2020-2021九年级数学直角三角形的边角关系的专项培优 易错 难题练习题(含答案)含详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021九年级数学直角三角形的边角关系的专项培优 易错 难题练习题(含答
案)含详细答案
一、直角三角形的边角关系
1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40o ,从前脚落地点D 看上嘴尖A 的仰角刚好60o ,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ︒≈︒≈︒≈,,.2 1.41,3 1.73≈≈)
【答案】AB 的长约为0.6m .
【解析】
【分析】
作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可.
【详解】
解:作BF CE ⊥于F ,
在Rt BFC ∆中, 3.20BF BC sin BCF ⋅∠≈=,
3.85CF BC cos BCF ⋅∠≈=,
在Rt ADE ∆E 中,3 1.73tan 3
AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣=
由勾股定理得,22BH AH 0.6(m)AB =+≈,
答:AB 的长约为0.6m .
【点睛】
考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
2.在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,
∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:
(1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM;
(2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;
(3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=,CF=.
【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣
【解析】
【分析】
(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,
NC=NM=BM进而得出结论;
(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,
②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;
(3) 在Rt△ABM和Rt△ANM中,,
可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.
【详解】
(1)证明:∵△ABC是等腰直角三角形,
∴∠BAC=∠C=45°,
∵AM是∠BAC的平分线,MN⊥AC,
∴BM=MN,
在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,∵∠ENF=135°,,
∴∠BME=∠NMF,
∴△BME≌△NMF,
∴BE=NF,
∵MN⊥AC,∠C=45°,
∴∠CMN=∠C=45°,
∴NC=NM=BM,
∵CN=CF+NF,
∴BE+CF=BM;
(2)针对图2,同(1)的方法得,△BME≌△NMF,
∴BE=NF,
∵MN⊥AC,∠C=45°,
∴∠CMN=∠C=45°,
∴NC=NM=BM,
∵NC=NF﹣CF,
∴BE﹣CF=BM;
针对图3,同(1)的方法得,△BME≌△NMF,
∴BE=NF,
∵MN⊥AC,∠C=45°,
∴∠CMN=∠C=45°,
∴NC=NM=BM,
∵NC=CF﹣NF,
∴CF﹣BE=BM;
(3)在Rt△ABM和Rt△ANM中,,
∴Rt△ABM≌Rt△ANM(HL),
∴AB=AN=+1,
在Rt△ABC中,AC=AB=+1,
∴AC=AB=2+,
∴CN=AC﹣AN=2+﹣(+1)=1,
在Rt△CMN中,CM=CN=,
∴BM=BC﹣CM=+1﹣=1,
在Rt△BME中,tan∠BEM===,
∴BE=,
∴①由(1)知,如图1,BE+CF=BM,
∴CF=BM﹣BE=1﹣
②由(2)知,如图2,由tan∠BEM=,
∴此种情况不成立;
③由(2)知,如图3,CF﹣BE=BM,
∴CF=BM+BE=1+,
故答案为1,1+或1﹣.
【点睛】
本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解.
3.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)求证:BC2=2CD•OE;
(3)若
314
cos,
53
BAD BE
∠==,求OE的长.
【答案】(1)DE为⊙O的切线,理由见解析;(2)证明见解析;(3)OE =35
6
.
【解析】
试题分析:(1)连接OD,BD,由直径所对的圆周角是直角得到∠ADB为直角,可得出△BCD为直角三角形,E为斜边BC的中点,由直角三角形斜边上的中线等于斜边的一半,得到CE=DE,从而得∠C=∠CDE,再由OA=OD,得∠A=∠ADO,由Rt△ABC中两锐角互余,从而可得∠ADO与∠CDE互余,可得出∠ODE为直角,即DE垂直于半径OD,可得出DE为⊙O的切线;
(2)由已知可得OE是△ABC的中位线,从而有AC=2OE,再由∠C=∠C,∠ABC=∠BDC,可得△ABC∽△BDC,根据相似三角形的对应边的比相等,即可证得;
(3)在直角△ABC中,利用勾股定理求得AC的长,根据三角形中位线定理OE的长即可求得.
试题解析:(1)DE为⊙O的切线,理由如下: