天津市天津一中2013届高三第四次月考理科数学试题
天津高三数学理科试题分类汇编13导数
最新 2013 届天津高三数学理科试题精选分类汇编13:导数一、选择题1 .(天津市蓟县二中 2013 届高三第六次月考数学(理)试题)函数的图象与 x 轴所围成的封闭图形的面积为()()A .B .1 C. 2 D.2 .(天津市耀华中学2013 届高三第一次月考理科数学试题)已知函数 f (x)= x2 cos x,则f (0.6),f (0),f (-0.5) 的大小关系是()A .f (0)< f (0.6)< f (-0.5) B.f (0)< f (-0.5)< f (0.6)C.f (0.6)< f (-0.5)< f (0) D.f (-0.5)< f (0)< f (0.6)3 .(天津市天津一中2013 届高三上学期一月考理科数学). 定义在 R 上的可导函数 f(x), 且 f(x) 图像连续 , 当 x≠ 0 时 , f '( x) x 1 f ( x) 0 ,则函数 g( x) f (x) x 1的零点的个数为()A . 1B .2 C. 0 D.0或24 .(天津市新华中学2012 届高三上学期第二次月考理科数学)已知函数 f ( x)( x R) 满足 f (1) 1 ,且 f (x) 的导函数 f '( x) 1 x 1的解集为2,则 f ( x)22()A .x 1 x 1B .x x 1C .x x 1或 x 1D.x x 1二、填空题5 .(天津市六校 2013 届高三第二次联考数学理试题(WORD 版))若 f(x) 在 R上可2+2f ’(2)+3, 3导 ,f(x)=x 则 f (x)dx .6 .(天津南开中学2013 届高三第四次月考数学理试卷)若不等式 | ax3 ln x | 1 对任意 x (0,1] 都成立 , 则实数 a 取值范围是 ________.17 .(天津市耀华中学2013 届高三第一次月考理科数学试题)计算(2 x+e x )dx = ;-18 .(天津市天津一中2013 届高三上学期一月考理科数学)曲线 xy 1与直线y=x和y=3所围成的平面图形的面积为 _________.9 .(天津市天津一中20131 e 1dx , 则 m与n届高三上学期第二次月考数学理试题)设me x dx,n x0 1的大小关系为 ______.10.(天津耀华中学2013 届高三年级第三次月考理科数学试卷)已知函数 f ( x) x3 bx2 cx d 在区间 [ 1,2] 上是减函数,那么 b c的最大值为________________;三、解答题11.2013 届高三第六次月考数学(理)试题)已知函数(为自然(天津市蓟县二中对数的底数).(1)求的最小值;( 2)设不等式的解集为,若,且,求实数的取值范围(3)已知,且,可否存在等差数列和首项为公比大于0 的等比数列,使得 ?若存在,央求出数列 的通项公式.若不存在,请说明原由.12.2013 届高三第六次月考数学(理)试题)已知函数(天津市蓟县二中( ) .(1)若,试确定函数的单调区间;( 2)若函数在其图象上任意一点 处切线的斜率都小于 ,求实数 的取值范围 .(3)若,求 的取值范围 .13.(天津市十二区县重点中学2013 届高三毕业班联考(一)数学(理)试题)已知函数f xln 2ax 1x 3x 2 2ax a R3( Ⅰ) 若 x2 为 f x 的极值点 , 求实数 a 的值 ;( Ⅱ) 若 yf x 在 3,上为增函数 , 求实数 a 的取值范围 ;1 1 x 3b ( Ⅲ) 当 a时 , 方程 f 1 xx23有实根 , 求实数 b 的最大值 .2013 年天津市十二区县重点学校高三毕业班联考( 一14.(天津市六校 2013 届高三第二次联考数学理试题(WORD 版))已知函数 f( x )=2ln x +ax 2-1( a ∈ R)(1) 求函数 f(x) 的单调区间 ;(2) 若 a=1, 分别解答下面两题 ,(i) 若不等式 f(1+x)+f(1-x)<m 对任意的 0<x<1 恒成立 , 求 m 的取值范围 ;(ii) 若 x 1,x 2 是两个不相等的正数 , 且 f(x 1)+f(x 2)=0, 求证 x 1+x 2>2.15.(天津南开中学 2013 届高三第四次月考数学理试卷)已知函数 f (x) x ln( x a) 的最小值为 0,其中 a0 .(1) 求 a 的值(2) 若对任意的 x[0, ) , 有 f ( x)kx 2 成立 , 求实数 k 的最小值n2N * )(3) 证明2i ln( 2n 1) 2(ni 1116 .( 2012-2013-2 天津一中高三 年级数学第四次月考检测试卷(理))已知函数f x ln x ax 2 x 在 x 0 处获取极值 .(1) 求实数 a 的值;(2) 若关于 x 的方程f x5x b 在区间0,2上恰有两个不同样的实数根, 求实数b的取值范2围;(3) 证明 : 对任意的正整数3 4 n 1ln n 1 都成立. n ,不等式29 n2417.(天津市耀华中学 2013 届高三第一次月考理科数学试题)( 本小题满分14 分) 设函数f (x)=x2 +bln (x+1) ,其中b≠0。
天津一中高三第一次月考数学(理)试卷
天津一中2016-2017-1高三年级第一次月考数学(理)试卷一、选择题:1.设全集U =R ,集合A ={x|x 2-2x ≥0},B ={x|y =log 2(x 2-1)},则(∁U A )∩B =( B ) A.D.(-∞,-1)∪2. 在复平面上,复数2ii+对应的点在( D ) A .第一象限 B .第二象限C .第三象限D .第四象限3.设函数23()xxf x e -=(e 为自然底数),则使()1f x <成立的一个充分不必要条件是( A )A.01x <<B.04x <<C. 03x <<D. 34x <<4.下列命题中是假命题的是( C ) A.m R ∃∈,使243()(1)m m f x m x-+=-⋅是幂函数B. ,R αβ∃∈,使cos()cos cos αβαβ+=+C. R ϕ∀∈,函数()sin()f x x ϕ=+都不是偶函数D. 0a ∀>,函数2()ln ln f x x x a =+-有零点5.设变量x ,y 满足:34,2y x x y x ≥⎧⎪+≤⎨⎪≥-⎩则z=|x-3y|的最大值为( B )A .3B .8C .134 D .926.在如图所示的程序框图中,若输出i 的值是3,则输入x 的取值范围是(A ) A .(4,10] B .(2,+∞)C .(2,4]D .(4,+∞)7.函数f (x )=(x 2-2x )e x 的大致图象是( A )A.B.C.D.8.已知函数()2,11,1x ax x f x ax x ⎧-+≤=⎨->⎩,若1212,,x x R x x ∃∈≠,使得()()12f x f x =成立, 则实数a 的取值范围是( A )A .2a <B .2a >C .22a -<<D .2a >或2a <-二、填空题:9.若(2x+)dx=3+ln2(a >1),则a 的值是 .210.已知函数f (x )=224,0,4-,0,x x x x x x ⎧+≥⎨<⎩若f (2-a 2)>f (a ),则实数a 的取值范围是 ▲ . 【答案】(-2,1)11.在直角ABC ∆中, 90=∠C , 30=∠A , 1=BC , D 为斜边AB 的中点,则⋅= . -112.如图,PB 为△ABC 外接圆O 的切线,BD 平分PBC ∠,交圆O 于D ,C,D,P共线.若AB BD ⊥,PC PB ⊥,1PD =,则圆O 的半径是 .-2 13.已知曲线1C 、2C 的极坐标方程分别为2c o s ()2πρθ=-+,cos()104πθ-+=,则曲线1C 上的点与曲线2C 上的点的最远距离为14.已知函数||)(xxe x f =,方程)(01)()(2R t x tf x f ∈=++有四个实数根, 则t 的取值范围为)12ee +-∞-,(三、解答题:15.已知函数2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--,x R ∈.(Ⅰ)求函数()f x 的最小正周期; (Ⅱ)求函数()f x 在区间[,]44ππ-上的最大值和最小值.解:(Ⅰ) ∵sin2coscos2sinsin2co ()=333scos23sincos2f x x x x x x ππππ⋅+⋅+⋅-⋅+sin2cos224x x x π=+=+(),……………………4分 ∴函数()f x 的最小正周期22T ππ==。
【解析】天津市天津一中2013届高三上学期一月考文科数学
天津一中2012-2013学年高三年级一月考数学试卷(文)一、选择题(每小题5分,共40分) 1.i 是虚数单位,复数2i1iz -==-( ) A .31i 22+ B .13i 22+ C .13i + D . 3i -【答案】A 【解析】2i (2i)(1+i)3311i (1i)(1+i)222i z i --+====+--,选A. 2.已知全集U R =,{|21}xA y y ==+,{||1||2|2}B x x x =-+-<,则()U C A B =( )A .∅B .1{|1}2x x <≤C .{|1}x x <D .{|01}x x <<【答案】B【解析】{21}{1}x A y y y y ==+=>,15{||1||2|2}{}22B x x x x x =-+-<=<<,所以{1}U A y y =≤ð,所以1(){1}2U A B xx =<≤ð,选B. 3. 0a <,0b <,则22b a p a b=+与q a b =+的大小关系为 ( )A. p q >B. p q ≥C. p q <D. p q ≤【答案】D【解析】22222222()b a b a b a a b p q a b a b a b a b a b---=+-+=-+-=+2222211()()()()()b a b a a b b a b a a b ab ab--+=--=-⨯=,因为0a <,0b <,所以0,0a b ab +<>,2()0b a -≥,所以0p q -≤,所以p q ≤,选D.4. 函数()cos 22sin f x x x =+的最小值和最大值分别为( )A. 3,1-B.2,2-C. 33,2- D. 32,2- 【答案】C【解析】22()cos 22sin 12sin 2sin 2(sin sin )1f x x x x x x x =+=-+=--+2132(sin )22x =--+,因为1sin 1x -≤≤,所以当1sin 2x =时,函数有最大值32,当sin 1x =-时,函数有最小值3-,选C.5. 已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( )A .最小正周期为π的奇函数 B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为2π的偶函数【答案】D【解析】222211()(1cos 2)sin 2cos sin sin 2(1cos 4)24f x x x x x x x =+===-,所以函数为偶函数,周期2242T πππω===,选D. 6. 要得到函数x y cos 2=的图象,只需将函数)42sin(2π+=x y 的图象上所有的点( )A .横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度 B.横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度 D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度【答案】C 【解析】将函数)42sin(2π+=x y 的图象上所有的点横坐标伸长到原来的2倍(纵坐标不变),得到)4y x π=+,然后向左平移4π个单位得到函数442y x x x πππ=+++,选C.7. 函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )【答案】A【解析】函数为偶函数,图象关于y 轴对称,所以排除B,D.又0cos 1x <<,所以ln cos 0y x =<,排除C ,选A.8. 定义域为{|2}x R x ∈≠的函数()y f x =满足(4)()f x f x -=,(2)()0x f x '-<,若12x x <,且124x x +>,则 ( ).A .12()()f x f x < B. 12()()f x f x > C. 12()()f x f x =D. 1()f x 与2()f x 的大小不确定【答案】B【解析】由(4)()f x f x -=可知函数的关于2x =对称,当2x >时,'()0f x <,函数单调递减,当2x <时,'()0f x >,函数单调递增,因为12x x <,且124x x +>,所以讨论:若122x x <<,函数因为函数单调递减,则有12()()f x f x >,若122x x <<,由124x x +>得124x x >-,即2142x x -<<,函数在2x <时,单调递增,即21(4)()f x f x -<.即21()()f x f x <,综上可知,12()()f x f x >,选B.二、填空题(每小题5分,共30分) 9. 已知3,,4παβπ⎛⎫∈ ⎪⎝⎭,sin(βα+)=-,53 sin ,13124=⎪⎭⎫ ⎝⎛-πβ则cos ⎪⎭⎫ ⎝⎛+4πα=________.【答案】6556-【解析】因为3,,4παβπ⎛⎫∈⎪⎝⎭,所以3,22παβπ⎛⎫+∈ ⎪⎝⎭,所以cos()0αβ+>,即4cos()5αβ+=.又3244πππβ<-<,所以cos()04πβ-<,即5cos()413πβ-=-.又cos()cos[()()]cos()cos()sin()sin()4444ππππααββαββαββ+=+--=+-++-4531256()()51351365=⨯-+-⨯=-. 10. 在ABC △中,若1tan 3A =,150C =︒,1BC =,则AB = .【解析】由1tan 3A =,得sin A =,根据正弦定理得sin sin BC AB A C =,即01sin sin150ABA =,解得AB =11. 已知向量()()()2 111 2m =-=-=-a b c ,,,,,,若()+a b c ,则m = .【答案】1m =-【解析】()()2 11(1,1)m m +=-+-=-,,a b ,因为()+a bc ,所以12(1)(1)0m ⨯--⨯-=,即210m +-=,解得1m =-.12. 已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量(31)=-,m ,(cos sin )A A =,n .若⊥m n ,且cos cos sin a B b A c C +=,则角B = .【答案】6π【解析】因为⊥m n,所以sin 0A A -=sin A A =,所以tan A =,所以3A π=.又cos cos sin a B b A c C +=,所以根据正弦定理得sin cos sin cos sin sin A B B A C C +=,即sin()sin sin A B C C +=,所以sin sin sin C C C =,即sin 1C =,所以2C π=,所以236B ππππ=--=.13.如右图,AB 是半圆的直径,点C 在半圆上,CD AB ⊥,垂足为D ,且5AD DB =,设COD θ∠=,则tan θ= .【解析】设圆的半径为R ,因为5AD DB =,所以2AD DB R +=,即62DB R =,所以13DB R =,23OD R =,53AD R =,由相交弦定理可得2259CD AD BD R ==,所以CD R =,所以tan CD OD θ===. 14. 在四边形ABCD 中,()1 1AB DC ==,,113BA BC BD BABCBD+=,则四边形ABCD 的面积为 . 【解析】由()1 1AB DC ==,,可知四边形ABCD 为平行四边形,2AB DC ==,因为113BA BC BD BABCBD+=,所以可知平行四边形ABCD 的角平分线BD 平分∠ABC,四边形为菱形,,且对角线BD倍,即BD==,则22212CE =-=,即CE =所以三角形BCD 的面积为12,所以四边形ABCD 的面积为2三、解答题:(15,16,17,18每题13分,19,20每题14分)15.已知a b c ,,为ABC △的三个内角A B C ,,的对边,且.21222ac b c a =-+(I )求B CA 2cos 2sin 2++的值;(Ⅱ)若b =2,求△ABC 面积的最大值.16.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域17.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量(2sin B,2cos 2B)m =-,2B(2sin (), 1)42n π=+-, m ⊥n .(I )求角B 的大小;(Ⅱ)若a =1b =,求c 的值.18. 已知函数32()92f x ax bx x =-++,若()f x 在1x =处的切线方程为360 x y +-=.(I )求函数()f x 的解析式;(Ⅱ)若对任意的1[,2]4x ∈,都有2()21f x t t ≥--成立,求函数2()2g t t t =+-的最值.19.已知函数22()ln ().f x x a x ax a R =-+∈ (I )求()f x 的单调区间与极值;(Ⅱ)若函数()f x ∞在区间(1,+)上是单调减函数,求实数a 的取值范围.20.设函数232()cos 4sincos 43422x xf x x t t t t =--++-+,x ∈R ,其中1t ≤,将()f x 的最小值记为()g t .(I )求()g t 的表达式;(II )讨论()g t 在区间(11)-,内的单调性并求极值.天津一中2012—2013高三年级一月考数学试卷(文科)答案一、选择题:ABDCDCAB 二、填空题:(每小题5分,共30分)9.6556-1011.1m =- 12613 三、解答题:(15,16,17,18每题13分,19,20每题14分) 15.(I )由余弦定理:c o nB =14 si n 22A C ++c os2B = -14(II )由.415sin ,41cos ==B B 得 ∵b =2, a2+c 2=12ac +4≥2ac ,得ac ≤38,S △ABC =12ac si nB ≤315(a =c 时取等号)故S △ABC 的最大值为315 16.(I )()cos(2)2sin()sin()344f x x x x πππ=-+-+1cos 22(sin cos )(sin cos )2x x x x x x =++-+221cos 22sin cos 2x x x x =++-1cos 22cos 22x x x =+-sin(2)6x π=- 2T 2ππ==周期∴ 对称轴方程 ()23k x k Z ππ=+∈ (II )5[,],2[,]122636x x πππππ∈-∴-∈- 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 取最大值 1又1()()1222f f ππ-=<=,∴当12x π=-时,()f x 取最小值所以 函数 ()f x 在区间[,]122ππ-上的值域为[ 17.(I )20,4sin sin ()cos 22042Bm n m n B B π⊥∴⋅=∴⋅++-=222sin [1cos()]cos 220,22sin 2sin 12sin 20,15sin , 0, .266B B B B B B B B B ππππ∴-++-=∴++--=∴=<<∴=或(II )6,3π=∴>=B b a 此时,2222:::2cos ,320,2 1.,sin sin 12sin 0,,1332,,,2;36222,,, 1.3366b ac ac B c c c c b aB AA A A ABC c A C c b c πππππππππππ=+-∴-+=∴===∴=∴=<<∴====∴===--=∴=∴=方法一由余弦定理得或方法二由正弦定理得或若因为所以角边若则角边综上2 1.c c ==或18. (I )923)(2'+-=bx ax x f ,(1)3(1)3f f =⎧⎨'=-⎩解得412a b =⎧⎨=⎩32()41292f x x x x ∴=-++(II )2()122493(23)(21)f x x x x x '=-+=-- (),()f x f x '∴的变化情况如下表:min ()2f x = min ()2f x ∴=122--≥t t ,31≤≤-t 2()2g t t t ∴=+- (31≤≤-t ), 当12t =-时,最小值为94-,当3t =时,最大值为1019.(I )函数22()ln f x x a x ax =-+的定义域为(0,)+∞222121(21)(1)'()2a x ax ax ax f x a x a x x x-++-+-∴=-+==① 当0a =时,1'()0f x x=>,()f x ∴的增区间为(0,)+∞,此时()f x 无极值; ② 当0a >时,令'()0f x =,得1x a =或12x a=-(舍去)()f x ∴的增区间为(0,)a ,减区间为(,)a +∞()f x ∴有极大值为1()ln f a a=-,无极小值;③ 当0a <时,令'()0f x =,得1x a =(舍去)或12x a=-()f x ∴的增区间为(0,)2a -,减区间为(,)2a-+∞ ()f x ∴有极大值为1133()ln ln(2)2244f a a a ⎛⎫-=--=--- ⎪⎝⎭,无极小值; (II )由(1)可知:①当0a =时,()f x 在区间(1,)+∞上为增函数,不合题意;②当0a >时,()f x 的单调递减区间为1(,)a +∞,依题意,得110a a ⎧≤⎪⎨⎪>⎩,得1a ≥;③当0a <时,()f x 的单调递减区间为1,2a ⎡⎫-+∞⎪⎢⎣⎭,依题意,得1120a a ⎧-≤⎪⎨⎪<⎩,得12a ≤- 综上,实数a 的取值范围是1(,][1,)2-∞-+∞.法二:①当0a =时,1'()0f x x=>,∴()f x 在区间(1,)+∞上为增函数,不合题意; ②当0a ≠时,()f x 在区间(1,)+∞上为减函数,只需'()0f x ≤在区间(1,)+∞上恒成立.220210x a x ax >∴--≥只要恒成立,2211, 1.42210aa a a a a ⎧≤⎪∴≤-≥⎨⎪--≥⎩解得或20. (I )232()cos 4sin cos 43422x xf x x t t t t =--++-+ 222sin 12sin 434x t t t t =--++-+223sin 2sin 433x t x t t t =-++-+23(sin )433x t t t =-+-+.由于2(sin )0x t -≥,1t ≤,故当sin x t =时,()f x 达到其最小值()g t ,即3()433g t t t =-+.(II )我们有2()1233(21)(21)1g t t t t t '=-=+--1<<,. 列表如下:由此可见,()g t 在区间12⎛⎫-- ⎪⎝⎭,和12⎛⎫ ⎪⎝⎭,单调增加,在区间22⎛⎫- ⎪⎝⎭,单调减小,极小值为122g ⎛⎫= ⎪⎝⎭,极大值为42g 1⎛⎫-= ⎪⎝⎭.。
天津一中、益中学校2017-2018高三年级四月考试卷理科数学(附答案)
天津一中、益中学校2017-2018高三年级四月考试卷理科数学(附答案)一、选择题:1.已知集合2{|320}A x x x =+-≤,2{|log (21)0}B x x =-≤,则AB =( )A .21,3⎡⎤-⎢⎥⎣⎦ B .2,13⎡⎤⎢⎥⎣⎦ C .1,12⎛⎤ ⎥⎝⎦ D .12,23⎛⎤⎥⎝⎦2.若实数x ,y 满足21021050x y x y x y -+≤⎧⎪--≥⎨⎪+-≤⎩,则3x y +的最大值为( )A .9B .10C .11D .12 3.执行如图所示的程序框图,则输出的i =( )A .4B .5C .6D .7 4.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且222b a bc =-,23A π=,则角C 为( )A .6π B .4π或34π C .34π D .4π5.已知正项..等差数列{}n a 中,若12315a a a ++=,若12a +,25a +,313a +成等比数列,则10a 等于( )A .21B .23C .24D .256.已知双曲线C :22221(0,0)x y a b a b-=>>的焦距为10,点(2,1)P 在C的一条渐近线上,则C 的方程是( )A .2212080x y -= B .221520x y -= C .2218020x y -= D .221205x y -= 7.设e 是自然对数的底,0a >,且1a ≠,0b >且1b ≠,则“log 2log a b e >”是“01a b <<<”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.已知函数24,30()ln ,0x x x f x x x ⎧+-≤≤=⎨>⎩,若函数()1y f x x kx =+--在定义域内有且只有三个零点,则实数k 的取值范围是( )A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎡⎤-⎢⎥⎣⎦C .211,13e ⎡⎫-+⎪⎢⎣⎭ D .211,13e ⎡⎤-+⎢⎥⎣⎦二、填空题:9.对于复数(,)z a bi a b R =+∈,若212iz i i-+=+,则b = .10.若二项式621x x ⎫+⎪⎪⎝⎭的展开式中的常数项为m ,则21mx dx =⎰ . 11.在极坐标系中,A 为曲线2cos 0ρθ+=上的动点,B 是直线3413x t y t =-+⎧⎨=--⎩上的动点,则AB 的最小值为 .12.已知一个公园的形状如图所示,现有4种不同的植物要种在此公园的A ,B ,C ,D ,E 这五个区域内(四种植物均要使用),要求有公共边界的两块相邻区域种不同的植物,则不同的种法共有 种.13.如图,在梯形ABCD 中,//AB CD ,4AB =,3AD =,2CD =.M 是线段AD 上一点,(可与A ,D 重合),若3AC BM ⋅=-,则AB AD ⋅的取值范围是 .14.已知,a b R ∈,4a b +=,则221111a b +++的最大值为 . 三、解答题:15.已知函数()sin cos 6f x x x π⎛⎫=+ ⎪⎝⎭,x R ∈. (1)将()f x 的图象向右平移6π的单位,得到()g x 的图象,求()g x 的单调递增区间; (2)若5()12f α=-,且02πα<<,求sin 2α的值.16.共享单车因绿色、环保、健康的出行方式,在国内得到迅速推广.最近,某机构在某地区随机采访了10名男士和10名女士,结果男士、女士中分别有7人、6人表示“经常骑共享单车出行”,其他人表示“较少或不选择骑共享单车出行”.(1)从这些男士和女士中各抽取一人,求至少有一人“经常骑共享单车出行”的概率; (2)从这些男士中抽取一人,女士中抽取两人,记这三人中“经常骑共享单车出行”的人数为X ,求X 的分布列与数学期望.17.如图,在四棱锥P ABCD -,PA ⊥平面ABCD ,//AD BC ,AD CD ⊥,且AD CD ==BC =2PA =.(1)取PC 中点N ,求证://DN 平面PAB ; (2)求直线AC 与PD 所成角的余弦值.(3)在线段PD 上,是否存在一点M ,使得二面角M AC D --的大小为45,如果存在,求BM 与平面MAC 所成角,如果不存在,请说明理由.18.已知首项均为1的数列{}n a ,()*{}0,n n b b n N ≠∈,满足113n nn n na b b a b ++=+.(1)令nn na cb =,求数列{}n c 的通项公式; (2)若数列{}n b 为各项均为正数的等比数列,且46574b b b b =,设,,n n n a n p b n ⎧⎪=⎨⎪⎩为偶数为奇数,求数列{}n p 的前2n 项和2n S .19.过椭圆C :2221(03)9x y b b+=<<的上顶点A 作相互垂直的两条直线,分别交椭圆于不同的两点M ,N (点M ,N 与点A 不重合).(1)设椭圆的下顶点为(0,)B b -,当直线AM若2ANB AMB S S ∆∆=,求b 的值;(2)若存在点M ,N ,使得AM AN =,且直线AM ,AN 斜率的绝对值都不为1,求离心率e 的取值范围.20.已知0a ≠,函数()x xf x e e e ax =-++.(1)讨论()f x 的单调性;(2)若对1,2x ⎛⎫∀∈-+∞ ⎪⎝⎭,不等式()2e f x ≥恒成立,求a 的取值范围;(3)已知当a e <-时,函数()f x 有两个零点1x ,212()x x x <,求证:12()f x x a e >+.参考答案一、选择题1-5: DCCA 6-8: DBA二、填空题9. 2- 10.26311. 1 12. 96 13. [5,8]- 14. 9- 三、解答题15.解析(1)1()sin sin 22f x x x x ⎛⎫=- ⎪ ⎪⎝⎭21cos sin 2x x x =-1cos 224x x -=-1112cos 2224x x ⎫=+-⎪⎪⎝⎭ 11sin 2264x π⎛⎫=+- ⎪⎝⎭, ∴()11sin 2264g x x π⎛⎫=-- ⎪⎝⎭, ∴222262k x k πππππ-+<-<+63k x k ππππ⇒-+<<+,∴()g x 的单调递增区间为,63k k ππππ⎛⎫-++ ⎪⎝⎭,k Z ∈.(2)()11sin 2264fπαα⎛⎫=+- ⎪⎝⎭51sin 21263πα⎛⎫=-⇒+=- ⎪⎝⎭, ∵0,2πα⎛⎫∈ ⎪⎝⎭,∴72,666πππα⎛⎫+∈ ⎪⎝⎭,∴cos 263πα⎛⎫+=- ⎪⎝⎭,∴sin 2sin 2cos sin cos 26666ππππααα⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭6==16.(1)记“从这些男士和女士中各抽取一人,至少有一人经常骑共享单车出行”为事件A , ∴()7436762210101010101025P A =⋅+⋅+⋅=. (2)X 的取值为0,1,2,3,()12341210101025C C P X C C ==⨯=, ()12741210101C C P X C C ==⨯1113641210101975C C C C C +⨯=,()1117641210102C C C P X C C ==⨯123612101071150C C C C +⨯=, ()12761210107330C C P X C C ==⨯=,∴119012575EX =⨯+⨯71719231503010+⨯+⨯=. 17.如图建系:(0,1,0)A -,(2,1,0)B -,(0,1,0)C ,(1,0,0)D -,(0,1,2)P -,(1)PC 中点(0,0,1)N , ∴(1,0,1)DN =,设平面PAB 的法向量为(,,)n x y z =,由(0,0,2)AP =,(2,0,0)AB =, 可得:(0,1,0)n =,∴0DN n ⋅=,∵DN ⊄平面PAB , ∴//DN 平面PAB .(2)(0,2,0)AC =,(1,1,2)PD =--,∴cos 6θ==. (3)设(,,)M x y z 及PM PD λ=,∴122x y z λλλ=-⎧⎪+=⎨⎪-=-⎩(,1,2(1))M λλλ⇒---, 设平面ACM 的法向量为(,,)m x y z =,由(0,2,0)AC =,(,,2(1))AM λλλ=--可得(22,0,)m λλ=-, 平面ACD 的法向量为(0,0,1)n =,∴cos ,m n <>=2=⇒= 解得23λ=. ∴212,,333M ⎛⎫-- ⎪⎝⎭,∴822,,333BM ⎛⎫=- ⎪⎝⎭,22,0,33m ⎛⎫= ⎪⎝⎭, ∴sin cos ,BM m θ=<>12==,∴6πθ=. 18.(1)113n n n n n b b a a b ++=+113n n n na ab b ++⇒=+, 即13n nc c +=+,且1111a c b ==, ∴13(1)32n c n n =+-=-.(2)2465754b b b b b =⇒226144b q =⇒=, ∵{}n b 为正项数列,∴12q =,∴112n n b -⎛⎫= ⎪⎝⎭,∴111(32),21,2n n n n n p n --⎧⎛⎫-⎪ ⎪⎪⎝⎭=⎨⎛⎫⎪ ⎪⎪⎝⎭⎩为偶数为奇数. (2)方法一:21321()n n S p p p -=++⋅⋅⋅+242()n p p p +++⋅⋅⋅+,设1321n n Q p p p -=++⋅⋅⋅+24221111222n -⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭211111444n -⎛⎫⎛⎫=+++⋅⋅⋅+ ⎪ ⎪⎝⎭⎝⎭111441113414n n⎛⎫⎛⎫- ⎪ ⎪ ⎪⎛⎫⎝⎭⎛⎫⎝⎭==- ⎪ ⎪ ⎪⎝⎭⎝⎭-, 设242n n R p p p =++⋅⋅⋅+3511141016222⎛⎫⎛⎫=⋅+⋅+⋅ ⎪ ⎪⎝⎭⎝⎭211(62)2n n -⎛⎫+⋅⋅⋅+- ⎪⎝⎭,∴35111410422n R ⎛⎫⎛⎫=⋅+⋅ ⎪ ⎪⎝⎭⎝⎭212111(68)(62)22n n n n -+⎛⎫⎛⎫+⋅⋅⋅+-+- ⎪ ⎪⎝⎭⎝⎭,∴35213111264222n n R -⎡⎤⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦211(62)2n n +⎛⎫-- ⎪⎝⎭ 11118426114n -⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭=+⋅-11(31)3(33)44n n n n ⎛⎫⎛⎫--⋅=-+⋅ ⎪ ⎪⎝⎭⎝⎭,∴114(1)4n n R n -⎛⎫=-+⋅ ⎪⎝⎭,∴24414(1)334nn n n S Q R n ⎛⎫=+=-⋅+-+ ⎪⎝⎭111616144334n nn -⎛⎫⎛⎫⎛⎫⋅=-+⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭. 方法二:222121211(62)22n n n n p p n ---⎛⎫⎛⎫+=+-⋅ ⎪⎪⎝⎭⎝⎭2121112(62)22n n n --⎛⎫⎛⎫=⋅+-⋅ ⎪⎪⎝⎭⎝⎭211161224n n n n -⎡⎤⎛⎫⎛⎫=⋅=⋅⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦,∴21234212()()()n n n S p p p p p p -=++++⋅⋅⋅++21111212444nn ⎡⎤⎛⎫⎛⎫=⋅⋅+⋅+⋅⋅⋅+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,令211112444nn P n ⎛⎫⎛⎫=⋅+⋅+⋅⋅⋅+ ⎪ ⎪⎝⎭⎝⎭,∴2311112444n P ⎛⎫⎛⎫=⋅+⋅ ⎪ ⎪⎝⎭⎝⎭111(1)44nn n n +⎛⎫⎛⎫+⋅⋅⋅+-+ ⎪ ⎪⎝⎭⎝⎭,∴213111144444n n n P n +⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11114411414nn n +⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎝⎭=-⋅ ⎪⎝⎭-11111344nn n +⎛⎫⎛⎫⎛⎫=--⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴4431994nnn P +⎛⎫=-⋅ ⎪⎝⎭, ∴2161614334nn S n ⎛⎫⎛⎫=-+⋅ ⎪ ⎪⎝⎭⎝⎭.19.解析:(1)设11(,)M x y ,22(,)N x y ,直线AM:y b =+,222299b x y by b⎧+=⎪⎨=+⎪⎩()22450b x ⇒++=,∴1245x b =-+,同理:∴2259x b =-+. 由2122ANB AMB S S x x ∆∆=⇒=-,∴221825945b b b -=-⋅⇒=++(2)方法一:设MN :y kx b =+,()0,A b ,11(,)M x y ,22(,)N x y ,联立方程:222299b x y b y kx m⎧+=⎨=+⎩22229()9b x kx m b ⇒++=,整理可得:()22222918990kb x kmx m b +++-=,∴1222189km x x k b +=-+,221222999m b x x k b -=+,122229bm y y k b +=+,2222122299b m k b y y k b -=+,∴MN 中点222229,99km b m Q k b k b ⎛⎫- ⎪++⎝⎭, ∴QA :222221999b m km y x k b k k b ⎛⎫-=-+ ⎪++⎝⎭,代入()0,b 可得:22222999b m mb k b k b -=-++()()22299b k b m b +⇒=-① 另一方面:11(,)AM x y b =-,22(,)AN x y b =-,()()1212AM AN x x y b y b ⋅=+--()2121212x x y y b y y b =+-++222222222299999m b b m k b k b k b --=+++322229b m b k b -++ 2222342299209m b b m b m b k b-+-+==+, ∴222234992m b b m b m b -+-+()()2222090m bb m b =⇒-+-=,∴()()290m b b m b ++-=3299b bm b -⇒=+②由①②得:()()223229999b k b b bb b+-=+-()22222999b k b b -⇒=-+,∵20k>,∴()2222909b b b -->+424218819b b b b ⇒-+>+,∴2203093b c <<⇒<-<3c ⇒<,∴e ⎫∈⎪⎪⎝⎭.方法二:容易得1AM =22189bkb k=+,2AN x =22189bkb k =+.由AM AN =2219b k =+, 即222399b k b k k +=+,整理,得()()2222190k b k b k b ⎡⎤-+-+=⎣⎦. 不妨设0k >,且1k ≠,则()222290b k b k b +-+=有不为的正根.只要()242294090b b b b⎧∆=--≥⎪⎨-->⎪⎩解得0b <<∴b的取值范围是(,∴e ⎫∈⎪⎪⎝⎭.20.解析:(1),1()2,1x ax e x f x e ax e x +<⎧=⎨+-≥⎩,∴,1'()2,1x a x f x e a x <⎧=⎨+≥⎩,当0a >时,()f x 在R 上单调递增,当0a <时,考虑1x ≥时,令'()02x a f x e >⇒>-ln 2a x ⎛⎫⇒>- ⎪⎝⎭, ①ln 1202a e a ⎛⎫-≤⇒-≤< ⎪⎝⎭时,()f x 在(),1-∞单调递减,在()1,+∞单调递增; ②ln 122a a e ⎛⎫->⇒<- ⎪⎝⎭时,()f x 在,ln 2a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭单调递减,在ln ,2a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭单调递增. (2)方法一:(参变分离)1,1()22,1x ax e x f x e ax e x ⎧+-<<⎪=⎨⎪+-≥⎩, 当1,12x ⎛⎫∈- ⎪⎝⎭时,2e ax e +≥, ∴112222(1)22e ef a e ee a ef ⎧⎛⎫⎧-≥-+≥ ⎪⎪⎪⎪⎪⎝⎭⇒⎨⎨⎪⎪+≥≥⎪⎪⎩⎩2e a e ⇒-≤≤.当1x ≥时,22xe e ax e +-≥342xe e a x -⇒≥, 设()34x e e g x x -=,∴()2434'x x xe e e g x x --+=()24130x x e e x --=<, ∴()g x 在[)1,+∞单调递减,∴()()max 1g x g e ==-,∴2e a ≥-, 综上所述:(],00,2e a e ⎡⎫∈-⎪⎢⎣⎭.方法二:(最值法)若()2e f x ≥,只需()min 2e f x ≥,1,2x ⎛⎫∈-+∞ ⎪⎝⎭, 由(1)可得:①当0a >时,()f x 在1,2⎛⎫-+∞ ⎪⎝⎭上单调递增, ∴122e f ⎛⎫-≥ ⎪⎝⎭即可,解得:a e ≤, ∴(]0,a e ∈.②当20e a -≤<时,()f x 在(),1-∞单调递减,在()1,+∞单调递增, ∴()min ()122e e f x f a =≥⇒≥-, ∴,02e a ⎡⎫∈-⎪⎢⎣⎭, ③2a e <-时,()f x 在,ln 2a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭单调递减,在ln ,2a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭单调递增, ∴()min ln 22a e f x f ⎛⎫⎛⎫=-≥ ⎪ ⎪⎝⎭⎝⎭, 即3ln 22a e a a ⎛⎫-+-≥ ⎪⎝⎭,令(),2a t e =-∈+∞, 设()22ln g t t t t =-,则()()'221ln 2ln 0g t t t =-+=-<,∴()g t 在(),e +∞单调递减,而()()302g t g e e <=<,所以原不等式无解. (此处也不构造函数,ln ln 122a a a a a ⎡⎤⎛⎫⎛⎫-+-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,显然2a e <-时,此式小于零,即可证明) 综上所述:(],00,2e a e ⎡⎫∈-⎪⎢⎣⎭.(3)注意到()1a e f +=,所以所证明不等式转化为证明()()121f x x f >, ∵a e <-,∴()10f a e =+<,所以()f x 的两个零点121x x <<.方法一:由121x x <<可得:212020x ax e e ax e +=⎧⎨+-=⎩, ∴2222122x x e e a x ex e x a e e ⎧-=⎪⎪⎨⎪=-=⎪-⎩,∴222122x ex x x e e =-, 令()22x ex h x e e =-,则()()()222'2x x x ex e e xe h x e e --=-, 令()2x xx e e xe ϕ=--,()10ϕ=,则当1x >时, ()()'10x x x x e xe x e ϕ=-=-<,∴()x ϕ在()1,+∞单调递减,∴()()10x ϕϕ<=,即()'0h x <, ∴()h x 在()1,+∞单调递减,()()11h x h <=,即121x x <,∵a e <-时,()f x 在(),1-∞均单调递减,∴()()121f x x f a e >=+.方法二:同方法一可知121x x <<,下面考虑证明121211x x x x <⇔<,∴()121,,1x x ∈-∞, 下证:()121f x f x ⎛⎫> ⎪⎝⎭,∵()()120f x f x ==, 所以只需证22100a f e x x ⎛⎫<⇒+< ⎪⎝⎭,由2222220x x e e e ax e a x -+-=⇒=, 所以只需证222212x e e f e x x ⎛⎫-=+ ⎪⎝⎭2222220x e e ex x -+=<, 令()22x x e e ex ϕ=-+,()1,x ∈+∞, ∴()'22x h x e ex =-+,()'10h =,()()'2220x x h x e e e e =-+=--<, ∴()'h x 在()1,+∞单调递减,∴()()''10h x h <=,∴()h x 在()1,+∞单调递减,∴()()10h x h <=, ∴21f x ⎛⎫ ⎪⎝⎭()2222220x h x e e ex x x -+==<, 所以121x x <得证,∵a e <-时,()f x 在(),1-∞均单调递减,∴()12()1f x x f a e >=+.。
天津市天津一中2013届高三(上)零月考数学理试题(WORD解析版)
天津一中2013届高三(上)零月考数学试卷(理科)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)若=a+bi(i是虚数单位,a、b∈R),则ab为()A.﹣1 B.1C.﹣2 D.﹣3考点:复数代数形式的乘除运算;复数相等的充要条件.专题:计算题.分析:利用复数的代数形式的乘除运算,知==﹣1+3i=a+bi,由此能求出ab.解答:解:∵====﹣1+3i=a+bi,∴a=﹣1,b=3,∴ab=﹣3.故选D.点评:本题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答.2.(3分)已知几何体的三视图如图,则该几何体的体积为()A.B.4C.D.考点:由三视图求面积、体积.专题:计算题.分析:根据已知的三视图可判断出该几何体是一个正四棱锥,且可得底面棱长为2,侧面高为,由此求出底面面积和棱锥的高,代入棱锥体积公式,可得答案.解答:解:由已知可得该几何体是一个底面棱长为2侧面高为的正四棱锥则棱锥的高h==∴棱锥的高V=Sh=×2×2×=故选C点评:本题考查的知识点是由三视图求体积,其中根据已知分析出几何体的形状是解答的关键.3.(3分)(2005•天津)设α、β、γ为平面,m、n、l为直线,则m⊥β的一个充分条件是()A.α⊥β,α∩β=l,m⊥l B.α∩γ=m,α⊥γ,β⊥γC.α⊥γ,β⊥γ,m⊥αD.n⊥α,n⊥β,m⊥α考点:直线与平面垂直的判定.专题:证明题;转化思想.分析:根据面面垂直的判定定理可知选项A是否正确,根据平面α与平面β的位置关系进行判定可知选项B和C是否正确,根据垂直于同一直线的两平面平行,以及与两平行平面中一个垂直则垂直于另一个平面,可知选项D正确.解答:解:α⊥β,α∩β=l,m⊥l,根据面面垂直的判定定理可知,缺少条件m⊂α,故不正确;α∩γ=m,α⊥γ,β⊥γ,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;α⊥γ,β⊥γ,m⊥α,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;n⊥α,n⊥β,⇒α∥β,而m⊥α,则m⊥β,故正确故选D点评:本小题主要考查空间线面关系、面面关系以及充分条件的判定等知识,考查化归与转化的数学思想方法,以及空间想象能力、推理论证能力,属于基础题.4.(3分)若函数y=a1﹣x(a>0,a≠1)的图象过定点A,点A在直线mx+ny=1(m、n>0)上,则的最小值为()A.5B.2C.7D.4考点:基本不等式.专题:计算题.分析:函数y=a1﹣x(a>0,a≠1)的图象恒过定点A,知A(1,1),点A在直线mx+ny﹣1=0上,得m+n=1结合mn>0,可得m>0,n>0,利用1的变换构造出可以用基本不等式求最值的形式求最值解答:解:由已知定点A坐标为(1,1),由点A在直线mx+ny﹣1=0上,∴m+n=1,又mn>0,∴m>0,n>0,∴=()(m+n)=2当且仅当即m=n=时取等号故选D点评:本题主要考查了利用基本不等式求解最值,解题的关键是利用1的代换配凑基本不等式应用的条件5.(3分)在数列{a n}中,a1=2,a n+1=1﹣a n(n∈N∗),S n为数列的前n项和,则S2006﹣2S2007+S2008为()A.5B.﹣1 C.﹣3 D.2考点:数列的求和;等差数列.专题:计算题.分析:依题意,可求得a1=a3=…=a2n﹣1=2,a2=a4=…=a2n=﹣1.从而可求得答案.解答:解:∵数列{a n}中,a n+1=1﹣a n(n∈N∗),∴a n+a n+1=1.又a1=2,∴a2=﹣1,∴a3=2,同理可求,a4=﹣1,a5=﹣1,…∴a1=a3=…=a2n﹣1=2,a2=a4=…=a2n=﹣1.∴S2006=1003;同理可求得S2007=1005,S2008=1004,∴S2006﹣2S2007+S2008=﹣3.故选C.点评:本题考查数列的求和,分析出a1=a3=…=a2n﹣1=2,a2=a4=…=a2n=﹣1是关键,考查分析与计算能力,属于中档题.6.(3分)函数y=2x﹣1+log2x的零点所在的区间为()A.(0.5,2)B.(0.5,1)C.[0.5,1]D.[0.5,2]考点:函数的零点.专题:计算题.分析:判断函数在区间端点处函数值的符号,当它们异号时存在零点.解答:解:因为2×0.5﹣1+log20.5=log20.5<0,2×1﹣1+log21=1>0,又在(0.5,1)上函数y=2x﹣1+log2x的图象是连续不断的一条曲线,所以函数y=2x﹣1+log2x在区间(0.5,1)上存在零点.故选B.点评:本题考查函数零点存在的条件,须满足两条:①在区间上图象连续不断;②端点处函数值异号.7.(3分)过点M(1,2)的直线把圆x2+y2﹣4x=5分成两段弧,则劣弧最短时直线方程为()A.3x﹣2y+2=0 B.x﹣y﹣1=0 C.x+y﹣3=0 D.x﹣2y+3=0考点:直线与圆相交的性质.专题:计算题;直线与圆.分析:设已知圆的圆心为C,根据平面几何知识,得劣弧最短时相应的弦长也最短,所以求出过点M,且与CM垂直的直线l即可,根据垂直直线斜率之间的关系算出l的斜率,最后利用点斜式列式,再化成一般式方程,即得所求.解答:解:∵劣弧最短时,相应的弦长也最短∴过点M(1,2)的直线l截圆C:x2+y2﹣4x=5,所得短劣弧对应的直线与CM垂直∵圆x2+y2﹣4x=5的圆心C(2,0)∴CM的斜率k==﹣2,可得直线l的斜率k1=﹣=由此可得直线l方程为:y﹣2=(x﹣1),整理得x﹣2y+3=0故选:D点评:本题给出圆内一点M,求经过点M且被圆截得最短弧的直线l的方程,着重考查了直线的位置关系和直线与圆相交的性质等知识,属于基础题.8.(3分)(2013•甘肃三模)执行如图所示的程序框图,输出的S值为()A.(425﹣1)B.(426﹣1)C.250﹣1 D.251﹣1考点:程序框图.专题:计算题;等差数列与等比数列.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出等比数列的和.解答:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=0+2+23+…+249==(425﹣1)故选A.点评:本题主要考查了直到型循环结构,直到型循环是先循环后判断.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题二.填空题:9.(3分)的展开式中x2项的系数为60,则实数a=±2.考点:二项式系数的性质.专题:计算题.分析:在的通项公式中,令x的指数等于2,求得r=2,从而得到展开式中x2项的系数为60=C62a2,解方程求得实数a的值.解答:解:的通项公式为T r+1=C6r a r,令=2可得r=2,展开式中x2项的系数为60=C62a2,∴a2=4,a=±2.故答案为:±2.点评:本题主要考查二项式定理,二项展开式的通项公式,求展开式中某项的系数,得到60=C62a2,是解题的关键,属于中档题.10.(3分)已知5cos(45°+x)=3,则sin2x=.考点:二倍角的正弦.专题:三角函数的求值.分析:由题意可得cos(45°+x)=,再利用二倍角的余弦公式求得sin2x=﹣cos(90°+2x)的值.解答:解:由题意可得cos(45°+x)=,∴sin2x=﹣cos(90°+2x)=﹣cos[2(45°+x)]=﹣2cos2(45°+x)+1=﹣2×+1=,故答案为.点评:本题主要考查二倍角的余弦公式的应用,属于基础题.11.(3分)(2005•江苏)在△ABC中,O为中线AM上一个动点,若AM=2,则的最小值是﹣2.考点:平面向量数量积的运算.专题:计算题;压轴题.分析:利用向量的运算法则:平行四边形法则作出,判断出共线,得到的夹角,利用向量的数量积公式将转化成二次函数求出最小值,解答:解:以OB和OC做平行四边形OBNC.则因为M为BC的中点所以且反向∴=,设OA=x,(0≤x≤2)OM=2﹣x,ON=4﹣2x∴=2x2﹣4x(0≤x≤2)其对称轴x=1所以当x=1时有最小值﹣2故答案为﹣2点评:本题考查向量的运算法则、向量共线的充要条件、向量的数量积公式、二次函数最值的求法.12.(3分)(2007•海南)已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为3.考点:双曲线的简单性质.专题:计算题.分析:过双曲线的顶点A、焦点F分别向其渐近线作垂线,垂足分别为B、C,根据比例线段的性质可知进而求得a和c的关系,则离心率可得.解答:解:如图,过双曲线的顶点A、焦点F分别向其渐近线作垂线,垂足分别为B、C,则:故答案为3点评:本题主要考查了双曲线的简单性质.考查了比例线段的知识和双曲线的离心率问题.13.(3分)极坐标系中,曲线ρ=10cosθ和直线3ρcosθ﹣4ρsinθ﹣30=0交于A、B两点,则线段AB 的长=8.考点:简单曲线的极坐标方程;直线与圆相交的性质.专题:直线与圆.分析:先把曲线和直线的极坐标方程化为普通方程,再利用|AB|=2(d为圆心到直线的距离)即可得出答案.解答:解:∵曲线ρ=10cosθ,∴ρ2=10ρcosθ,化为普通方程:x2+y2=10x,即(x﹣5)2+y2=25,∴圆心C(5,0),半径r=5.∵直线3ρcosθ﹣4ρsinθ﹣30=0,∴普通方程为3x﹣4y﹣30=0.圆心C(5,0)到直线的距离d==3,∴|AB|===8.故答案为8.点评:充分理解|AB|=2(d为圆心到直线的距离)是解题的关键.当然也可以先把交点A、B的坐标求出来,再利用两点间的距离公式即可求出.14.(3分)(2010•怀柔区二模)已知PA是圆O(O为圆心)的切线,切点为A,PO交圆O于B,C两点,,则线段PB的长为1.考点:圆的切线方程.专题:压轴题.分析:利用直径上的圆周角是直角,切点与圆心连线与切线垂直,推出△OAB是正三角形,PB=AB=r (半径),然后求出结果.解答:解:PA是圆O(O为圆心)的切线,切点为A,PO交圆O于B,C两点,∠CAB=90°,又OA⊥AP,∠PAB=30°∴∠CAO=30°△OAB是正三角形,且∠ACO=30°,∠APO=30°∴AB=PB设圆的半径为r,则;PB=1故答案为:1.点评:本题考查圆的切线方程,平面几何知识,是中档题.三.解答题:15.已知△ABC中,A、B、C分别为三个内角,a、b、c为所对边,2(sin2A﹣sin2C)=(a﹣b)sinB,△ABC的外接圆半径为,(1)求角C;(2)求△ABC面积S的最大值.考点:余弦定理;正弦定理.专题:解三角形.分析:(1)利用正弦定理化简已知等式的右边,整理后再利用余弦定理变形,求出cosC的值,由C为三角形的内角,利用特殊角的三角函数值即可求出C的度数;(2)由C的度数求出A+B的度数,用A表示出B,利用三角形的面积公式列出关系式,利用正弦定理化简后,将sinC的值及表示出的B代入,利用两角和与差的正弦函数公式化简,整理后利用二倍角的正弦、余弦函数公式化简,再利用两角和与差的正弦函数公式化为一个角的正弦函数,根据正弦函数的图象与性质即可得出面积的最大值.解答:解:(1)利用正弦定理化简已知的等式得:2(sin2A﹣sin2C)=2sinB(a﹣b),整理得:a2﹣c2=ab﹣b2,即a2+b2﹣c2=ab,∵c2=a2+b2﹣2abcosC,即a2+b2﹣c2=2abcosC,∴2abcosC=ab,即cosC=,则C=;(2)∵C=,∴A+B=,即B=﹣A,∵==2,即a=2sinA,b=2sinB,∴S△ABC=absinC=absin=×2sinA×2sinB×=2sinAsinB=2sinAsin(﹣A)=2sinA(cosA+sinA)=3sinAcosA+sin2A=sin2A+(1﹣cos2A)=sin2A﹣cos2A+=sin(2A﹣)+,则当2A﹣=,即A=时,S△ABCmax=.点评:此题考查了正弦、余弦定理,两角和与差的正弦函数公式,二倍角的正弦、余弦函数公式,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.16.如图为一多面体,其底面ABCD为正方形,PD⊥平面ABCD,CE∥DP,且PD=2CE.(1)求证:BE∥平面PDA;(2)若N为线段PB的中点,求证:EN⊥平面PDB;(3)若PD=AD,求平面PBE与平面ABCD所成的二面角的余弦值.考点:直线与平面平行的判定;二面角的平面角及求法.专题:综合题;空间角.分析:(1)取PD中点F,证明四边形EFAB为平行四边形,可得BE∥AF,利用线面平行的判定可得BE∥平面PDA;(2)设AC∩BD=O,证明CO∥EN,C0⊥平面PDB,即可得到NE⊥平面PDB;(3)设平面PBE与平面ABCD所夹角为α,利用即可求得结论.解答:(1)证明:取PD中点F,则FD∥EC,FD=EC∴四边形EFDC为长方形∴EF∥CD∥AB∴四边形EFAB为平行四边形∴BE∥AF∵BE⊄面PDA,AF⊂面PDA∴BE∥平面PDA;(2)证明:设AC∩BD=O,则NO∥CE,NO=CE∴四边形NOCE为长方形,∴CO∥EN∵PD⊥面ABCD,∴CO⊂面ABCD∴PD⊥CO,∵CO⊥BD,PD∩BD=D∴C0⊥平面PDB∴NE⊥平面PDB;(3)解:设平面PBE与平面ABCD所夹角为α∵PD⊥平面ABCD于D,CE⊥平面ABCD于C,∴在△PBE中,PB=2a,BE=,PE=,∴S△PBE=∵S△BDC=,∴点评:本题考查线面平行,线面垂直,考查面面角,考查学生分析解决问题的能力,属于中档题.17.(2007•深圳二模)有编号为1,2,3,…,n的n个学生,入坐编号为1,2,3,…n的n个座位.每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为ξ,已知ξ=2时,共有6种坐法.(1)求n的值;(2)求随机变量ξ的概率分布列和数学期望.考点:离散型随机变量及其分布列.专题:计算题.分析:(1)解题的关键是ξ=2时,共有6种坐法,写出关于n的表示式,解出未知量,把不合题意的舍去.(2)学生所坐的座位号与该生的编号不同的学生人数为ξ,由题意知ξ的可能取值是0,2,3,4,当变量是0时表示学生所坐的座位号与该生的编号都相同,当变量是2时表示学生所坐的座位号与该生的编号有2个相同,理解变量对应的事件,写出分布列和期望.解答:解:(1)∵当ξ=2时,有C n2种坐法,∴C n2=6,即,n2﹣n﹣12=0,n=4或n=﹣3(舍去),∴n=4.(2)∵学生所坐的座位号与该生的编号不同的学生人数为ξ,由题意知ξ的可能取值是0,2,3,4,当变量是0时表示学生所坐的座位号与该生的编号都相同,当变量是2时表示学生所坐的座位号与该生的编号有2个相同,当变量是3时表示学生所坐的座位号与该生的编号有1个相同,当变量是4时表示学生所坐的座位号与该生的编号有0个相同,∴,,,,∴ξ的概率分布列为:∴.点评:培养运用从具体到抽象、从特殊到一般的观点分析问题的能力,充分体现数学的化归思想.启发诱导的同时,训练了学生观察和概括归纳的能力.18.数列{a n}的前n项和为S n,S n=2a n﹣3n(n∈N*)(1)若数列{a n+c}成等比数列,求常数c值;(2)求数列{a n}的通项公式a n(3)数列{a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.考点:等差数列与等比数列的综合.专题:计算题;压轴题.分析:(1)利用递推公式可得a n=s n﹣s n﹣1,利用等比数列的定义可求c(2)由递推公式a n=s n﹣s n﹣1(n≥2),a1=s1求解(3)假设存在a s,a p,a r成等差数列,则2a p=a s+a r,结合(2)中的通项公式进行推理.解答:解:(1)由S n=2a n﹣3n及S n+1=2a n+1﹣3(n+1)得a n+1=2a n+3∴,∴c=3(2)∵a1=S1=2a1﹣3,∴a1=3,a n+3=(a1+3)•2n﹣1∴a n=3.2n﹣3(n∈N*)(3)设存在S,P,r∈N*,且s<p<r使a s,a p,a r成等差数列∴2a p=a s+a r即2(3•2p﹣3)=(3•2s﹣3)+(3•2r﹣3)∴2p+1=2s+2r∴2p﹣s+1=1+2r﹣s∵s,p,r∈N*且s<p<r∴2p﹣s+1、2r﹣s为偶数1+2r﹣s为奇数矛盾,不存在满足条件的三项点评:本题主要考查了数列的递推关系a n=s n﹣s n﹣1(n≥2),a1=s1的应用及等比数列的定义,而对存在性问题,一般是先假设存在,然后由假设结合已知条件进行推理,看是否产生矛盾,从而判断存在性.19.(2013•梅州二模)已知椭圆的离心率为,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切.(1)求椭圆C1的方程;(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;(3)设C2与x轴交于点Q,不同的两点R,S在C2上,且满足,求的取值范围.考点:圆与圆锥曲线的综合;平面向量数量积的运算;轨迹方程;椭圆的标准方程.专题:计算题;压轴题.分析:(1)先由离心率为,求出a,b,c的关系,再利用直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆相切,求出b即可求椭圆C1的方程;(2)把题中条件转化为动点M的轨迹是以l1:x=﹣1为准线,F2为焦点的抛物线,即可求点M的轨迹C2的方程;(3)先设出点R,S的坐标,利用求出点R,S的坐标之间的关系,再用点R,S 的坐标表示出,利用函数求最值的方法即可求的取值范围.解答:解:(1)由得2a2=3b2,又由直线l:y=x+2与圆x2+y2=b2相切,得,,∴椭圆C1的方程为:.(4分)(2)由MP=MF2得动点M的轨迹是以l1:x=﹣1为准线,F2为焦点的抛物线,∴点M的轨迹C2的方程为y2=4x.(8分)(3)Q(0,0),设,∴,由,得,∵y1≠y2∴化简得,(10分)∴(当且仅当y1=±4时等号成立),∵,又∵y22≥64,∴当y22=64,即y2=±8时,∴的取值范围是.(13分)点评:本题是对圆与椭圆知识的综合考查.当直线与圆相切时,可以利用圆心到直线的距离等于半径求解.,也可以把直线与圆的方程联立让对应方程的判别式为0求解.20.(2007•重庆)已知函数f(x)=ax4lnx+bx4﹣c(x>0)在x=1处取得极值﹣3﹣c,其中a,b,c 为常数.(1)试确定a,b的值;(2)讨论函数f(x)的单调区间;(3)若对任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范围.考点:利用导数研究函数的极值;函数恒成立问题;利用导数研究函数的单调性.专题:计算题.分析:(1)因为x=1时函数取得极值得f(x)=﹣3﹣c求出b,然后令导函数=0求出a即可;(2)解出导函数为0时x的值讨论x的取值范围时导函数的正负决定f(x)的单调区间;(3)不等式f(x)≥﹣2c2恒成立即f(x)的极小值≥﹣2c2,求出c的解集即可.解答:解:(1)由题意知f(1)=﹣3﹣c,因此b﹣c=﹣3﹣c,从而b=﹣3又对f(x)求导得=x3(4alnx+a+4b)由题意f'(1)=0,因此a+4b=0,解得a=12(2)由(I)知f'(x)=48x3lnx(x>0),令f'(x)=0,解得x=1当0<x<1时,f'(x)<0,此时f(x)为减函数;当x>1时,f'(x)>0,此时f(x)为增函数因此f(x)的单调递减区间为(0,1),而f(x)的单调递增区间为(1,+∞)(3)由(II)知,f(x)在x=1处取得极小值f(1)=﹣3﹣c,此极小值也是最小值,要使f(x)≥﹣2c2(x>0)恒成立,只需﹣3﹣c≥﹣2c2即2c2﹣c﹣3≥0,从而(2c﹣3)(c+1)≥0,解得或c≤﹣1所以c的取值范围为(﹣∞,﹣1]∪点评:考查学生利用导数研究函数极值的能力,利用导数研究函数的单调性的能力,函数恒成立时条件的应用能力.。
无锡新领航教育特供:天津市天津一中2013届高三上学期一月考 理
小升初 中高考 高二会考 艺考生文化课 一对一辅导/wxxlhjy QQ:157171090 - 1 - 无锡新领航教育特供:天津一中2012—2013学年高三数学一月考试卷(理科)一、选择题:(共40分,每小题5分,每小题给出的四个选项中,只有一项符合题目要求)1.有关下列命题的说法正确的是A.命题“若x 2=1,则x=1”的否命题为:若“x 2=1则x ≠1”B.“1x =-”是“2560x x --=”的必要不充分条件C.命题“∃x ∈R,使得x 2+x+1<0”的否定是:“∀x ∈R,均有x 2+x+1<0”D.命题“若x=y,则sinx=siny ”的逆否命题为真命题【答案】D【解析】若x 2=1,则x=1”的否命题为21x ≠,则1x ≠,即A 错误。
若2560x x --=,则6x =或1x =-,所以“1x =-”是“2560x x --=”的充分不必要条件,所以B 错误。
∃x ∈R,使得x 2+x+1<0的否定是∀x ∈R,均有210x x ++≥,所以C 错误。
命题若x=y,则sinx=siny正确,所以若x=y,则sinx=siny 的逆否命题也正确,所以选D.2.定义在R 上的偶函数f(x),当x ∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3) 【答案】A【解析】因为函数是偶函数,所以(2)(2),(3)(3)f f f f -=-=,又函数在[0,)+∞上是增函数,所以由(2)(3)()f f f π<<,即(2)(3)()f f f π-<-<,选A.3.函数f(x)=sin2x-4sin 3xcosx(x ∈R)的最小正周期为 A.8πB.4πC.2πD.π【答案】C 【解析】221()sin 22sin 2sin sin 2(12sin )sin 2cos 2sin 42f x x x x x x x x x =-=-==,所以函数的周期为2242T πππω===,选C.。
【解析版】天津市天津一中2013届高三上学期第二次月考数学理试题
天津一中2012—2013学年高三数学二月考试卷(理科)一.选择题:(共40分,每小题5分,每小题给出的四个选项中,只有一项符合题目要求) 1.计算 242(1)12ii i+--=- A.0B.2C.-4iD.4i【答案】C 【 解析】242(42)(12)10(1)22412(12)(12)5i i i ii i i i i i i +++--=--=--=---+,选C.2.几何体的三视图如图所示,则该几何体的体积为A. 2π+B. 4π+C. 2π+D. 4π 【答案】C【 解析】由三视图可知,该几何体下面是半径为1,高为2的圆柱.上面是正四棱锥.真四棱锥的高为=2133⨯=,圆柱的体积为2π,所以该几何体的体积为2π,选C.3.极坐标方程cos ρθ=和参数方程⎩⎨⎧+=--=ty tx 321(t 为参数)所表示的图形分别是 A.圆,直线 B.直线,圆 C.圆,圆 D.直线,直线【答案】A【 解析】由cos ρθ=,得2cos ρρθ=,即22,x y x +=即2211()24x y -+=,所表示的图形为圆.消去参数t 得方程为310x y ++=,图形为直线,所以选A.4.若∆ABC 的三个内角成等差数列,三边成等比数列,则∆ABC 是 A.直角三角形 B.等腰直角三角形 C.等边三角形 D.钝角三角形【答案】C【 解析】设三个内角,,A B C 为等差数列,则2A C B +=,所以60B =.又,,a b c 为等比数列,所以2ac b =,即222222c o s 60b a c a c a c a c a c =+-=+-=,即2220a c ac +-=,所以2()0,a c a c -==,所以三角形为等边三角形,选C.5.在∆ABC 中,tanA 是以-4为第三项,4为第七项的等差数列的公差,tanB 是以13为第三项,9为第六项的等比数列的公比,则这个三角形是 A.钝角三角形 B.锐角三角形 C.等腰直角三角形 D.以上都不对【答案】B【 解析】由题意知374,4a a =-=,所以733tan a a A =+,所以73tan 24a a A -==.361,93b a ==,所以363(tan )a b B =,即3tan 27B =,所以tan 3B =,所以tan tan 23tan()11tan tan 123A B A B A B +++===---⨯,即tan 1C =,因为tan 30B =>,所以最大值90B <,即三角形为锐角三角形,选B.6.α,β为平面,m 为直线,如果//αβ,那么“//m α”是“m β⊆”的 A.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件.【答案】B【 解析】若//αβ,当//m α时,m β⊆或m β⊄.当m β⊆时,若//αβ,则一定有//m α,所以//m α是m β⊆的必要不充分条件,选B.7.函数2()22sin f x x x =-,(02x π≤≤)则函数f(x)的最小值为A.1B.-2C.√3D.-√3【答案】B【 解析】2()22sin 2cos 212sin(2)16f x x x x x x π=-=+-=+-,当02x π≤≤,702,2666x x ππππ≤≤≤+≤,所以当7266x ππ-=时,函数()f x 有最小值71()2sin()12()1262f x π=-=⨯--=-,选B.8.函数21(0)()(1)(0)x x f x f x x -⎧-≤=⎨->⎩若方程()f x x a =+有且只有两个不等的实数根,则实数a 的取值范围为 A.(-∞,0) B.[0,1) C.(-∞,1) D.[0,+∞)【答案】C【 解析】做出函数()f x 的图象如图,由图象可知,当1a =时,直线()1f x x =+,与()f x 只有1个交点,要使两个函数有2个交点,则有1a <,即实数a 的取值范围为(,1)-∞,选C.二.填空题:(共30分,每小题5分)9.非负实数x,y 满足⎩⎨⎧≤-+≤-+03042y x y x ,则3x y +的最大值为 . 【答案】9【 解析】设3z x y =+,则133z y x =-+.做出不等式组对应的平面区域为BCD .做直线13y x =-,平移直线133z y x =-+由图象可知当直线133zy x =-+经过点C 时,直线的截距最大,此时z 最大,由图象可知(0,3)C ,代入3z x y =+得3339z x y =+=⨯=.10.已知A ,B(0,1)),坐标原点O 在直线AB 上的射影为点C,则⋅= . 【答案】34【 解析】由题意知2,2AB OC ==.30,60OAC AOC ∠=∠=.所以13cos60324OA OC OA OC ⋅===.11.已知圆中两条弦AB 与CD 相交于点F,E 是AB 延长线上一点,且若CE 与圆相切,则线段CE 的长为______.【 解析】因为DF CF ==所以F 是CD 的中点.连结AC 取AC 的中点O ,则O 为圆心.设BE x =,则4,2AF x FB x ==.由DF FC AF BF =2428x x x ==,即12x =,所以根据切线长定理可得22(42)7CE BE AE x x x x x ==++=.所以CE ==. 12.已知直线m,n 与平面α,β,给出下列三个命题: ①若m ∥α,n ∥α,则m ∥n; ②若m ∥α,n ⊥α,则n ⊥m; ③若m ⊥α,m ∥β,则α⊥β. 其中真命题的个数是______个【答案】2【 解析】①平行于同一平面的两直线不一定平行,所以①错误.②根据线面垂直的性质可知②正确.③根据面面垂直的性质和判断定理可知③正确,所以真命题的个数是2个.13.等差数列{a n }中,171,4a a ==,在等比数列{b n }中,1236,b b a ==则满足261n b a <的最小正整数n 是 . 【答案】6【 解析】在等差数列中,7164a a d =+=,所以12d =,312112a a d =+=+=.所以在等比数列中21b b q =,即212163b q b ===.所以261252725122a a d =+=+=,11116()3n n n b b q --==.则由15261276()3132n n n b a --=⨯=<,得50n -<,即5n >,所以n 的最小值为6.14.设1x m e dx =⎰,11en x dx -=⎰,则m 与n 的大小关系为______.【答案】m n > 【 解析】11011x xm e dx e e ===->⎰,11111ln ln 1e een x dx dx x e x-=====⎰⎰,所以m n >.三.解答题:15.在△ABC 中,2AB AC AB AC ⋅=-=;(1)求:AB 2+AC 2的值;(2)当△ABC 的面积最大时,求A 的大小.16.某机构向民间招募防爆犬,首先进行入围测试,计划考察三个项目:体能,嗅觉和反应.这三个项目中只要有两个通过测试,就可以入围.某训犬基地有4只优质犬参加测试,已知它们通过体能测试的概率都是1/3,通过嗅觉测试的概率都是1/3,通过反应测试的概率都是1/2.求(1)每只优质犬能够入围的概率;(2)若每入围1只犬给基地记10分,设基地的得分为随机变量ξ,求ξ的数学期望.17.如图,在四棱锥P-ABCD 中,底面为直角梯ABCD,AD ∥BC,∠BAD=90O,PA ⊥底面ABCD,且PA=AD=AB=2BC,M,N 分别为PC,PB 的中点.(1)求证:PB ⊥DM;(2)求CD 与平面ADMN 所成角的正弦值;(3)在棱PD 上是否存在点E,PE ∶ED=λ,使得二面角C-AN-E 的平面角为60o.存在求出λ值.18.数列{a n }满足4a 1=1,a n-1=[(-1)n a n-1-2]a n (n ≥2),(1)试判断数列{1/a n +(-1)n}是否为等比数列,并证明;(2)设a n 2∙b n =1,求数列{b n }的前n 项和S n .19.对n ∈N ∗不等式⎪⎩⎪⎨⎧+-≤>>n nx y y x 2,0,0所表示的平面区域为D n ,把D n 内的整点(横坐标与纵坐标均为整数的点)按其到原点的距离从近到远排成点列(x 1,y 1),(x 2,y 2),⋯,(x n ,y n ),求x n ,y n ;(2)数列{a n }满足a 1=x 1,且n ≥2时a n =y n 2).111(212221-+++n y y y 证明:当n ≥2时,22211)1(n n a n a n n =-++;(3)在(2)的条件下,试比较)11()11()11()11(321na a a a +⋅⋅+⋅+⋅+ 与4的大小关系.20.设函数f(x)=ax-(a+1)ln(x+1),其中a>0.(1)求f(x)的单调区间;(2)当x>0时,证明不等式:x x +1<ln(x+1)<x;(3)设f(x)的最小值为g(a),证明不等式:-1<ag(a)<0参考答案: 一、选择题:1-4 CCAC 5-8 BBBC 二、填空题: 9.910.3411.212.2 13.6 14.m>n三、解答题:15.解:(1)||2AB AC AB AC ⋅=-=||2AB AC BC a ⋅===2222cos cos 2b c a bc Abc A ⎧+=+⎨=⎩2222||||8AB AC b c ∴+=+=(2)1sin2ABCS bc A∆==12=12≤当且仅当 b=c=2时A=3π16.解:(1)每只优质犬入围概率相等:p=1111212111111 3323323323323⋅⋅+⋅⋅+⋅⋅+⋅⋅=(2)ξ的取值为0,1,2,3,4服从ξ~B(4,13)Eξ=43Eη=4401033⨯=17.解:(1)如图以A为原点建立空间直角坐标系A(0,0,0),B(2,0,0),C(2,1,0),D(0,2,0)M(1,12,1),N(1,0,1),E(0,m,2-m),P(0,0,2)PB =(2,0,-2),DM =(1,-32,1)PB DM∴⋅=0 PB DM∴⊥(2)CD=(-2,1,0)平面ADMN法向量n=(x,y,z)AD=(0,2,0)AN=(1,0,1)n ADn AN⎧⋅=⎪⎨⋅=⎪⎩20yx z=⎧⎨+=⎩n=(1,0,-1)设CD与平面ADMN所成角α,则||sin||||5CD nCD nα⋅===⋅(3)设平面ACN法向量p=(x,y,z)(2,1,0)(1,0,1)ACAN⎧=⎪⎨=⎪⎩p=(1,-2,-1)平面AEN 的法向量q =(x,y,z )(1,0,1)(0,,2)AN AE m m ⎧=⎪⎨=-⎪⎩ q =(1,2m m -,-1)||cos45||||pq p q ⋅︒=⋅=|44|m =-+ 即272040[0,mm m ⎧-+=⎪⎨∈⎪⎩m=107-不存在,为135°钝角18.解:(1)由112(1)n n n a a -=--1111[(1)]2[(1)]n n n n a a --+-=---即111(1)2(*2)1(1)n nn n a n N n a --+-=-∈≥+-且另:1111111(1)21(1)(1)2(1)2211(1)1(1)(1)n nn n n n n n nn n n n n a a a a a a a ---------+-+---===--++-+- 1(1)n n a ⎧⎫∴+-⎨⎬⎩⎭是首项为3公比为-2的等比数列 11111(1)3(2)3(2)(1)n n n n n na a ---+-=-∴=-+- (2)由21n n ab = 112194621n n n nb a --∴==⋅+⋅+ 9(41)6(21)4121n n n S n --=++-- =34629(*)nnn n N ⋅+⋅+-∈19.解:(1)当n=1时,(x 1,y 1)=(1,1) n=2时,(x 2,y 2)=(1,2) (x 3,y 3)=(1,3) n=3时,(x 4,y 4)=(1,4)n 时 (x n ,y n )=(1,n)1(*)n nx n N y n =⎧∴∈⎨=⎩ (2)由2222212221222221111()123(1)11111(1)()(1)123nn n n a n n a a a n nn n n ++⎧=++++⎪-⎪∴-=⎨+⎪=++++⎪+⎩ (3)当n=1时,11124,2n a +=<=时,12115(1)(1)244a a ++=⨯<成立由(2)知当n ≥3时,1221(1)n n a a n n ++=+即2211(1)n n a n a n ++=+ 31212312311111111(1)(1)(1)(1)nn na a a a a a a a a a a a ++++++++=⋅⋅ =311223411111(1)n n na a a a a a a a a a -++++⋅⋅⋅⋅+ =222212222123(1)2434(1)n n n a n n +-⋅⋅⋅⋅⋅+ =122222111122[1](1)23(1)n a n n n +⋅=++++++-2111111111(2)2[1(1)()()](1)12231n n n n n nn n<=-≥<+-+-++----=122(2)44nn-=-< 得证20.解:(1)f ’(x)=11ax x -+(x>-1,a>0) 令f ’(x)=010x a ∴=>∴f(x)在(-1,1a )为减,在(1a ,+∞)为增 f(x)min =f(1a )=1-(a+1)ln(1a+1)(2)设F(x)=ln(x+1)-(0)1xx x >+ F ’(x)=221101(1)(1)x x x x x x +--=>∴+++F(x)在(0,+∞)为增函数 F(x)>F(0)=0 ∴F(x)>0即ln(1)1xx x <++ G(x)=x-ln(x+1)(x>0)G ’(x)=1-1011x x x =>++ ∴G(x)在(0,+∞)为增函数 G(x)>G(0)=0 ∴G(x)>0即ln(x+1)<x经上可知ln(1)1xx x x <+<+ (3)由(1)知:()()11()1-1ln(1)g a f a a aa ⎧==++⎪⎨⎪>⎩()11'ln(1)01ln(1)0g a a aa ⎧=-+-<⎪⎪⎨⎪+>⎪⎩1111ln(1)1111(1)ln(1)1a a a aa a a <+<+<++<+由(2)把x=代入(2)中即111(1)ln(1)1a a a --<-++<- 111(1)ln(1)0a a a-<-++<即1()0ag a -<<即。
【解析版】天津市天津一中2013届高三上学期一月考 理科数学
天津一中2012—2013学年高三数学一月考试卷(理科)一、选择题:(共40分,每小题5分,每小题给出的四个选项中,只有一项符合题目要求) 1.有关下列命题的说法正确的是A.命题“若x 2=1,则x=1”的否命题为:若“x 2=1则x ≠1” B.“1x =-”是“2560x x --=”的必要不充分条件C.命题“∃x ∈R,使得x 2+x+1<0”的否定是:“∀x ∈R,均有x 2+x+1<0” D.命题“若x=y,则sinx=siny ”的逆否命题为真命题 【答案】D【解析】若x 2=1,则x=1”的否命题为21x ≠,则1x ≠,即A 错误。
若2560x x --=,则6x =或1x =-,所以“1x =-”是“2560x x --=”的充分不必要条件,所以B 错误。
∃x ∈R,使得x 2+x+1<0的否定是∀x ∈R,均有210x x ++≥,所以C 错误。
命题若x=y,则sinx=siny 正确,所以若x=y,则sinx=siny 的逆否命题也正确,所以选D.2.定义在R 上的偶函数f(x),当x ∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是 A.f(π)>f(-3)>f(-2) B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3) 【答案】A【解析】因为函数是偶函数,所以(2)(2),(3)(3)f f f f -=-=,又函数在[0,)+∞上是增函数,所以由(2)(3)()f f f π<<,即(2)(3)()f f f π-<-<,选A.3.函数f(x)=sin2x-4sin 3xcosx(x ∈R)的最小正周期为 A.8π B.4π C.2π D.π【答案】C【解析】221()sin 22sin 2sin sin 2(12sin )sin 2cos 2sin 42f x x x x x x x x x =-=-==,所以函数的周期为2242T πππω===,选C. 4.设函数sin()3y x π=+(x ∈R),则f(x)A.在区间[-π,2π-]上是减函数 B.在区间27[,]36ππ上是增函数C.在区间[8π,4π]上是增函数 D.在区间5[,]36ππ上是减函数 【答案】B 【解析】当2736x ππ≤≤时,2733363x πππππ+≤+≤+,即332x πππ≤+≤,此时函数sin()3y x π=+单调递减,所以sin()3y x π=+在区间27[,]36ππ上是增函数,选B. 5.在∆ABC 中,A,B,C 为内角,且sin cos sin cos A A B B =,则∆ABC 是 A.等腰三角形 B.直角三角形C.等腰直角三角形D.等腰或直角三角形【答案】D【解析】由sin cos sin cos A A B B =得sin 2sin 2sin(2)A B B π==-,所以22A B =或22A B π=-,即A B =或2A B π+=,所以三角形为等腰或直角三角形,选D.6.,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z z -=,则 A. x y z << B.z x y << C.z y x << D.y x z<<【答案】A【解析】因为,,x y z 均为正实数,所以22log 1x x =->,即2l o g 1x <-,所以102x <<。
天津市第一中学2023-2024学年高三第四次月考数学试卷(解析版)
天津一中2023—2024-2高三年级第四次月考数学试卷本试卷总分150分,考试用时120分钟.考生务必将答案涂写在答题卡上,答在试卷上的无效.一、选择题(本大题共9小题,每小题5分,共45分)1. 已知集合,则( )A. B. C. D. 【答案】C 【解析】【分析】根据题意,求得集合,结合集合交集的运算,即可求解.【详解】由不等式,解得,所以,又由,所以.故选:C.2. 将收集到的天津一中2021年高考数学成绩绘制出频率分布直方图,如图所示,则下列说法中不正确的是( )A. B. 高三年级取得130分以上的学生约占总数的65%C. 高三年级的平均分约为133.2D. 高三年级成绩的中位数约为125【答案】D 【解析】【分析】对于A ,由各个矩形面积之和为1即可列式求解;对于B ,求最右边两个矩形面积之和即可验算;对于C ,D 分别由平均数计算公式、中位数计算方法即可判断.{}{}2|3100,33A x x x B x x =--<=-≤≤A B = (2,3]-[)3,5-{1,0,1,2,3}-{3,2,1,0,1,2,3,4}---{}1,0,1,2,3,4A =-23100x x --<25x -<<{}1,0,1,2,3,4A =-{}33B x x =-≤≤{}1,0,1,2,3A B ⋂=-0.028a =【详解】对于A ,,故A 正确;对于B ,高三年级取得130分以上的学生约占总数的,故B 正确;对于C ,高三年级的平均分约为,故C 正确;对于D ,设高三年级成绩的中位数为,由于,所以,故D 不正确.故选;D.3. 已知,条件,条件,则是的( )A. 充分不必要条件 B. 必要不充分条件C 充要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】结合绝对值的性质,根据不等式的性质及充分条件、必要条件的定义分析判断即可.【详解】因为,所以由得,故由能推出;反之,当时,满足,但是;所以是的充分不必要条件.故选:A .4. 函数的图象大致为( )A. B.C. D.【答案】B 【解析】.()1100.0010.0090.0250.037100.028a =-⨯+++÷=⎡⎤⎣⎦()0.0280.03710100%65%+⨯⨯=()1050.0011150.0091250.0251450.0281350.03710133.2⨯+⨯+⨯+⨯+⨯⨯=x 0.010.090.250.350.500.350.370.72++=<<+=130140x <<0a >:p a b >2:q a ab >p q 0a >a b >2a ab ab >≥:p a b >2:q a ab >10,2a b =>=-212a ab =>=-122a =<-=p q ()21cos 31x f x x ⎛⎫=-⋅ ⎪+⎝⎭【分析】根据函数奇偶性即可排除CD ,由特殊点的函数值即可排除A.【详解】,则的定义域为R ,又,所以为奇函数,图象关于原点对称,故排除CD ,当时,,故排除A .故选:B.5. 已知函数是上的偶函数,且在上单调递增,设,,,则a ,b ,c 的大小关系是( )A. B. C. D. 【答案】B 【解析】【分析】结合偶函数的性质,函数单调性,只需比较对数、分数指数幂的大小即可得解.【详解】因为函数是上的偶函数,且在上单调递增,所以,即.故选:B.6. 多项式展开式中的系数为( )A. 985B. 750C. 940D. 680【答案】A 【解析】分析】由二项式定理即可列式运算,进而即可得解.【详解】多项式展开式中的系数为.故选:A.7. 已知斜三棱柱中,为四边形对角线的交点,设三棱柱的体积【2()(1)cos 31xf x x =-⋅+()f x ()()()22321cos 1cos 1cos 313131x x x xf x x x x f x -⎛⎫⨯⎛⎫⎛⎫-=-⋅-=-⋅=-+⋅=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭()f x πx =()ππ22π1cos π103131f ⎛⎫-=< ⎪++⎝⎭=-+()f x R ()f x [0,)+∞12e a f ⎛⎫= ⎪⎝⎭12b f ⎛⎫= ⎪⎝⎭1ln 2c f ⎛⎫= ⎪⎝⎭a b c <<b<c<ac<a<bb a c<<()f x R ()f x [0,)+∞()()1211ln 2ln 1e 22b f f f c f ff a ⎛⎫⎛⎫⎛⎫=<==<<== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭b<c<a ()52(71)52x x++2x ()52(71)52x x++2x 32350555C 712C 7159805985⋅⋅⋅+⋅⋅⋅=+=111ABC A B C -O 11ACC A 111ABC A B C -为,四棱锥的体积为,则( )A. B. C. D. 【答案】A 【解析】【分析】如图,延长,连接,则、,进而得,即可求解.【详解】如图,延长,连接,则,所以,又O 为的中点,所以点到平面的距离是点到平面的距离的2倍,则,所以,即故选:A8. 已知函数(为常数,且)的一个最大值点为,则关于函数的性质,下列说法错误的有( )个.1V 11O BCC B -2V 21:V V =1:31:41:62:31OA 11,,OB OB A B 111123A BCC B V -=11122A BCC B V V -=12223V V =1OA 11,,OB OB A B 11111111,3A ABC A BCCB A ABC V V V V V ---=+=111123A BCCB V -=1AC 1A 11BCC B O 11BCC B 11111222A BCC B O BCC B V V V --==12223V V =2113V V =()sin cos f x a x b x =+,a b 0,0a b >>π3x =()sin 2cos 2g x a x b x =+①的最小正周期为;②的一个最大值点为;③在上单调递增;④的图像关于中心对称.A. 0个 B. 1个C. 2个D. 3个【答案】B 【解析】【分析】根据三角函数的性质,求的关系,再根据辅助角公式化简函数,再利用代入的方法,判断函数的性质.【详解】函数,,平方后整理为,所以,,函数的最小正周期为,故①正确;当时,,此时函数取得最大值,故②正确;当时,,位于单调递增区间,故③正确;,故④错误,所以错误的只有1个.故选:B9. 已知双曲线的左焦点为,过作渐近线的垂线,垂足为,且与抛物线交于点,若,则双曲线的离心率为( )A.B.C.D.【答案】B 【解析】()g x π()g x π6()g x 2π,π3⎛⎫⎪⎝⎭()gx 7π,012⎛⎫⎪⎝⎭,a b ()g x ()sin cos f x a x b x =+12b +=()20a =a π()sin 2cos 22sin 26g x x b x b x ⎛⎫=+=+ ⎪⎝⎭0b >()g x 2ππ2=π6x =πππ2662⨯+=()g x 2π,π3x ⎛⎫∈⎪⎝⎭π3π13π2,626x ⎛⎫+∈ ⎪⎝⎭77ππ4π2sin 22sin 0121263g b b π⎛⎫⎛⎫=⨯+=≠ ⎪ ⎪⎝⎭⎝⎭22221(0,0)x y a b a b-=>>1(,0)F c -1F P 212y cx =M 13PM F P =【分析】首先利用等面积法求出点坐标,再根据,求出坐标,再将坐标带入抛物线化简即可求解出双曲线离心率.【详解】据题意,不妨取双曲线的渐近线方程为,此时,,∴,且是直角三角形,设,则,,代入中,得,即;设,则,,由,则,,∴,则;又在抛物线上,,即,化简得,分子分母同时除以,,且,,.故选:B二、填空题(本大题共6小题,每小题5分,共30分)10. 已知,且满足(其中为虚数单位),则_________.【答案】2【解析】【分析】根据复数相等得到关于的方程组,解该方程组即可.【详解】由题意,可得,P 13PM F P =M M 212y cx =by x a=-1F P b =1OF c =OP a =1OPF (,)p p P x y 11122OPF p S ab cy== p aby c ∴=b y xa =-2p a x c =-2(,a ab P c c-(,)M xy 2,a ab PM x y c c ⎛⎫=+- ⎪⎝⎭ 221,,a ab b ab F P c cc c c ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭ 13PM F P = 223a b x c c+=⋅3ab ab y c c -=⋅2234,b a ab x y c c -==2234(,)b a abM c c -M 212y cx =22243()12ab b a cc c-∴=()()()2222222222221612316123a b b aca c a c a a c ⎡⎤=-⇔-=--⎣⎦422491640c a c a -+=4a 4291640e e ∴-+=1e >2e ∴===e ∴=,R a b ∈(12i)(i)3i a b ++=-i 22a b +=,a b (12i)(i)3i a b ++=-(2)(2)i 3i a b a b -++=-所以,解得,所以.故答案为:211. 著名的“全错位排列”问题(也称“装错信封问题”是指“将n 个不同的元素重新排成一行,每个元素都不在自己原来的位置上,求不同的排法总数.”,若将个不同元素全错位排列的总数记为,则数列满足,.已知有7名同学坐成一排,现让他们重新坐,恰有两位同学坐到自己原来的位置,则不同的坐法有_________种【答案】【解析】【分析】根据数列递推公式求出项,再结合分步计数原理求解.【详解】第一步,先选出两位同学位置不变,则有种,第二步,剩下5名同学都不在原位,则有种,由数列满足,,则,,,则不同的做法有种.故答案为:.12. 已知在处的切线与圆相切,则_________.【答案】或【解析】【分析】根据导数的几何意义,求得切线方程,再由直线与圆相切,列出方程,即可求解.【详解】由函数,可得,则且,所以函数在处的切线方程为,即,又由圆,可得圆心,半径为,2321a b a b -=⎧⎨+=-⎩1575a b ⎧=⎪⎪⎨⎪=-⎪⎩222a b +=n n a {}n a 120,1a a ==()12(1)(3)n n n a n a a n --=-+≥9242776C 2121⨯==⨯5a {}n a 120,1a a ==()12(1)(3)n n n a n a a n --=-+≥()()321312a a a =-+=()()432419a a a =-+=()()5435144a a a =-+=2144924⨯=9242()ln f x x x =-1x =22:()4C x a y -+==a -0x y -=2()ln f x x x =-1()2f x x x=-'(1)1f '=(1)1f =()f x 1x =11y x -=-0x y -=22:()4C x a y -+=(,0)C a 2r =因为与圆,解得.故答案为:.13. 元旦前夕天津-中图书馆举办一年一度“猜灯谜”活动,灯谜题目中逻辑推理占,传统灯谜占,一中文化占,小伟同学答对逻辑推理,传统灯谜,一中文化的概率分别为,,,若小伟同学任意抽取一道题目作答,则答对题目的概率为______,若小伟同学运用“超能力”,抽到的5道题都是逻辑推理题,则这5道题目中答对题目个数的数学期望为______.【答案】 ①. ##②. 【解析】【分析】根据全概率公式求解概率,根据二项分布列的期望公式求解即可.【详解】设事件“小伟同学任意抽取一道题目作答,答对题目”,则.由题意小伟同学任意抽取一道逻辑推理题作答,则答对题目的概率为,根据二项式分布知,所以,即的数学期望为.故答案为:,14. 在中,设,,其夹角设为,平面上点满足,,交于点,则用表示为_________.若,则的最小值为_________.【答案】 ①. ②.【解析】【分析】由和三点共线,得到和,得出方程组,求得的值,得到,再由,化简得到,得出,结合基本不等式,即可求解.0x y -=C 2a =±±20%50%30%0.20.60.7X 0.5511201A =()0.20.20.50.60.30.70.55P A =⨯+⨯+⨯=0.2()5,0.2X B ~()50.21E X =⨯=X 10.551ABC ,AB a AC b ==u u u r r u u u r r θ,D E 2AD AB = 3AE AC =,BE DC O AO ,a b65AO DE DC BE ⋅=⋅ cos θ4355AO a b =+ ,,D O C ,,B O E 2(1)AO ta t b =+- ()33AO ua u b =+-2133t ut u =⎧⎨-=-⎩,t u 4355AO a b =+ 65AO DE DC BE ⋅=⋅ 2248209a b a b ⋅=+ 22209cos 48a b a bθ+=【详解】因为三点共线,则存在实数使得,又因为三点共线,则存在实数使得,可得,解得,所以,由,因为,可得,整理得,可得,所以又因为所以,当且仅当时,即时,等号成立,所以.故答案为:15. 设函数,若函数与直线有两个不同的公共点,则的取值范围是______.【答案】或或【解析】【分析】对于,当可直接去绝对值求解,当时,分和,,D O C t (1)2(1)AO t AD t AC ta t b =+-=+-,,B O E u ()()133AO u AB u AE ua u b =+-=+-2133t u t u =⎧⎨-=-⎩24,55t u ==4355AO a b =+ 32,2,3DE AE AD b a DC AC AD b a BE AE AB b a =-=-=-=-=-=- 65AO DE DC BE ⋅=⋅ 436()(32)(2)(3)555a b b a b a b a +⋅-=-⋅-2248209a b a b ⋅=+ 2248cos 209a b a b θ=+ 22209cos 48a b a bθ+=22209a b+≥ 22209cos 48a b a b θ+=≥ 22209a b = 3b cos θ4355AO a b =+ 22()21f x x ax ax =-++()y f x =y ax =a 2a <-21a -<<-2a >221y x ax =-+0∆≤0∆>a <-a >论,通过和图像交点情况来求解.详解】由已知,即,则必过点,必过,对于,当时,,此时恒成立,所以,令,即,要有两个不同的公共点,则,解得或或,当时,或当时,和图象如下:此时夹在其两零点之间的部分为,令,得无解,则有两个根有两个根,即有两个解,,符合要求;当和图象如下:【221y x ax =-+()1y ax x =-22()21f x x ax ax ax =-++=()2211x ax ax x -+=-()1y ax x =-()()0,0,1,0221y x ax =-+()0,1221y x ax =-+280a ∆=-≤a -≤≤2210x ax -+≥()222()2121f x x ax ax a x ax =-++=+-+()221a x ax ax +-+=()22210a x ax +-+=()21Δ442020a a a ⎧=-+>⎨+≠⎩2a -≤<-21a -<<-2a <≤280a ∆=->a <-a >a <-221y x ax =-+()1y ax x =-221y x ax =-+-2221x ax ax ax -+-=-+()221a x -=()2211x ax ax x -+=-()2211x ax ax x ⇔-+=-()22210a x ax +-+=()2Δ4420a a =-+>a <-a >221y x ax =-+()1y ax x =-或令,根据韦达定理可得其两根均为正数,对于①,则,解得,对于②,则,解得,综上所述,的取值范围是或或.【点睛】方法点睛:对于方程的根或者函数零点问题,可以转化为函数图象的交点个数问题,图象直观方便,对解题可以带来很大的方便.三、解答题(本大发共5小题,共75分)16. 已知中,角A ,B ,C 的对边分别为a ,b ,c ,且,.(1)求;(2)若,求的面积.【答案】(1(2【解析】【分析】(1)利用正弦定理求关系,再利用余弦定理求出,再利用两角和的正弦定理计算即可;(2)利用三角形的面积公式求解即可.【小问1详解】2210x ax -+=011⎧<<⎪⎪>3a >011⎧<<⎪⎪<3a <<a 2a <-21a -<<-2a >ABC sin cos sin 22C CB =2223a c b -=πsin 3B ⎛⎫+⎪⎝⎭1b =ABC ,,a b c cos B因为,所以,由正弦定理得,所以,即,所以,在中,,所以【小问2详解】由(1)得当时,,所以17. 已知四棱台,下底面为正方形,,,侧棱平面,且为CD 中点.(1)求证:平面;(2)求平面与平面所成角的余弦值;(3)求到平面的距离.【答案】(1)证明见详解 (2)sincos sin 22C CB =sin 2sinC B =2c b =2222223347b a b c b b +=+===a 222cos 2a cb B ac +-===ABC sin B ==π11sin sin 322B B B ⎛⎫+=== ⎪⎝⎭1b =2a c ==122ABC S =´´=1111ABCD A B C D -ABCD 2AB =111A B =1AA ⊥ABCD 12,AA E =1//A E 11BCC B 11ABC D 11BCC B E 11ABC D 15(3【解析】【分析】(1)直接使用线面平行的判定定理即可证明;(2)构造空间直角坐标系,然后分别求出两个平面的法向量,再计算两个法向量的夹角余弦值的绝对值即可;(3)使用等体积法,从两个不同的方面计算四面体的体积即可求出距离.【小问1详解】由于,,故,而,故四边形是平行四边形,所以,而在平面内,不在平面内,所以平面;【小问2详解】如上图所示,以为原点,为轴正方向,建立空间直角坐标系.则,,,,,,设平面与平面的法向量分别是和,则有和,1EAD B 11∥A B AB CE AB ∥11CEA B 1111122CE CD AB A B ====11CEA B 11A E B C ∥1B C 11BCC B 1A E 11BCC B 1//A E 11BCC B 1A 11111,,A A A D A B,,x y z ()2,0,0A ()10,1,0D ()2,0,2B ()10,0,1B ()10,1,1C ()()()()11110,0,2,2,1,0,2,0,1,0,1,0AB AD BB B C ==-=--=11ABC D 11BCC B ()1,,n p q r = ()2,,n u v w =11100n AB n AD ⎧⋅=⎪⎨⋅=⎪⎩ 212110n BB n B C ⎧⋅=⎪⎨⋅=⎪⎩即,,从而,,.故我们可取,,而,故平面与平面所成角的余弦值是.【小问3详解】设到平面的距离为,由于,而,所以.所以到平面18. 已知椭圆的左右顶点为A ,B ,上顶点与两焦点构成等边三角形,右焦点(1)求椭圆的标准方程;(2)过作斜率为的直线与椭圆交于点,过作l 的平行线与椭圆交于P ,Q 两点,与线段BM 交于点,若,求.【答案】(1)(2)【解析】【分析】(1)根据上顶点与两焦点构成等边三角形求出即可;(2)设出直线方程,利用弦长公式求出求出,,利用点到直线的距离求出点到直线的距离和点到直线的距离,再根据列式计算即可.【小问1详解】2020r p q =⎧⎨-+=⎩200u w v --=⎧⎨=⎩0r v ==2p q =20u w +=()11,2,0n = ()21,0,2n =-11cos ,5n 11ABC D 11BCC B 15E 11ABC D L 111111332E AD B AD B V LS L AD AB L -==⋅⋅⋅= 111142333E AD B B AD E AEB ABCD V V S S --==⋅⋅=⋅= 43=L =E 11ABC D 22221(0)x y a b a b +=>>(1,0)F A (0)k k >l M F N 2AMN BPQ S S =△△k 22143x y +=k =,a b AM PQ N AM B PQ 2AMN BPQ S S =△△由已知在等边三角形中可得,则椭圆的标准方程为为;【小问2详解】设直线的方程为:,联立消去得,则,得,,设直线的方程为:,设,联立,消去得,易知,则,所以,由得,所以直线的方程为,即,联立得,所以点到直线的22,a c b ====22143x y +=l ()2y k x =+()222143y k x x y ⎧=+⎪⎨+=⎪⎩y ()2222341616120k x k x k +++-=221612234M k x k --=+226834M k x k-=+226834Mk AM x k -=-=-=+PQ ()1y k x =-()()1122,,,P x y Q x y ()221143y k x x y ⎧=-⎪⎨+=⎪⎩y ()22223484120k x k x k +-+-=0∆>221212228412,3434k k x x x x k k-+==++PQ ==()2212134k k +=+226834M k x k -=+222681223434M k k y k k k ⎛⎫-=⋅+= ⎪++⎝⎭BM ()2221234268234kk y x k k +=---+()324y x k=--()()3241y x k y k x ⎧=--⎪⎨⎪=-⎩222463,4343k k N k k ⎛⎫+ ⎪++⎝⎭N AM点到直线,因为,所以,解得.【点睛】方法点睛:直线与椭圆联立问题第一步:设直线方程:有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,都可由点斜式设出直线方程.第二步:联立方程:把所设直线方程与椭圆方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根的判别式.第四步:写出根之间的关系,由根与系数的关系可写出.第五步:根据题设条件求解问题中的结论.19. 已知数列满足对任意的,均有,且,,数列为等差数列,且满足,.(1)求,的通项公式;(2)设集合,记为集合中的元素个数.①设,求的前项和;②求证:,.【答案】(1),B PQ 2AMN BPQ S S =△△()221211122234k k +=⨯+k =∆0∆>{}n a *N n ∈212n n n a a a ++=12a =24a ={}n b 11b =2105b b a +={}n a {}n b {}*1N n n k n A k a b a +=∈<≤n c n A ()2n n n p b c =+{}n p 2n 2n P *N n ∀∈122121111176n n c c c c -++++< 2n n a =32n b n =-(2)①;②证明过程见解析【解析】【分析】(1)根据等比中项的性质,结合等差数列的通项公式、等比数列的通项公式进行求解即可;(2)①根据不等式的解集特征,结合累和法、等比数列的前项和公式分类讨论求出的表达式,最后根据错位相减法进行求解即可;②运用放缩法,结合等比数列前项和公式进行运算证明即可.【小问1详解】因为数列满足对任意的,均有,所以数列是等比数列,又因为,,所以等比数列的公比为,因此;设等差数列的公差为,由;【小问2详解】因为,,所以由,因此有,即有,,当时,有于是有当为大于2的奇数时,()2122122n n P n n +=-⋅+-12322,n n k k +*<-≤∈N n n c n {}n a *N n ∈212n n n a a a ++={}n a 12a =24a ={}n a 212a a =1222n n n a -=⨯={}n b d ()210511932313132n b d d d b b n n a ⇒+++=⇒=⇒=+-=+-=2n n a =32n b n =-11,2322,nn n k n a b a k k k *+*+<≤∈⇒<-≤∈N N {}{}{}{}{}123452,3,4,5,6,7,8,9,10,11,12,13,,22A A A A A ===== {}623,24,,43,A =1234561,1,3,5,11,21,c c c c c c ======234512233445562,42,82,162,322,c c c c c c c c c c +=+==+==+==+== 12,n n n c c ++= 2,N n n *≥∈112,n n n c c --+=1112,n n n c c -+--=n ()()()243122431122221n n n n n n n c c c c c c c c -----=-+-+-+=+++++,显然也适合,当为大于2的偶数时,,显然也适合.①,,,设,则有,两式相减,得,,;②设,显然,,当时,有,因此,12214211143n n -⎛⎫- ⎪+⎝⎭=+=-11c =n ()()()244222442222221n n n n n n n c c c c c c c c -----=-+-++-+=+++++ 122214211143nn ⎛⎫- ⎪-⎝⎭=+=-21c =()()()21,21,N 221,2,Nn n n n n n n k k p b c n n k k **⎧+=-∈⎪=+=⎨-=∈⎪⎩()()212342121321242n n n n n P P P P P P P P P P P P P --=++++++=+++++++ ()()132124212132321221222424222n nn n n n -⎡⎤⎡⎤=⨯++⨯+++-⋅+-+⨯-+⨯-++⋅-⎣⎦⎣⎦()()()123212122232212221234212n n n n n n -⎡⎤=⨯+⨯+⨯++-⋅+⋅+-+-+--⎣⎦ ()()12321212223221222n n S n n -=⨯+⨯+⨯++-⋅+⋅ ()()234221212223221222nn S n n +=⨯+⨯+⨯++-⋅+⋅ 123212212222222n n n S n -+-=+++++-⋅ ()()2212121222212212n n n S n S n ++-⇒-=-⋅⇒=-⋅+-()2122122n n P n n +=-⋅+-()()11321k k k k c *+=∈+-N ()11332121k k k k c +=≤-+-()4213224k k k --⨯=-4,N k k *≥∈()()344213224042132212kk kkkk k--⨯=->⇒->⨯⇒<-()1133421221k k k k k c +=≤<-+-所以当时,,即,显然当时,有成立.【点睛】关键点点睛:本题的关键由可以确定从第几项开始放缩,根据数列的通项公式的形式,得到,这样可以进行放缩证明.20. 已知函数.(1)讨论的单调区间;(2)已知,设的两个极值点为,且存在,使得的图象与有三个公共点;①求证:;②求证:.【答案】(1)答案见解析 (2)证明见解析【解析】【分析】(1)首先求函数的导数,再讨论,结合函数的定义域,即可求函数的单调区间;(2)①要证,即证,只需证,构造函数,,借助导数即可得证;②同①中证法,先证,则可得,利用、是方程的两根所得韦达定理,结合即可得证.【小问1详解】,,N k *∈4512321111111111143222k k k c c c c c -⎛⎫+++++<++++++ ⎪⎝⎭ 43123211111111122114312k k k c c c c c --⎛⎫- ⎪⎝⎭⇒+++++<+++⨯- 312321111171171171322326k k k c c c c c --⎛⎫+++++<+-<+= ⎪⎝⎭ 2k n =122121111176n n c c c c -++++< 171111632=+++()1133421221k k k k k c +=≤<-+-2()24ln f x x ax x =-+()f x [4,6]a ∈()f x ()1212,λλλλ<b ∈R ()y f x =y b =()123123,,x x x x x x <<1212x x λ+>31x x -<∆1212x x λ+>2112x x λ>-()()1112f x f x λ<-()()()12x g x f x f λ=--()10,x λ∈2232x x λ+<()()2312123122x x x x x x λλ=++<---1λ2λ220x ax -+=[4,6]a ∈()()222422x ax f x x a x x-+'=-+=0x >其中,,当时,即,此时恒成立,函数在区间单调递增,当时,即或当时,在区间上恒成立,即函数在区间上单调递增,当,得或当时,,时,,所以函数的单调递增区间是和,单调递减区间是,综上可知,当的单调递增区间是;当的单调递增区间是和,单调递减区间是;【小问2详解】①由(1)知,当时,函数的单调递增区间是和,单调递减区间是,、是方程的两根,有,,又的图象与有三个公共点,故,则,()22tx x ax =-+28a ∆=-0∆≤a -≤≤()0f x '≥()f x ()0,∞+0∆>a <-a >a <-()0f x ¢>()0,∞+()f x ()0,∞+a >()0t x =1x =1x =0x <<x >()0f x ¢>x <<()0f x '<()f x ⎛ ⎝⎫+∞⎪⎪⎭a ≤()f x ()0,∞+a >()f x ⎛ ⎝⎫+∞⎪⎪⎭[4,6]a ∈()f x ()10,λ()2,λ+∞()12,λλ1λ2λ220x ax -+=122λλ=12a λλ+=()y f x =y b =()123123,,x x x x x x <<112230x x x λλ<<<<<1112x λλ->要证,即证,又,且函数在上单调递减,即可证,又,即可证,令,,由,则恒成立,故在上单调递增,即,即恒成立,即得证;②由,则,令,,则,故在上单调递增,即,1212x x λ+>2112x x λ>-1112x λλ->()f x ()12,λλ()()1122f x f x λ<-()()12f x f x b ==()()1112f x f x λ<-()()()12x g x f x f λ=--()10,x λ∈()()()()212222422x ax x x f x x a x x xλλ-+--'=-+==()()()()()112211122222x x xx x g x x λλλλλλλ------'=+-()()()()()1221112222x x x x x x x λλλλλλ+--+-=-⋅-()()222211*********x x x x x x xx x λλλλλλλλ-+++--+=-⋅-()()()()()12221111222420x x x x x x x λλλλλλλ--=-⋅=>--()g x '()10,λ()()()()111102g x g f f λλλλ<=--=()()1112f x f x λ<-112230x x x λλ<<<<<2322x λλ-<()()()22x h x f x f λ=--()2,x λ∈+∞()()()()()122221222222x x xx x h x x λλλλλλλ------'=+-()()()()()2112222222x x x x x x x λλλλλλ+--+-=-⋅-()()221122212222222x x x x x x xx x λλλλλλλλ-+++--+=-⋅-()()()()()22112222222420x x x x x x x λλλλλλλ--=-⋅=>--()h x '()2,λ+∞()()()()222202h x h ff λλλλ>=--=即当时,,由,故,又,故,由,,函数在上单调递减,故,即,又由①知,故,又,故.【点睛】关键点点睛:最后一问关键点在于先证,从而借助①中所得,得到.()2,x λ∈+∞()()22x f x f λ>-32x λ>()()3232f x f x λ>-()()32f x f x =()()3222f x f x λ>-2322x λλ-<122x λλ<<()f x ()12,λλ2322x x λ<-2232x x λ+<1212x x λ+>()()2312123122x x x x x x λλ=++<---2122λλ-==≤=31x x -<2232x x λ+<1212x x λ+>()()2312123122x x x x x x λλ=++<---。
天津市高三数学一轮复习 试题选编10 排列组合及二项式定理 理 新人教A版
天津市2014届高三理科数学一轮复习试题选编10:排列组合及二项式定理一、选择题1 .(天津市河东区2013届高三第二次模拟考试数学(理)试题)在二项式251(-)x x的展开式中,含4x 的项的系数是( )A .-10B .10C .-5D .5【答案】B2 .(2012年天津理))在251(2)x x-的二项展开式中,x 的系数为 ( )A .10B .-10C .40D .-40【答案】∵25-1+15=(2)()r r r r T C x x -⋅-=5-10-352(1)r r r rC x -,∴103=1r -,即=3r ,∴x 的系数为40-.3 .(天津市新华中学2013届高三寒假复习质量反馈数学(理)试题)如图,用四种不同的颜色给图中的P A B C D 、、、、五个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂色方法共有( )种 ( )A .72B .86C .106D .120【答案】A 4 .(天津市红桥区2013届高三第二次模拟考试数学理试题(word 版) )一个班有6名战士,其中正副班长各一名,现从中选4人完成四种不同的任务,每人完成一种任务,正副班长中有且仅有一人参加,另一人要留下值班,则不同的分配方法有 ( ) A .240种 B .192种 C .2880种 D .8种 【答案】B 5 .(天津市五区县2013届高三质量检查(一)数学(理)试题)在5(x的二项展开式中,2x 的系数为( )A .40B .-40C .80D .-80【答案】A6 .(2013届天津市高考压轴卷理科数学)二项式8(2x -的展开式中常数项是( )A .28B .-7C .7D .-28 【答案】C【解析】展开式的通项公式为488831881()(()(1)22k k k k k k k k x T C C x ---+==-,由4803k -=得6k =,所以常数项为6866781()(1)72T C -=-=,选C .7 .(2011年高考(天津理))在6⎫-⎝的二项展开式中,2x 的系数为 ( )A .154-B .154C .38-D .38【答案】【命题立意】本小题主要考查了二项式定理及二项展开式的通项公式和某一项的系数的求解.C 【解析】6⎫⎝的二项展开式的通项为6263166((1)2r r r r r r rr T C C x ---+==- 令32r -=得1r =,所以2x 的系数为43268--⨯=-8 .(天津市河北区2013届高三总复习质量检测(二)数学(理)试题)若nxx )1(2-展开式中的所有二项式系数和为512,则该展开式中的常数项为( )A .84B .-84C .36D .-36【答案】A9 .(天津市十二校2013届高三第二次模拟联考数学(理)试题)设(5nx的展开式的各项系数和M ,二项式系数和为N ,若240M N -=,则展开式中x 的系数为 ( )A .150-B .150C .300D .300- 【答案】B10.(2013年天津市滨海新区五所重点学校高三毕业班联考理科数学)若51()ax x-(0)a >展开式中3x 的系数为581-,则a 的值为 ( )A .13 B .19C .127D .1【答案】A 二项展开式的通项为55521551()()(1)kkk k k k k k T C ax C a x x ---+=-=-,由523k -=得1k =,所以14325(1)T C a x =-,即3x 的系数为45a -,即45581a -=-,所以4181a =,解得13a =,选 ( )A .11.(天津市十二区县重点中学2013届高三毕业班联考(一)数学(理)试题)在1012x x ⎛⎫- ⎪⎝⎭的二项展开式中,4x 的系数为 ( )A .-120B .120C .-15D .15【答案】C12.(天津市新华中学2013届高三寒假复习质量反馈数学(理)试题)92)21(xx -的展开式中的常数项为 ( )A .1B .3C .1621 D .815【答案】C13.(天津市天津一中2013届高三上学期第三次月考数学理试题)91x ⎫⎪⎭展开式中的常数项是( )A .36-B .36C .84-D .84【答案】C解:展开式的通项公式为93921991()(1)kk kk k kk T C C x x--+=-=-,令9302k -=得3k =.所以常数项为3349(1)84T C =-=-,选C14.(天津市蓟县二中2013届高三第二次模拟考试数学(理)试题)在5)(xa x +二项展开式中,第4项的系数为80,则a 的值为 ( )A .-2B .2C .-2或2D .22-或22【答案】B15.(2012-2013-2天津一中高三年级数学第四次月考检测试卷(理))2521(2)(1)x x+-的展开式的常数项是( ) ( ) A .-3 B .-2 C .2 D .3 【答案】D 16.(天津市2013届高三第三次六校联考数学(理)试题)已知()|2||4|f x x x =++-的最小值为n ,则二项式1()n x x-展开式中2x 项的系数为( )A .15B .15-C .30D .30- 【答案】A 17.(2010年高考(天津理))如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有 ( ) A .288种 B .264种 C .240种 D .168种【答案】B18.(天津市新华中学2013届高三寒假复习质量反馈数学(理)试题)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是( )A .152B .126C .90D .54【答案】B19.(天津南开中学2013届高三第四次月考数学理试卷)二项式8312⎪⎪⎭⎫ ⎝⎛-x x 的展开式中的常数项是( )A .-28B .-7C .7D .28 【答案】C 二、填空题 20.(天津市蓟县二中2013届高三第二次模拟考试数学(理)试题)12名同学站成前后两排,前排4人,后排8人,现要从后排8人中选2人站到前排,若其他同学的相对顺序不变,则不同的调整方法种数为_________种. 【答案】840 21.(2009高考(天津理))用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有________个(用数字作答) 【答案】324 22.(天津市六校2013届高三第二次联考数学理试题(WORD 版))在(1+x)2(1-x2)3的展开式中,含x 项的系数是 .【答案】4-23.(2013天津高考数学(理))6x⎛⎝的二项展开式中的常数项为______.【答案】15 因为136622166()(1)r rrrrr r T C xx C x---+=-=-,令3602r -=得4r =所以4456(1)15T C =-=24.(天津市红桥区2013届高三第二次模拟考试数学理试题(word 版) )在91x ⎫⎪⎭的二项展开式中,常数项是_________________.【答案】84-。
天津市第一中学2023-2024学年高三下学期第四次月考试题语文含答案
天津一中2023-2024-2高三年级语文学科第四次月考本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分,考试时间150分钟考生务必将答案涂写在答题卡的规定位置上,答在试卷上的无效。
祝各位考生考试顺利!I卷(共33分)一、阅读下面的文字,完成1-3题,共9分。
随着生成式人工智能的发展,数字人正在成为电商界的新宠。
数字人虚拟主播拥有栩栩如生的面容、()的表情、悦耳的声音,大有替代真人主播的架势。
成本更低成为虚拟主播受到热捧的驱动力。
数字人能24小时不间断直播,帮助商家()零散时段的流量,部分场景下的带货数据()。
但据此就得出“数字人吃上了主播饭”的结论还为时尚早。
数字人口型对不上、音画不同步、问答反馈慢……这些客观存在的痛点都指向一个问题,就是虚拟主播。
1.依次填入上文三个括号处的词语,最贴切的一项是()A.多变抓取精彩绝伦B.丰富捕获可圈可点C.丰富赚取精彩绝伦D.多变捕捉可圈可点2.上文画线句有语病,下列修改最恰当的一项是()A.成本更低以至虚拟主播受到热捧B.成本更低导致虚拟主播受到热捧C.成本更低赢得虚拟主播受到热捧D.成本更低是虚拟主播受到热捧的驱动力3.将下列短语依次填入上文横线处,衔接自然的一项是()A.交互性不足、缺乏真实感,影响了买家的消费体验B.真实感缺乏、交互性不足,影响了买家的消费体验C.真实感不足、缺乏交互性,影响了买家的消费体验D.影响了买家的消费体验—一缺乏真实感、交互性不足二、阅读下面的文字,完成4-6题,共9分。
材料一:(摘编自费孝通《乡土中国》第四章“差序格局”思维导图)材料二:《乡土中国》中“差序格局”一词高度概括了中国传统的社会结构、人际关系的逻辑和传统文化的特点,具有丰富的文化意蕴和鲜明的社会特征。
一是差序格局的等级性。
差序格局中的“序”,有等级之意。
在儒家文化中,我国社会结构尤为注重人伦。
“伦是有差等的次序。
”君臣、父子、夫妇、政事、长幼、上下等都有着严格的伦理界限,不可逾越。
天津市第一中学2015届高三上学期第二次月考数学(理)试题
3 3 3 正视图俯视图天津一中2014-2015-1高三年级二月考数学试卷(理科)一、选择题:1.已知a 是实数,i1ia +-是纯虚数,则a 等于 A .1;B. 1-;C. ;D.2.已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=aA .4-B .3-C .2-D .1-3.若实数y x ,满足20,,,x y y x y x b -≥⎧⎪≥⎨⎪≥-+⎩且2z x y =+的最小值为3,则实数b 的值为A. 2;B .2-;C.49-;D . 944.执行如图所示的程序框图,输出的S 值是A .3B .—6C .10D .—155.如图所示,圆O 的直径6AB =,C 为圆周上一点,3BC =,过点C 作圆的切线l ,过点A 作l 的垂线AD ,垂足为D ,则∠DAC = A.15o B . 30o C. 45oD. 60o6.已知1a >,22()+=x xf x a ,则使()1f x <成立的一个充分不必要条件是A . 10x -<<B . 21x -<<C . 20x -<<D . 01x <<7.已知实数0a b >,,a b ,的等差中项为12,设11m a n b a b =+=+,,则m n +的最小值为 A .3 B . 4 C .5 D .68.对于函数()f x ,若,,a b c R ∀∈,()()(),,f a f b f c 为某一三角形的三边长,则称()f x 为“可构造三角形函数”,已知函数()1x xe tf x e +=+是“可构造三角形函数”,则实数t 的取值范围是A .[)0,+∞B .[]0,1C .[]1,2D .1[,2]2二、选择题: 9.已知有若干辆汽车通过某一段公路,从中抽取200辆汽车进行测速分析,其时速的频率分布直方图如图所示,则时速在区间[60,70)上的汽车大约有 辆.8010.如图是一个几何体的三视图,则该几何体的体积是 18 11.在各项均为正数的等比数列{}n a 中,若2228log log 1a a +=,则5a = .12.已知平面上的三个向量,,OA OB OC uu r uu u r ,满足1,1,0OA OB OA OB ==?uur uu u r uur uu u r , 则CA CB ×uu r uu r的最大值是 313.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且2cos 2c B a b =+,若ABC ∆的面积为S =,001 002 00则ab 的最小值为 1214.设函数()⎪⎩⎪⎨⎧>-≤++=0,20,22x x x bx x x f 若)0()4(f f =-,则函数)2ln()(+-=x x f y的零点个数有 个.4三、解答题:15.已知函数1()2f x a b =⋅+r r ,其中cos ,1)a x x =--r ,(cos ,1)b x =r. (Ⅰ)求函数)(x f 的最大值和最小正周期;(Ⅱ)设ABC ∆的内角C B A 、、的对边分别是c b a 、、,且3=c ,0)(=C f ,若A C A sin 2)sin(=+,求ABC ∆的面积。
【2013备考】各地名校试题解析分类汇编(一)理科数学:6平面向量
各地解析分类汇编:平面向量1.【云南省昆明一中2013届高三新课程第一次摸底测试理】已知点(5,6)(1,2),3M a MN a -=-=-和向量若,则点N 的坐标为A .(2,0)B .(-3,6)C .(6,2)D .(—2,0)【答案】A【解析】33(1,2)(3,6)MN a =-=--=- ,设(,)N x y ,则(5,(6))(3,6)MN x y =---=-,所以5366x y -=-⎧⎨+=⎩,即2=0x y =⎧⎨⎩,选A. 2.【云南省玉溪一中2013届高三第四次月考理】如右图,在△ABC 中, 13AN NC =,P 是BN 上的一点,若29AP m AB AC −−→−−→−−→=+,则实数m 的值为( )A.19 B 31C. 1D. 3 【答案】A【解析】因为13AN NC = ,所以14AN AC =设BP BN λ=,则()AP AB BP AB BN AB AB AN λλ=+=+=+-(1)(1)4AB AN AB AC λλλλ=+-=+- ,又29AP m AB AC −−→−−→−−→=+,所以有2491m λλ⎧-=⎪⎨⎪+=⎩,即8919m λ⎧=-⎪⎪⎨⎪=⎪⎩,选A.3.【云南省玉溪一中2013届高三第四次月考理】定义行列式运算1234a a a a =3241a a a a -.将函数sin 2()cos 2x f x x=6π个单位,以下是所得函数图象的一个对称中心是 ( ) A .,04π⎛⎫ ⎪⎝⎭ B .(,0)2π C .,03π⎛⎫ ⎪⎝⎭ D .,012π⎛⎫ ⎪⎝⎭【答案】B【解析】由行列式的定义可知sin 2()cos 2x f x x=sin 222sin(2)3x x x π==-,函数的图象向左平移6π个单位,得到的函数为()2sin[2()]2sin 263g x x x ππ=+-=,所以有()2s i n (2)2s i n 022g πππ=⨯==,所以(,0)2π是函数()g x 的一个零点,选B. 4.【天津市天津一中2013届高三上学期一月考 理】已知向量,,a b c中任意两个都不共线,且a b + 与c 共线, b c + 与a 共线,则向量a b c ++A.aB.bC.cD.0【答案】D【解析】因为a b + 与c共线,所以有a b mc += ,又b c + 与a 共线,所以有b c na += ,即b mc a =- 且b c na =-+ ,因为,,a b c 中任意两个都不共线,则有11m n =-⎧⎨=-⎩,所以b mc a c a =-=-- ,即0a b c ++=,选D.5.【天津市新华中学2012届高三上学期第二次月考理】已知a =(-3,2),b =(-1,0),向量a λ+b 与a -2b 垂直,则实数λ的值为A. -71 B. 71 C. -61 D. 61【答案】A【解析】(31,2),2(1a b a b λλλ+=---=- ,因为向量a λ+b 与a -2b 垂直,所以()(2)0a b a b λ+-= ,即3140λλ++=,解得17λ=-,选A.6.【山东省烟台市2013届高三上学期期中考试理】已知向量b a 、,其中2=a ,2=b ,且a b)a ⊥-(,则向量a 和b 的夹角是 A .4πB .2πC .43πD .π【答案】A【解析】由题意知.2,02)(2=⋅∴=⋅-=⋅-=⋅-设a 与b 的夹角为θ,则.4,22c o s πθθ===故选A ,. 7.【山东省烟台市2013届高三上学期期中考试理】在ABC ∆中,P 是BC 边中点,角A ,B ,C 的对边分别是a ,b ,c ,若0cAC aPA bPB ++=,则ABC ∆的形状为A. 等边三角形B.钝角三角形C.直角三角形D.等腰三角形但不是等边三角形.【答案】A【解析】如图,由AC c +aPA bPB += 知b c c a b a c )()()(-+-=-+-=,而与为不共线向量,0=-=-∴b c c a ,.c b a ==∴故选A.8.【山东省泰安市2013届高三上学期期中考试数学理】已知a 、b 均为单位向量,它们的夹角为3π,那么3a b +等于D.4【答案】C【解析】因为2223323a b a b a b +=++ ,所以231923cos 133a b π+=++⨯= ,所以3a b += 选C.9.【山东省泰安市2013届高三上学期期中考试数学理】如图,已知正六边形P 1P 2P 3P 4P 5P 6下列向量的数量积中最大的是A.1213PP PP ⋅B.1214PP PP ⋅C.1215PP PP ⋅D.1216PP PP ⋅【答案】A 【解析】设正六边形的边长为1,则1213133cos302PP PP PP PP ===,121412141cos 60212PP PP PP PP ==⨯= ,12151215cos900PP PP PP PP ==,121612161cos1202PP PP PP PP ==- ,所以数量积最大的选A.10.【山东省实验中学2013届高三第一次诊断性测试理】已知向量),(0,1),(2,a b c k a b c k ===+=若与垂直则A .—3B .—2C .lD .-l【答案】A【解析】因为2a b c +与垂直,所以有2=0a b c + (),即2=0a c b c + 0=,解得3k =-,选A.11.【山东省师大附中2013届高三12月第三次模拟检测理】非零向量,a b 使得||||||a b a b -=+成立的一个充分非必要条件是( )A . //a b B. 20a b += C. ||||a ba b =D. a b =【答案】B【解析】要使||||||a b a b -=+成立,则有,a b 共线且方向相反,所以当20a b += 时,满足2a b =- ,满足条件,所以选B.12.【山东省济南外国语学校2013届高三上学期期中考试 理科】已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k=( )A. -12B. -6C. 6D. 12 【答案】D【解析】因为(2)0a a b -=,即(2,1)(5,2)0k -=,所以10+20k -=,即12k =,选D. 13.【山东省聊城市东阿一中2013届高三上学期期初考试 】已知向量25,10),1,2(=+=⋅=→→→→→b a b a a ,则=→b ( )A. 5B.10C.5D.25 【答案】C【解析】因为222a (2,1),ab 10,a b (a b)50a 2a b b →→→→→→→→→→→=⋅=+=+==++ ,解得可知=→b 5,选C14.【山东省临沂市2013届高三上学期期中考试理】设,,x y ∈R 向量(,1),(1,),(2,4),a x b y c a c b c a b===-⊥+且则A B C .D .10【答案】B【解析】因为,a c ⊥ 所以240x -=,解得2x =,又//,b c所以240y +=,所以2y =-,所以(1,1)(3,1)a b x y +=++=- ,所以||a b +,选B.15.【山东省临沂市2013届高三上学期期中考试理】在△ABC 中,AB=4,∠ABC=30°,D 是边BC上的一点,且,AD AB AD AC ⋅=⋅ 则AD AB ⋅的值等于A .—4B .0C .4D .8【答案】C【解析】由,A D A B A D A C ⋅=⋅ 得()0AD AB AC AD CB ⋅-=⋅=,即AD CB ⊥ ,所以2,60A D B A D =∠= ,所以14242AD AB ⋅=⨯⨯= ,选C.16.【山东省青岛市2013届高三上学期期中考试理】已知非零向量a 、b ,满足a b ⊥,则函数2()()f x ax b =+ (R)x ∈是A. 既是奇函数又是偶函数B. 非奇非偶函数C. 偶函数D. 奇函数 【答案】C【解析】因为a b ⊥ ,所以0a b =,所以2222()()f x ax b a x b =+=+ ,所以2()()f x ax b =+ 为偶函数,选C.17.【山东省实验中学2013届高三第一次诊断性测试理】已知点O 为△ABC 内一点,且230,OA OB OC ++=则△A OB 、△AOC、△BOC 的面积之比等于A .9:4:1B .1:4:9C .3:2:1D .1:2:3【答案】C【解析】,延长OB 到'B ,使'2OB OB =,延长OC 到'C ,使'3OC OC =,连结''B C ,取''B C 的中点'A ,则232',OB OC OA OA +==-所以,,'A O A 三点共线且O 为三角形''AB C 的重心,18.【山东省青岛市2013届高三上学期期中考试理】已知O 是ABC △所在平面内一点,D 为BC 边中点,且20OA OB OC ++=,则A .2AO OD =B .AO OD =C .3AO OD =D .2AO OD =【答案】B【解析】因为D 为BC 边中点,所以由20OA OB OC ++= 得22OB OC OA AO +=-=,即22OD AO = ,所以AO OD =,选B.19.【 山东省滨州市滨城区一中2013届高三11月质检数学理】已知向量a ,b ,则0=∙b a是a ⊥b 的( )条件 A .充分不必要 B .必要不充分C .充要D .既不充分也不必要【答案】B【解析】因为向量,a b r r中有可能为零向量,所以0a b ⋅=r r 时,推不出a b ⊥r r 。
2013年天津市高考数学试卷(理科)及答案(Word版)
2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么 )()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高. ·如果事件A , B 相互独立, 那么 )()(()B P A A P P B = ·球的体积公式34.3V R π=其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂= (A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1] (2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为 (A) -7 (B) -4(C) 1(D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73 (C) 512 (D) 585 (4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是: (A) ①②③ (B) ①② (C) ②③(D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A ,B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p =(A) 1(B)32(C) 2 (D) 3(6) 在△ABC 中, ,3,4AB BC ABC π∠==则sin BAC ∠ =(A)(B)(C)(D)(7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) ⎫⎪⎪⎝⎭(B) ⎫⎪⎪⎝⎭(C) ⎛⋃ ⎝⎫⎪⎝⎭⎪⎭(D) ⎛- ⎝⎭∞2013年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .(10) 6x ⎛⎝的二项展开式中的常数项为 .(11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | = .(12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC , AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤. (15) (本小题满分13分)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R .(Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同). (Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1, 求线段AM 的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x 轴垂直的直线被椭圆截.(Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分) 已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分) 已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.- 11 -2013高考真题。
天津一中2013-2014学年高三年级四月考数学(文科)试卷
天津一中2013-2014学年高三年级四月考数学(文科)试卷一、选择题(每小题5分,共40分)1.设集合{}{}|,|5,,A x x k N B x x x Q ==∈=≤∈则A B 等于( )A . {1,2,5}B .{l, 2,4, 5}C .{1,4, 5}D .{1,2,4}2.设动点),(y x P 满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00502402y x y x y x ,则y x z 25+=的最大值是( )A. 50B. 60C. 70D. 1003. 某程序框图如图所示,该程序运行后输出的值是( ) A .3 B .4 C .5 D .64. 下列命题中正确的是( )A.命题“x R ∀∈,2x x -0≤”的否定是“2,0x R x x ∃∈-≥” B.命题“p q ∧为真”是命题“p q ∨为真”的必要不充分条件 C.若“22am bm ≤,则a b ≤”的否命题为真 D.若实数,[1,1]x y ∈-,则满足221x y +≥的概率为4π. 5. 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均与22:650C x y x +-+=相切,则该双曲线离心率等于( )A B C .32D6. 某几何体的三视图如下图所示,它的体积为( )A. 72πB. 48πC. 30πD. 24π7. 已知函数)(x f 在),0[+∞上是增函数,()()g x f x =-,若)1()(lg g x g >,则x 的取值范围 是( ) A .),10(+∞ B .)10,101(C .)10,0(D .),10()101,0(+∞8. 已知24(0)()(2)(0)a x x x f x f x x ⎧--<=⎨-≥⎩,且函数()2y f x x =-恰有3个不同的零点,则实数a 的取值范围是( )A .[)8,-+∞B .[)4,-+∞C .[-4,0]D .(0,)+∞二、填空题(每小题5分,共30分)9.是虚数单位,复数ii 43)21(2-+的值是_______________________10. 在锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若2b =,3B π=且sin cos c A C =,则△ABC 的面积为 ________________11. 直线过抛物线)0(22>=p px y 的焦点,且交抛物线于B A ,两点,交其准线于C 点,已知AF 3,4||==,则=p ____________________12. 如图,在矩形ABCD 中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若AB AF ⋅=,则AE BF ⋅的值是 ____________13. 如图,△ABC 是⊙O 的内接正三角形,弦EF 经过BC 的中点D ,且EF ∥AB ,若AB=2,则DE 的长是_________________14. 若实数,,222,2222,aba ba b c a b c a b c c ++++=++=满足则的最大值是 _____三、解答题:(15,16,17,18每题13分,19,20每题14分)15. 某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40,第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.16.已知函数())22sin cos 0f x x x x ωωωω=-+>,直线12,x x x x ==是函数()y f x =的图像的任意两条对称轴,且12x x -的最小值为2π. (I )求ω的值; (II )求函数()f x 的单调增区间; (III )若()23f α=,求5sin 46πα⎛⎫- ⎪⎝⎭的值.17. 如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F(1)证明PA//平面EDB ; (2)证明PB ⊥平面EFD ;(3)求二面角C —PB —D 的大小AC18.已知各项均为正数的数列{}n a 前n 项和为n S ,首项为1a ,且n n S a ,,21等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若n bn a )21(2=,设nnn a b c =,求数列{}n c 的前n 项和n T .19.已知椭圆:C 22221(0)x y a b a b +=>>. (Ⅰ)求椭圆C 的方程; (Ⅱ)已知动直线(1)y k x =+与椭圆C 相交于A 、B 两点. ①若线段AB 中点的横坐标为12-,求斜率k 的值; ②若点7(,0)3M -,求证:MA MB ⋅ 为定值.20.设函数()ln af x x x x=+,32()3g x x x =--. (Ⅰ)讨论函数()()f x h x x=的单调性(Ⅱ)如果存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立,求满足上述条件的最大整数M (Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.四月考答案1.设集合{}{}|,|5,,A x x k N B x x x Q ==∈=≤∈则A B 等于( ) A . {1,2,5} B .{l, 2,4, 5} C .{1,4, 5}D .{1,2,4}【答案】B【解析】当k =0时,x =1;当k =1时,x =2;当k =5时,x =4;当k =8时,x =5,故选B.2.设动点),(y x P 满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00502402y x y x y x ,则y x z 25+=的最大值是( )A. 50B. 60C. 70D. 100 【答案】D3. 某程序框图如图所示,该程序运行后输出的值是( ) A .3 B .4 C .5 D .6 【答案】B4.下列命题中正确的是( )A.命题“x R ∀∈,2x x -0≤”的否定是“2,0x R x x ∃∈-≥” B.命题“p q ∧为真”是命题“p q ∨为真”的必要不充分条件 C.若“22am bm ≤,则a b ≤”的否命题为真 D.若实数,[1,1]x y ∈-,则满足221x y +≥的概率为4π. 【答案】C5. 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线均与22:650C x y x +-+=相切,则该双曲线离心率等于( )A B C .32D 【答案】A【解析】圆的标准方程为22(3)4x y -+=,所以圆心坐标为(3,0)C ,半径2r =,双曲线的渐近线为b y x a=±,不妨取by x a =,即0bx ay -=,因为渐近线与圆相切,所以圆心到直线的距离2d ==,即22294()b a b =+,所以2254b a =,222245b a c a ==-,即2295a c =,所以29,5e e ==A.6.某几何体的三视图如下图所示,它的体积为( )A. 72πB. 48πC. 30πD. 24π 【答案】C7.已知函数)(x f 在),0[+∞上是增函数,()()g x f x =-,若)1()(lg g x g >,则x 的取值范围是 A .),10(+∞ B .)10,101(C .)10,0(D .),10()101,0(+∞ 【答案】B8.已知24(0)()(2)(0)a x x x f x f x x ⎧--<=⎨-≥⎩,且函数()2y f x x =-恰有3个不同的零点,则实数a 的取值范围是( )A .[)8,-+∞B .[)4,-+∞C .[-4,0]D .(0,)+∞【答案】B9.是虚数单位,复数ii 43)21(2-+的值是_________________【答案】 1-10.在锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若2b =,3B π=且sin cos c A C =,则△ABC 的面积为 .11. 直线过抛物线)0(22>=p px y 的焦点,且交抛物线于B A ,两点,交其准线于C 点,已知BF CB AF 3,4||==,则=p __________【答案】 3812.如图,在矩形ABCD 中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若AB AF ⋅=,则AE BF ⋅的值是 .13.如图,△ABC 是⊙O 的内接正三角形,弦EF 经过BC 的中点D ,且EF ∥AB ,若AB=2,则DE 的长是_________.【解析】由图知DE ·DF=BD ·CD=1,同理EG ·FG=1.又DG=12AB=1,∴DE(1+FG)=1,FG(1+DE)=1,∴DE FG ==答案14.若实数,,222,2222,aba ba b c a b c a b c c ++++=++=满足则的最大值是【命题意图】本题考查基本不等式的应用,指数、对数等相关知识,考查了转化与化归思想,是难题.【解析】∵2a b+=22a b +≥2a b+≥4,又∵222ab c++=2a b c++,∴22a bc ++=22a bc+∙,∴221c c-=2a b +≥4,即221c c -≥4,即43221c c-⨯-≥0,∴2c≤43,∴c ≤24log 3=22log 3-,∴c 的最大值为22log 3-. 【答案】22log 3-15.某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40,第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.【答案】解:(1) 第3组的人数为0.3×100=30,第4组的人数为0.2×100=20, 第5组的人数为0.1×100=10. …………3分因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:3060×6=3; 第4组:2060×6=2; 第5组:1060×6=1. 所以应从第3,4,5组中分别抽取3人,2人,1人. …………6分(2)记第3组的3名志愿者为A 1,A 2,A 3,第4组的2名志愿者为B 1,B 2,第5组的1名志愿者为C 1. 则从6名志愿者中抽取2名志愿者有:(A 1,A 2), (A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 3,B 1),(A 3,B 2), (A 3,C 1),(B 1,B 2),(B 1,C 1),(B 2,C 1),共有15种. …………8分 其中第4组的2名志愿者B 1,B 2至少有一名志愿者被抽中的有:(A 1,B 1), (A 1,B 2), (A 2,B 1), (A 2,B 2), (A 3,B 1), (A 3,B 2), (B 1,B 2), (B 1,C 1), (B 2,C 1),共有9种, …………10分 所以第4组至少有一名志愿者被抽中的概率为93.155=…………13分16.已知函数())22sin cos 0f x x x x ωωωω=-+>,直线12,x x x x ==是函数()y f x =的图像的任意两条对称轴,且12x x -的最小值为2π. (I )求ω的值; (II )求函数()f x 的单调增区间; (III )若()23f α=,求5sin 46πα⎛⎫- ⎪⎝⎭的值. 【答案】17. 如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F(1)证明PA//平面EDB ; (2)证明PB ⊥平面EFD ;(3)求二面角C —PB —D 的大小(1)证明:连结AC ,AC 交BD 于O ,连结EO ∵底面ABCD 是正方形,∴点O 是AC 的中点 在PAC ∆中,EO 是中位线,∴PA // EO 而⊂EO 平面EDB 且⊄PA 平面EDB , 所以,PA // 平面EDBACAC(2)证明:∵PD ⊥底面ABCD 且⊂DC 底面ABCD ,∴DC PD ⊥∵PD=DC ,可知PDC ∆是等腰直角三角形,而DE 是斜边PC 的中线, ∴PC DE ⊥ ①同样由PD ⊥底面ABCD ,得PD ⊥BC∵底面ABCD 是正方形,有DC ⊥BC ,∴BC ⊥平面PDC 而⊂DE 平面PDC ,∴DE BC ⊥ ② 由①和②推得⊥DE 平面PBC 而⊂PB 平面PBC ,∴PB DE ⊥又PB EF ⊥且E EF DE = ,所以PB ⊥平面EFD(3)解:由(2)知,DF PB ⊥,故EFD ∠是二面角C —PB —D 的平面角 由(2)知,DB PD EF DE ⊥⊥,设正方形ABCD 的边长为a ,则a BD a DC PD 2,===a BD PD PB 322=+=, a DC PD PC 222=+=a PC DE 2221==在PDB Rt ∆中,a aa a PB BD PD DF 3632=⋅=⋅=在EFD Rt ∆中,233622sin ===a aDF DE EFD ,∴3π=∠EFD 所以,二面角C —PB —D 的大小为3π18.已知各项均为正数的数列{}n a 前n 项和为n S ,首项为1a ,且n n S a ,,21等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若n bn a )21(2=,设nnn a b c =,求数列{}n c 的前n 项和n T . 【答案】解(1)由题意知0,212>+=n n n a S a ………………1分 当1=n 时,21212111=∴+=a a a 当2≥n 时,212,21211-=-=--n n n n a S a S两式相减得1122---=-=n n n n n a a S S a ………………3分 整理得:21=-n na a ……………………4分 ∴数列{}n a 是以21为首项,2为公比的等比数列. 211122212---=⨯=⋅=n n n n a a ……………………5分(2)42222--==n b n na∴n b n 24-=,……………………6分nn n n n nn a b C 28162242-=-==- nn n nn T 28162824282028132-+-⋯+-++=- ① 13228162824202821+-+-+⋯++=n n n n n T ② ①-②得1322816)212121(8421+--+⋯++-=n n n nT ………………9分111122816)211442816211)2112184+-+-----=----⋅-=n n n n nn (( n n24=.………………………………………………………11分.28nn nT =∴…………………………………………………………………13分19. 已知椭圆:C 22221(0)x y a b a b +=>>. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知动直线(1)y k x =+与椭圆C 相交于A 、B 两点. ①若线段AB 中点的横坐标为12-,求斜率k 的值;②若点7(,0)3M -,求证:MA MB ⋅ 为定值.【答案】解:(Ⅰ)因为22221(0)x y a b a b +=>>满足222a b c =+,c a =,…………2分122b c ⨯⨯=2255,3a b ==,则椭圆方程为221553x y += ……………4分 (Ⅱ)(1)将(1)y k x =+代入221553x y +=中得 2222(13)6350k x k x k +++-=……………………………………………………6分 4222364(31)(35)48200k k k k ∆=-+-=+>2122631k x x k +=-+………………………………………… …………………7分因为AB 中点的横坐标为12-,所以2261312k k -=-+,解得k =…………9分(2)由(1)知2122631k x x k +=-+,21223531k x x k -=+所以112212127777(,)(,)()()3333MA MB x y x y x x y y ⋅=++=+++ ……………11分2121277()()(1)(1)33x x k x x =+++++2221212749(1)()()39k x x k x x k =++++++………………………………………12分2222222357649(1)()()313319k k k k k k k -=+++-++++20.设函数()ln af x x x x=+,32()3g x x x =--. (Ⅰ)讨论函数()()f x h x x=的单调性(Ⅱ)如果存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立,求满足上述条件的最大整数M (Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.1.【解】(Ⅰ)2()ln a h x x x =+,233212()a x a h x x x x -'=-+=, ①00,()a h x '≤≥,函数()h x 在0(,)+∞上单调递增 ②0a >,0(),h x x '≥≥,函数()h x的单调递增区间为)+∞00(),h x x '≤<≤,函数()h x的单调递减区间为0((Ⅱ)存在12,[0,2]x x ∈,使得12()()g x g x M -≥成立 等价于:12max [()()]g x g x M -≥,考察32()3g x x x =--,22'()323()3g x x x x x =-=-,由上表可知:min max 285()(),()(2)1327g x g g x g ==-==,12max max min 112[()()]()()27g x g x g x g x -=-=, 所以满足条件的最大整数4M =;(Ⅲ)当1[,2]2x ∈时,()ln 1af x x x x=+≥恒成立 等价于2ln a x x x ≥-恒成立, 记2()ln h x x x x =-,所以max ()a h x ≥'()12ln h x x x x =--, '(1)0h =.记'()(1)2ln h x x x =--,1[,1)2x ∈,10,ln 0,'()0x x x h x -><> 即函数2()ln h x x x x =-在区间1[,1)2上递增,记'()(1)2ln h x x x =--,(1,2]x ∈,10,ln 0,'()0x x x h x -<>< 即函数2()ln h x x x x =-在区间(1,2]上递减,1,()x h x =取到极大值也是最大值(1)1h =所以1a ≥另解()12ln m x x x x =--,'()32ln m x x =--, 由于1[,2]2x ∈,'()32ln 0m x x =--<, 所以()'()12ln m x h x x x x ==--在1[,2]2上递减, 当1[,1)2x ∈时,'()0h x >,(1,2]x ∈时,'()0h x <, 即函数2()ln h x x x x =-在区间1[,1)2上递增, 在区间(1,2]上递减,所以max ()(1)1h x h ==,所以1a ≥。
【解析版】天津市天津一中2013届高三上学期第三次月考数学理试题
天津一中2012—2013学年高三数学三月考试卷(理科)一、选择题:1.复数2i2i -=+ A .34i 55- B .34i 55+ C .41i 5- D .31i 5+【答案】A 【 解析】2(2)(2)34342(2)(2)555i i i i i i i i ----===-++-,选A. 2.“1m =-”是“直线(21)10mx m y +-+=和直线330x my ++=垂直”的 A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【 解析】若0m =,两直线方程为1y =和1x =-,此时两直线垂直。
若12m =,两直线方程为2x =-和13302x y ++=,此时两直线相交。
当0m ≠且12m ≠时,两直线方程为11212m y x m m =+--和33y x m m =--,两直线的斜率为12m m -和3m -。
若两直线垂直,则有3()112m m m⨯-=--,解得1m =-,所以直线(21)10mx m y +-+=和直线330x my ++=垂直时的条件为1m =-或0m =。
所以1m =-是直线(21)10mx m y +-+=和直线330x my ++=垂直的充分不必要条件,选A.3.执行右图所示的程序框图,则输出的S 的值是A .-1B .23C .32D .4【答案】D【 解析】第一次循环,21,224S i ==-=-;第二次循环,22,32(1)3S i ===--;第三次循环,23,42223S i ===-;第四次循环,24,5322S i ===-;所以该循环是周期为4的周期循环,所以当9i =时,和第四次循环的结果相同,所以4S =.选D. 4.函数x x x f 2log 12)(+-=的零点所在的一个区间是 A .⎪⎭⎫ ⎝⎛41,81 B .⎪⎭⎫ ⎝⎛21,41C .⎪⎭⎫⎝⎛1,21 D .)2,1( 【答案】C【 解析】因为2(1)21log 110f =-+=>,2011()21log 10222f =⨯-+=-<,所以根据根的存在性定理可知函数x x x f 2log 12)(+-=的零点所在的区间为1(,1)2,选C.5.91x ⎫⎪⎭展开式中的常数项是A .36-B .36C .84-D .84【答案】C【解析】展开式的通项公式为93921991()(1)kkkk k kk T C C x x--+=-=-,令9302k -=得3k =。
【2013备考】各地名校试题解析分类汇编(一)理科数学:1集合
各地解析分类汇编:集合与简易逻辑1【云南省玉溪一中2013届高三第四次月考理】已知:p “,,a b c 成等比数列”,:q “ac b =”,那么p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D . 既不充分又非必要条件【答案】D【解析】,,a b c 成等比数列,则有2b ac =,所以b =所以p 成立是q 成立不充分条件.当==0a b c =时,有ac b =成立,但此时,,a b c 不成等比数列,所以p 成立是q 成立既不充分又非必要条件,选D.2【云南省玉溪一中2013届高三上学期期中考试理】设全集{}1,2,3,4,5U =,集合{}2,3,4A =,{}2,5B =,则()U B C A =( )A.{}5B. {}125, ,C. {}12345, , , ,D.∅【答案】B【解析】{1,5}U C A =,所以()={1,5}{2,5}={1,2,5}U B C A ,选B.【解析】当k =0时,x =1;当k =1时,x =2;当k =5时,x =4;当k =8时,x =5,故选B. 4【云南师大附中2013届高三高考适应性月考卷(三)理科】已知条件2:340p x x --≤;条件22:690q x x m -+-≤ 若p是q的充分不必要条件,则m的取值范围是( )A.[]1,1- B.[]4,4- C.(][),44,-∞-+∞D.(][),11,-∞-+∞【答案】C【解析】14p x -:≤≤,记33(0)33(0)q m x m m m x m m -++-:≤≤>或≤≤<,依题意,03134m m m ⎧⎪--⎨⎪+⎩>, ≤,≥或03134m m m ⎧⎪+-⎨⎪-⎩<, ≤,≥,解得44m m -≤或≥.选C.5【云南省玉溪一中2013届高三第三次月考 理】下列命题中正确的是( )A.命题“x R ∀∈,2x x -0≤”的否定是“2,0x R x x ∃∈-≥”B.命题“p q ∧为真”是命题“p q ∨为真”的必要不充分条件C.若“22am bm ≤,则a b ≤”的否命题为真 D.若实数,[1,1]x y ∈-,则满足221x y +≥的概率为4π. 【答案】C【解析】A 中命题的否定式2,0x R x x ∃∈->,所以错误.p q ∧为真,则,p q 同时为真,若p q ∨为真,则,p q 至少有一个为真,所以是充分不必要条件,所以B 错误.C 的否命题为“若22am bm >,则a b >”,若22am bm >,则有0,m a b ≠>所以成立,选C.6【天津市耀华中学2013届高三第一次月考理科】下列命题中是假命题的是 A 、(0,),>2x x sin x π∀∈ B 、000,+=2x R sin x cos x ∃∈C 、 ,3>0xx R ∀∈ D 、00,=0x R lg x ∃∈ 【答案】B【解析】因为000+4sin x cos x x π+≤(),所以B 错误,选B.7【天津市耀华中学2013届高三第一次月考理科】设a ,b ∈R ,那么“>1ab”是“>>0a b ”的A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件 【答案】B【解析】由>1ab 得,10a a b b b --=>,即()0b a b ->,得0b a b >⎧⎨>⎩或0b a b <⎧⎨<⎩,即0a b >>或0a b <<,所以“>1ab ”是“>>0a b ”的必要不充分条件,选B.8【山东省烟台市莱州一中2013届高三10月月考(理)】集合{x x y R y A ,lg =∈=>}{}2,1,1,2,1--=B 则下列结论正确的是A.{}1,2--=⋂B AB.()()0,∞-=⋃B A C RC.()+∞=⋃,0B AD.(){}1,2--=⋂B A C R【答案】D【解析】{0}A y y =>,所以={0}R C A y y ≤,所以(){}1,2--=⋂B A C R ,选D. 9【天津市天津一中2013届高三上学期一月考 理】有关下列命题的说法正确的是A.命题“若x 2=1,则x=1”的否命题为:若“x 2=1则x ≠1” B.“1x =-”是“2560x x --=”的必要不充分条件C.命题“∃x ∈R,使得x 2+x+1<0”的否定是:“∀x ∈R,均有x 2+x+1<0” D.命题“若x=y,则sinx=siny ”的逆否命题为真命题 【答案】D【解析】若x 2=1,则x=1”的否命题为21x ≠,则1x ≠,即A 错误。
【解析】天津市天津一中2013届高三上学期第二次月考数学文试题
天津一中2012-2013学年高三年级第二月考数学试卷(文)一、选择题(每小题5分,共40分) 1.如果复数212aii++的实部和虚部互为相反数,那么实数a 等于A B .2 C .-23 D .23【答案】D 【解析】2(2)(12)22(4)22412(12)(12)555ai ai i a a i a a i i i i ++-++-+-===+++-,因为实部和虚部为相反数,则有224=055a a +-+,解得23a =,选D. 2. 设,m n 是两条不同的直线,γβα、、是三个不同的平面.给出下列四个命题:①若m ⊥α,//n α,则m n ⊥;②若γβγα⊥⊥,,则βα//;③若//,//m n αα,则//m n ;④若//,//,m αββγα⊥,则m γ⊥.其中正确命题的序号是 A . ①和② B . ②和③ C .③和④ D .①和④ 【答案】D【解析】根据线面垂直的性质可知①正确。
②中两个平面αβ,不一定平行,所以错误。
③平行于同一个平面的直线可能会相交或异面,所以错误。
④正确。
3. 在正三棱锥P ABC -中,,D E 分别是,AB AC 的中点,有下列三个论断:①PB AC ⊥;②AC //平面PDE ;③AB ⊥平面PDE ,其中正确论断的个数为 ( ) A .3个 B .2个 C .1个 D .0个【答案】C【解析】过P 做PO ABC ⊥于O ,则PO AC ⊥,又正三角形中BE AC ⊥,所以AC PBE ⊥,AC PB ⊥所以①正确,②错误。
因为AB 与AC 相交,所以③不正确,所以正确的论断有1个,选C. 4. 数列{n a }中,12,111+==+n n a a a 且,则{n a }的通项为 ( )【答案】A【解析】由121n n a a +=+得11222(1)n n n a a a ++=+=+,所以数列{1}n a +是以2q =为公比,首项为112a +=的等比数列,所以11222n n n a -+=⨯=,所以21n n a =-,选A.5.在ABC ∆中,若cos 4cos 3A bB a ==,则ABC ∆是 A .等腰或直角三角形 B .等腰三角形 C .直角三角形D .钝角三角【答案】C 【解析】由cos 4cos 3A b B a ==和正弦定理可得cos sin cos sin A BB A=,即sin cos sin cos A A B B =,所以sin 2sin 2A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,即2C π=。
2021届天津市一中高三下学期第四次月考数学试卷及答案
2021届天津市一中高三下学期第四次月考数学试卷★祝考试顺利★ (含答案)本试卷共150分,试用时120分钟一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集{1,2,3,4,5}=U ,集合{1,2}=A ,{3,5}=B ,则⋂UA B 等于( )A .{4}B .{1,2}C .{1,2,3,5}D .{1,2,3,4,5} 2.设∈x R ,则“1<x ”是“||20-<x x ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.函数sin cos =+y x x x 的图象大致为( )A .B .C .D .4.对一批产品进行了抽样检测,测量其净重(单位:克),将所得数据分为5组:[96,98),[98,100),[100,102),[102,104),[104,106],并整理得到如下频率分布直方图,已知样本中产品净重小于100克的个数是36,则样本中产品净重落在区间[98,104)内的个数为( )A .90B .75C .60D .455.已知函数()2()ln 1=+f x x ,且()0.20.2=a f ,()3log 4=b f ,13log 3⎛⎫= ⎪⎝⎭c f ,则a 、b 、c 的大小关系为( )A .>>a b cB .<<c a bC .>>c b aD .>>b c a6.球与棱长为 ) A .6π B .18π C .9π D .10π7.已知抛物线22(0)=>y px p 上一点(1,)M m 到其焦点的距离为5,双曲线22221(0,0)-=>>x y a b a b 的左顶点为A若双曲线的一条渐近线与直线AM 垂直,则双曲线的方程为( )A .2214-=y x B .2214-=x y C .2221-=x y D .2241-=x y8.已知函数()sin (0,)=->∈f x x x x ωωωR 的图象与x 轴交点的横坐标构成一个公差为2π的等差数列,把函数()f x 的图象沿x 轴向左平移3π个单位,横坐标伸长到原来的2倍得到函数()g x 的图象,则下列关于函数()g x 的结论,其中所有正确结论的序号是( ) ①函数()g x 是奇函数 ②()g x 的图象关于直线6=x π对称③()g x 在,33⎡⎤-⎢⎥⎣⎦ππ上是增函数 ④当,66⎡⎤∈-⎢⎥⎣⎦x ππ时,函数()g x 的值域是A .①③B .③④C .②D .②③④ 9.已知函数2()=++f x x px q 对,∀∈p q R ,总有0[1,5]∃∈x ,使()0f x m ≥成立,则m 的范围是( )A .5,2⎛⎤-∞ ⎥⎝⎦ B .(,2]-∞ C .(,3]-∞ D .(,4]-∞二、填空题:本大题共6小题,每小题5分,共30分. 10.已知,∈a b R ,i 是虚数单位,若(1i)(1i)+-=b a ,则ab的值为________.11.61⎫⎪⎭x 的展开式的常数项为________.12.设直线2=+y x a 与圆22:220(0)+--=>C x y ay a 相交于A ,B 两点,若||=AB ,则=a ________.13.甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,则一次游戏摸出的白球不少于2个的概率为________.14.已知0>a ,0>b ,1>c ,且1+=a b ,则231+⎛⎫-⋅+ ⎪-⎝⎭a b c ab c 的最小值为________.15.平行四边形ABCD 中,=AD DB ,P 为DC 上的动点,5⋅=AD AC ,6⋅=AB AC ,则⋅PA PC 的最小值为________.三、解答题:本大题共5小题,共75分.解答应写出文说明、证明过程或演算步骤.16.ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .已知cos )cos =A c a C .(Ⅰ)求cb;(Ⅱ)若cos 2=c A b ,且ABC 的面积为4,求a 及sin 23⎛⎫+ ⎪⎝⎭A π.17.如图,四棱锥-P ABCD 中,底面ABCD 为平行四边形,⊥PA 底面ABCD ,M 是棱PD 的中点,且2===PA AB AC ,=BC(Ⅰ)求证:⊥CD 平面PAC ; (Ⅱ)求二面角--M AB C 的大小;(Ⅲ)如果N 是棱AB 上一点,且直线CN 与平面MAB所成角的正弦值为5,求ANNB的值. 18.椭圆2222:1(0)+=>>x y C a b a b的离心率e 2=3+=a b .(Ⅰ)求椭圆C 的方程;(Ⅱ)A ,B 分别是椭圆C 的左,右顶点,D 是椭圆C 的上顶点,P 是椭圆C 上除顶点外的任意一点,直线DP 交x 轴于点N ,直线AD 交BP 于点M ,设BP 的斜率为k ,MN 的斜率为m . 证明:2-m k 为定值.19.设{}n a 是各项均为正数的等差数列,11=a ,31+a 是2a 和8a 的等比中项,{}n b 的前n 项和为n S ,()*22-=∈n n b S n N . (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)设12log +=n n na c a ,数列{}n c 的前n 项和为n T ,使k T 为整数的()*∈k k N 称为 “优数”,求区间[1,2021]上所有“优数”之和.(Ⅲ)求()22*1(1)3(1)=-∈+-∑k nk kk k a b n N . 20.已知2()46ln =--f x x x x .(Ⅰ)求()f x 在(1,(1))f 处的切线方程以及()f x 的单调区间;(Ⅱ)对(1,)∀∈+∞x ,有21()()6112⎛⎫'->+-- ⎪⎝⎭xf x f x x k x 恒成立,求k 的最大整数解;(Ⅲ)令()()4(6)ln =+--g x f x x a x ,若()g x 两个零点分别为()1212,<x x x x 且0x 为()g x 的唯一的极值点,求证:12034+>x x x .2021届天津市一中高三下学期第四次月考数学参考答案1.B 2.A 3.D 4.A 5.D 6.C 7.D 8.C 9.B10.2 11.15 12.710 14.4+.94-16【解】(Ⅰ)因为cos )cos =A c a C ,cos sin sin cos -=C A C A C ,sin cos sin cos sin()=+=+C C A A C A C ,而sin()sin +=A C B =b ,故=c b .(Ⅱ)由(Ⅰ)知cos 6=A ,则sin 6=A ,又ABC 的面积为21sin 244==bc A ,则3=c ,=b .由余弦定理得2222cos 27923276=+-=+-⨯⨯=a b c bc A ,解得=a 17.证明:(Ⅰ)连结AC .在ABC 中,2==AB AC ,=BC 222=+BC AB AC , ∴⊥AB AC .∵AB//CD ,∴⊥AC CD .又∵⊥PA 底面ABCD , ∴.⊥PA CD . ∵⋂=AC PA A , ∴⊥CD 平面PAC .(Ⅱ)如图建立空间直角坐标系,则(0,0,0)A ,(0,0,2)P ,(2,0,0)B ,(0,2,0)C ,(2,2,0)-D . ∵M 是棱PD 的中点, 所以(1,1,1)-M .∴(1,1,1)=-AM ,(2,0,0)=AB .设(,,)=n x y z 为平面MAB 的法向,∴00⎧⋅=⎪⎨⋅=⎪⎩n AM n AB ,即020-++=⎧⎨=⎩x y z x ,令1=y ,则011=⎧⎪=⎨⎪=-⎩x y z ,∴平面MAB 的法向量(0,1,1)=-n . 因为⊥PA 平面ABCD ,∴(0,0,2)=AP 是平面ABC 的一个法向量.∴cos ,||22⋅〈〉===⨯‖∣n AP n AP AP n . ∵二面角--M AB C 为锐二面角,∴二面角--M AB C 的大小为4π. (Ⅲ)因为N 是在棱AB 上一点,所以设(,0,0)N x ,(,2,0)=-NC x .设直线CN 与平面MAB 所成角为α,∵平面MAB 的法向量(0,1,1)=-n ,∴sin cos 2||||2⋅⎛⎫=-===⎪⋅⎝⎭n NC n NC παα. 解得1=x ,即1=AN ,1=NB ,∴1=ANNB.18.解析:(1)因为e 2==ca, 所以=a ,=b代入3+=a b 得, =c 2=a ,1=b .故椭圆C 的方程为2214+=x y .(2)证明:因为(2,0)B ,P 不为椭圆顶点,则直线BP 的方程为1(2)0,2⎛⎫=-≠≠± ⎪⎝⎭y k x k k ,①把①代入2214+=x y ,解得222824,4141⎛⎫-- ⎪++⎝⎭k k P k k .直线AD 的方程为112=+y x .② ①与②联立解得424,2121⎛⎫⎪⎝⎭+--k k k M k .由(0,1)D ,222824,4141⎛⎫-- ⎪++⎝⎭k k P k k ,(,0)N x 三点共线知222410141820041---+=---+kk k x k ,得42,021⎛⎫ ⎪⎝⎭-+k k N . 所以MN 的斜率为402142422121--=+---+kk m k k k k 22421212212214++==+--k k k k k , 则211222+-=-=k m k k (定值).19.【详解】(Ⅰ)解:设等差数列{}n a 的公差为d , 因为11=a ,31+a 是2a 和8a 的等比中项,所以()23281+=⋅a a a ,即2(121)(1)(17)++=++d d d , 解得1=±d ,因为{}n a 是各项均为正数的等差数列, 所以1=d ,故1(1)=+-=n a a n d n ,因为()*22-=∈n n b S n N ,所以1122(2)---=≥n n b S n , 两式相减得:12(2)-=≥nn b n b ,当1=n 时,1122-=b S ,12=b , {}n b 是以2为首项,2为公比的等比数列,112-=⋅=n n n b b q .(Ⅱ)2036(Ⅲ)∴212-=+n n n P c c22122221(21)2(2)2(41)2(41)424----⋅⋅=-+=-⋅=-⋅n n n n n n n n01213474114(41)4-=⨯+⨯+⨯+⋅⋅⋅+-⋅n n T n∴123143474114(45)4(41)4-=⨯+⨯+⨯+⋅⋅⋅+-+-⋅n n n T n n 两式相减得:0121334444444(41)4--=-⨯+⨯+⨯+⋅⋅⋅+⋅--n n n T n∴()1414334(41)414---=+⨯--⋅-n n n T n ,∴7127499-=+⋅nn n T . 20.【详解】解:(1)∵2()46ln =--f x x x x 所以定义域为(0,)+∞∴6()24'=--f x x x;(1)8'=-f ;(1)3=-f所以切线方程为85=-+y x ;2()(1)(3)'=+-f x x x x,令()0'>f x 解得3>x 令()0'<f x 解得03<<x所以()f x 的单调递减区间为(0,3),单调递增区间为(3,)+∞.(2)21()()6112⎛⎫'->+-- ⎪⎝⎭xf x f x x k x 等价于min ln ()1+<=-x x x k h x x ;∴22ln ()(1)--'=-x xh x x , 记()2ln =--m x x x ,1()10'=->m x x,所以()m x 为(1,)+∞上的递增函数, 且(3)1ln30=-<m ,(4)2ln 40=->m ,所以0(3,4)∈x ,使得()00=m x 即002ln 0--=x x ,所以()h x 在()01,x 上递减,在()0,+∞x 上递增, 且()000min 000ln ()(3,4)1+===∈-x x x h x h x x x ;所以k 的最大整数解为3. (3)2()ln =-g x x a x,()20+-'=-==a g x x x x得0=x当⎛∈ ⎝x ,()0'<g x,⎫∈+∞⎪⎪⎭x ,()0'>g x ; 所以()g x在⎛ ⎝上单调递减,⎫+∞⎪⎪⎭上单调递增, 而要使()g x 有两个零点,要满足()00<g x ,即202e =-<⇒>g a a ;因为10<<x2>x 21(1)=>xt t x , 由()()12=f x f x ,∴221122ln ln -=-x a x x a x , 即:2221111ln ln =--x a x t x a tx , ∴212ln 1=-a tx t 而要证12034+>x x x ,只需证1(31)+>t x , 即证:221(31)8+>t x a即:22ln (31)81+>-a tt a t ,0>a ,1>t 只需证:22(31)ln 880+-+>t t t , 令22()(31)ln 88=+-+h t t t t ,则1()(186)ln 76'=+-++h t t t t t令1()(186)ln 76=+-++n t t t t t ,则261()18ln 110(1)-'=++>>t n t t t t故()n t 在(1,)+∞上递增,()(1)0>=n t n ; 故()h t 在(1,)+∞上递增,()(1)0>=h t h ; ∴12034+>x x x .2021届天津市一中高三下学期第四次月考数学试卷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-2013-2天津一中高三年级数学第四次月考检测试卷(理)一.选择题: 1.复数10i12i=-( ) A .42i -+ B .42i - C.24i -D .24i +2.“0ϕ=”是“函数()sin()f x x ϕ=+为奇函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.执行如图所示的程序框图,输出的S 值为( ) A .3B .6-C .10D .15- 4.已知函数()=ln f x x ,则函数()=()'()g x f x f x -的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)5.2521(2)(1)x x+-的展开式的常数项是( ) A .-3B .-2C .2D .36.在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A B C .12D .12-轴7.如图,边长为1的正方形ABCD 的顶点A ,D 分别在x 轴、y 正半轴上移动,则OC OB ⋅的最大值是( )A .2B .1C .πD .48.已知椭圆2222:1(0)x y C a b a b +=>>.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( ) A .22182x y += B .221126x y += C .221164x y += D .221205x y +=8 4 4 6 4 7m 9 35 4 5 5 10 7 9乙甲二.填空题:9.在如图所示的茎叶图中,乙组数据的中位数是 ;若从甲、乙两组数据中分别去掉一个最大数和一个最小数后,两组数据的平均数中较大的一组是 组.10.一个几何体的三视图如图所示,则该几何体的表面积与体积分别为___________.11.如图,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC 于点M.若OC =,1OM =,则MN =_____.12.在平面直角坐标系中,以原点为极点,x 轴正半轴为极轴建立极坐标系,已知抛物线C 的极坐标方程为ρcos 2θ=4sin θ(ρ≥0),直线l 的参数方程为⎩⎪⎨⎪⎧x =3t ,y =1+t(t 为参数),设直线l 与抛物线C 的两交点为A ,B ,点F 为抛物线C 的焦点,则|AF |+|BF |=__________.13.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为 . ABCOM N14.已知函数y mx =的图像与函数11x y x -=-的图像没有公共点,则实数m 的取值范围是____________. 三.解答题: 15.已知函数1sin cos )2sin sin 32()(2+⋅-=xx x x x f .(Ⅰ)求()f x 的定义域及最小正周期; (Ⅱ)求()f x 在区间[,]42ππ上的最值.16.为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛. (Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;(Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为X ,求X 的分布列和数学期望.D 1C 1B 1A 1EDCBA17.在长方体1111ABCD A B C D -中,1AB BC ==,12AA =,E 为1BB 中点.(Ⅰ)证明:1AC D E ⊥;(Ⅱ)求DE 与平面1AD E 所成角的正弦值;(Ⅲ)在棱AD 上是否存在一点P ,使得BP ∥平面1AD E ?若存在,求DP 的长;若不存在,说明理由.18.设数列{}n a 的前n 项和为n S .已知11a =,131n n a S +=+,n *∈N . (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n T 为数列{}n na 的前n 项和,求n T .19.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,直线l 过点(4,0)A ,(0,2)B ,且与椭圆C 相切于点P .(Ⅰ)求椭圆C 的方程;(Ⅱ)是否存在过点(4,0)A 的直线m 与椭圆C 相交于不同的两点M 、N ,使得23635AP AM AN =⋅?若存在,试求出直线m 的方程;若不存在,请说明理由.20.已知函数()()2ln f x x a x x =+--在0x =处取得极值.(1)求实数a 的值; (2)若关于x 的方程()52f x x b =-+在区间[]0,2上恰有两个不同的实数根,求实数b 的取值范围;(3)证明:对任意的正整数n ,不等式()23412ln 149n n n+++++>+ 都成立. 参考答案 一.选择题: 1.A 2.A 3.C 4.B5.D 6.C 7.A 8.D 二.填空题: 9.84;乙 10.7+2,3211.1 12.16313.914.31+-<≤-m 三.解答题:15.解:(Ⅰ)由sin 0x ≠得πx k ≠(k ∈Z),故()f x 的定义域为{x ∈R |π,x k ≠k ∈Z}.…………………2分 因为1sin cos )2sin sin 32()(2+⋅-=xxx x x f2cos )cos 1x x x =-⋅+2cos 2x x -π2sin(2)6x =-,………………………………6分所以()f x 的最小正周期2ππ2T ==.…………………7分(II )由 5[,],2[,],2[,],422636x xx πππππππ挝- …………..9分当52,,()1662x x f x πππ-==即时取得最小值,…………….11分当2,,()2623x x f x πππ-==即时取得最大值.……………….13分16.解:(Ⅰ)设“甲、乙两支队伍恰好排在前两位”为事件A ,则()23!15!10P A ⨯==.所以 甲、乙两支队伍恰好排在前两位的概率为110.…………………3分 (Ⅱ)随机变量X 的可能取值为0, 1, 2, 3.()24!205!5P X ⨯===, ()323!315!10P X ⨯⨯===,()22!32!125!5P X ⨯⨯⨯===,()23!135!10P X ⨯===. …………….11分随机变量X 的分布列为:因为 231101231510510EX =⨯+⨯+⨯+⨯=, 所以 随机变量X 的数学期望为1.…………….13分17.(Ⅰ)证明:连接BD ∵1111ABCD A B C D -是长方体,∴1D D ⊥平面ABCD , 又AC ⊂平面ABCD ∴1D D AC⊥……1分在长方形ABCD 中,AB BC = ∴BD AC ⊥ …………2分 又1BD D D D = ∴AC ⊥平面11BB D D , …………3分 而1D E ⊂平面11BB D D ∴1AC D E⊥………4分(Ⅱ)如图建立空间直角坐标系Dxyz ,则1(1,0,0),(0,0,2),(1,1,1),(1,1,0)A D E B ,1(0,1,1),(1,0,2),(1,1,1)AE AD DE ==-=………5分设平面1AD E 的法向量为(,,)n x y z = ,则100n AD n AE ⎧=⎪⎨=⎪⎩ 200x z y z -+=⎧⎨+=⎩令1z =,则(2,1,1)n =- ………7分 cos ,n DE n DE n DE <>===…………8分所以 DE 与平面1AD E………………9分zyxD 1C 1B 1A 1EDCBA(Ⅲ)假设在棱AD 上存在一点P ,使得BP ∥平面1AD E .设P 的坐标为(,0,0)(01)t t ≤≤,则(1,1,0)BP t =--因为 BP ∥平面1AD E 所以 BP n ⊥ , 即0BP n = , 2(1)10t -+=,解得12t =, ………………12分所以 在棱AD 上存在一点P ,使得BP ∥平面1AD E ,此时DP 的长12.……13分 18.解:(Ⅰ)由题意,131n n a S +=+,则当2n ≥时,131n n a S -=+.两式相减,得14n n a a +=(2n ≥). ……………………………………………2分 又因为11a =,24a =,214a a =,……………………………………………4分 所以数列{}n a 是以首项为1,公比为4的等比数列,……………………5分 所以数列{}n a 的通项公式是14n n a -=(n *∈N ). ………………………………6分(Ⅱ)因为2112323124344n n n T a a a na n -=++++=+⨯+⨯++⋅ ,所以2314412434(1)44n n n T n n -=⨯+⨯+⨯++-⋅+⋅ , ……………………8分两式相减得,2114314444414nn nn n T n n ---=++++-⋅=-⋅- , ………11分整理得,311499n n n T -=⋅+ (n *∈N ). ………………………………13分 19.(Ⅰ)由题得过两点(4,0)A ,(0,2)B 直线l 的方程为240x y +-=.因为12c a =,所以2a c =,b =. 设椭圆方程为2222143x y c c+=,………2分由2222240,1,43x y x y c c+-=⎧⎪⎨+=⎪⎩消去x 得,224121230y y c -+-=.又因为直线l 与椭圆C 相切,所以 ………4分………6分………8分又直线:240l x y +-=与椭圆22:143x y C +=相切, 由22240,1,43x y x y +-=⎧⎪⎨+=⎪⎩解得31,2x y ==,所以3(1,)2P …………10分则2454AP =. 所以3645813547AM AN ⋅=⨯=.又AM AN ⋅==212(1)(4)(4)k x x =+--21212(1)(4()16)k x x x x =+-++22222641232(1)(416)3434k k k k k -=+-⨯+++2236(1).34k k =++ 所以223681(1)347k k +=+,解得4k =±.经检验成立. 所以直线m的方程为4)4y x =±-.………14分 20.解:(1)()'121,f x x x a=--+ …………1分 0x = 时,()f x 取得极值, ()'00,f ∴= …………2分故12010,0a-⨯-=+解得 1.a =经检验1a =符合题意. …………3分 (2)由1a =知()()2ln 1,f x x x x =+--由()52f x x b=-+,得()23ln 10,2x x x b +-+-= 令()()23ln 1,2x x x x b ϕ=+-+-则()52f x x b =-+在区间[]0,2上恰有两个不同的实数根等价于()0x ϕ=在区间[]0,2上恰有两个不同的实数根.()()()()'451132,1221x x x x x x ϕ-+-=-+=++ 当[]0,1x ∈时,()'0x ϕ>,于是()x ϕ在[)0,1上单调递增;当(]1,2x ∈时,()'0x ϕ<,于是()x ϕ在(]1,2上单调递减.…………6分依题意有()()()()()0031ln 111022ln 12430b b b ϕϕϕ=-≤⎧⎪⎪=+-+->⎨⎪⎪=+-+-≤⎩,解得,1ln 31ln 2.2b -≤<+ …………9分(3) ()()2ln 1f x x x x =+--的定义域为{}1x x >-,由(1)知()()()'231x x f x x -+=+,令()'0fx =得,0x =或32x =-(舍去), ∴当10x -<<时, ()'0f x >,()f x 单调递增;当0x >时, ()'0fx <,()f x 单调递减. ()0f ∴为()f x 在()1,-+∞上的最大值. …11分()()0f x f ∴≤,故()2ln 10x x x +--≤(当且仅当0x =时,等号成立)对任意正整数n ,取10x n =>得,2111ln 1,n n n ⎛⎫+<+ ⎪⎝⎭ …………12分211ln n n n n ++⎛⎫∴< ⎪⎝⎭故()23413412ln 2ln ln ln ln 14923n n n n n++++++>++++=+ . …………14分 (方法二)数学归纳法证明:当1n =时,左边21121+==,右边ln(11)ln 2=+=,显然2ln 2>,不等式成立. 假设()*,1n k k N k ≥∈≥时,()23412ln 149k k k+++++>+ 成立,则1n k =+时,有()()()222341222ln 14911k k k k k k k ++++++++>++++ .做差比较:()()()()222222111ln 2ln 1lnln 1111(1)11k k k k k k k k k k k ⎛⎫+++⎛⎫+-+-=-=+-+ ⎪ ⎪++++⎝⎭++⎝⎭构建函数()()()2ln 1,0,1F x x x x x =+--∈,则()()2301x x F x x -+'=<+,()()0,1F x ∴在单调递减,()()00F x F ∴<=.取()*11,1x k k N k =≥∈+,()2111ln 10011(1)F k k k ⎛⎫⎛⎫+-+<= ⎪ ⎪+++⎝⎭⎝⎭ 即()()()22ln 2ln 101k k k k ++-+-<+,亦即()()()22ln 1ln 21k k k k +++>++,故1n k =+时,有()()()()222341222ln 1ln 24911k k k k k k k k ++++++++>++>+++ ,不等式成立.综上可知,对任意的正整数n ,不等式()23412ln 149n n n +++++>+ 都成立.。