6,4,0),设(0<λ<1),则有,因为由(1)的证明可知BD ⊥平面PAD ,所以平面PAD 的法向量可取:,设平面MAD 的法向量为,则有,即有由由二面角P ﹣AD ﹣M 的大小为. ==,解得故当M 满足:PM=PC 时符合条件.21.已知F 1,F 2是椭圆=1的两焦点,P 是椭圆在第一象限弧上一点,且满足=1过点P 作倾斜角互补的两条直线PA 、PB 分别交椭圆于A ,B 两点, (1)求点P 坐标;(2)求证:直线AB 的斜率为定值; (3)求△PAB 面积的最大值.【考点】直线与圆锥曲线的关系;平面向量数量积的运算.【分析】(1)求出椭圆的两焦点坐标,设P (x ,y ),(x >0,y >0),由数量积坐标公式和点在椭圆上,列出方程,解出,即可得到P 的坐标;(2)设出直线PA ,PB 的方程,联立椭圆方程,消去y ,得到x 的二次方程,运用韦达定理,即可解得A ,B 的横坐标,再由直线方程,得到纵坐标,再由斜率公式,即可得证;(3)设出直线AB 的方程,联立椭圆方程,消去y ,得到x 的方程,运用韦达定理,以及弦长公式和点到直线的距离公式,再由面积公式,运用基本不等式,即可得到最大值.【解答】(1)解:F 1,F 2是椭圆=1的两焦点,则c==,即有F 1(0,),F 2(0,﹣),设P (x ,y ),(x >0,y >0),则由=1,得x 2+y 2=3,又=1,解得,x=1,y=.则有点P 的坐标为;(2)证明:由题意知,两直线PA 、PB 的斜率必存在,设直线PB 的斜率为k ,则直线PB 的方程为,由于过点P 作倾斜角互补的两条直线PA 、PB ,则直线PA :y ﹣=﹣k (x ﹣1).由,消去y ,得,设A (x A ,y A ),B (x B ,y B ),由韦达定理,得1+x B =,即有,y B =同理可得,y A =,所以为定值.(3)解:由(2)可设直线AB 的方程为,联立方程,得,消去y ,得,由判别式8m 2﹣16(m 2﹣4)>0,得,x 1+x 2=﹣m ,x 1x 2=,|AB|==易知点P 到直线AB 的距离为,所以,当且仅当m=±2时取等号,满足,所以△PAB 面积的最大值为.22.已知函数f (x )=(1)当a ≥1时,求f (x )在[0,e](e 为自然对数的底数)上的最大值;(2)对任意的正实数a ,问:曲线y=f (x )上是否存在两点P ,Q ,使得△POQ (O 为坐标原点)是以O 为直角顶点的直角三角形,且此三角形斜边中点在y 轴上? 【考点】利用导数研究函数的单调性.【分析】(1)当0≤x <e 时,求导函数,可得f (x )在区间[0,e]上的最大值;(2)假设曲线y=f (x )上存在两点P 、Q 满足题设要求,则点P 、Q 只能在y 轴两侧.设P 、Q 的坐标,由此入手能得到对任意给定的正实数a ,曲线y=f (x )上存在两点P 、Q ,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上.【解答】解:(1)∵f(x)=,当0≤x<1时,f′(x)=﹣3x2+2x=﹣3x(x﹣),令f'(x)>0,解得:0≤x<,令f′(x)<0,解得:<x<1,故f(x)在[0,)递增,在(,1)递减,而f()=,∴f(x)在区间[0,1)上的最大值为,1≤x<e时,f(x)=alnx,f′(x)=>0,f(x)在[1,e]递增,f(x)max=f(e)=a≥1,综上f(x)在[0,e]的最大值是a;(2)曲线y=f(x)上存在两点P、Q满足题设要求,则点P,Q只能在y轴的两侧,不妨设P(t,f(t))(t>0),则Q(﹣t,t3+t2),显然t≠1,∵△POQ是以O为直角顶点的直角三角形,∴•=0,即﹣t2+f(t)(t3+t2)=0.(1)是否存在两点P、Q等价于方程(1)是否有解.若0<t<1,则f(t)=﹣t3+t2,代入(1)式得,﹣t2+(﹣t3+t2)(t3+t2)=0,即t4﹣t2+1=0,而此方程无实数解,因此t>1.∴f(t)=alnt,代入(1)式得,﹣t2+(alnt)(t3+t2)=0,即=(t+1)lnt.(*),考察函数在h(x)=(x+1)lnx(x≥1),则h′(x)=lnx++1>0,∴h(x)在[1,+∞)上单调递增,∵t>1,∴h(t)>h(1)=0,当t→+∞时,h(t)→+∞,∴h(t)的取值范围是(0,+∞).∴对于a>0,方程(*)总有解,即方程(1)总有解.因此对任意给定的正实数a,曲线y=f(x)上总存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上.。
辽宁省大连市2017-2018学年高考数学二模试卷(理科) Word版含解析
2017-2018学年辽宁省大连市高考数学二模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={1,2},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B的子集共有()A.2个B.4个C.6个D.8个2.复数z=1+ai(a∈R)在复平面对应的点在第一象限,且||=,则z的虚部为()A.2 B.4 C.2i D.4i3.对于直线m,n和平面α,β,能得出α⊥β的一个条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂αC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β4.执行如图的程序框图,如果输入x=1,则输出t的值为()A.6 B.8 C.10 D.125.已知{a n}为等差数列,3a4+a8=36,则{a n}的前9项和S9=()A.9 B.17 C.36 D.816.已知函数f(x)=﹣x2﹣x+2,则函数y=f(﹣x)的图象为()A.B.C.D.7.已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3 B.=2x﹣2.4 C.=﹣2x+9.5 D.=﹣0.3x+4.48.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为()A.64 B.C.16 D.9.D是△ABC所在平面内一点,=λ+μ(λ,μ∈R),则0<λ<1,0<μ<1是点D在△ABC内部(不含边界)的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件10.命题p:“∃x0∈[0,],sin2x0+cos2x0>a”是假命题,则实数a的取值范围是()A.a<1 B.a<C.a≥1 D.a≥11.过抛物线C:y2=4x的焦点F的直线l交C于A,B两点,点M(﹣1,2),若•=0,则直线l的斜率k=()A.﹣2 B.﹣1 C.1 D.212.函数f(x)=e ax﹣lnx(a>0)存在零点,则实数a的取值范围是()A.0<a≤B.0<a≤C.a≥D.a≥二、填空题:本大题共4小题,每小题5分,共20分。
辽宁省大连市旅顺中学、旅顺第二高级中学、大连市第三
一、选择题:本题共12小题,每小题4分,在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。
全部选对得4分,选对但不全得2分,有选错的得0分1.某同学通过以下步骤测出了一定高度落下的排球对地面的冲击力,将一张白纸铺在水平地面上,把棒球在水里浸湿,然后让棒球从规定的高度自由落下,并在白纸上留下球的水印.再将印有水印的白纸铺在台秤上,将球放在纸上的水印中心,缓慢地压球,使排球与纸接触部分逐渐发生形变直至刚好遮住水印,记下此时台秤的示数即为冲击力的最大值.下列物理学习或研究中用到的方法与该同学的方法相同的是( )A .建立“合力与分力”的概念B .建立“点电荷”的概念C .建立“电场强度”的概念D .建立“电场线”的概念2.图中的两条图线分别是甲、乙两球从同一地点、沿同一直线运动的v-t 图像,根据图像可以判断A .两球在t=2s 时速度相同B .两球在t=2s 时相距最近C .两球在t=8s 时相遇D .在2s ~8s 内,两球的加速度大小相等3.细绳拴一个质量为m 的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连,平衡时细绳与竖直方向的夹角为53°,如图所示,(已知sin 370.6cos370.8︒=︒=,)以下说法正确的是A .小球静止时弹簧的弹力大小为35mg B .小球静止时细绳的拉力大小为35mg C .细线烧断瞬间小球的加速度立即为gD .细线烧断瞬间小球的加速度立即为53g 4.质量为2kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等,从t=0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F 的作用。
F 随时间t 的变化规律如图所示,重力加速度210/g m s =,则物体在t=0至t=12s 这段时间的位移大小为A .18mB .54mC .72mD .198m5.伽利略曾利用对接斜面研究“力与运动”的关系,如图,固定在水平地面上的倾角均为θ的两斜面,以光滑小圆环相连接,左侧斜面顶端的小球与两斜面的动摩擦因数均为μ,小球从左侧顶端滑到最低点的时间为t 1,滑到右侧最高点的时间为t 2.规定斜面连接处为参考平面,则小球在这个运动过程中速度的大小v 、加速度的大小a 、动能E k 及机械能E 随时间t 变化的关系图线正确的是A .B .C. D.6.火星表面特征非常接近地球,可能适合人类居住,2010年,我国志愿者王跃参加了在俄罗斯进行的“模拟登火星”实验活动,已知半径是地球半径的12,质量是地球质量的19,自转周期也基本相同.地球表面重力加速度是g,若王跃在地面上能向上跳起的最大高度是h,在忽略自转影响的条件下,下述分析正确的是A.王跃在火星表面所受火星引力是他在地球表面所受地球引力的29倍B.火星表面的重力加速度是2 3 gC倍D.若王跃起跳时初速度不变,则他在火星上向上跳起的最大高度是3 2 h7.某带电物体所在空间形成一个电池,沿x轴方向其电势φ的变化如图所示,电子从O 点以v0的初速度沿x轴正方向射出,依次通过a、b、c、d点.(设电子的质量为m)则下列关于电子运动的描述正确的是()A.电子在Oa间做匀加速直线运动B.电子在Od之间一直在做减速直线运动C.要使电子能到达无穷远处,粒子的初速度v0D.电子在cd间运动时其电势能一定减小8.有两根长直导线a、b相互平行放置,如图所示为垂直于导线的截面图,在图示的平面内,O点为两根导线连线的中点,M、N为两根导线附近的两点,它们在两导线连线的中垂线上,且与O点的距离相等,若两导线中通有大小相等,方向相同的恒定电流I,则,则关于线段MN上各点的磁感应强度的说法中正确的是()A .M 点和N 点的磁感应强度大小相等,方向相同B .M 点和N 点的磁感应强度大小不等,方向相反C .在线段MN 上各点的磁感应强度都不可能为零D .在线段MN 上只有一点的磁感应强度为零9.一个正点电荷Q 静止在正方形的一个角上,另一个带电质点射入该区域时,恰好能经过正方形的另外三个角a 、b 、c ,如图所示,则有A .a 、b 、c 三点的电势高低及场强大小的关系是2a c b a c b E E E ϕϕϕ=>==,B .带电质点由a 到b 电势能增加,由b 到c 电场力做正功,在b 点动能最小C .带电质点在a 、b 、c 三处的加速度大小之比是1:2:1D .若改变带电质点在a 处的速度大小和方向,有可能使其经过三点a 、b 、c 做匀速圆周运动10.如图所示,用一轻绳将光滑小球系于竖直墙壁上的O 点,现用一细杆压在轻绳上紧贴墙壁从O 点缓慢下移,下列说法正确的是A.轻绳对小球的拉力逐渐减小B.轻绳对小球的拉力逐渐增大C.小球对墙壁的压力逐渐减小D.小球对墙壁的压力逐渐增大11.如图所示,用一根长杆和两个定滑轮的组合装置用来提升重物M,长杆的一端放在地上通过铰链连接形成转轴,,其端点恰好处于左侧滑轮正下方O点处,在杆的中点C处拴一细绳,通过两个滑轮后挂上重物M.C点与O点距离为L,现在杆的另一端用力使其逆时针匀速转动,由竖直位置以角速度ω缓慢转至水平(转过了90°角),此过程中下述说法正确的是()A.重物M做匀变速直线运动B.重物M做变速直线运动C.重物M的最大速度是ωLD.重物M的速度先增大后减小12.在地面附近,存在着一有界电场,边界MN将空间分成上下两个区域I、II,在区域II中有竖直向上的匀强电场,在区域I中离边界某一高度由静止释放一个质量为m的带电小球A,如图甲所示,小球运动的v-t图象如图乙所示,不计空气阻力,则()A.小球受到的重力与电场力之比为3:5B.在t=5s时,小球经过边界MNC.在小球向下运动的整个过程中,克服电场力做功等于重力势能的变化量D.在1s~4s过程中,小球的机械能先减小后增大二、实验题13.关于高中物理中的几个实验,下列说法中正确的是A.在“探究动能定理”的实验中,通过改变橡皮筋的长度来改变拉力做功的数值B.在“验证力的平行四边形定则”的实验中,采用的科学方法是等效替代法C.在“探究加速度与质量、力的关系”的实验中,平衡摩擦力时应将装有砝码的小桶通过定滑轮栓在小车上D.在处理实验数据时,为了描述实验中测得物理量之间的关系,可先将其在坐标系中描点,然后用一条曲线(包括直线)“拟合”这些点,采用这种图像法可减小误差14.在“描述小灯泡的伏安特性曲线”实验中,某同学选中一个标有“2.5V,0.6W”的小灯泡,除了导线和开关外,还有下列器材可供选择:电压表V1(量程6V,内阻约为6kΩ);电压表V2(量程3V,内阻约为3kΩ);电流表A1(量程300mA,内阻约为1Ω);电流表A2(量程150mA,内阻约为2Ω)滑动变阻器R1(最大阻值200Ω);滑动变阻器R2(最大阻值10Ω)直流电源E1(电动势4.5V,r1=0.8Ω)(1)实验中电压表应选_______,电流表应选_______,滑动变阻器应选_______;(填写器材代号)(2)如图1中的四个电路中应选用_______电路图进行实验.(3)做完上述实验后,该同学接着用上述所选电路分别描绘了三个电学元件的伏安特性曲线,如图2甲所示,则三个元件中属于线性元件的是_____(填写曲线代号).然后他用图2乙所示的电路给三个元件分别供电,并测出给元件1和元件2供电时的电流和电压值,分别标在图甲上,它们是A 点和B 点.已知R 0=8.8Ω,则该电源的电动势E=_____V ,内电阻r=_____Ω.这个电源给元件3供电时,元件3的电功率P=_____W .三、计算题:解答时请写出必要的文字说明、方程式和重要演算步骤。
辽宁省大连市旅顺中学、旅顺第二高级中学、大连市第三
2017-2018学年度上学期十二月考试高三试题数学(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}240,A x x x x Z =-≤∈,{}2,B y y m m A ==∈,则A B ⋂=( )A .{0,1,4}B . 0,1{,6}C .{0,2,4} D . 0,4{,16} 2.设复数121,2,()z i z bi b R =+=+∈,若12z z ⋅为实数,则b 的值为( ) A. 2 B. 1 C. -1 D. -23.已知数列{}n a 是递增的等比数列,13521a a a ++=,36a =,则579a a a ++=( ) A.214 B.212C. 42D. 84 4. 函数234xy x =-+的零点个数为( )A. 0B. 1C. 2D. 35.若圆C 与y 轴相切于点(0,1)P ,与x 轴的正半轴交于,A B 两点,且2AB =,则圆C 的标准方程为( )A. 22((1)2x y ++=B. 22(1)(2x y +++=C. 22((1)2x y +-=D. 22(1)(2x y -+=6.设n S 是等差数列的前n 项和,若3613S S =,则612SS =( ) A.310 B. 13 C. 18 D. 197.在ABC ∆中,90C ∠=︒且3CA CB ==,点M 满足2BM MA =,则CM CB ⋅=( ) A. 2 B. 3 C. 4 D. 68.已知点(2,3),(3,2)A B ---,直线:10l mx y m +--=与线段AB 相交,则直线l 的斜率k 的取值范围是( ) A.34k ≥或4k ≤- B.344k -≤≤ C.15k <- D.344k -≤≤9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A. 96B.80+C.961)π+D.961)π+ 10.若函数()sin()(0)f x A x A ωϕ=+>的部分图象如图所示,则关于()f x 的描述中正确的是( )A.()f x 在51212ππ-(,)上是减函数 B.()f x 在5(,)36ππ上是减函数 C.()f x 在5(,)1212ππ-上是增函数 D.()f x 在5(,)36ππ上是增函数11.已知三棱锥O ABC -的顶点,,A B C 都在半径为3的球面上,O 是球心,56AOB π∠=,则三棱锥O ABC -体积的最大值为( )A.4B.2C.92D.9412.已知函数21()2ln ,()f x x x e e=≤≤,()2g x mx =+,若()f x 与()g x 的图像上存在关于直线1y =对称的点,则实数m 的取值范围是( ) A.224[,]3e -- B.2[,2]e e - C.24[,2]e e - D.24[,]e-+∞ 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若实数,x y 满足不等式组102200x y x y y -+≥⎧⎪+-≥⎨⎪≥⎩,则321z x y =++的最小值为 .14.若0,0a b >>,且ln()0a b +=,则11a b+的最小值是 . 15.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程^^^y b x a =⋅+的^b 约等于9,据此模型预报广告费用为6万元时,销售额约为 .16.设数列{}n a 中,11222,,||11n n n n n a a a b a a ++===+-,n N *∈,则数列{}n b 的通项公式为 . 三、解答题17.已知锐角ABC ∆的三个内角,,A B C 的对边分别是,,a b c ,且222()sin cos a b c C C +-=.(1)求角C ;(2)若c =2b a -的取值范围.18.已知数列{}n a 的前n 项和为n S ,且22,(1,2,3n n S a n =-=),数列{}n b 中,1n b =.点1(,)n n P b b +在直线2y x =+上.(1)求数列{}{},n n a b 的通项公式n a 和n b ;(2)设n n n c a b =,求数列{}n c 的前n 项和n T ,并求167n T <的最大整数n .19.网络购物已经被大多数人接受,随着时间的推移,网络购物的人越来越多,然而也有部分人对网络购物的质量和信誉产生怀疑。
旅顺口区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
旅顺口区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若a >0,b >0,a+b=1,则y=+的最小值是( )A .2B .3C .4D .52. 已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .不能确定3. 点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( ) A.B.C.D.4. 已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),则以下结论正确的是( )A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定5. 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为( )A .560m 3B .540m 3C .520m 3D .500m 36. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A ﹣BEF 的体积为定值班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________D .异面直线AE ,BF 所成的角为定值7. 若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( )A .B .12C .12- D .2-8. 过抛物线y=x 2上的点的切线的倾斜角( )A .30°B .45°C .60°D .135°9. 如图,函数f (x )=Asin (2x+φ)(A >0,|φ|<)的图象过点(0,),则f (x )的图象的一个对称中心是( )A .(﹣,0)B .(﹣,0)C .(,0)D .(,0)10.直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )A .x ﹣y+1=0,2x ﹣y=0B .x ﹣y ﹣1=0,x ﹣2y=0C .x+y+1=0,2x+y=0D .x ﹣y+1=0,x+2y=011.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V ≈L 2h 相当于将圆锥体积公式中的π近似取为( )A .B .C .D .12.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c 成等比数列,且c=2a ,则cosB=( )A .B .C .D .二、填空题13.设集合 {}{}22|27150,|0A x x x B x x ax b =+-<=++≤,满足AB =∅,{}|52A B x x =-<≤,求实数a =__________.14.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量在方向上的投影.15.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .16.阅读如图所示的程序框图,则输出结果S的值为.【命题意图】本题考查程序框图功能的识别,并且与数列的前n项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.17.如图,P是直线x+y-5=0上的动点,过P作圆C:x2+y2-2x+4y-4=0的两切线、切点分别为A、B,当四边形P ACB的周长最小时,△ABC的面积为________.18.直线l:(t为参数)与圆C:(θ为参数)相交所得的弦长的取值范围是.三、解答题19.对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:①f(x)在[m,n]内是单调函数;②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.20.求下列函数的定义域,并用区间表示其结果.(1)y=+;(2)y=.21.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM 的斜率与l的斜率的乘积为定值.4天的用电量与当天气温.气温(℃)14 12 8 6用电量(度)22 26 34 38(1)求线性回归方程;()(2)根据(1)的回归方程估计当气温为10℃时的用电量.附:回归直线的斜率和截距的最小二乘法估计公式分别为:=,=﹣.23.已知函数f(x)=cosx(sinx+cosx)﹣.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.24.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C丄侧面ABB1A1,AC=AA1=AB,∠AA1C1=60°,AB⊥AA1,H为棱CC1的中点,D在棱BB1上,且A1D丄平面AB1H.(Ⅰ)求证:D为BB1的中点;(Ⅱ)求二面角C1﹣A1D﹣A的余弦值.旅顺口区第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】C【解析】解:∵a >0,b >0,a+b=1,∴y=+=(a+b )=2+=4,当且仅当a=b=时取等号.∴y=+的最小值是4. 故选:C .【点评】本题考查了“乘1法”与基本不等式的性质,属于基础题.2. 【答案】C【解析】解:由点P (x 0,y 0)在圆C :x 2+y 2=4外,可得x 02+y 02>4,求得圆心C (0,0)到直线l :x 0x+y 0y=4的距离d=<=2,故直线和圆C 相交, 故选:C .【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.3. 【答案】A【解析】解:点集{(x ,y )|(|x|﹣1)2+y 2=4}表示的图形是一条封闭的曲线,关于x ,y 轴对称,如图所示.由图可得面积S==+=+2.故选:A .【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想.4. 【答案】C【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79), ∴μ1=90,▱1=86,μ2=93,▱2=79,∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定, 故选:C .【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础.5. 【答案】A【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y 轴建立直角坐标系,易得抛物线过点(3,﹣1),其方程为y=﹣,那么正(主)视图上部分抛物线与矩形围成的部分面积S 1==2=4,下部分矩形面积S 2=24,故挖掘的总土方数为V=(S 1+S 2)h=28×20=560m 3.故选:A .【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题.6. 【答案】 D【解析】解:∵在正方体中,AC ⊥BD ,∴AC ⊥平面B 1D 1DB ,BE ⊂平面B 1D 1DB ,∴AC ⊥BE ,故A 正确; ∵平面ABCD ∥平面A 1B 1C 1D 1,EF ⊂平面A 1B 1C 1D 1,∴EF ∥平面ABCD ,故B 正确;∵EF=,∴△BEF 的面积为定值×EF ×1=,又AC ⊥平面BDD 1B 1,∴AO 为棱锥A ﹣BEF 的高,∴三棱锥A ﹣BEF 的体积为定值,故C 正确;∵利用图形设异面直线所成的角为α,当E 与D 1重合时sin α=,α=30°;当F 与B 1重合时tan α=,∴异面直线AE 、BF 所成的角不是定值,故D 错误; 故选D .7. 【答案】D 【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程2043x ax x +=++,解得3,1,x x x a =-=-=-,其对应的根分别为3,1,2x x x =-=-=,所以2a =-,故选D.考点:不等式与方程的关系. 8. 【答案】B【解析】解:y=x 2的导数为y ′=2x ,在点的切线的斜率为k=2×=1,设所求切线的倾斜角为α(0°≤α<180°),由k=tanα=1,解得α=45°.故选:B.【点评】本题考查导数的运用:求切线的斜率,考查直线的倾斜角的求法,考查运算能力,属于基础题.9.【答案】B【解析】解:由函数图象可知:A=2,由于图象过点(0,),可得:2sinφ=,即sinφ=,由于|φ|<,解得:φ=,即有:f(x)=2sin(2x+).由2x+=kπ,k∈Z可解得:x=,k∈Z,故f(x)的图象的对称中心是:(,0),k∈Z当k=0时,f(x)的图象的对称中心是:(,0),故选:B.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,正弦函数的对称性,属于中档题.10.【答案】C【解析】解:圆x2+y2﹣2x+4y=0化为:圆(x﹣1)2+(y+2)2=5,圆的圆心坐标(1,﹣2),半径为,直线l将圆x2+y2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l经过圆心与坐标原点.或者直线经过圆心,直线的斜率为﹣1,∴直线l的方程是:y+2=﹣(x﹣1),2x+y=0,即x+y+1=0,2x+y=0.故选:C.【点评】本题考查直线与圆的位置关系,直线的截距式方程的求法,考查计算能力,是基础题.11.【答案】B【解析】解:设圆锥底面圆的半径为r,高为h,则L=2πr,∴=(2πr)2h,∴π=.故选:B.12.【答案】B【解析】解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.【点评】本题考查余弦定理的运用,要牢记余弦定理的两种形式,并能熟练应用.二、填空题13.【答案】7,32a b=-=【解析】考点:一元二次不等式的解法;集合的运算.【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键. 14.【答案】【解析】解:∵点A(﹣1,1),B(1,2),C(﹣2,﹣1),D(3,4),∴向量=(1+1,2﹣1)=(2,1),=(3+2,4+1)=(5,5);∴向量在方向上的投影是==.15.【答案】114.【解析】解:根据题目要求得出:当5×3的两个面叠合时,所得新的四棱柱的表面积最大,其表面积为(5×4+5×5+3×4)×2=114. 故答案为:114【点评】本题考查了空间几何体的性质,运算公式,学生的空间想象能力,属于中档题,难度不大,学会分析判断解决问题.16.【答案】20172016【解析】根据程序框图可知,其功能是求数列})12)(12(2{+-n n 的前1008项的和,即 +⨯+⨯=532312S =-++-+-=⨯+)2017120151()5131()311(201720152 20172016. 17.【答案】【解析】解析:圆x 2+y 2-2x +4y -4=0的标准方程为(x -1)2+(y +2)2=9. 圆心C (1,-2),半径为3,连接PC ,∴四边形P ACB 的周长为2(P A +AC ) =2PC 2-AC 2+2AC =2PC 2-9+6.当PC 最小时,四边形P ACB 的周长最小. 此时PC ⊥l .∴直线PC 的斜率为1,即x -y -3=0,由⎩⎪⎨⎪⎧x +y -5=0x -y -3=0,解得点P 的坐标为(4,1),由于圆C 的圆心为(1,-2),半径为3,所以两切线P A ,PB 分别与x 轴平行和y 轴平行, 即∠ACB =90°,∴S △ABC =12AC ·BC =12×3×3=92.即△ABC 的面积为92.答案:9218.【答案】 [4,16] .【解析】解:直线l :(t 为参数),化为普通方程是=,即y=tan α•x+1;圆C 的参数方程(θ为参数),化为普通方程是(x ﹣2)2+(y ﹣1)2=64;画出图形,如图所示;∵直线过定点(0,1),∴直线被圆截得的弦长的最大值是2r=16,最小值是2=2×=2×=4∴弦长的取值范围是[4,16].故答案为:[4,16].【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题.三、解答题19.【答案】【解析】解:(1)∵y=x 2在区间[0,1]上单调递增.又f (0)=0,f (1)=1, ∴值域为[0,1],∴区间[0,1]是y=f (x )=x 2的一个“和谐区间”.(2)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程的同号的相异实数根.∵x2﹣3x+5=0无实数根,∴函数不存在“和谐区间”.(3)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数在[m,n]上单调递增.若[m,n]是已知函数的“和谐区间”,则故m、n是方程,即a2x2﹣(a2+a)x+1=0的同号的相异实数根.∵,∴m,n同号,只须△=a2(a+3)(a﹣1)>0,即a>1或a<﹣3时,已知函数有“和谐区间”[m,n],∵,∴当a=3时,n﹣m取最大值20.【答案】【解析】解:(1)∵y=+,∴,解得x≥﹣2且x≠﹣2且x≠3,∴函数y的定义域是(﹣2,3)∪(3,+∞);(2)∵y=,∴,解得x≤4且x≠1且x≠3,∴函数y的定义域是(﹣∞,1)∪(1,3)∪(3,4].21.【答案】【解析】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.22.【答案】【解析】解:(1)由表可得:;又;∴,;∴线性回归方程为:;(2)根据回归方程:当x=10时,y=﹣2×10+50=30;∴估计当气温为10℃时的用电量为30度.【点评】考查回归直线的概念,以及线性回归方程的求法,直线的斜截式方程.23.【答案】【解析】解:(1)∵0<α<,且sinα=,∴cosα=,∴f(α)=cosα(sinα+cosα)﹣,=×(+)﹣=.(2)f(x)=cosx(sinx+cosx)﹣.=sinxcosx+cos2x﹣=sin2x+cos2x=sin(2x+),∴T==π,由2kπ﹣≤2x+≤2kπ+,k∈Z,得kπ﹣≤x≤kπ+,k∈Z,∴f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z.24.【答案】【解析】(Ⅰ)证明:连接AC1,∵AC=AA1,∠AA1C1=60°,∴三角形ACC1是正三角形,∵H是CC1的中点,∴AH⊥CC1,从而AH⊥AA1,∵侧面AA1C1C丄侧面ABB1A1,面AA1C1C∩侧面ABB1A1=AA1,AH⊂平面AA1C1C,∴AH⊥ABB1A1,以A为原点,建立空间直角坐标系如图,设AB=,则AA=2,1则A(0,2,0),B(,2,0),D(,t,0),1则=(,2,0),=(,t﹣2,0),∵A1D丄平面AB1H.AB1⊂丄平面AB1H.∴A1D丄AB1,则•=(,2,0)•(,t﹣2,0)=2+2(t﹣2)=2t﹣2=0,得t=1,即D(,1,0),∴D为BB1的中点;(2)C(0,1,),=(,﹣1,0),=(0,﹣1,),1设平面C1A1D的法向量为=(x,y,z),则由•=x﹣y=0),•=﹣y+z=0,得,令x=3,则y=3,z=,=(3,3,),显然平面ADA的法向量为==(0,0,),1则cos<,>===,即二面角C1﹣A1D﹣A的余弦值是.【点评】本题主要考查空间直线和平面位置关系的判断以及二面角的求解,建立坐标系,求出平面的法向量,利用向量法是解二面角的常用方法.综合性较强,运算量较大.。
辽宁省大连市旅顺第二高级中学2018-2019学年高二数学文上学期期末试题含解析
辽宁省大连市旅顺第二高级中学2018-2019学年高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 掷一枚骰子,则掷得奇数点的概率是()A.B.C.D.参考答案:B【考点】古典概型及其概率计算公式.【分析】本题是一个古典概型,试验发生包含的事件是掷一颗骰子,共有6种结果,满足条件的事件是掷的奇数点,共有3种结果,根据概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件是掷一颗骰子,共有6种结果,满足条件的事件是掷的奇数点,共有3种结果,根据古典概型概率公式得到P=,故选B.2. 点是双曲线右支上一点,是该双曲线的右焦点,点为线段的中点。
若,则点到该双曲线右准线的距离为()A、 B、 C、 D、参考答案:A3. 在集合中任取一个偶数和一个奇数构成以原点为起点的向量.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为,其中面积不超过的平行四边形的个数为,则( )A.B.C.D.参考答案:D略4. 给出以下命题①若则;②已知直线与函数,的图象分别交于两点,则的最大值为;③若是△的两内角,如果,则;④若是锐角△的两内角,则。
其中正确的有()个A. 1B. 2C. 3D. 4参考答案:D略5. 对任意实数x,有,则a2=()A.3 B.6 C.9 D.21参考答案:B【考点】二项式定理的应用.【分析】根据题意,将x3变形为[(x﹣2)+2]3,由二项式定理可得x3=[(x﹣2)+2]3=C30(x﹣2)023+C3122(x﹣2)+C3221(x﹣2)2+C3320(x﹣2)3,又由题意,可得a2=C3221,计算可得答案.【解答】解:根据题意,,而x3=[(x﹣2)+2]3=C30(x﹣2)023+C3122(x﹣2)+C3221(x﹣2)2+C3320(x﹣2)3,则a2=C3221=6;故选B.【点评】本题考查二项式定理的应用,关键是将x3变形为[(x﹣2)+2]3,进而由二项式定理将其展开.6. 点P、Q在曲线上,O是坐标系原点,P、Q在轴上的射影是M、N,并且平分,则的最小值是()A. -1B.0C.1 D. 2参考答案:B略7. 设抛物线的顶点在原点,准线方程为,则抛物线的方程是()A. B. C. D.参考答案:C8. 某一数学问题可用综合法和分析法两种方法证明,有5位同学只会用综合法证明,有3位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数有()种.A. 8B. 15C. 18D. 30参考答案:A【分析】本题是一个分类计数问题,解决问题分成两个种类,根据分类计数原理知共有3+5=8种结果.【详解】由题意知本题是一个分类计数问题,解决问题分成两个种类,一是可以用综合法证明,有5种方法,一是可以用分析法来证明,有3种方法,根据分类计数原理知共有3+5=8种结果,故选:A.【点睛】本题考查分类计数问题,本题解题的关键是看清楚完成这个过程包含两种方法,看出每一种方法所包含的基本事件数,相加得到结果.9. 函数f(x)=e x+x﹣2的零点所在的一个区间是( )A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)参考答案:C考点:函数零点的判定定理.专题:函数的性质及应用.分析:将选项中各区间两端点值代入f(x),满足f(a)?f(b)<0(a,b为区间两端点)的为答案.解答:解:因为f(0)=﹣1<0,f(1)=e﹣1>0,所以零点在区间(0,1)上,故选C.点评:本题考查了函数零点的概念与零点定理的应用,属于容易题.函数零点附近函数值的符号相反,这类选择题通常采用代入排除的方法求解.10. 已知向量,则等于( )A. B. C.25D.5参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 若,则▲.参考答案:略12. 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第个图案中有白色地面砖的块数是 .参考答案:4n+213. (5分)(2014秋?郑州期末)设x,y均为正数,且+=,则xy的最小值为.参考答案:9【考点】:基本不等式.【专题】:不等式的解法及应用.【分析】:由已知式子变形可得xy=x+y+3,由基本不等式可得xy≥2+3,解关于的一元二次不等式可得.解:∵x,y均为正数,且+=,∴=,整理可得xy=x+y+3,由基本不等式可得xy≥2+3,整理可得()2﹣2﹣3≥0,解得≥3,或≤﹣1(舍去)∴xy≥9,当且仅当x=y时取等号,故答案为:9【点评】:本题考查基本不等式和不等式的解法,属基础题.14. 双曲线的中心在坐标原点,离心率等于,一个焦点的坐标为,则此双曲线的方程是.参考答案:略15. 下列命题中________为真命题.①“∀x?R,x2+1>1”的否定是“∃ x?R,x2+1≤1”;②“若x2+y2=0,则x,y全为0”的逆否命题;③“若{a n}为等比数列,则a n=a1⋅q n-1”的逆命题;④“若sinα+cosα=(0<α<π),则α为锐角”的否命题.参考答案:①②16. 阅读下面的算法框图.若输入m=4,n=6,则输出a=________,i=_______.参考答案:略17. 复数(i为虚数单位)的虚部为.参考答案:三、解答题:本大题共5小题,共72分。
辽宁省大连市旅顺口区第三高级中学2019年高三数学文上学期期末试卷含解析
辽宁省大连市旅顺口区第三高级中学2019年高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 由若干个棱长为1的正方体搭成的几何体主视图与侧视图相同(如图所示),则搭成该几何体体积的最大值最小值的和等于参考答案:A略2. 若(x+)n展开式的二项式系数之和为64,则展开式的常数项为()A.10 B.20 C.30 D.120参考答案:B3. 已知i为虚数单位,a为实数,复数在复平面内对应的点为M,则“”是“点M在第四象限”的( )(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件参考答案:A4. 设变量满足约束条件则目标函数的最大值为 ( )A.4B.11C.12D.14参考答案:B5. 已知,则的值是A. B. C. D.参考答案:C略6. 对于直角坐标系内任意两点P1(x1,y1)、 P2(x2,y2),定义运算,若M是与原点相异的点,且,则∠MON ()A. B. C.D.参考答案:B7. 已知,那么tan x等于()A.B.C.D.参考答案:D略8. 某大学的8名同学准备拼车去旅游,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车。
每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自于同一年级的乘坐方式共有A.24种 B.18种 C.48种 D.36种参考答案:A若大一的孪生姐妹乘坐甲车,则此时甲车中的另外2人分别来自不同年级,有种,若大一的孪生姐妹不乘坐甲车,则2名同学来自一个年级,另外2名分别来自两个年级。
有,所以共有24种乘车方式,选A.9. 已知数列为等差数列,且,则()A. B. C. D.参考答案:A略10. 已知满足约束条件,设表示的平面区域为,在区域内任取一点,则此点到直线的距离大于的概率为( )(A) (B) (C) ( D)参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11. 已知数列{a n}的前n项和S n满足a n+3S n S n﹣1=0(n≥2,n∈N+),a1=,则na n的最小值为.参考答案:考点:数列递推式.专题:等差数列与等比数列.分析:由题意可得数列{}是以3为首项,以3为公差的等差数列,求出其前n项和后代入na n,然后由数列的函数特性求得na n的最小值.解答:解:∵a n+3S n S n﹣1=0(n≥2,n∈N+),∴S n﹣S n﹣1+3S n S n﹣1=0,∵a1=,∴S n?S n﹣1≠0,化简得:,(n≥2,n∈N+),∴数列{}是以3为首项,以3为公差的等差数列,则,,从而=(n≥2),要使na n最小,则需最小,即n=2时最小,此时.当n=1时,,故对任意n∈N*,na n的最小值为.点评:本题考查了数列递推式,考查了等差关系的确定,考查了数列的函数特性,是中档题.12. 函数图像上一个最高点为, 相邻的一个最低点为,则参考答案:13. 已知向量和的夹角为120°,,则= .参考答案:7略14. 口袋中有个白球,3个红球,依次从口袋中任取一球,如果取到红球,那么继续取球且取出的红球不放回;如果取到白球,就停止取球.则取球次数的数学期望为.参考答案:15. 欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱入孔入,而钱不湿,可见“行行出状元”,卖油翁的技艺让人叹为观止,若铜钱是直径为2cm的圆,中间有边长为0.5cm的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为.参考答案:【考点】几何概型.【分析】求出圆和正方形的面积,结合几何概型的概率公式进行计算即可.【解答】解:正方形的面积S=0.5×0.5=0.25,若铜钱的直径为2cm,则半径是1,圆的面积S=π×12=π,则随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率P==,故答案为:.16. 如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截正方体所得的截面为S,当时,S的面积为.参考答案:当CQ=1时,Q与C1重合,取A1D1的中点F,连接AF,可证PC1∥AF,且PC1=AF,可知截面为APC1F为菱形,故其面积为.17. 复数z满足(﹣1+i)z=(1+i)2,其中i为虚数单位,则复数z= .参考答案:1﹣i【考点】复数相等的充要条件.【专题】转化思想;数学模型法;数系的扩充和复数.【分析】利用复数的运算性质、共轭复数的定义即可得出.【解答】解:(﹣1+i)z=(1+i)2,∴z==﹣=﹣(i﹣1)=1﹣i.故答案为:1﹣i.【点评】本题考查了复数的运算性质、共轭复数的定义,考查了推理能力与计算能力,属于基础题.三、解答题:本大题共5小题,共72分。
旅顺口区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案
旅顺口区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知定义在R 上的函数f (x )满足f (x )=,且f (x )=f (x+2),g (x )=,则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为()A .12B .11C .10D .92. 已知,若存在,使得,则的()(2)(0)x b g x ax a e a x =-->0(1,)x ∈+∞00()'()0g x g x +=b a取值范围是()A . B.C.D .(1,)-+∞(1,0)-(2,)-+∞(2,0)-3. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则的值为()A .B .C .D . 4. 若,,且,则λ与μ的值分别为( )A .B .5,2C .D .﹣5,﹣25. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是( )A .B .y=x 2C .y=﹣x|x|D .y=x ﹣26. 是平面内不共线的两向量,已知,,若三点共线,则的值是12,e e u r u u r 12AB e ke =-u u u r u r u u r 123CD e e =-u u u r u r u u r,,A B D ( )A .1 B .2C .-1D .-27. 已知f (x )在R 上是奇函数,且f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (7)=()A .﹣2B .2C .﹣98D .988. 已知||=3,||=1,与的夹角为,那么|﹣4|等于()A .2B .C .D .139. 某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .2sin 2cos 2αα-+B .sin 3αα+C. 3sin 1αα-+D .2sin cos 1αα-+10.已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )A .B .C .2D .411.两个随机变量x ,y 的取值表为x 0134y2.24.34.86.7若x ,y 具有线性相关关系,且=bx +2.6,则下列四个结论错误的是()y ^A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.6512.设双曲线焦点在y 轴上,两条渐近线为,则该双曲线离心率e=()A .5B .C .D .二、填空题13.函数()2log f x x =在点()1,2A 处切线的斜率为 ▲ .14.已知函数f (x )=,g (x )=lnx ,则函数y=f (x )﹣g (x )的零点个数为 .15.已知双曲线﹣=1(a >0,b >0)的一条渐近线方程是y=x ,它的一个焦点在抛物线y 2=48x 的准线上,则双曲线的方程是 .16.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 .17.已知三棱柱ABC ﹣A 1B 1C 1的侧棱和底面垂直,且所有棱长都相等,若该三棱柱的各顶点都在球O 的表面上,且球O 的表面积为7π,则此三棱柱的体积为 .18.如果实数满足等式,那么的最大值是 .,x y ()2223x y -+=yx三、解答题19.(本小题满分12分)如图,在直四棱柱中,.1111ABCD A B C D -60,,BAD AB BD BC CD ∠===o(1)求证:平面平面;11ACC A ⊥1A BD (2)若,,求三棱锥的体积.BC CD ⊥12AB AA ==11B A BD -20.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的参数方程为(x C ⎪⎩⎪⎨⎧==θθsin 2cos 2y x θ为参数,),直线的参数方程为(为参数).],0[πθ∈l 2cos 2sin x t y t ì=+ïí=+ïîaat (I )点在曲线上,且曲线在点处的切线与直线垂直,求点的极坐标;D C C D +2=0x y +D (II )设直线与曲线有两个不同的交点,求直线的斜率的取值范围.l C l 【命题意图】本题考查圆的参数方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.21.设函数,若对于任意x ∈[﹣1,2]都有f (x )<m 成立,求实数m 的取值范围.22.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,请在此正方体中取出四个顶点构成一个三棱锥,满足三棱锥的四个面都是直角三角形,并求此三棱锥的体积.ABCDA 1C 1B 1D 123.(本小题满分16分)给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =- (1)若()f x 在1=x 处取最值.求的值;(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围;(3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.24.双曲线C :x 2﹣y 2=2右支上的弦AB 过右焦点F .(1)求弦AB 的中点M 的轨迹方程(2)是否存在以AB 为直径的圆过原点O ?若存在,求出直线AB 的斜率K 的值.若不存在,则说明理由.旅顺口区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:∵f(x)=f(x+2),∴函数f(x)为周期为2的周期函数,函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)对称,函数f(x)与g(x)在[﹣3,7]上的交点也关于(2,3)对称,设A,B,C,D的横坐标分别为a,b,c,d,则a+d=4,b+c=4,由图象知另一交点横坐标为3,故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11,即函数y=f(x)﹣g(x)在[﹣3,7]上的所有零点之和为11.故选:B.【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.2.【答案】A【解析】考点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).3. 【答案】C【解析】解:F 1,F 2为椭圆=1的两个焦点,可得F 1(﹣,0),F 2().a=2,b=1.点P 在椭圆上,若线段PF 1的中点在y 轴上,PF 1⊥F 1F 2,|PF 2|==,由勾股定理可得:|PF 1|==.==.故选:C .【点评】本题考查椭圆的简单性质的应用,考查计算能力. 4. 【答案】A 【解析】解:由,得.又,,∴,解得.故选:A.【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.5.【答案】D【解析】解:函数为非奇非偶函数,不满足条件;函数y=x2为偶函数,但在区间(0,+∞)上单调递增,不满足条件;函数y=﹣x|x|为奇函数,不满足条件;函数y=x﹣2为偶函数,在区间(0,+∞)上单调递减,满足条件;故选:D【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题.6.【答案】B【解析】考点:向量共线定理.7.【答案】A【解析】解:因为f(x+4)=f(x),故函数的周期是4所以f(7)=f(3)=f(﹣1),又f(x)在R上是奇函数,所以f(﹣1)=﹣f(1)=﹣2×12=﹣2,故选A.【点评】本题考查函数的奇偶性与周期性.8.【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos<,>=3×1×=,即有|﹣4|===.故选:C.【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题. 9. 【答案】A 【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.10.【答案】A【解析】解:分两类讨论,过程如下:①当a >1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是增函数,∴f (x )=a x ﹣1+log a x 在[1,2]上递增,∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,∴log a 2=﹣1,得a=,舍去;②当0<a <1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是减函数,∴f (x )=a x ﹣1+log a x 在[1,2]上递减,∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,∴log a 2=﹣1,得a=,符合题意;故选A . 11.【答案】【解析】选D.由数据表知A 是正确的,其样本中心为(2,4.5),代入=bx +2.6得b =0.95,即=0.95x +y ^ y ^2.6,当=8.3时,则有8.3=0.95x +2.6,∴x =6,∴B 正确.根据性质,随机误差的均值为0,∴C 正确.样y ^e 本点(3,4.8)的残差=4.8-(0.95×3+2.6)=-0.65,∴D 错误,故选D.e ^12.【答案】C【解析】解:∵双曲线焦点在y 轴上,故两条渐近线为 y=±x ,又已知渐近线为,∴ =,b=2a ,故双曲线离心率e====,故选C .【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键. 二、填空题13.【答案】1ln 2【解析】试题分析:()()111ln 2ln 2f x k f x ''=∴==Q 考点:导数几何意义【思路点睛】(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.14.【答案】 3【解析】解:令g (x )=f (x )﹣log 4x=0得f (x )=log 4x∴函数g (x )=f (x )﹣log 4x 的零点个数即为函数f (x )与函数y=log 4x 的图象的交点个数,在同一坐标系中画出函数f (x )与函数y=log 4x 的图象,如图所示,有图象知函数y=f (x )﹣log 4 x 上有3个零点.故答案为:3个.【点评】此题是中档题.考查函数零点与函数图象交点之间的关系,体现了转化的思想和数形结合的思想,体现学生灵活应用图象解决问题的能力. 15.【答案】【解析】解:因为抛物线y 2=48x 的准线方程为x=﹣12,则由题意知,点F(﹣12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为.故答案为:.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键. 16.【答案】 .【解析】解:由题意可得,2a,2b,2c成等差数列∴2b=a+c∴4b2=a2+2ac+c2①∵b2=a2﹣c2②①②联立可得,5c2+2ac﹣3a2=0∵∴5e2+2e﹣3=0∵0<e<1∴故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题17.【答案】 .【解析】解:如图,∵三棱柱ABC﹣A1B1C1的所有棱长都相等,6个顶点都在球O的球面上,∴三棱柱为正三棱柱,且其中心为球的球心,设为O,再设球的半径为r,由球O的表面积为7π,得4πr2=7π,∴r=.设三棱柱的底面边长为a,则上底面所在圆的半径为a,且球心O到上底面中心H的距离OH=,∴r2=()2+(a)2,即r=a,∴a=.则三棱柱的底面积为S==.∴==.故答案为:.【点评】本题考查球的内接体与球的关系,球的半径的求解,考查计算能力,是中档题. 18.【解析】考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把的最值转化为直线与圆相切是解答的关键,属于中档试题.yx三、解答题19.【答案】【解析】(1)证明:∵,,60AB BD BAD =∠=o∴为正三角形,∴.ABD ∆AB AD = ∵,为公共边,CB CD =AC ∴.ABC ADC ∆≅∆∴,∴.CAB CAD ∠=∠AC BD ⊥∵四棱柱是直四棱柱,1111ABCD A B C D -∴平面,∴.1AA ⊥ABCD 1AA BD ⊥∵,∴平面.1AC AA A =I BD ⊥11ACC A ∵平面,∴平面平面.BD ⊂1A BD 1A BD ⊥11ACC A (2)∵∥,∴,1AA 1BB 11111B A BD A BB D A BB D V V V ---==由(1)知.AC BD ⊥∵四棱柱是直四棱柱,1111ABCD A B C D -∴平面,∴.1BB ⊥ABCD 1BB AC ⊥ ∵,∴平面.1BD BB B =I AC ⊥1BB D 记,AC BD O =I∴,11111(22)332A BB D BB D V S AO -∆=⋅=⨯⨯⨯=∴三棱锥.11B A BD -20.【答案】【解析】(Ⅰ)设D 点坐标为,由已知得是以为半径的上半圆,)q q C (0,0)O 因为C 在点处的切线与垂直,所以直线与直线的斜率相同,,故D 点的直角坐标D l OD +2=0x y +34πθ=为,极坐标为.(1,1)-34p (Ⅱ)设直线:与半圆相切时l 2)2(+-=x k y )0(222≥=+y y x 21|22|2=+-kk ,(舍去)0142=+-∴k k 32-=∴k 32+=k设点,则,)0,2(-B 2ABk =-故直线. l 22-21.【答案】 【解析】解:∵,∴f ′(x )=3x 2﹣x ﹣2=(3x+2)(x ﹣1),∴当x ∈[﹣1,﹣),(1,2]时,f ′(x )>0;当x ∈(﹣,1)时,f ′(x )<0;∴f (x )在[﹣1,﹣),(1,2]上单调递增,在(﹣,1)上单调递减;且f (﹣)=﹣﹣×+2×+5=5+,f (2)=8﹣×4﹣2×2+5=7;故f max (x )=f (2)=7;故对于任意x ∈[﹣1,2]都有f (x )<m 成立可化为7<m ;故实数m 的取值范围为(7,+∞).【点评】本题考查了导数的综合应用及恒成立问题的处理方法,属于中档题. 22.【答案】【解析】解:连结BD ,B 1D ,B 1C ,则三棱锥B 1﹣BCD 即为符合条件的一个三棱锥,三棱锥的体积V==.【点评】本题考查了正方体的结构特征,棱锥的体积计算,属于基础题. 23.【答案】(1) 2a = (2) a ≥2(3)两个零点.【解析】试题分析:(1) 开区间的最值在极值点取得,因此()f x 在1=x 处取极值,即(1)0f =′,解得2a = ,需验证(2) ()h x 在区间(]0,1上单调递减,转化为()0h x ′≤在区间(]0,1上恒成立,再利用变量分离转化为对应函数最值:241x a x +≥的最大值,根据分式函数求最值方法求得()241x F x x =+最大值2(3)先利用导数研究函数()x m 单调性:当()1,0∈x 时,递减,当()+∞∈,1x 时,递增;再考虑区间端点函数值的符号:()10m <,4)0m e ->( , 4()0m e >,结合零点存在定理可得零点个数试题解析:(1) ()2af x x x=-′由已知,(1)0f =′即: 20a -=,解得:2a = 经检验 2a = 满足题意所以 2a =………………………………………4分因为(]0,1x ∈,所以[)11,x ∈+∞,所以2min112x x ⎛⎫⎛⎫+= ⎪ ⎪ ⎪⎝⎭⎝⎭所以()max 2F x =,所以a ≥2 ……………………………………10分(3)函数()()()6m x f x g x =--有两个零点.因为()22ln 6m x x x x =--+-所以()221m x x x =--+==′………12分当()1,0∈x 时,()0<'x m ,当()+∞∈,1x 时,()0>'x m 所以()()min 140m x m ==-<,……………………………………14分3241-e)(1+e+2e )(=0em e -<() ,8424812(21))0e e e m e e -++-=>( 4442()1)2(7)0m e e e e =-+->( 故由零点存在定理可知:函数()x m 在4(,1)e - 存在一个零点,函数()x m 在4(1,)e 存在一个零点,所以函数()()()6m x f x g x =--有两个零点. ……………………………………16分考点:函数极值与最值,利用导数研究函数零点,利用导数研究函数单调性【思路点睛】对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.24.【答案】【解析】解:(1)设M (x ,y ),A (x 1,y 1)、B (x 2,y 2),则x 12﹣y 12=2,x 22﹣y 22=2,两式相减可得(x 1+x 2)(x 1﹣x 2)﹣(y 1+y 2)(y 1﹣y 2)=0,∴2x (x 1﹣x 2)﹣2y (y 1﹣y 2)=0,∴=,∵双曲线C :x 2﹣y 2=2右支上的弦AB 过右焦点F (2,0),∴,化简可得x 2﹣2x ﹣y 2=0,(x ≥2)﹣﹣﹣﹣﹣﹣﹣(2)假设存在,设A (x 1,y 1),B (x 2,y 2),l AB :y=k (x ﹣2)由已知OA ⊥OB 得:x 1x 2+y 1y 2=0,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣①,所以(k 2≠1)﹣﹣﹣﹣﹣﹣﹣﹣②联立①②得:k 2+1=0无解所以这样的圆不存在.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣ 。
旅顺口区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(1)
旅顺口区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 下列语句所表示的事件不具有相关关系的是( )A .瑞雪兆丰年B .名师出高徒C .吸烟有害健康D .喜鹊叫喜2. 已知M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅,则实数a 的取值范围为()A .(﹣∞,1)B .(﹣∞,1]C .(﹣∞,0)D .(﹣∞,0]3. 曲线y=在点(1,﹣1)处的切线方程为( )A .y=x ﹣2B .y=﹣3x+2C .y=2x ﹣3D .y=﹣2x+14.是首项,公差的等差数列,如果,则序号等于( )A .667B .668C .669D .6705. 阅读下面的程序框图,则输出的S=()A .14B .20C .30D .556. 已知向量与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为( )A .1B .2C .3D .47. 对于复数,若集合具有性质“对任意,必有”,则当时,等于 ( )A1B-1C0班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________D8. 如图,设全集U=R ,M={x|x >2},N={0,1,2,3},则图中阴影部分所表示的集合是()A .{3}B .{0,1}C .{0,1,2}D .{0,1,2,3}9. 直径为6的球的表面积和体积分别是( )A .B .C .D .144,144ππ144,36ππ36,144ππ36,36ππ10.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①系统抽样,②简单随机抽样,③分层抽样D .①分层抽样,②系统抽样,③简单随机抽样11.的展开式中,常数项是( )62)21(x x -A .B .C .D .45-451615-161512.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( )A .0.42B .0.28C .0.3D .0.7二、填空题13.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 . 14.如图所示,圆中,弦的长度为,则的值为_______.C AB 4AB AC ×u u u r u u u r【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.15.已知i是虚数单位,复数的模为 .16.给出下列命题:(1)命题p:;菱形的对角线互相垂直平分,命题q:菱形的对角线相等;则p∨q是假命题(2)命题“若x2﹣4x+3=0,则x=3”的逆否命题为真命题(3)“1<x<3”是“x2﹣4x+3<0”的必要不充分条件(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.其中叙述正确的是 .(填上所有正确命题的序号)17.圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线x﹣y+1=0相交所得的弦长为,则圆的方程为 .18.设函数f(x)=,则f(f(﹣2))的值为 .三、解答题19.已知椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求△F2PQ面积的最小值.20.计算下列各式的值:(1)(2)(lg5)2+2lg2﹣(lg2)2.21.某民营企业生产A ,B 两种产品,根据市场调查和预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A ,B 两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A ,B 两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).22.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c=asinC ﹣ccosA .(1)求A ;(2)若a=2,△ABC 的面积为,求b ,c .23.(本题满分12分)已知向量,,,记函数(sin cos ))a x x x =+r )cos sin ,(cos x x x b -=R x ∈.x f ⋅=)((1)求函数的单调递增区间;)(x f(2)在中,角的对边分别为且满足,求的取值范围.ABC ∆C B A ,,c b a ,,C a c b cos 22=-)(B f 【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.24.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X ,求X 的分布列和数学期望.旅顺口区第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:根据两个变量之间的相关关系,可以得到瑞雪兆丰年,瑞雪对小麦有好处,可能使得小麦丰收,名师出高徒也具有相关关系,吸烟有害健康也具有相关关系,故选D.【点评】本题考查两个变量的线性相关关系,本题解题的关键是根据实际生活中两个事物之间的关系确定两个变量之间的关系,本题是一个基础题.2.【答案】D【解析】解:如图,M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,则a≤0.∴实数a的取值范围为(﹣∞,0].故选:D.【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题.3.【答案】D【解析】解:y′=()′=,∴k=y′|x=1=﹣2.l:y+1=﹣2(x﹣1),则y=﹣2x+1.故选:D4.【答案】C【解析】由已知,由得,故选C答案:C5.【答案】C【解析】解:∵S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=5>4退出循环,故答案为C.【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题.6.【答案】A【解析】解:∵向量与的夹角为60°,||=2,||=6,∴(2﹣)•=2﹣=2×22﹣6×2×cos60°=2,∴2﹣在方向上的投影为=.故选:A.【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目.7.【答案】B【解析】由题意,可取,所以8.【答案】C【解析】解:由图可知图中阴影部分所表示的集合∁M∩N,∵全集U=R,M={x|x>2},N={0,1,2,3},∴∁M={x|x≤2},∴∁M∩N={0,1,2},故选:C【点评】本题主要考查集合的基本运算,根据条件确定集合的基本关系是解决本题的关键.9.【答案】D【解析】考点:球的表面积和体积.10.【答案】A【解析】解;观察所给的四组数据,①个体没有差异且总数不多可用随机抽样法,简单随机抽样,②将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号,系统抽样,③个体有了明显了差异,所以选用分层抽样法,分层抽样,故选A . 11.【答案】D【解析】,2612316611()()()22r r r r r r r T C x C x x --+=-=-令,解得.1230r -=4r =∴常数项为.446115()216C -=12.【答案】C【解析】解:∵口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,在口袋中摸球,摸到红球,摸到黑球,摸到白球这三个事件是互斥的摸出红球的概率是0.42,摸出白球的概率是0.28,∵摸出黑球是摸出红球或摸出白球的对立事件,∴摸出黑球的概率是1﹣0.42﹣0.28=0.3,故选C .【点评】本题考查互斥事件的概率,注意分清互斥事件与对立事件之间的关系,本题是一个简单的数字运算问题,只要细心做,这是一个一定会得分的题目. 二、填空题13.【答案】 240 .【解析】解:a=(cosx ﹣sinx )dx=(sinx+cosx )=﹣1﹣1=﹣2,则二项式(x 2﹣)6=(x 2+)6展开始的通项公式为T r+1=•2r •x 12﹣3r ,令12﹣3r=0,求得r=4,可得二项式(x 2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题. 14.【答案】815.【答案】 .【解析】解:∵复数==i﹣1的模为=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.16.【答案】 (4) 【解析】解:(1)命题p:菱形的对角线互相垂直平分,为真命题.命题q:菱形的对角线相等为假命题;则p∨q是真命题,故(1)错误,(2)命题“若x2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x2﹣4x+3<0得1<x<3,则“1<x<3”是“x2﹣4x+3<0”的充要条件,故(3)错误,(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.17.【答案】 (x﹣1)2+(y+1)2=5 .【解析】解:设所求圆的圆心为(a,b),半径为r,∵点A(2,1)关于直线x+y=0的对称点A′仍在这个圆上,∴圆心(a,b)在直线x+y=0上,∴a+b=0,①且(2﹣a)2+(1﹣b)2=r2;②又直线x﹣y+1=0截圆所得的弦长为,且圆心(a,b)到直线x﹣y+1=0的距离为d==,根据垂径定理得:r2﹣d2=,即r2﹣()2=③;由方程①②③组成方程组,解得;∴所求圆的方程为(x﹣1)2+(y+1)2=5.故答案为:(x﹣1)2+(y+1)2=5.18.【答案】 ﹣4 .【解析】解:∵函数f(x)=,∴f(﹣2)=4﹣2=,f(f(﹣2))=f()==﹣4.故答案为:﹣4.三、解答题19.【答案】【解析】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的短轴长为2,且离心率e=,∴,解得a2=4,b2=3,∴椭圆C的方程为=1.(Ⅱ)设直线MN的方程为x=ty+1,(﹣),代入椭圆,化简,得(3t2+4)y2+6ty﹣9=0,∴,,设M(x1,y1),N(x2,y2),又F1(﹣1,0),F2(1,0),则直线F1M:,令x=4,得P(4,),同理,Q(4,),∴=||=15×||=180×||,令μ=∈[1,),则=180×,∵y==在[1,)上是增函数,∴当μ=1时,即t=0时,()min=.【点评】本题考查椭圆方程的求法,考查三角形面积的最小值的求法,是中档题,解题时要认真审题,注意韦达定理、直线方程、弦长公式、函数单调性、椭圆性质的合理运用.20.【答案】【解析】解:(1)=…==5…(2)(lg5)2+2lg2﹣(lg2)2=(lg5+lg2)(lg5﹣lg2)+2lg2…=.…21.【答案】【解析】解:(1)投资为x万元,A产品的利润为f(x)万元,B产品的利润为g(x)万元,由题设f(x)=k 1x,g(x)=k2,(k1,k2≠0;x≥0)由图知f(1)=,∴k1=又g(4)=,∴k2=从而f(x)=,g(x)=(x≥0)(2)设A产品投入x万元,则B产品投入10﹣x万元,设企业的利润为y万元y=f(x)+g(10﹣x)=,(0≤x≤10),令,∴(0≤t≤)当t=,y max≈4,此时x=3.75∴当A产品投入3.75万元,B产品投入6.25万元时,企业获得最大利润约为4万元.【点评】本题考查利用待定系数法求函数的解析式、考查将实际问题的最值问题转化为函数的最值问题.解题的关键是换元,利用二次函数的求最值的方法求解.22.【答案】【解析】解:(1)c=asinC ﹣ccosA ,由正弦定理有:sinAsinC ﹣sinCcosA ﹣sinC=0,即sinC •(sinA ﹣cosA ﹣1)=0,又,sinC ≠0,所以sinA ﹣cosA ﹣1=0,即2sin (A ﹣)=1,所以A=;(2)S △ABC =bcsinA=,所以bc=4,a=2,由余弦定理得:a 2=b 2+c 2﹣2bccosA ,即4=b 2+c 2﹣bc ,即有,解得b=c=2.23.【答案】【解析】(1)由题意知,)cos )(sin cos (sin 23cos sin )(x x x x x x x f +-+=⋅=……………………………………3分)32sin(2cos 232sin 21π-=-=x x x 令,,则可得,.223222πππππ+≤-≤-k x k Z k ∈12512ππππ+≤≤-k x k Z k ∈∴的单调递增区间为().…………………………5分)(x f 125,12[ππππ+-k k Z k ∈24.【答案】【解析】解:(1)设事件A 为“两手所取的球不同色”,则P(A)=1﹣.(2)依题意,X的可能取值为0,1,2,左手所取的两球颜色相同的概率为=,右手所取的两球颜色相同的概率为=.P(X=0)=(1﹣)(1﹣)==;P(X=1)==;P(X=2)==.∴X的分布列为:X012PEX=0×+1×+2×=.【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的灵活运用.。
大连市第二中学2018-2019学年上学期高三数学10月月考试题
大连市第二中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题1.“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的()A.必要而不充分条件B.充分而不必要条件C.充分必要条件D.既不充分也不必要条件2.若P是以F1,F2为焦点的椭圆=1(a>b>0)上的一点,且=0,tan∠PF1F2=,则此椭圆的离心率为()A.B.C.D.3.函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则实数a的取值范围是()A.R B.[1,+∞)C.(﹣∞,1] D.[2,+∞)4.设全集U是实数集R,M={x|x>2或x<﹣2},N={x|x2﹣4x+3>0}则图中阴影部分所表示的集合是()A.{x|﹣2≤x<1} B.{x|﹣2≤x≤2} C.{x|1<x≤2} D.{x|x<2}5.如果点P在平面区域220,210,20x yx yx y-+≥⎧⎪-+≤⎨⎪+-≤⎩上,点Q在曲线22(2)1x y++=上,那么||PQ的最小值为()A1B1-C. 1D16.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于()A.B.C.D.7.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为()A.232 B.252 C.472 D.4848.点A是椭圆上一点,F1、F2分别是椭圆的左、右焦点,I是△AF1F2的内心.若,则该椭圆的离心率为()A.B.C.D.9.以过椭圆+=1(a>b>0)的右焦点的弦为直径的圆与其右准线的位置关系是()A.相交B.相切C.相离D.不能确定10.S n是等差数列{a n}的前n项和,若3a8-2a7=4,则下列结论正确的是()A.S18=72 B.S19=76C.S20=80 D.S21=8411.与向量=(1,﹣3,2)平行的一个向量的坐标是()A.(,1,1)B.(﹣1,﹣3,2)C.(﹣,,﹣1)D.(,﹣3,﹣2)12.设集合S=|x|x<﹣1或x>5},T={x|a<x<a+8},且S∪T=R,则实数a的取值范围是()A.﹣3<a<﹣1 B.﹣3≤a≤﹣1 C.a≤﹣3或a≥﹣1 D.a<﹣3或a>﹣1二、填空题13.在数列中,则实数a=,b=.14.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测1564的线性回归方程为附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.15.在△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC不是直角三角形,则下列命题正确的是(写出所有正确命题的编号)①tanA•tanB•tanC=tanA+tanB+tanC②tanA+tanB+tanC的最小值为3③tanA,tanB,tanC中存在两个数互为倒数④若tanA:tanB:tanC=1:2:3,则A=45°⑤当tanB﹣1=时,则sin2C≥sinA•sinB.16.计算:×5﹣1=.17.过原点的直线l与函数y=的图象交于B,C两点,A为抛物线x2=﹣8y的焦点,则|+|=.三、解答题18.某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5B两班中各随机抽5名学生进行抽查,其成绩记录如下:x<y,且A和B两班被抽查的5名学生成绩的平均值相等,方差也相等.(Ⅰ)若从B班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率;(Ⅱ)从被抽查的10名任取3名,X表示抽取的学生中获得荣誉证书的人数,求X的期望.19.如图,已知五面体ABCDE,其中△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.(Ⅰ)证明:AD⊥BC(Ⅱ)若AB=4,BC=2,且二面角A﹣BD﹣C所成角θ的正切值是2,试求该几何体ABCDE的体积.20.设A(x0,y0)(x0,y0≠0)是椭圆T:+y2=1(m>0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,D.E是椭圆T上不同于A的另外一点,且AE⊥AC,如图所示.(Ⅰ)若点A横坐标为,且BD∥AE,求m的值;(Ⅱ)求证:直线BD与CE的交点Q总在椭圆+y2=()2上.21.在△ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB.(1)求B;(2)若b=2,求△ABC面积的最大值.22.设椭圆C:+=1(a>b>0)过点(0,4),离心率为.(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标.23.已知数列{}n a 的前项和公式为2230n S n n =-. (1)求数列{}n a 的通项公式n a ; (2)求n S 的最小值及对应的值.大连市第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x﹣1=0,2x﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y﹣1=0,4x+3=0,此时两条直线相互垂直;当m≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1”是“直线(m﹣2)x﹣3my﹣1=0与直线(m+2)x+(m﹣2)y+3=0相互垂直”的充分不必要条件.故选:B.【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.2.【答案】A【解析】解:∵∴,即△PF1F2是P为直角顶点的直角三角形.∵Rt△PF1F2中,,∴=,设PF2=t,则PF1=2t∴=2c,又∵根据椭圆的定义,得2a=PF1+PF2=3t∴此椭圆的离心率为e====故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.3.【答案】C【解析】解:由于f(x)=x2﹣2ax的对称轴是直线x=a,图象开口向上,故函数在区间(﹣∞,a]为减函数,在区间[a,+∞)上为增函数,又由函数f(x)=x2﹣2ax,x∈[1,+∞)是增函数,则a≤1.故答案为:C4. 【答案】A【解析】解:由Venn 图,得到阴影部分对应的集合为N ∩(∁U M ),∵M={x|x >2或x <﹣2}, ∴(∁U M )={x|﹣2≤x ≤2},∵N={x|x 2﹣4x+3>0}={x|x >3或x <1},∴N ∩(∁U M )={x|x >3或x <1}∩{x|﹣2≤x ≤2}={x|﹣2≤x <1},故选:A .【点评】本题主要考查集合的基本运算,利用Venn 图确定集合关系是解决本题的关键,比较基础.5. 【答案】A 【解析】试题分析:根据约束条件画出可行域||PQ Z =表示圆上的点到可行域的距离,当在点A 处时,求出圆心到可 行域的距离内的点的最小距离5,∴当在点A 处最小, ||PQ 最小值为15-,因此,本题正确答案是15-.考点:线性规划求最值. 6. 【答案】C 【解析】考点:三视图.7.【答案】C【解析】【专题】排列组合.【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,由此可得结论.【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有种取法,故所求的取法共有﹣﹣=560﹣16﹣72=472故选C.【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题.8.【答案】B【解析】解:设△AF1F2的内切圆半径为r,则S△IAF1=|AF1|r,S△IAF2=|AF2|r,S△IF1F2=|F1F2|r,∵,∴|AF1|r=2×|F1F2|r﹣|AF2|r,整理,得|AF|+|AF2|=2|F1F2|.∴a=2,1∴椭圆的离心率e===.故选:B.9.【答案】C【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D连接AC、BD,设AB的中点为M,作MN⊥l于N根据圆锥曲线的统一定义,可得==e,可得∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,∵以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)∴圆M到l的距离|MN|>r,可得直线l与以AB为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F ,求以经过F 的弦AB 为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.10.【答案】【解析】选B.∵3a 8-2a 7=4, ∴3(a 1+7d )-2(a 1+6d )=4,即a 1+9d =4,S 18=18a 1+18×17d 2=18(a 1+172d )不恒为常数.S 19=19a 1+19×18d2=19(a 1+9d )=76,同理S 20,S 21均不恒为常数,故选B. 11.【答案】C【解析】解:对于C 中的向量:(﹣,,﹣1)=﹣(1,﹣3,2)=﹣,因此与向量=(1,﹣3,2)平行的一个向量的坐标是.故选:C .【点评】本题考查了向量共线定理的应用,属于基础题.12.【答案】A【解析】解:∵S=|x|x <﹣1或x >5},T={x|a <x <a+8},且S ∪T=R ,∴,解得:﹣3<a <﹣1.故选:A .二、填空题13.【答案】a= ,b= .【解析】解:由5,10,17,a﹣b,37知,a﹣b=26,由3,8,a+b,24,35知,a+b=15,解得,a=,b=;故答案为:,.【点评】本题考查了数列的性质的判断与归纳法的应用.14.【答案】y=﹣1.7t+68.7【解析】解:=,==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y关于t的线性回归方程为y=﹣1.7t+68.7.故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.15.【答案】①④⑤【解析】解:由题意知:A≠,B≠,C≠,且A+B+C=π∴tan(A+B)=tan(π﹣C)=﹣tanC,又∵tan(A+B)=,∴tanA+tanB=tan(A+B)(1﹣tanAtanB)=﹣tanC(1﹣tanAtanB)=﹣tanC+tanAtanBtanC,即tanA+tanB+tanC=tanAtanBtanC,故①正确;当A=,B=C=时,tanA+tanB+tanC=<3,故②错误;若tanA,tanB,tanC中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故③错误;由①,若tanA:tanB:tanC=1:2:3,则6tan3A=6tanA,则tanA=1,故A=45°,故④正确;当tanB ﹣1=时, tanA •tanB=tanA+tanB+tanC ,即tanC=,C=60°,此时sin 2C=,sinA •sinB=sinA •sin (120°﹣A )=sinA •(cosA+sinA )=sinAcosA+sin 2A=sin2A+﹣cos2A=sin (2A ﹣30°)≤,则sin 2C ≥sinA •sinB .故⑤正确;故答案为:①④⑤【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档.16.【答案】 9 .【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,∴×5﹣1=9,故答案为:9.17.【答案】 4 .【解析】解:由题意可得点B 和点C 关于原点对称,∴|+|=2||,再根据A 为抛物线x 2=﹣8y 的焦点,可得A (0,﹣2),∴2||=4,故答案为:4.【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用|+|=2||是解题的关键.三、解答题18.【答案】【解析】解:(Ⅰ)∵(7+7+7.5+9+9.5)=8,=(6+x+8.5+8.5+y ),∵,∴x+y=17,①∵,=,∵,得(x﹣8)2+(y﹣8)2=1,②由①②解得或,∵x<y,∴x=8,y=9,记“2名学生都颁发了荣誉证书”为事件C,则事件C包含个基本事件,共有个基本事件,∴P(C)=,即2名学生颁发了荣誉证书的概率为.(Ⅱ)由题意知X所有可能的取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,EX==.【点评】本题考查概率的求法,考查离散型随机变量的方差的求法,是中档题,解题时要认真审题,注意平均值和方差的计算和应用.19.【答案】【解析】(Ⅰ)证明:∵AB是圆O的直径,∴AC⊥BC,又∵DC⊥平面ABC∴DC⊥BC,又AC∩CD=C,∴BC⊥平面ACD,又AD⊂平面ACD,∴AD⊥BC.(Ⅱ)解:设CD=a,以CB,CA,CD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,如图所示.则C(0,0,0),B(2,0,0),,D(0,0,a).由(Ⅰ)可得,AC⊥平面BCD,∴平面BCD的一个法向量是=,设=(x,y,z)为平面ABD的一个法向量,由条件得,=,=(﹣2,0,a).∴即,不妨令x=1,则y=,z=,∴=.又二面角A﹣BD﹣C所成角θ的正切值是2,∴.∴=cosθ=,∴==,解得a=2.∴V ABCDE=V E﹣ADC+V E﹣ABC=+=+==8.∴该几何体ABCDE的体积是8.【点评】本题考查了向量相互垂直与数量积的关系证明线面垂直、利用法向量的夹角求出二面角的方法、三棱锥的体积计算公式,考查了空间想象能力,考查了推理能力与计算能力,属于难题.20.【答案】【解析】(Ⅰ)解:∵BD∥AE,AE⊥AC,∴BD⊥AC,可知A(),故,m=2;(Ⅱ)证明:由对称性可知B(﹣x0,y0),C(﹣x0,﹣y0),D(x0,﹣y0),四边形ABCD为矩形,设E(x1,y1),由于A,E均在椭圆T上,则,由②﹣①得:(x1+x0)(x1﹣x0)+(m+1)(y1+y0)(y1﹣y0)=0,显然x1≠x0,从而=,∵AE⊥AC,∴k AE•k AC=﹣1,∴,解得,代入椭圆方程,知.【点评】本题主要考查圆锥曲线的定义的应用,关键是利用椭圆的对称性寻求点的坐标间的关系,体现了整体运算思想方法,是中档题.21.【答案】【解析】(本小题满分12分)解:(1)∵bsinA=,由正弦定理可得:sinBsinA=sinAcosB,即得tanB=,∴B=…(2)△ABC 的面积.由已知及余弦定理,得.又a 2+c 2≥2ac ,故ac ≤4,当且仅当a=c 时,等号成立. 因此△ABC 面积的最大值为…22.【答案】【解析】解:(1)将点(0,4)代入椭圆C 的方程得=1,∴b=4,…由e==,得1﹣=,∴a=5,…∴椭圆C 的方程为+=1.…(2)过点(3,0)且斜率为的直线为y=(x ﹣3),… 设直线与椭圆C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y=(x ﹣3)代入椭圆C 方程,整理得x 2﹣3x ﹣8=0,…由韦达定理得x 1+x 2=3,y 1+y 2=(x 1﹣3)+(x 2﹣3)=(x 1+x 2)﹣=﹣.…由中点坐标公式AB 中点横坐标为,纵坐标为﹣,∴所截线段的中点坐标为(,﹣).…【点评】本题考查椭圆的方程与几何性质,考查直线与椭圆的位置关系,考查韦达定理的运用,确定椭圆的方程是关键.23.【答案】(1)432n a n =-;(2)当7n =或时,n S 最小,且最小值为78112S S =-. 【解析】试题分析:(1)根据数列的项n a 和数列的和n S 之间的关系,即可求解数列{}n a 的通项公式n a ;(2)由(1)中的通项公式,可得1270a a a <<<<,80a =,当9n ≥时,0n a >,即可得出结论.1试题解析:(1)∵2230n S n n =-, ∴当1n =时,1128a S ==-.当2n ≥时,221(230)[2(1)30(1)]432n n n a S S n n n n n -=-=-----=-.∴432n a n =-,n N +∈.(2)∵432n a n =-, ∴1270a a a <<<,80a =,当9n ≥时,0n a >.∴当7n =或8时,n S 最小,且最小值为78112S S =-. 考点:等差数列的通项公式及其应用.。
旅顺口区第二中学2018-2019学年上学期高三数学10月月考试题
旅顺口区第二中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数2()45f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则m 的取值范围是( ) A .[2,)+∞ B .[]2,4 C .(,2]-∞ D .[]0,2 2. 已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( )A .B .C .D 【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.3. 已知集合{}2|10A x x =-=,则下列式子表示正确的有( )①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆.A .1个B .2个C .3个D .4个4. 若a=ln2,b=5,c=xdx ,则a ,b ,c 的大小关系( )A .a <b <cB B .b <a <cC C .b <c <aD .c <b <a 5. 记,那么ABC D6. 执行如图所示的程序框图,如果输入的t =10,则输出的i =( )A .4B .5C .6D .77. 下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x = 8. 下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->” C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥9. 极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点,则|PQ|的最小值为( )A .1B .C .D .210.下列判断正确的是( )A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台 11.某几何体的三视图如图所示,则该几何体的体积为( ) A .16163π-B .32163π-C .1683π-D .3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力.12.如图,AB是半圆O的直径,AB=2,点P从A点沿半圆弧运动至B点,设∠AOP=x,将动点P到A,B 两点的距离之和表示为x的函数f(x),则y=f(x)的图象大致为()二、填空题13.若命题“∀x∈R,|x﹣2|>kx+1”为真,则k的取值范围是.14.设x,y满足约束条件,则目标函数z=2x﹣3y的最小值是.15.从等边三角形纸片ABC上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为.16.【徐州市第三中学2017~2018学年度高三第一学期月考】函数()3f x x x =-+的单调增区间是__________.三、解答题17.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,已知k sin B =sin A +sin C (k 为正常数),a =4c .(1)当k =54时,求cos B ;(2)若△ABC 面积为3,B =60°,求k 的值.18.已知,且.(1)求sin α,cos α的值;(2)若,求sin β的值.19.如图1,在Rt △ABC 中,∠C=90°,BC=3,AC=6,D 、E 分别是AC 、AB 上的点,且DE ∥BC ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥CD ,如图2.(Ⅰ)求证:平面A 1BC ⊥平面A 1DC ;(Ⅱ)若CD=2,求BD 与平面A 1BC 所成角的正弦值; (Ⅲ)当D 点在何处时,A 1B 的长度最小,并求出最小值.20.(本小题满分12分) 在等比数列{}n a 中,3339,22a S ==. (1)求数列{}n a 的通项公式; (2)设2216log n n b a +=,且{}n b 为递增数列,若11n n n c b b +=,求证:12314n c c c c ++++<.21.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知二次函数()f x 为偶函数且图象经过原点,其导函数()'f x 的图象过点()12,. (1)求函数()f x 的解析式; (2)设函数()()()'g x f x f x m =+-,其中m 为常数,求函数()g x 的最小值.22.(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从 某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试 成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)旅顺口区第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】B 【解析】试题分析:画出函数图象如下图所示,要取得最小值为,由图可知m 需从开始,要取得最大值为,由图可知m 的右端点为,故m 的取值范围是[]2,4.考点:二次函数图象与性质. 2. 【答案】A 【解析】3. 【答案】C 【解析】试题分析:{}1,1A =-,所以①③④正确.故选C. 考点:元素与集合关系,集合与集合关系. 4. 【答案】C【解析】解:∵ a=ln2<lne 即,b=5=,c=xdx=,∴a ,b ,c 的大小关系为:b <c <a . 故选:C .【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题.5. 【答案】B 【解析】【解析1】,所以【解析2】,6. 【答案】【解析】解析:选B.程序运行次序为 第一次t =5,i =2; 第二次t =16,i =3; 第三次t =8,i =4;第四次t =4,i =5,故输出的i =5. 7. 【答案】B【解析】试题分析:对于A ,x y e =为增函数,y x =-为减函数,故x y e -=为减函数,对于B ,2'30y x =>,故3y x =为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.8. 【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断. 9. 【答案】A【解析】解:极坐标系中,点P ,Q 分别是曲线C 1:ρ=1与曲线C 2:ρ=2上任意两点, 可知两条曲线是同心圆,如图,|PQ|的最小值为:1. 故选:A .【点评】本题考查极坐标方程的应用,两点距离的求法,基本知识的考查.10.【答案】C【解析】解:①是底面为梯形的棱柱; ②的两个底面不平行,不是圆台; ③是四棱锥; ④不是由棱锥截来的, 故选:C .11.【答案】D【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为21132244428233V =π⨯⨯-⨯⨯⨯=π-,故选D . 12.【答案】【解析】选B.取AP 的中点M , 则P A =2AM =2OA sin ∠AOM=2sin x2,PB=2OM=2OA·cos∠AOM=2cos x2,∴y=f(x)=P A+PB=2sin x2+2cos x2=22sin(x2+π4),x∈[0,π],根据解析式可知,只有B选项符合要求,故选B.二、填空题13.【答案】[﹣1,﹣).【解析】解:作出y=|x﹣2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k∈[﹣1,﹣).故答案为:[﹣1,﹣).【点评】本题考查全称命题,考查数形结合的数学思想,比较基础.14.【答案】﹣6.【解析】解:由约束条件,得可行域如图,使目标函数z=2x﹣3y取得最小值的最优解为A(3,4),∴目标函数z=2x ﹣3y 的最小值为z=2×3﹣3×4=﹣6. 故答案为:﹣6.15.【答案】.【解析】解:设大小正方形的边长分别为x ,y ,(x ,y >0).则+x+y+=3+,化为:x+y=3.则x 2+y2=,当且仅当x=y=时取等号.∴这两个正方形的面积之和的最小值为.故答案为:.16.【答案】(,33-【解析】()231033f x x x ⎛=-+>⇒∈-⎝'⎭ ,所以增区间是33⎛⎫- ⎪ ⎪⎝⎭三、解答题17.【答案】【解析】解:(1)∵54sin B =sin A +sin C ,由正弦定理得54b =a +c ,又a =4c ,∴54b =5c ,即b =4c ,由余弦定理得cos B =a 2+c 2-b 22ac =(4c )2+c 2-(4c )22×4c ·c =18.(2)∵S △ABC =3,B =60°.∴12ac sin B = 3.即ac =4. 又a =4c ,∴a =4,c =1.由余弦定理得b 2=a 2+c 2-2ac cos B =42+12-2×4×1×12=13.∴b =13,∵k sin B =sin A +sin C ,由正弦定理得k =a +c b =513=51313,即k的值为51313.18.【答案】【解析】解:(1)将sin+cos=两边平方得:(sin+cos)2=sin2+2sin cos+cos2=1+sinα=,∴sinα=,∵α∈(,π),∴cosα=﹣=﹣;(2)∵α∈(,π),β∈(0,),∴α+β∈(,),∵sin(α+β)=﹣<0,∴α+β∈(π,),∴cos(α+β)=﹣=﹣,则sinβ=sin=sin(α+β)cosα﹣cos(α+β)sinα=﹣×(﹣)﹣(﹣)×=+=.【点评】此题考查了两角和与差的正弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.19.【答案】【解析】【分析】(Ⅰ)在图1中,△ABC中,由已知可得:AC⊥DE.在图2中,DE⊥A1D,DE⊥DC,即可证明DE⊥平面A1DC,再利用面面垂直的判定定理即可证明.(Ⅱ)如图建立空间直角坐标系,设平面A1BC的法向量为,利用,BE与平面所成角的正弦值为.(Ⅲ)设CD=x(0<x<6),则A1D=6﹣x,利用=(0<x<6),即可得出.【解答】(Ⅰ)证明:在图1中,△ABC中,DE∥BC,AC⊥BC,则AC⊥DE,∴在图2中,DE⊥A1D,DE⊥DC,又∵A 1D ∩DC=D ,∴DE ⊥平面A 1DC , ∵DE ∥BC ,∴BC ⊥平面A 1DC ,∵BC ⊂平面A 1BC ,∴平面A 1BC ⊥平面A 1DC .(Ⅱ)解:如图建立空间直角坐标系:A 1(0,0,4)B (3,2,0),C (0,2,0),D (0,0,0), E (2,0,0). 则,, 设平面A 1BC 的法向量为则,解得,即则BE 与平面所成角的正弦值为(Ⅲ)解:设CD=x (0<x <6),则A 1D=6﹣x ,在(2)的坐标系下有:A 1(0,0,6﹣x ),B (3,x ,0), ∴==(0<x <6), 即当x=3时,A 1B 长度达到最小值,最小值为.20.【答案】(1)131622n n n a a -⎛⎫==- ⎪⎝⎭或;(2)证明见解析.【解析】试题分析:(1)将3339,22a S ==化为1,a q ,联立方程组,求出1,a q ,可得131622n n n a a -⎛⎫==- ⎪⎝⎭或;(2)由于{}n b 为递增数列,所以取1162n n a -⎛⎫=⋅- ⎪⎝⎭,化简得2n b n =,()1111114141n n n c b b n n n n +⎛⎫===- ⎪++⎝⎭,其前项和为()1114414n -<+.考点:数列与裂项求和法.121.【答案】(1)()2f x x =;(2)1m -【解析】(2)据题意,()()()2'2g x f x f x m x x m =+-=+-,即()2222{22m x x m x g x mx x m x -+<=+-≥,,,,①若12m <-,即2m <-,当2m x <时,()()22211g x x x m x m =-+=-+-,故()g x 在2m ⎛⎫-∞ ⎪⎝⎭,上单调递减;当2m x ≥时,()()22211g x x x m x m =+-=+--,故()g x 在12m ⎛⎫- ⎪⎝⎭,上单调递减,在()1-+∞,上单调递增,故()g x 的最小值为()11g m -=--. ②若112m -≤≤,即22m -≤≤,当2m x <时,()()211g x x m =-+-,故()g x 在2m ⎛⎫-∞ ⎪⎝⎭,上单调递减; 当2m x ≥时,()()211g x x m =+--,故()g x 在2m ⎛⎫+∞ ⎪⎝⎭,上单调递增,故()g x 的最小值为224m m g ⎛⎫= ⎪⎝⎭. ③若12m >,即2m >,当2m x <时,()()22211g x x x m x m =-+=-+-,故()g x 在()1-∞,上单调递减,在12m ⎛⎫ ⎪⎝⎭,上单调递增;当2m x ≥时,()()22211g x x x m x m =+-=+--,故()g x 在2m ⎛⎫+∞ ⎪⎝⎭,上单调递增,故()g x 的最小值为()11g m =-.综上所述,当2m <-时,()g x 的最小值为1m --;当22m -≤≤时,()g x 的最小值为24m ;当2m >时,()g x 的最小值为1m -.22.【答案】【解析】【命题意图】本题考查茎叶图的制作与读取,古典概型的概率计算,是概率统计的基本题型,解答的关键是应用相关数据进行准确计算,是中档题.。
旅顺口区第二中学2018-2019学年高二上学期第二次月考试卷数学
旅顺口区第二中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 双曲线()222210,0x y a b a b-=>>的左右焦点分别为12F F 、,过2F 的直线与双曲线的右支交于A B 、两点,若1F AB ∆是以A 为直角顶点的等腰直角三角形,则2e =( )A .1+B .4-C .5-D .3+2. 抛物线E :y 2=2px (p >0)的焦点为F ,点A (0,2),若线段AF 的中点B 在抛物线上,则|BF|=( )A .B .C .D .3. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 24. 已知角α的终边经过点(sin15,cos15)-,则2cos α的值为( )A .124+B .124- C. 34 D .05. 在曲线y=x 2上切线倾斜角为的点是( )A .(0,0)B .(2,4)C .(,)D .(,)6. 设a ,b ,c ,∈R +,则“abc=1”是“”的( )A .充分条件但不是必要条件B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件 7. sin45°sin105°+sin45°sin15°=( )A .0B .C .D .18. 已知△ABC 中,a=1,b=,B=45°,则角A 等于( )A .150°B .90°C .60°D .30°9. 不等式≤0的解集是( )A .(﹣∞,﹣1)∪(﹣1,2)B .[﹣1,2]C .(﹣∞,﹣1)∪[2,+∞)D .(﹣1,2]10.设函数f (x )满足f (x+π)=f (x )+cosx ,当0≤x ≤π时,f (x )=0,则f ()=( )A .B .C .0D .﹣11.在函数y=中,若f (x )=1,则x 的值是( )A .1B .1或C .±1D .12.函数f (x )=Asin (ωx+φ)(A >0,ω>0,)的部分图象如图所示,则函数y=f (x )对应的解析式为( )A .B .C .D .二、填空题13.设函数,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同的实数根,则实数a 的取值范围是 .14.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 .15.已知抛物线1C :x y 42=的焦点为F ,点P 为抛物线上一点,且3||=PF ,双曲线2C :12222=-by a x(0>a ,0>b )的渐近线恰好过P 点,则双曲线2C 的离心率为 .【命题意图】本题考查了双曲线、抛物线的标准方程,双曲线的渐近线,抛物线的定义,突出了基本运算和知识交汇,难度中等.16.已知[2,2]a ∈-,不等式2(4)420x a x a +-+->恒成立,则的取值范围为__________. 17.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC 所成的角是 °.18.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 .三、解答题19.由四个不同的数字1,2,4,x 组成无重复数字的三位数. (1)若x=5,其中能被5整除的共有多少个? (2)若x=9,其中能被3整除的共有多少个?(3)若x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是252,求x .20.(本题满分15分)已知函数c bx ax x f ++=2)(,当1≤x 时,1)(≤x f 恒成立. (1)若1=a ,c b =,求实数b 的取值范围;(2)若a bx cx x g +-=2)(,当1≤x 时,求)(x g 的最大值.【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力.21.已知斜率为2的直线l 被圆x 2+y 2+14y+24=0所截得的弦长为,求直线l 的方程.22.设函数f (x )=|x ﹣a|﹣2|x ﹣1|. (Ⅰ)当a=3时,解不等式f (x )≥1;(Ⅱ)若f (x )﹣|2x ﹣5|≤0对任意的x ∈[1,2]恒成立,求实数a 的取值范围.23.已知函数,且. (Ⅰ)求的解析式; (Ⅱ)若对于任意,都有,求的最小值;(Ⅲ)证明:函数的图象在直线的下方.24.(本小题满分12分)某超市销售一种蔬菜,根据以往情况,得到每天销售量的频率分布直方图如下:(Ⅰ)求频率分布直方图中的a 的值,并估计每天销售量的中位数;(Ⅱ)这种蔬菜每天进货当天必须销售,否则只能作为垃圾处理.每售出1千克蔬菜获利4元,未售出的蔬菜,每千克亏损2元.假设同一组中的每个数据可用该组区间的中点值代替,估计当超市每天的进货量为75千克时获利的平均值.0.0050.02频率组距O千克旅顺口区第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C 【解析】试题分析:设1A F A B m==,则12,2,22B F m A F m B F m a==--,因为22AB AF BF m =+=,所以22m a a m --=,解得4a =,所以212AF m ⎛⎫=- ⎪ ⎪⎝⎭,在直角三角形12AF F 中,由勾股定理得22542c m ⎛= ⎝,因为4a =,所以225482c a ⎛=⨯ ⎝,所以25e =-考点:直线与圆锥曲线位置关系.【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方] 2. 【答案】D【解析】解:依题意可知F 坐标为(,0)∴B 的坐标为(,1)代入抛物线方程得=1,解得p=,∴抛物线准线方程为x=﹣,所以点B 到抛物线准线的距离为=,则B 到该抛物线焦点的距离为.故选D .3. 【答案】B【解析】解:根据题意球的半径R 满足(2R )2=6a 2, 所以S 球=4πR 2=6πa 2.故选B4. 【答案】B【解析】考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.5.【答案】D【解析】解:y'=2x,设切点为(a,a2)∴y'=2a,得切线的斜率为2a,所以2a=tan45°=1,∴a=,在曲线y=x2上切线倾斜角为的点是(,).故选D.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.6.【答案】A【解析】解:因为abc=1,所以,则==≤a+b+c.当a=3,b=2,c=1时,显然成立,但是abc=6≠1,所以设a,b,c,∈R+,则“abc=1”是“”的充分条件但不是必要条件.故选A.7.【答案】C【解析】解:sin45°sin105°+sin45°sin15°=cos45°cos15°+sin45°sin15°=cos(45°﹣15°)=cos30°=.故选:C.【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.8.【答案】D【解析】解:∵,B=45°根据正弦定理可知∴sinA==∴A=30°故选D.【点评】本题主要考查正弦定理的应用.属基础题.9.【答案】D【解析】解:依题意,不等式化为,解得﹣1<x≤2,故选D【点评】本题主要考查不等式的解法,关键是将不等式转化为特定的不等式去解.10.【答案】D【解析】解:∵函数f(x)(x∈R)满足f(x+π)=f(x)+cosx,当0≤x<π时,f(x)=1,∴f()=f()=f()+cos=f()+cos+cos=f()+cos+cos=f()+cos+cos=f()+cos+cos+cos=0+cos﹣cos+cos=﹣.故选:D.【点评】本题考查抽象函数以及函数值的求法,诱导公式的应用,是基础题,解题时要认真审题,注意函数性质的合理运用.11.【答案】C【解析】解:∵函数y=中,f(x)=1,∴当x≤﹣1时,x+2=1,解得x=﹣1;当﹣1<x<2时,x2=1,解得x=1或x=﹣1(舍);当x≥2时,2x=1,解得x=(舍).综上得x=±1故选:C.12.【答案】A【解析】解:由函数的图象可得A=1,=•=﹣,解得ω=2,再把点(,1)代入函数的解析式可得sin(2×+φ)=1,结合,可得φ=,故有,故选:A.二、填空题13.【答案】(﹣1,﹣]∪[,).【解析】解:当﹣2≤x<﹣1时,[x]=﹣2,此时f(x)=x﹣[x]=x+2.当﹣1≤x<0时,[x]=﹣1,此时f(x)=x﹣[x]=x+1.当0≤x<1时,﹣1≤x﹣1<0,此时f(x)=f(x﹣1)=x﹣1+1=x.当1≤x<2时,0≤x﹣1<1,此时f(x)=f(x﹣1)=x﹣1.当2≤x<3时,1≤x﹣1<2,此时f(x)=f(x﹣1)=x﹣1﹣1=x﹣2.当3≤x<4时,2≤x﹣1<3,此时f(x)=f(x﹣1)=x﹣1﹣2=x﹣3.设g(x)=ax,则g(x)过定点(0,0),坐标系中作出函数y=f(x)和g(x)的图象如图:当g(x)经过点A(﹣2,1),D(4,1)时有3个不同的交点,当经过点B(﹣1,1),C(3,1)时,有2个不同的交点,则OA的斜率k=,OB的斜率k=﹣1,OC的斜率k=,OD的斜率k=,故满足条件的斜率k的取值范围是或,故答案为:(﹣1,﹣]∪[,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想.14.【答案】(﹣4,0].【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;当a≠0时,要使不等式ax2﹣2ax﹣4<0恒成立,则满足,即,∴解得﹣4<a<0,综上:a的取值范围是(﹣4,0].故答案为:(﹣4,0].【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.15.【答案】3-∞+∞16.【答案】(,0)(4,)【解析】试题分析:把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可,设关于的函数44)2(24)4(x f(x)y 22+-+-=-+-+==x x a x a x a 对任意的2],[-2a ∈,当-2a =时,044)42(x )2(f(a)y 2>++--+=-==x f ,即086x )2(2>+-=-x f ,解得4x 2x ><或;当2a =时,044)42(x )2(y 2>-+-+==x f ,即02x )2(2>-=x f ,解得2x 0x ><或,∴的取值范围是{x|x 0x 4}<>或;故答案为:(,0)(4,)-∞+∞.考点:换主元法解决不等式恒成立问题.【方法点晴】本题考查了含有参数的一元二次不等式得解法,解题时应用更换主元的方法,使繁杂问题变得简洁,是易错题.把原不等式看成是关于的一次不等式,在2],[-2a ∈时恒成立,只要满足在2],[-2a ∈时直线在轴上方即可.关键是换主元需要满足两个条件,一是函数必须是关于这个量的一次函数,二是要有这个量的具体范围.17.【答案】 60° °.【解析】解:连结BC 1、A 1C 1,∵在正方体ABCD ﹣A 1B 1C 1D 1中,A 1A 平行且等于C 1C , ∴四边形AA 1C 1C 为平行四边形,可得A 1C 1∥AC ,因此∠BA 1C 1(或其补角)是异面直线A 1B 与AC 所成的角, 设正方体的棱长为a ,则△A1B 1C 中A 1B=BC 1=C 1A 1=a ,∴△A 1B 1C 是等边三角形,可得∠BA 1C 1=60°,即异面直线A 1B 与AC 所成的角等于60°.故答案为:60°.【点评】本题在正方体中求异面直线所成角和直线与平面所成角的大小,着重考查了正方体的性质、空间角的定义及其求法等知识,属于中档题.18.【答案】.【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为:=.剩下的凸多面体的体积是1﹣=.故答案为:.【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力.三、解答题19.【答案】【解析】【专题】计算题;排列组合.【分析】(1)若x=5,根据题意,要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,由排列数公式计算可得答案;(2)若x=9,根据题意,要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,分“取出的三个数字为1、2、9”与“取出的三个数字为2、4、9”两种情况讨论,由分类计数原理计算可得答案;(3)若x=0,根据题意,要求的三位数是偶数,则这个三位数的末位数字为0或2或4,分“末位是0”与“末位是2或4”两种情况讨论,由分类计数原理计算可得答案;(4)分析易得x=0时不能满足题意,进而讨论x≠0时,先求出4个数字可以组成无重复三位数的个数,进而可以计算出每个数字用了18次,则有252=18×(1+2+4+x),解可得x的值.【解答】解:(1)若x=5,则四个数字为1,2,4,5;又由要求的三位数能被5整除,则5必须在末尾,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,即能被5整除的三位数共有6个;(2)若x=9,则四个数字为1,2,4,9;又由要求的三位数能被3整除,则这三个数字为1、2、9或2、4、9,取出的三个数字为1、2、9时,有A33=6种情况,取出的三个数字为2、4、9时,有A33=6种情况,则此时一共有6+6=12个能被3整除的三位数;(3)若x=0,则四个数字为1,2,4,0;又由要求的三位数是偶数,则这个三位数的末位数字为0或2或4,当末位是0时,在1、2、4三个数字中任选2个,放在前2位,有A32=6种情况,当末位是2或4时,有A21×A21×A21=8种情况,此时三位偶数一共有6+8=14个,(4)若x=0,可以组成C 31×C 31×C 21=3×3×2=18个三位数,即1、2、4、0四个数字最多出现18次,则所有这些三位数的各位数字之和最大为(1+2+4)×18=126,不合题意,故x=0不成立;当x ≠0时,可以组成无重复三位数共有C 41×C 31×C 21=4×3×2=24种,共用了24×3=72个数字,则每个数字用了=18次,则有252=18×(1+2+4+x ),解可得x=7.【点评】本题考查排列知识,解题的关键是正确分类,合理运用排列知识求解,第(4)问注意分x 为0与否两种情况讨论. 20.【答案】【解析】(1)]0,222[-;(2)2.(1)由1=a 且c b =,得4)2()(222b b b x b bx x x f -++=++=,当1=x 时,11)1(≤++=b b f ,得01≤≤-b ,…………3分故)(x f 的对称轴]21,0[2∈-=b x ,当1≤x 时,2min max ()()124()(1)11b b f x f b f x f ⎧=-=-≥-⎪⎨⎪=-=≤⎩,………… 5分 解得222222+≤≤-b ,综上,实数b 的取值范围为]0,222[-;…………7分112≤+=,…………13分且当2a =,0b =,1c =-时,若1≤x ,则112)(2≤-=x x f 恒成立, 且当0=x 时,2)(2+-=x x g 取到最大值2.)(x g 的最大值为2.…………15分21.【答案】【解析】解:将圆的方程写成标准形式,得x2+(y+7)2=25,所以,圆心坐标是(0,﹣7),半径长r=5.…因为直线l被圆所截得的弦长是,所以,弦心距为,即圆心到所求直线l的距离为.…因为直线l的斜率为2,所以可设所求直线l的方程为y=2x+b,即2x﹣y+b=0.所以圆心到直线l的距离为,…因此,解得b=﹣2,或b=﹣12.…所以,所求直线l的方程为y=2x﹣2,或y=2x﹣12.即2x﹣y﹣2=0,或2x﹣y﹣12=0.…【点评】本题主要考查直线方程,考查直线与圆的位置关系,在相交时半径的平方等于圆心到直线的距离平方与弦长一半的平方的和的灵活运用.22.【答案】【解析】解:(Ⅰ)f(x)≥1,即|x﹣3|﹣|2x﹣2|≥1x时,3﹣x+2x﹣2≥1,∴x≥0,∴0≤x≤1;1<x<3时,3﹣x﹣2x+2≥1,∴x≤,∴1<x≤;x≥3时,x﹣3﹣2x+2≥1,∴x≤﹣2∴1<x≤,无解,…所以f(x)≥1解集为[0,].…(Ⅱ)当x∈[1,2]时,f(x)﹣|2x﹣5|≤0可化为|x﹣a|≤3,∴a﹣3≤x≤a+3,…∴,…∴﹣1≤a≤4.…23.【答案】【解析】【知识点】导数的综合运用利用导数研究函数的单调性【试题解析】(Ⅰ)对求导,得,所以,解得,所以.(Ⅱ)由,得,因为,所以对于任意,都有.设,则.令,解得.当x变化时,与的变化情况如下表:所以当时,.因为对于任意,都有成立,所以.所以的最小值为.(Ⅲ)证明:“函数的图象在直线的下方”等价于“”,即要证,所以只要证.由(Ⅱ),得,即(当且仅当时等号成立).所以只要证明当时,即可.设,所以,令,解得.由,得,所以在上为增函数.所以,即.所以.故函数的图象在直线的下方.24.【答案】(本小题满分12分)解:本题考查频率分布直方图,以及根据频率分布直方图估计中位数与平均数.(Ⅰ)由(0.0050.0150.020.025)101a ++++⨯=得0.035a = (3分)每天销售量的中位数为0.15701074.30.35+⨯=千克 (6分) (Ⅱ)若当天的销售量为[50,60),则超市获利554202180⨯-⨯=元;若当天的销售量为[60,70),则超市获利654102240⨯-⨯=元; 若当天的销售量为[70,100),则超市获利754300⨯=元, (10分) ∴获利的平均值为0.151800.22400.65300270⨯+⨯+⨯=元. (12分)。
旅顺口区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案
旅顺口区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )A .﹣B .﹣C .﹣D .﹣或﹣2. 设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为()A .3πa 2B .6πa 2C .12πa 2D .24πa 23. 从一个边长为的等边三角形的中心、各边中点及三个顶点这个点中任取两个点,则这两点间的距离小27于的概率是( )1A . B . C .D .717374764. 已知函数 f (x )的定义域为R ,其导函数f ′(x )的图象如图所示,则对于任意x 1,x 2∈R ( x 1≠x 2),下列结论正确的是( )①f (x )<0恒成立;②(x 1﹣x 2)[f (x 1)﹣f (x 2)]<0;③(x 1﹣x 2)[f (x 1)﹣f (x 2)]>0;④;⑤.A .①③B .①③④C .②④D .②⑤5. 特称命题“∃x ∈R ,使x 2+1<0”的否定可以写成( )A .若x ∉R ,则x 2+1≥0B .∃x ∉R ,x 2+1≥0C .∀x ∈R ,x 2+1<0D .∀x ∈R ,x 2+1≥06. 设是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(){}n a A .1B .2C .4D .67. 设复数(是虚数单位),则复数( )1i z =-i 22z z +=A.B.C. D. 1i -1i +2i +2i-【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.8. 下列推断错误的是()A .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”B .命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .若p 且q 为假命题,则p ,q 均为假命题D .“x <1”是“x 2﹣3x+2>0”的充分不必要条件 9. 如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A .B .C .D .10.已知函数f (x )=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不等式组所确定的平面区域在x 2+y 2=4内的面积为( )A .B .C .πD .2π11.已知双曲线(a >0,b >0)的右焦点F ,直线x=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )A .B .C .D .12.设x ,y ∈R ,且满足,则x+y=()A .1B .2C .3D .4二、填空题13.函数f (x )=﹣2ax+2a+1的图象经过四个象限的充要条件是 .14.【徐州市第三中学2017~2018学年度高三第一学期月考】函数的单调增区间是__________.()3f x x x =-+15.阅读如图所示的程序框图,则输出结果的值为.Sn【命题意图】本题考查程序框图功能的识别,并且与数列的前项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.16.函数f(x)=log a(x﹣1)+2(a>0且a≠1)过定点A,则点A的坐标为 .17.已知函数y=log(x2﹣ax+a)在区间(2,+∞)上是减函数,则实数a的取值范围是 . 18.在极坐标系中,直线l的方程为ρcosθ=5,则点(4,)到直线l的距离为 .三、解答题19.如图,在底面是矩形的四棱锥P﹣ABCD中,PA⊥平面ABCD,PA=AB=2,BC=2,E是PD的中点.(1)求证:平面PDC⊥平面PAD;(2)求二面角E﹣AC﹣D所成平面角的余弦值.20.如图,在五面体ABCDEF中,四边形ABCD是边长为4的正方形,EF∥AD,平面ADEF⊥平面ABCD,且BC=2EF,AE=AF,点G是EF的中点.(Ⅰ)证明:AG⊥平面ABCD;(Ⅱ)若直线BF与平面ACE所成角的正弦值为,求AG的长.21.已知A、B、C为△ABC的三个内角,他们的对边分别为a、b、c,且.(1)求A;(2)若,求bc的值,并求△ABC的面积.22.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温.气温(℃)141286用电量(度)22263438(1)求线性回归方程;()(2)根据(1)的回归方程估计当气温为10℃时的用电量.附:回归直线的斜率和截距的最小二乘法估计公式分别为:=,=﹣. 23.设F是抛物线G:x2=4y的焦点.(1)过点P(0,﹣4)作抛物线G的切线,求切线方程;(2)设A,B为抛物线上异于原点的两点,且满足FA⊥FB,延长AF,BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.24.已知条件4:11px≤--,条件22:q x x a a+<-,且p是的一个必要不充分条件,求实数的取值范围.旅顺口区第三中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】B【解析】解:当a >1时,f (x )单调递增,有f (﹣1)=+b=﹣1,f (0)=1+b=0,无解;当0<a <1时,f (x )单调递减,有f (﹣1)==0,f (0)=1+b=﹣1,解得a=,b=﹣2;所以a+b==﹣;故选:B 2. 【答案】B【解析】解:根据题意球的半径R 满足(2R )2=6a 2,所以S 球=4πR 2=6πa 2.故选B 3. 【答案】A【解析】两点间的距离小于共有3种情况,1分别为中心到三个中点的情况,故两点间的距离小于的概率.127317P C ==4. 【答案】 D【解析】解:由导函数的图象可知,导函数f ′(x )的图象在x 轴下方,即f ′(x )<0,故原函数为减函数,并且是,递减的速度是先快后慢.所以f (x )的图象如图所示.f (x )<0恒成立,没有依据,故①不正确;②表示(x 1﹣x 2)与[f (x 1)﹣f (x 2)]异号,即f (x )为减函数.故②正确;③表示(x 1﹣x 2)与[f (x 1)﹣f (x 2)]同号,即f (x )为增函数.故③不正确,④⑤左边边的式子意义为x 1,x 2中点对应的函数值,即图中点B 的纵坐标值,右边式子代表的是函数值得平均值,即图中点A 的纵坐标值,显然有左边小于右边,故④不正确,⑤正确,综上,正确的结论为②⑤.故选D .5. 【答案】D【解析】解:∵命题“∃x ∈R ,使x 2+1<0”是特称命题∴否定命题为:∀x ∈R ,都有x 2+1≥0.故选D . 6. 【答案】B 【解析】试题分析:设的前三项为,则由等差数列的性质,可得,所以,{}n a 123,,a a a 1322a a a +=12323a a a a ++=解得,由题意得,解得或,因为是递增的等差数列,所以24a =1313812a a a a +=⎧⎨=⎩1326a a =⎧⎨=⎩1362a a =⎧⎨=⎩{}n a ,故选B .132,6a a ==考点:等差数列的性质.7. 【答案】A 【解析】8. 【答案】C【解析】解:对于A ,命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”,正确;对于B ,命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0,正确;对于C ,若p 且q 为假命题,则p ,q 至少有一个为假命题,故C 错误;对于D ,x 2﹣3x+2>0⇒x >2或x <1,故“x <1”是“x 2﹣3x+2>0”的充分不必要条件,正确.综上所述,错误的选项为:C ,故选:C .【点评】本题考查命题的真假判断与应用,着重考查全称命题与特称命题的理解与应用,考查复合命题与充分必要条件的真假判断,属于中档题.9.【答案】D【解析】古典概型及其概率计算公式.【专题】计算题;概率与统计.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;∴所求的概率为=故选D.【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.10.【答案】B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.则f(x)=x3﹣x2+ax,函数的导数f′(x)=x2﹣2x+a,因为原点处的切线斜率是﹣3,即f′(0)=﹣3,所以f′(0)=a=﹣3,故a=﹣3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求.∵k OB=﹣,k OA=,∴tan∠BOA==1,∴∠BOA=,∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,∴圆x2+y2=4在区域D内的面积为×4×π=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键.11.【答案】D【解析】解:∵函数f(x)=(x﹣3)e x,∴f′(x)=e x+(x﹣3)e x=(x﹣2)e x,令f′(x)>0,即(x﹣2)e x>0,∴x﹣2>0,解得x>2,∴函数f(x)的单调递增区间是(2,+∞).故选:D.【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目.12.【答案】D【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2,∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2,∵(y﹣2)3+2y+sin(y﹣2)=6,∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2,设f(t)=t3+2t+sint,则f(t)为奇函数,且f'(t)=3t2+2+cost>0,即函数f(t)单调递增.由题意可知f(x﹣2)=﹣2,f(y﹣2)=2,即f(x﹣2)+f(y﹣2)=2﹣2=0,即f(x﹣2)=﹣f(y﹣2)=f(2﹣y),∵函数f(t)单调递增∴x﹣2=2﹣y,即x+y=4,故选:D.【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质.二、填空题13.【答案】 ﹣ .【解析】解:∵f (x )=﹣2ax+2a+1,∴求导数,得f ′(x )=a (x ﹣1)(x+2).①a=0时,f (x )=1,不符合题意;②若a >0,则当x <﹣2或x >1时,f ′(x )>0;当﹣2<x <1时,f ′(x )<0,∴f (x )在(﹣2,1)是为减函数,在(﹣∞,﹣2)、(1,+∞)上为增函数;③若a <0,则当x <﹣2或x >1时,f ′(x )<0;当﹣2<x <1时,f ′(x )>0,∴f (x )在(﹣2,1)是为增函数,在(﹣∞,﹣2)、(1,+∞)上为减函数因此,若函数的图象经过四个象限,必须有f (﹣2)f (1)<0,即()()<0,解之得﹣.故答案为:﹣【点评】本题主要考查了利用导数研究函数的单调性与极值、函数的图象、充要条件的判断等知识,属于基础题. 14.【答案】(【解析】 ,所以增区间是()2310f x x x ⎛=-+>⇒∈ ⎝'⎛ ⎝15.【答案】20172016【解析】根据程序框图可知,其功能是求数列的前1008项的和,即})12)(12(2{+-n n +⨯+⨯=532312S .=-++-+-=⨯+2017120151()5131(311(201720152 2017201616.【答案】 (2,2) .【解析】解:∵log a 1=0,∴当x ﹣1=1,即x=2时,y=2,则函数y=log a (x ﹣1)+2的图象恒过定点 (2,2).故答案为:(2,2).【点评】本题考查对数函数的性质和特殊点,主要利用log a 1=0,属于基础题. 17.【答案】 a ≤4 .【解析】解:令t=x 2﹣ax+a ,则由函数f (x )=g (t )=log t 在区间[2,+∞)上为减函数,可得函数t 在区间[2,+∞)上为增函数且t (2)>0,故有,解得a≤4,故实数a的取值范围是a≤4,故答案为:a≤4【点评】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题. 18.【答案】 3 .【解析】解:直线l的方程为ρcosθ=5,化为x=5.点(4,)化为.∴点到直线l的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.三、解答题19.【答案】【解析】解:(1)∵PA⊥平面ABCD,CD⊆平面ABCD,∴PA⊥CD∵AD⊥CD,PA、AD是平面PAD内的相交直线,∴CD⊥平面PAD∵CD⊆平面PDC,∴平面PDC⊥平面PAD;(2)取AD中点O,连接EO,∵△PAD中,EO是中位线,∴EO∥PA∵PA⊥平面ABCD,∴EO⊥平面ABCD,∵AC⊆平面ABCD,∴EO⊥AC过O作OF⊥AC于F,连接EF,则∵EO、OF是平面OEF内的相交直线,∴AC⊥平面OEF,所以EF⊥AC∴∠EFO就是二面角E﹣AC﹣D的平面角由PA=2,得EO=1,在Rt△ADC中,设AC边上的高为h,则AD×DC=AC×h,得h=∵O是AD的中点,∴OF=×=∵EO=1,∴Rt△EOF中,EF==∴cos∠EFO==【点评】本题给出特殊的四棱锥,叫我们证明面面垂直并求二面角的余弦值,着重考查了平面与平面所成角的求法和线面垂直的判定与性质等知识,属于中档题.20.【答案】【解析】(本小题满分12分)(Ⅰ)证明:因为AE=AF,点G是EF的中点,所以AG⊥EF.又因为EF∥AD,所以AG⊥AD.…因为平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,AG⊂平面ADEF,所以AG⊥平面ABCD.…(Ⅱ)解:因为AG⊥平面ABCD,AB⊥AD,所以AG、AD、AB两两垂直.以A为原点,以AB,AD,AG分别为x轴、y轴和z轴,如图建立空间直角坐标系则A(0,0,0),B(4,0,0),C(4,4,0),设AG=t(t>0),则E(0,1,t),F(0,﹣1,t),所以=(﹣4,﹣1,t),=(4,4,0),=(0,1,t).…设平面ACE的法向量为=(x,y,z),由=0,=0,得,令z=1,得=(t,﹣t,1).因为BF与平面ACE所成角的正弦值为,所以|cos<>|==,…即=,解得t2=1或.所以AG=1或AG=.…【点评】本题考查线面垂直的证明,考查满足条件的线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用.21.【答案】【解析】解:(1)∵A、B、C为△ABC的三个内角,且cosBcosC﹣sinBsinC=cos(B+C)=,∴B+C=,则A=;(2)∵a=2,b+c=4,cosA=﹣,∴由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2+bc=(b+c)2﹣bc,即12=16﹣bc,解得:bc=4,则S△ABC=bcsinA=×4×=.【点评】此题考查了两角和与差的余弦函数公式,余弦定理,以及三角形面积公式,熟练掌握公式及定理是解本题的关键.22.【答案】【解析】解:(1)由表可得:;又;∴,;∴线性回归方程为:;(2)根据回归方程:当x=10时,y=﹣2×10+50=30;∴估计当气温为10℃时的用电量为30度.【点评】考查回归直线的概念,以及线性回归方程的求法,直线的斜截式方程.23.【答案】【解析】解:(1)设切点.由,知抛物线在Q 点处的切线斜率为,故所求切线方程为.即y=x 0x ﹣x 02.因为点P (0,﹣4)在切线上.所以,,解得x 0=±4.所求切线方程为y=±2x ﹣4.(2)设A (x 1,y 1),C (x 2,y 2).由题意知,直线AC 的斜率k 存在,由对称性,不妨设k >0.因直线AC 过焦点F (0,1),所以直线AC 的方程为y=kx+1.点A ,C 的坐标满足方程组,得x 2﹣4kx ﹣4=0,由根与系数的关系知,|AC|==4(1+k 2),因为AC ⊥BD ,所以BD 的斜率为﹣,从而BD 的方程为y=﹣x+1.同理可求得|BD|=4(1+),S ABCD =|AC||BD|==8(2+k 2+)≥32.当k=1时,等号成立.所以,四边形ABCD 面积的最小值为32.【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题.24.【答案】.[]1,2-【解析】试题分析:先化简条件得,分三种情况化简条件,由是的一个必要不充分条件,可分三种情况p 31x -≤<p 列不等组,分别求解后求并集即可求得符合题意的实数的取值范围.试题解析:由411x ≤--得:31p x -≤<,由22x x a a +<-得()()10x a x a +--<⎡⎤⎣⎦,当12a =时,:q ∅;当12a <时,():1,q a a --;当12a >时,():,1q a a -- 由题意得,p 是的一个必要不充分条件,当12a =时,满足条件;当12a <时,()[)1,3,1a a --⊆-得11,2a ⎡⎫∈-⎪⎢⎣⎭,当12a >时,()[),13,1a a --⊆-得1,22a ⎛⎤∈ ⎥⎝⎦ 综上,[]1,2a ∈-.考点:1、充分条件与必要条件;2、子集的性质及不等式的解法.【方法点睛】本题主要考查子集的性质及不等式的解法、充分条件与必要条件,属于中档题,判断是的什么p 条件,需要从两方面分析:一是由条件能否推得条件,二是由条件能否推得条件.对于带有否定性的命题p p 或比较难判断的命题,除借助集合思想把抽象、复杂问题形象化、直观化外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题.本题的解答是根据集合思想解不等式求解的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年度上学期十二月考试高三试题数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(],6A =-∞,{}28nB n N =∈<,则集合A B ⋂为( )A.(,3)-∞B.[)0,3C. {}1,2D.{}0,1,22.已知命题:p x R ∃∈,使240x ax +-<,命题:,23x x q x R ∀∈<,则下列命题是真命题的是( )A.p q ∧B.()p q ∧⌝C.()()p q ⌝∧⌝D.()p q ⌝∧ 3.已知数列{}n a 的前n 项和记为n S ,满足1885,3a a ==,且122n n n a a a ++=+,要使得n S 取到最大值,则n =( )A.13B.14C.15或16D.16 4.若sin 3sin()02παα++=,则sin 2α的值为( )A.35-B.35C.45-D.455.设函数()cos(2)3f x x π=-,则下列结论错误的是( )A.()f x 的一个周期为π-B.()y f x =的图像关于直线23x π=对称 C.()2f x π+的一个零点为3x π=-D.()f x 在区间[,]32ππ上单调递减 6.设{}n a 是公差不为0的等差数列,满足22224567a a a a +=+,则该数列的前10项和10S =( )A.0B.-5C.-10D.57.设{}{}n n a b 、分别是等差、等比数列,且118a b ==,441a b ==,则以下结论正确的是( )A.22a b >B. 33a b <C.55a b >D.66a b > 8.已知α为锐角,且3sin()35πα+=,则sin()a π-=( )9.已知单位向量a 与b的夹角为60︒,对于实数0λ>,则2a b λ- 的最小值为( )B.2 D.10.我国南北朝时期的伟大科学家祖暅在数学上有突出的贡献,他在实践的基础上,于5世纪末提出下面的体积计算原理(祖暅原理):“幂势既同,则积不容异”,“势”是几何体的高,“幂”是截面面积,意思是:若两等高几何体在同高处的截面面积总相等,则这两个几何体的体积相等.现有一旋转体D (如图所示),它是由抛物线2y x =,直线4y =及y 轴所围成的封闭图形绕轴旋转一周所形成的几何体,利用祖暅原理,旋转体D 的参照体的三视图如图所示,则旋转体D 的体积是 ( )A.163πB. 16πC. 6πD. 8π 11.若函数,0()ln ,0x a x f x x x +≤⎧=⎨⎩>的图象上存在关于直线y x =对称的点,则实数a 的取值范围是( )A.(,0)-∞B.[)0,+∞C.(],1-∞D.[)1,+∞12.已知函数[)11,(,2)()3(2),2,x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,则函数()()cos g x f x x π=-在区间[]0,8内所有零点的和为 ( )A.16B.30C.32D.40 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量a 与b 满足a = ,1b = ,且a b λ=,则实数λ= .14.已知ABC ∆的外心P 满足3AP AB AC =+,则cos A = .15.已知1,3x x ==是函数()sin()(0)f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x =处的导数3()02f '<,则1()3f = .16.已知函数2ln ()()()x x b f x b R x+-=∈,若存在1[,2]2x ∈,使得()()f x x f x '-⋅>,则实数b 的取值范围是 . 三、解答题 (17-21题12’,选作题10’) 17.在ABC ∆中,5,c b ==a A =. (Ⅰ)求a 的值; (Ⅱ)求证:2B A ∠=∠.18.已知数列{}n a 的前n 项和为n S ,满足11222,(2,)n n n a a n n N +*-=+≥∈,且13a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)求证:1211111112n a a a ++++++ <. 19.如图,在三棱柱111ABC A B C -中,侧面11AA B B ⊥底面ABC ,ABC ∆和1ABB ∆都是边长为2的正三角形.(Ⅰ)过1B 作出三棱柱的截面,使截面垂直于AB ,并证明; (Ⅱ)求1AC 与平面11BCC B 所成角的正弦值.20.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,PA ⊥平面ABCD ,点,M N 分别为,BC PA的中点,且1,AB AC AD ===(1)证明:MN ∥平面PCD ;(2)设直线AC 与平面PBC 所成角为α,当α在(0,)6π内变化时,求二面角P BC A--的取值范围. 21.已知函数(),()(1)ln xf xg x k x x==-. (Ⅰ)证明:k R ∀∈,直线()y g x =都不是曲线()y f x =的切线; (Ⅱ)若2[,]x e e ∃∈,使1()()2f xg x ≤+成立,求实数k 的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.已知曲线C的参数方程为2cos x y θθθ=⎧⎪⎨=⎪⎩(为参数),在同一平面直角坐标系中,将曲线C上的点按坐标变换12x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩得到曲线C ',以原点为极点,x 轴的正半轴为极轴,建立极坐标系.(Ⅰ)求曲线C '的极坐标方程;(Ⅱ)若过点3(,)2A π(极坐标)且倾斜角为6π的直线l 与曲线C '交于,M N 两点,弦MN 的中点为P ,求AP AM AN⋅的值.23.已知函数()223f x x a x =-++,()232g x x =-+(1)解不等式()5g x <; (2)若对任意1x R ∈,都存在2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.试卷答案一、选择题1-5: DBCAC 6-10: AAAAD 11、12:DC 二、填空题 13. 2± 14. 12 15. 12 16. 9(,)4-∞ 三、解答题17.解:(Ⅰ)因为a A =,所以2222b c a a bc +-=. 因为 5c =,b =,所以 23404930a a +-⨯=. 解得:3a =,或493a =-(舍).(Ⅱ)由(Ⅰ)可得:cos 33A ==. 所以 21cos 22cos 13A A =-=.因为 3a =,5c =,b =,所以 2221cos 23a cb B ac +-==.所以cos 2cos A B =. 因为 c b a >>, 所以 (0,)3A π∈. 因为 (0,)B ∈π, 所以 2B A ∠=∠. 18.解:(Ⅰ)由题意12nn n a a -∴-=累加得231222nn a a ∴-=++121n n a +∴=-(Ⅱ)112n n a ++=,∴111n a +⎧⎫⎨⎬+⎩⎭是首项为14,公比为12的等比数列, 因此1211111142 (111112)n n a a a ⎛⎫- ⎪⎝⎭+++=+++-11122n ⎛⎫=- ⎪⎝⎭12<19.解: (Ⅰ)设AB 中点为O ,连11,,OC OB B C ,则截面1OBC 为所求,1,OC OB 分别为1,ABC ABB ∆∆的中线,所以1,AB OC AB OB ⊥⊥,又1,OC OB 为平面1OBC 内的两条相交直线,所以AB ⊥平面1OBC , (Ⅱ)以O 为原点,OB 方向为x 轴方向建立如图所示的空间直角坐标系, 易求得(1,0,0),(1,0,0)B A -,11(1C B C -11(1,(1,0,CB B B AC ===,设平面11BCC B 的一个法向量为(,,)n x y z =,由100n CB x n B B x ⎧⎧⊥-=⎪⎪⇔⎨⎨⊥-=⎪⎪⎩⎩解得平面11BCC B的一个法向量为,1)n = ,111|||cos ,|||||AC n AC n AC n ⋅<>===⋅所以1AC 与平面11BCC B20.解:PA ⊥ 底面ABCD,PA AD PA AB ∴⊥⊥,,PA AD AB ∴两两垂直,如图建系:()()()()()0,0,2,1,0,0,0,2,0,2,2,0,1,1,1P B D C E(1)()()0,1,1,2,0,0BE DC ==0BE DC BE DC ∴⋅=⇒⊥BE DC ∴⊥(2)设平面PBD 的法向量为(),,n x y z =()()1,0,2,1,2,0PB BD =-=- ()202,1,120x z n x y -=⎧∴⇒=⎨-+=⎩设直线BE与平面PBD所成角为θsin cos,BE nBE nBE nθ⋅∴====⋅(3)设(),,F x y z()(),,2,2,2,2PF x y z PC∴=-=-,,P F C三点共线()2,2,2P F P Cλλλλ∴==-2222xyzλλλ=⎧⎪∴=⎨⎪-=-⎩()2,2,22Fλλλ∴-()21,2,22BFλλλ∴=--()2,2,0AC=BF AC⊥()221220B F A Cλλ∴⋅=-+⋅=解得:14λ=113,,222F⎛⎫∴ ⎪⎝⎭设平面FAB的法向量为(),,m x y z=()1131,0,0,,,222AB AF⎛⎫== ⎪⎝⎭()0,3,1113222xmx y z=⎧⎪∴⇒=-⎨++=⎪⎩平面ABP的法向量为()0,1,0n=cos,m nm nm n⋅∴===⋅∴二面角F AB P--21.解:(Ⅰ)()f x 的定义域为()()0,11,⋃+∞, ()()2ln 1ln x f x x -'=,直线()y g x =过定点()1,0,若直线()y g x =与曲线()y f x =相切于点000,ln x x x ⎛⎫ ⎪⎝⎭(00x >且01x ≠),则()020ln 1ln x k x -= 000ln 1x x x =-,即00ln 10x x +-=,① 设()ln 1h x x x =+-, ()0,x ∈+∞,则()110h x x+'=>,所以()h x 在()0,+∞上单调递增,又()10h =,从而当且仅当01x =时,①成立,这与01x ≠矛盾. 所以, R k ∀∈,直线()y g x =都不是曲线()y f x =的切线;(Ⅱ)()()12f x g x ≤+即()11ln 2x k x x --≤,令()()1ln xx k x xϕ=--, 2e,e x ⎡⎤∈⎣⎦, 则2e,e x ⎡⎤∃∈⎣⎦,使()()12f x g x ≤+成立()min12x ϕ⇔≤, ()()2ln 1ln x x k x ϕ='--= 211ln ln k x x ⎛⎫-+-= ⎪⎝⎭ 2111ln 24k x ⎛⎫--+- ⎪⎝⎭,(1)当14k ≥时, ()0x ϕ'≤, ()x ϕ在2e,e ⎡⎤⎣⎦上为减函数,于是()()2min e x ϕϕ== ()22e e 12k --, 由()22e 1e 122k --≤得12k ≥,满足14k ≥,所以12k ≥符合题意;(2)当14k <时,由21124y t k ⎛⎫=--+- ⎪⎝⎭及1ln t x =的单调性知()211ln 2x x ϕ⎛⎫=-- ⎪⎝⎭'14k +-在2e,e ⎡⎤⎣⎦上为增函数,所以()()()2e e x ϕϕϕ''≤'≤,即()14k x k ϕ-≤'≤-, ①若0k -≥,即0k ≤,则()0x ϕ'≥,所以()x ϕ在2e,e ⎡⎤⎣⎦上为增函数,于是()()min e x ϕϕ== ()e e 1k -- 1e 2≥>,不合题意;②若0k -<,即104k <<则由()e 0k ϕ'=-<, ()21e 04k ϕ'=->及()x ϕ'的单调性知存在唯一()20e,e x ∈,使()00x ϕ'=,且当()0e,x x ∈时, ()0x ϕ'<, ()x ϕ为减函数;当()20,x x e ∈时,()0x ϕ'>, ()x ϕ为增函数;所以()()0min x x ϕϕ==()0001ln x k x x --,由()00011ln 2x k x x --≤得000111ln 2x k x x ⎛⎫≥- ⎪-⎝⎭ 011x >- 01112224x ⎛⎫-=> ⎪⎝⎭,这与104k <<矛盾,不合题意. 综上可知, k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.22.解:(Ⅰ)222cos ::143x x y C C y θθ=⎧⎪⇒+=⎨=⎪⎩,将122x x x x y y y ⎧'=⎪'=⎧⎪⎪⇒⎨⎨'=⎪⎩⎪'=⎪⎩,代入C 的普通方程可得221x y ''+=, 即22:1C x y '+=,所以曲线C '的极坐标方程为 :1C ρ'=(Ⅱ)点),23(πA 直角坐标是)0,23(-A ,将l 的参数方程2cos 6sin6x t y t ππ⎧=-+⎪⎪⎨⎪=⎪⎩代入221x y +=,可得053642=+-t t ,所以533|||2|||||||2121=+=⋅t t t t AN AM AP . 23.解:(1))3,0((2)由题意得)}(|{)}(|{x g y y x f y y =⊆=又|3||)32()2(||32||2|)(+=+--≥++-=a x a x x a x x f ,22|32|)(≥+-=x x g , 则2|3|≥+a ,解得1-≥a 或5-≤a ,故实数a 的取值范围为),1[]5,(+∞---∞ .高三理科数学答案2017.12.3 DBCAC AAAAD DC2±12 12 9(,)4-∞ 17.解:(Ⅰ)因为2a A =,所以22222b c a a bc +-=. 因为 5c =,b = 23404930a a +-⨯=.解得:3a =,或493a =-(舍).(Ⅱ)由(Ⅰ)可得:cos 3A ==所以 21cos 22cos 13A A =-=.因为 3a =,5c =,b = 2221cos 23a cb B ac +-==. 所以cos 2cos A B =. 因为 c b a >>, 所以 (0,)3A π∈. 因为 (0,)B ∈π, 所以 2B A ∠=∠. 18.解:(Ⅰ)由题意12nn n a a -∴-=累加得231222n n a a ∴-=++121n n a +∴=-(Ⅱ)112n n a ++=,∴111n a +⎧⎫⎨⎬+⎩⎭是首项为14,公比为12的等比数列, 因此1211111142 (111112)n n a a a ⎛⎫- ⎪⎝⎭+++=+++-11122n ⎛⎫=- ⎪⎝⎭12< 19.解: (Ⅰ)设AB 中点为O ,连11,,OC OB B C ,则截面1OBC 为所求,1,OC OB 分别为1,ABC ABB ∆∆的中线,所以1,AB OC AB OB ⊥⊥,又1,OC OB 为平面1OBC 内的两条相交直线,所以AB ⊥平面1OBC ,(Ⅱ)以O 为原点,OB 方向为x 轴方向建立如图所示的空间直角坐标系,易求得(1,0,0),(1,0,0)B A -,11(1C B C -11(1,(1,0,CB B B AC ===,设平面11BCC B 的一个法向量为(,,)n x y z =,由100n CB x n B B x ⎧⎧⊥-=⎪⎪⇔⎨⎨⊥-=⎪⎪⎩⎩解得平面11BCC B的一个法向量为,1)n = ,111|||cos ,|5||||AC n AC n AC n ⋅<>===⋅, 所以1AC 与平面11BCC B20.解:PA ⊥ 底面ABCD,PA AD PA AB ∴⊥⊥,,PA AD AB ∴两两垂直,如图建系:()()()()()0,0,2,1,0,0,0,2,0,2,2,0,1,1,1P B D C E(1)()()0,1,1,2,0,0BE DC ==0BE DC BE DC ∴⋅=⇒⊥BE DC ∴⊥(2)设平面PBD 的法向量为(),,n x y z =()()1,0,2,1,2,0PB BD =-=- ()202,1,120x z n x y -=⎧∴⇒=⎨-+=⎩设直线BE 与平面PBD 所成角为θsin cos ,BE n BE n BE nθ⋅∴====⋅(3)设(),,F x y z ()(),,2,2,2,2PF x y z PC ∴=-=-,,P F C 三点共线 ()2,2,2P F P C λλλλ∴==-2222x y z λλλ=⎧⎪∴=⎨⎪-=-⎩()2,2,22F λλλ∴-()21,2,22BF λλλ∴=-- ()2,2,0AC =BF AC ⊥ ()221220B F A C λλ∴⋅=-+⋅= 解得:14λ= 113,,222F ⎛⎫∴ ⎪⎝⎭设平面FAB 的法向量为(),,m x y z =()1131,0,0,,,222AB AF ⎛⎫== ⎪⎝⎭ ()00,3,11130222x m x y z =⎧⎪∴⇒=-⎨++=⎪⎩ 平面ABP 的法向量为()0,1,0n =cos ,m n m n m n⋅∴===⋅∴二面角F AB P --21.解:(Ⅰ)()f x 的定义域为()()0,11,⋃+∞, ()()2ln 1ln x f x x -'=,直线()y g x =过定点()1,0,若直线()y g x =与曲线()y f x =相切于点000,ln x x x ⎛⎫ ⎪⎝⎭(00x >且01x ≠),则()020ln 1ln x k x -= 00ln 1x x x =-,即00ln 10x x +-=,① 设()ln 1h x x x =+-, ()0,x ∈+∞,则()110h x x+'=>,所以()h x 在()0,+∞上单调递增,又()10h =,从而当且仅当01x =时,①成立,这与01x ≠矛盾. 所以, R k ∀∈,直线()y g x =都不是曲线()y f x =的切线;(Ⅱ)()()12f x g x ≤+即()11ln 2x k x x --≤,令()()1ln x x k x xϕ=--, 2e,e x ⎡⎤∈⎣⎦, 则2e,e x ⎡⎤∃∈⎣⎦,使()()12f x g x ≤+成立()min12x ϕ⇔≤,()()2ln 1ln x x k x ϕ='--= 211ln ln k x x ⎛⎫-+-= ⎪⎝⎭ 2111ln 24k x ⎛⎫--+-⎪⎝⎭, (1)当14k ≥时, ()0x ϕ'≤, ()x ϕ在2e,e ⎡⎤⎣⎦上为减函数,于是()()2mine x ϕϕ== ()22e e 12k --, 由()22e 1e 122k --≤得12k ≥,满足14k ≥,所以12k ≥符合题意; (2)当14k <时,由21124y t k ⎛⎫=--+- ⎪⎝⎭及1ln t x =的单调性知()211ln 2x x ϕ⎛⎫=-- ⎪⎝⎭'14k +-在2e,e ⎡⎤⎣⎦上为增函数,所以()()()2e e x ϕϕϕ''≤'≤,即()14k x k ϕ-≤'≤-, ①若0k -≥,即0k ≤,则()0x ϕ'≥,所以()x ϕ在2e,e ⎡⎤⎣⎦上为增函数,于是()()min e x ϕϕ== ()e e 1k -- 1e 2≥>,不合题意;②若0k -<,即104k <<则由()e 0k ϕ'=-<, ()21e 04k ϕ'=->及()x ϕ'的单调性知存在唯一()20e,e x ∈,使()00x ϕ'=,且当()0e,x x ∈时, ()0x ϕ'<, ()x ϕ为减函数;当()20,x x e ∈时,()0x ϕ'>, ()x ϕ为增函数;所以()()0m in x x ϕϕ== ()0001ln x k x x --,由()00011l n2x k x x --≤得000111ln 2x k x x ⎛⎫≥- ⎪-⎝⎭011x >- 01112224x ⎛⎫-=> ⎪⎝⎭,这与104k <<矛盾,不合题意. 综上可知, k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭.22.解:(Ⅰ)222cos ::143x x y C C y θθ=⎧⎪⇒+=⎨=⎪⎩,将122x x x x y y y ⎧'=⎪'=⎧⎪⎪⇒⎨⎨'=⎪⎩⎪'=⎪⎩,代入C 的普通方程可得221x y ''+=, 即22:1C x y '+=,所以曲线C '的极坐标方程为 :1C ρ'=(Ⅱ)点),23(πA 直角坐标是)0,23(-A ,将l 的参数方程2cos 6sin 6x t y t ππ⎧=-+⎪⎪⎨⎪=⎪⎩代入221x y +=,可得053642=+-t t ,所以533|||2|||||||2121=+=⋅t t t t AN AM AP .23.解:(1))3,0((2)由题意得)}(|{)}(|{x g y y x f y y =⊆=又|3||)32()2(||32||2|)(+=+--≥++-=a x a x x a x x f ,22|32|)(≥+-=x x g , 则2|3|≥+a ,解得1-≥a 或5-≤a ,故实数a 的取值范围为),1[]5,(+∞---∞ .。