核医学仪器笔记

合集下载

核医学考试大纲--基础知识

 核医学考试大纲--基础知识

071 核医学考试大纲基础知识单 元细 目要 点要求 (1)核医学定义 (2)核医学内容 熟练掌握 1.核医学的概述(3)核医学发展简史了解 (1)定义 (2)原理 熟练掌握(3)优缺点 (4)基本方法 2.放射性核素示踪技术(5)主要类型及应用掌握 (1)原理 了解 (2)种类 3.放射自显影(3)应用熟悉 (1)基本概念 (2)基本方法 熟悉 4.放射性核素示踪动力学分析与功能测定(3)临床应用 掌握 (1)显像原理(2)脏器或组织摄取显像剂的机制 熟练掌握 (3)显像条件及其选择 掌握 (4)显像类型(5)图像分析方法及要点 (6)图像质量的评价熟练掌握 一、核医学总论 5.放射性核素显像技术(7)核医学影像及其他影像的比较掌握 (1)组成和表示方法 1.原子核(2)核素及其分类 熟悉 (1)α衰变 (2)β衰变 (3)电子俘获 2.核的衰变及其方式(4)γ衰变熟悉 (1)放射性活度 熟练掌握 (2)衰变常数 掌握 (3)指数规律 (4)半衰期 熟练掌握 3.放射性核素的衰变(5)递次衰变熟悉 (1)带电粒子与物质的相互作用 4.射线与物质的相互作用(2)光子与物质的相互作用 熟悉 (1)照射量与照射量率 掌握 (2)吸收剂量 二、核物理基础 5.电离辐射量及其单位(3)剂量当量熟悉 三、核医学仪器 1.核医学射线测量仪器(1)基本构成和工作原理熟练掌握(2)固体闪烁探测器 掌握 (3)其他射线探测器 (4)脉冲幅度分析器 熟悉 (5)工作条件的选择 了解 (6)体内测量仪器 (7)体外测量仪器 熟悉 (8)辐射防护仪器 了解 (9)质量控制掌握 (1)基本结构和工作原理 熟练掌握 (2)准直器掌握 (3)位置和能量电路 了解 (4)图像重建2.γ照相机和单光子发射计算机断层(SPECT)(5)γ照相机和SPECT 的性能指标与质量控制掌握 3.正电子发射计算机断层仪(PET) 符合探测原理熟练掌握 (1)放射性衰变的统计分布和放射性计数的统计误差熟练掌握 (2)存在本底时误差的计算和应用 4.放射性计数的统计规律(3)减少统计涨落影响的方法熟悉 (1)硬件 1.核医学计算机的组成(2)软件 熟悉 (1)模拟数字转换2.图像的数字化和计算机显示 (2)图像的存储、传输、显示 熟悉 (1)图像采集方式 熟练掌握 四、电子计算机在核医学中应用3.图像的采集和处理(2)常用图像处理 熟悉 (1)作用机制熟悉 1.放射性药物的作用机制与药物设计 (2)Hansch 构效关系学说 了解 (1)QA、QC、GMP 与GRP (2)质量检测的内容 (3)放射性核纯度的测定 熟悉 2.质量控制与质量保证(4)放射化学纯度的测定掌握(1)正确使用总原则 (2)小儿应用原则 (3)育龄妇女应用原则(4)放射性药物与普通药物的相互作用 3.正确使用、不良反应及其防治(5)不良反应及其防治掌握(1)Tc 的主要化学性质 了解 (2)99mTc 的标记 熟悉 (3)99m Tc 发生器 掌握五、核化学与放射性药物4.99mTc 化学与99mTc 的放射性药物(4)临床核医学常用的99mTc 的放射性药物 熟练掌握(1)123I、131I、67Ga、111In、与201Tl 的来源(2)放射性碘标记(3)放射性铟标记熟悉5.放射性碘、镓、 铟、铊的放射性药物(4)临床核医学常用的放射性碘、镓、 铟、铊的放射性药物掌握 (1)核素的选择6.放射性治疗药物 (2)临床核医学常用的放射性治疗药物 熟练掌握 (1)受体显像剂 了解 (2)代谢显像剂 熟悉(3)乏氧显像剂(4)肿瘤导向诊断与导向治疗的放射性药物(5)基因显像与基因治疗的放射性药物 7.放射性药物新进展(6)反义显像和反义治疗的放射性药物了解 (1)放射生物效应及基本概念 熟悉 (2)放射防护的目的和基本原则 (3)工作人员的剂量限值 (4)内、外照射防护原则 熟练掌握 1.放射生物效应与防护原则(5)不同射线的防护原则了解 (1)实验室的三区布局 了解 (2)放射源的运输、保管 (3)放射性废物的处置 (4)放射性事故的应急处理 掌握 2.核医学实验室(5)工作场所的防护监测了解 (1)工作人员健康管理 了解 (2)个人防护及防护用品 3.工作人员的防护(3)个人剂量监测熟悉 (1)申请核医学检查与治疗的原则 熟练掌握 (2)申请医师的职责 熟悉 4.工作人员的职责(3)核医学医师的职责熟练掌握 (1)核医学诊断中患者的防护原则 熟练掌握 (2)核医学诊断中特殊人群的防护原则 了解 5.患者的防护(3)核医学治疗中患者的防护原则掌握 (1)放射性药品管理办法熟练掌握 (2)放射性同位素与射线装置放射防护条例六、放射卫生防护6.放射卫生防护法规(3)临床核医学放射卫生防护标准了解(4)临床核医学中患者的放射卫生防护标准熟悉 (1)方法 1.决策矩阵 (2)指标 掌握 2.Bayes 理论 Bayes 理论 熟悉 七、医学诊断方法的效能评价3.界值特性曲线(ROC 分析)界值特性曲线 熟悉医学伦理学单元 细目要点要求1.医患关系2.医疗行为中的伦理道德医学伦理道德 3.医学伦理道德的评价和监督了解。

核医学知识点整理

核医学知识点整理

核医学整理核医学显像核医学的PET、SPECT显像侧重于显示功能、血流、代谢、受体、配体等的改变,能早期为临床、科研提供有用的信息。

1.通过放射性核素显像仪(如SPECT)对选择性聚集在或流经特定脏器或病变的放射性核素或其标记物发射出的具一定穿透力的射线进行探测后以一定的方式在体外成像,借以判断脏器或组织的形态、位置、大小、代谢及其功能变化,从而对疾病实现定位、定性、定量诊断的目的。

2.基本条件:用于示踪的放射性核素能够在靶组织或器官中与邻近组织之间形成放射性分布的差异。

3.用于显像的放射性核素或其标记物通称为显像剂(imaging agent),显像剂在机体内的生物学特性决定了显像的主要机制4.诊断和治疗用(含正电子)体内放射性药品浓集原理1)合成代谢2)细胞吞噬3)循环通路:血管、蛛网膜下腔或消化道,暂时性嵌顿。

4)选择性浓聚5)选择性排泄6)通透弥散7)离子交换和化学吸附8)被动扩散9)生物转化10)特异性结合11)竞争性结合12)途径和容积指示5.核医学仪器的基本结构:探头、前置放大器、主放大器、甄别器、定标电路、数字显示器常用显像仪器:γ照相机、SPECT、PET等。

二、分为诊断用放射性药物(显像剂和示踪剂)和治疗用放射性药物。

放射性药品指含有放射性核素供医学诊断和治疗用的一类特殊药品。

γ射线能量为:141KeV三、SPECT显像方法:1.每例检查均需使用显像剂2.给药方式:iv,po,吸入,灌肠,皮下注射等3.仪器:SPECT4.给药后等待检查时间:即刻,20--30min, 1h, 2--3h5.每次机器检查时间:1—20min6.检查次数:1—10次(一)显像的方式和种类1、静态显像:当显像剂在脏器内和病变处的浓度处于稳定状态时进行的显像,可采集足够的放射性计数用以成像,影像清晰可靠,可详细观察脏器和病变的位置、形态、大小和放射性分布;脏器的整体功能和局部功能;计算出一些定量参数, 如局部脑血流量、局部葡萄糖代谢率(参数影像或称功能影像).2、动态显像:显像剂引入体内后,迅速以设定的显像速度动态采集脏器多帧连续影像或系列影像,即电影显示;利用感兴趣区技术提取每帧影像中同一个感兴趣区域内的放射性计数,生成时间--放射性曲线。

核医学期末考试重点笔记

核医学期末考试重点笔记

一、名词解释。

1.核医学:是一门研究核技术在医学的应用及其理论的学科,是用放射性核素诊断,治疗疾病和进行医学研究的医学学科。

2.核素:是指质子数和中子数相同,并处于同一能级状态的原子,称为一种核素。

3.全身骨显像:是指给患者注射显像剂一定时间后,利用核医学显像设备(如γ相机,SPECT)的探测器沿患者体表做匀速运动,从头至足(或从足至头)依次采集全身各部位的显像剂分布信息,组成一幅完整的前位和后位的全身骨骼系统影像4.超级骨显像:是显像剂异常浓聚的特殊表现,显像剂在全身骨骼分布呈均匀,对称性异常浓聚,或广泛多发异常浓聚,软组织分布很少,骨骼影像异常清晰,肾和膀胱影像常缺失。

常见于以成骨为主的恶性肿瘤广泛性骨转移,甲旁亢等患者。

5.代谢性骨病:是指一组以骨代谢异常为主要表现的疾病,如原发性甲状旁腺功能亢进,骨质疏松症,肾性骨营养不良综合症,畸形性骨炎等。

通常弥漫性累及全身骨骼,并伴有血清甲状腺旁激素的升高以及骨转换率的增高。

6.甲状腺静态显像:口服放射性碘后,通过观察甲状腺部位放射性分布,可判别甲状腺病变,即甲状腺静态显像。

7.放射性药品:是指用于临床诊断或者治疗的放射性核素制剂或其标记药品。

8.放射性核素纯度:放射性核素纯度是指放射性药品中所要求的放射性核素其活度占样品放射性总活度的百分比。

9.肾图:静脉注射由肾小球滤过和肾小管上皮细胞分泌而不再被重吸收的放射性示踪剂,在体外应用肾图仪连续记录双肾的时间-放射性活度曲线,以反应双肾血流灌注、肾实质功能及尿液排泄的的生理过程,称为肾图10.小肾图:双侧对比,一侧肾图正常,而另一侧肾图幅度明显减低,峰值差>30%,但曲线形态保持正常,多见于一侧肾动脉狭窄或先天性一侧肾脏发育不良。

11.有效半衰期:放射性核素因生物代谢与物理衰变共同作用而致在生物体内放射性活性降低到一半所需的时间。

12放射性活度:用来描述放射性物质衰变强弱的物理量,表示单位时间内发生衰变的原子核数。

医学资料复习:2核医学大纲重点

医学资料复习:2核医学大纲重点

第一章:核医学物理基础1.核素,同位素,同质异能素,稳定与放射性核素,核衰变规律与半衰期,放射性活度的概念;2.带电粒子,γ射线与物质相互作用的方式第二章核医学器械☆核医学仪器的基本结构,原理,类型、功能和主要用途;SPECT,PET及图象融合技术的特点和用途第三章放射性药物放射性药物的定义和主要特点,放射性药物的主要来源。

第四章放射性核素示踪技术与脏器显像放射性核素示踪原理,显像原理及特点,类型与特点第五章体外分析技术☆1.体外放射分析(免疫分析,免疫放射分析,受体放射分析)的定义,基本原理,类型与特点2.体外放射分析(免疫分析,免疫放射分析)质量控制的目的及常用质控指标。

第六章分子核医学概论分子核医学概念,理论基础,研究主要内容和主要技术问题第七章神经系统1.脑血流灌注显像的基本原理,方法,影象特点,适应症和临床应用2.脑代谢显像的原理和方法,适应症及临床应用3.神经递质和受体显像原理,适应症和临床应用4.脑脊间隙显像原理,方法,适应症,临床应用第八章内分泌系统☆1.甲状腺功能测定的方法及临床意义(甲状腺摄131I功能试验,甲状腺激素抑制试验,甲状腺兴奋试验和过氯酸钾释放试验)2.甲状腺静态显像,甲状腺血流灌注显像,甲状腺阳性显像,甲状腺激素抑制和3.甲状腺刺激显像原理,适应症和临床应用4.甲状旁腺显像和肾上腺髓质显像原理和临床应用第九章心血管系统☆1.心肌灌注显像的基本原理,适应症,正常和异常图象分析和临床价值2.心脏功能测定:门控心血池显像的心功能测定基本原理和常用诊断指标,适应症和临床价值3.心脏负荷实验(运动负荷实验和药物负荷试验)的原理和方法4.心肌细胞活性测定的方法及原理(心肌灌注,代谢,乏氧显像)第十章胃肠道显像胃肠道出血显像,异位胃粘膜显像,胃排空功能测定,十二指肠胃反流显像的基本原理,优缺点,方法选择和适应症和临床意义第十一章肝胆显像1.肝胶体,肝血流血池,肝胆动态,肝脏肿瘤阳性显象,脾脏显象(放射性胶体2.脾脏显象和热变性红细胞脾脏显象)的基本原理,适应症和临床意义。

核医学重点摘要

核医学重点摘要

Nuclear Medicine核医学第一章第二章核物理基础和放射性药物1、核衰变方式:α衰变、β-衰变、β+衰变、电子俘获、γ衰变穿透能力比较:γ>β>α,电离能力比较:α>β>γα衰变用于防护,β衰变用于放射治疗,γ衰变用于显像。

2、临床应用的放射性核素获取途径:加速器生产、反应堆生产、从裂变产物中提取。

第三章核医学仪器和核医学检查法1、γ闪烁探测器的组成:准直器、晶体、光电倍增管和前置放大器。

2、显像仪器包括:γ照相机、SPECT(单光子发射型计算机断层仪)、PET(正电子发射型计算机断层仪)。

3、发射型CT和穿透型CT的比较发射型CT(ECT)穿透型CT射线来源引入体内的放射性核素体外X射线管发出的X线射线种类γ射线X射线分辨率低高原理示踪剂在组织中摄取代谢有差异不同组织对X射线的吸收值有差异第六章内分泌系统一、甲状腺摄131I试验1、原理:甲状腺摄取碘的量和速度与甲状腺功能密切相关。

被甲状腺摄入的131I发出的γ射线量可反映其功能状况。

2、注意事项:检查前停用含碘食物和药物。

3、临床意义:摄131I功能增高:甲亢(峰时前移)、单纯性甲状腺肿。

摄131I功能减低:甲减、亚急性甲状腺炎。

二、甲状腺激素抑制试验1、原理:正常人给予外源甲状腺激素后,负反馈启动,TSH减少,摄碘受抑制。

但甲亢者不受抑制,抑制率<50%。

2、临床意义:特异性诊断甲亢。

三、甲状腺显像1、常用显像剂:131I、99Tc m O4-2、临床应用(1)诊断异位甲状腺;(2)判断甲状腺结节功能(冷、凉、温、热结节,功能从无到高依次增强);(3)冷、凉结节恶变率较温、热结节高;(4)判断甲状腺结节良恶性质:甲状腺动脉灌注显像局部放射性增浓即恶性,局部减低缺损即良性;(5)寻找甲状腺癌转移灶;(6)判断功能自主性甲状腺瘤:注射T3、T4后热结节仍保留,正常部位影像减淡。

第七章神经系统一、脑血流灌注显像1、原理:脂溶性显像剂通过血脑屏障进入脑细胞,分解成水溶性物质滞留于脑组织中,其剂量与脑血流量成正比。

第2章 核医学仪器设备

第2章  核医学仪器设备



1、能峰测定:每日
2、每日均匀性:每日 3、旋转中心校正:定期

二PET/CT部分
1、本底检测 2、空白均匀性扫描


3、标准化设定
4、剂量与SUV值校正 5、PET图像与CT图像的配准校正
第二章 核医学仪器设备
第一节 核医学仪器分类及原理

一、设备分类
1、活度计 2、放射防护仪器


3、显像设备
4、计数和功能测定仪器(非显像测定仪器) 5、体外分析仪器
二、射线探测的基本原理

1、射线探测的基本原理是以射线与物质相互作用为基础并根据使 用目的而设计,概括其原理主要有:
(1)、电离作用:通过探测器收集和计量射线电离时产生的大量+、 -离子,反映射线的性质和活度。收集电离电荷的探测器常由电离 室或者计数管组成。 (2)、荧光作用:闪烁体接受射线能量而进入激发态,当激发态 的原子退回至低能态时可发出荧光,探测器收集、计量,从而反映 射线的能量和数量。 (3)、感光作用:射线可使感光材料感光,通过感光强弱反映射 线的强度。
(1)、准直器:目前常用的是平行孔准直器和针孔准直器。 (2)、晶体:目前常用的晶体是NaI(Tl)晶体。 (3)、光电倍增管 2、电路



3、扫描床4、计Βιβλιοθήκη 机 二、工作原理概述
SPECT的基本本成像原理是:首先病人需要摄入含有半衰期适当的放射性同位素 药物,在药物到达所需要成像的断层位置后,由于放射性衰变,将从断层处发 出γ光子,位于外层的γ照相机探头的每个灵敏点探测沿一条投影线(Ray)进来的γ 光子,通过闪烁体将探测到的高能γ射线转化为能量较低但数量很大的光信号, 通过光电倍增管将光信号转化为电信号并进行放大,得到的测量值代表人体在 该投影线上的放射性之和。在同一条直线上的灵敏点可探测人体一个断层上的 放射性药物,它们的输出称作该断层的一维投影(Projection)。图中各条投影线都 垂直于探测器并互相平行,故称之为平行束,探测器的法线与X轴的交角θ称为 观测角(View)。γ照相机是二维探测器,安装了平行孔准直器后,可以同时获取 多个断层的平行束投影,这就是平片。平片表现不出投影线上各点的前后关系。 要想知道人体在纵深方向上的结构,就需要从不同角度进行观测。可以证明, 知道了某个断层在所有观测角的一维投影,就能计算出该断层的图像。从投影 求解断层图像的过程称作重建(Reconstruction)。这种断层成像术离不开计算机, 所以称作计算机断层成像术(Computed Tomography,CT)。CT设备的主要功能是 获取投影数据和重建断层图像。

核医学高级考试笔记

核医学高级考试笔记

考试指南一、专业知识(一)本专业知识1.熟练掌握核医学专业的基础知识与基本理论,包括放射性核素示踪(显像与非显像)的原理、检查方法及临床应用,放射性核素治疗原理、方法及临床应用,体外放射分析的原理及临床应用。

2.熟练掌握放射性药物、核医学仪器、电子计算机基本理论知识及其在核医学中的应用。

3.掌握人体解剖学、生理学、病理学、生物化学、核物理、核化学等基本理论知识,掌握放射防护的基本原则和方法。

(二)、相关专业知识1.熟悉医学影像学(X线诊断、CT、MRI、超声)。

2.熟悉内科学、外科学、妇产科学、儿科学、肿瘤学、神经精神病学、统计学、免疫学和分子生物学等学科中与本专业密切相关的基础理论和知识。

3.熟悉与本专业有关的法律法规。

二、专业实践能力1.掌握核医学《临床技术操作规范》和《临床核医学操作指南》。

2.掌握临床核医学诊断和治疗中常见病的病因、发病机制、诊断、鉴别诊断及治疗方法。

3.了解核医学专业一些少见病的病因、发病机制、诊断、鉴别诊断及治疗方法。

4.具有较丰富的临床经验和技术工作经验,能独立承担院内会诊,并指导下级医师解决本专业较复杂疑难的问题。

5.具有一定的科室及实验室管理能力。

三、学科新进展1.熟悉核医学专业国内外现状及发展趋势,不断吸取新理论、新知识、新技术,并用于医疗实践和科学研究。

2.了解相关学科的新进展。

四、用于诊断的病种1.甲状腺功能亢进2.甲状腺功能低下3.慢性淋巴细胞性甲状腺炎4.结节性甲状腺肿5.异位甲状腺6.甲状旁腺腺瘤7.脑缺血8.脑梗死9.癫痫10.心肌缺血11.心肌梗死12.下肢深静脉血栓形成13.肢体淋巴水肿、乳糜胸和乳糜尿14.肝血管瘤15.急、慢性胆囊炎16.消化道出血17.异位胃黏膜18.肺栓塞19.嗜铬细胞瘤20.肾积水21.急、慢性肾功能衰竭22.肾动脉狭窄23.肾先天性畸形、异位24.股骨头无菌缺血性坏死25.代谢性骨病26.骨折27.各种恶性肿瘤(诊断、鉴别诊断、分期、再分期、疗效评价和和预后评估)五、用于治疗的病种1.甲状腺机能亢进2.甲状腺癌3.骨转移癌4.嗜铬细胞瘤5.皮肤血管瘤6.瘢痕疙瘩7.真性红细胞增多症8.恶性胸、腹腔积液9.类风湿性关节炎复习计划第一周(7.17-23)课本通读一遍第二周(7.24-30)章节练习做笔记第三周(7.31-8.6)综合练习题第四周(8.7-8.13)综合练习题+仿真练习题第五周(8.14-8.18)看笔记,回归课本,记错题。

核医学知识点笔记复习整理

核医学知识点笔记复习整理

核医学知识点笔记复习整理第一章中枢神经系统1.脑血流灌注显像及负荷显像的原理、方法、适应症、结果判断和临床应用。

2.脑脊液间隙显像的原理、方法、适应症、影像分析和临床应用。

第二章骨骼系统1.骨显像原理,骨显像的放射性药物,骨显像的方法以及适应证。

2.影像分析要点正常影像,异常影像。

3.骨显像的临床应用第三章泌尿系统1.肾图的原理、适应症、检查方法、正常肾图及其分析指标、异常肾图及临床意义。

2.肾动态显像的原理、适应症、正常影像、异常影像及临床意义。

3.介入试验巯甲丙脯酸试验的原理、适应症、方法及结果分析;利尿剂介入试验的原理、适应症、方法、及曲线结果分析与临床意义。

4.肾有效血浆流量与肾小球滤过率测定的原理、适应症、显像剂、方法、影像分析与临床价值。

5.肾静态显像的原理、适应症、显像方法、正常影像、异常影像及临床意义。

6.膀胱输尿管返流测定的原理、适应症、显像方法及结果分析。

7.生殖器官显像阴囊及睾丸显像的原理;放射性核素子宫输尿管造影术的方法及影像解释第四章消化系统1.胃肠道出血的原理、方法、影像分析和临床应用。

2.异位胃粘膜显像的原理、影像分析和临床应用。

3.唾液腺显像的原理、方法、影像分析和临床应用。

4.放射性核素肝胆动态显像的原理、显像剂、方法、适应症、影像分析和临床应用。

5.肝血流灌注和肝血池显像的概述、原理、显像技术、适应证、影像分析和临床应用。

6.胃幽门螺杆菌检测的原理、方法、适应证、结果分析和临床应用第五章内分泌系统1.甲状腺摄131碘试验的原理、方法、结果判定、影响因素和临床意义;血清甲状腺激素水平测定的原理、正常值、影响因素和临床应用;甲状腺功能测定的综合评价。

2.甲状腺显像的原理、方法、正常影像和临床应用;甲状腺结节的功能判断。

3.甲状旁腺显像的原理、方法、正常影像和临床应用;肾上腺髓质显像的原理、方法、正常影像和临床应用。

第六章血液、淋巴系统1.血液和淋巴显像的原理。

2.血液和淋巴显像的显像剂。

核医学笔记

核医学笔记

核医学笔记——2012级临床五年五班整理 绪论核医学是利用核素及其标记物所发出的射线进行临床诊断、疾病治疗以及生物医学研究的一门学科。

分类(举例)放射性核素显像反映了脏器和组织的生理和病理生理变化,属于分子功能影像特点:核素数量少、半衰期短、灵敏度高原理:放射性核素或其标记化合物与天然元素或其化合物一样,引入体内后根据其化学及生物学特性有其一定的生物学行为,它们选择性地聚集在特定脏器、组织或受检病变部位中的主要机制有:①合成代谢:131碘甲状腺显像②细胞吞噬:肝胶体显像③循环通路:99mTc-DTPA脑脊液间隙显像④选择性浓聚:99mTc-焦磷酸盐心肌梗死组织显像⑤选择性排泄:99mTc-DTPA肾动态显像⑥通透弥散:脑血流灌注显像⑦离子交换和化学吸附:骨显像⑧特异性结合:放射免疫显像及反义显像放射性核素的生产方式医用放射性核素都是通过人工核反应来制备的简单化合物,通常由以下三种途径生产。

①核反应堆②回旋加速器③放射性核素发生器(母牛发生器):是从长半衰期核素的衰变产物中分离得到短半衰期核素的装置。

如钼-锝发生器,锡-铟发生器⏹99m Tc是目前临床SPECT显像最常用的核素。

⏹99m Tc衰变,发射γ射线回复到基态99Tc,半衰期6.02h,放出能量为140keV的γ射线,适合单光子发射显像。

核医学物理基础核素:具有特定质量数、原子序数与核能态,而且其平均寿命长得足以被观测的一类原子同位素:具有相同原子序数,但质量数不同的核素互称为“同位素”同质异能素:具有相同质量数和原子序数,但处于不同核能态的一类核素互称同质异能素 核衰变类型:α衰变,β衰变,电子俘获,γ衰变穿透能力射程电离能力应用α最弱最短最强少β弱短强治疗γ最强最远最弱诊断正电子射程仅1~2mm,在失去动能的同时与其邻近的电子(β-)碰撞而发生湮灭辐射,在二者湮灭的同时,失去电子质量,转变成两个方向相反、能量皆为511keV的γ光子。

第三章 核医学常用仪器

第三章 核医学常用仪器

常用核医学仪器
1、γ闪烁探测器 2、γ照相机 3、单光子发射断层扫描仪 4、正电子发射断层扫描仪
5、甲状腺功能测定仪、肾图仪
(上尿路通否?)
Γ闪烁探测器
γ照相机结构----静态动态显像
准值器collimator
NaI(TlI)crystal
探头 光导
photomultiplier tube matrix
(二)后续电子学线路
1.前置放大器 2.主放大器 3.脉冲高度分析器(甄别器) 4.定标器数据处理和定时系统等 5、计算机输出系统
液体闪烁探测器 (liduid scintillation detector)

探测效率(E) 经测量得到的放射源的计数率(cps)与 该放射源在单位时间内的衰变数(dps) 的比值
电脑屏幕
单光子发射断层扫描仪
探头
显示屏

单光子发射断层扫描仪(γ光子)
探头(多个探头多角度采集信号提高 灵敏度、空间分辨率) 机架、计算机 光学照相、检查床 图象重建系统
SPECT与X-CT的比较
仪器种类 射线性质 SPECT(属于发射型CT) γ射线,光子流 X-CT透射 X射线,光子流
入射方式
符合线路
飞行时间测量装置
计算机数据处理
图象显示 断层床
PET显像原理
11C13N15O18F
引入体内
β+
ANIHHILATION
方向相反γ 光子
空间位置信
号能量信号
多角度核素 分布投影
不同角度分组
互成180。探头
计算机重建 多断面影像
功能代谢影像 各种生理参数
分子显像
PET优点(与SPECT相比)

核医学重点知识点考点汇总

核医学重点知识点考点汇总

核医学重点知识点考点汇总名词解释1.核医学:用放射性核素诊断、治疗疾病和进行医学研究的医学科目。

2.同位素:具有相同质子数但具有不同中子数,在化学元素排在同一位置。

3.核素:是原子核的属性,原子核的质子数、中子数和原子核所处的能量状态完全相同的原子集合成为核素。

稳定性核素:原子核中,当核内中子数和质子数保持一定比例时,核力与斥力平衡不致发生核内成分或能态变化,这类核素称为稳定性核素。

放射性核素:原子核内质子或中子过多,都会使原子核失去稳定性,称为不稳定核素,又称放射性核素。

核衰变:不稳定核素通过自发性内部结构或能态调整使其稳定的过程。

与此同时,它将释放一种或一种以上的射线,这种性质称为放射性。

4.α衰变:是核衰变时放出α离子的衰变,主要发生在Z>82的核素。

β衰变:是核衰变时释放出β射线或俘获轨道电子的衰变,包括β+衰变,β-衰变和电子俘获三种形式。

γ衰变:是指核素由高能态向低能态、或激发态向基态跃迁过程中放射出γ射线或称单光子的衰变。

5.衰变定律:衰变过程中初始母核数的减少遵循指数函数的规律,其表达式为N=No*e^-λt。

6.半衰期(物理半衰期):某一放射性核素在衰变过程中,原有的放射性活度减少至一半所需要的时间称为T1/2。

放射性活度:单位时间内发生核衰变的次数,国际单位为贝可,定义为每秒发生一次核衰变。

生物半衰期:指进入生物体内的放射性活度经由各种途径从体内排出原来一半所需要的时间。

Tb有效半衰期:指生物体内的放射性活度由从体内排出和物理衰变双重作用,在体内减少为原来一半所需要的时间。

Teff7.SPECT:单光子发射型计算机断层显像仪。

PET:正电子发射型计算机断层显像仪。

8.放射免疫分析法:是建立在放射性分析的高度灵敏性和免疫反应的高度特异性的基础上,通过测定放射性标记抗原-抗体复合体的量来计算出待测抗原(样品)的量。

9.热结节:结节部位放射性分布高于正常甲状腺组织,有时仅结节显影而正常组织不显影,多见于功能性甲状腺腺瘤和结节性甲状腺肿。

【医疗知识】核医学知识点笔记复习整理

【医疗知识】核医学知识点笔记复习整理

四、心血管系统心肌灌注显像显像剂:99m Tc-MIBI心肌葡萄糖代谢显像显像剂:18F-FDG极坐标靶心图:影像的中心为心尖,周边为基底,上部为前壁,下部为下壁和后壁,左侧为前、后间壁,右侧为前、后侧壁。

心肌灌注显像和心肌葡萄糖代谢显像临床应用:1、冠心病心肌缺血的评价⑴冠心病心肌缺血的早期诊断。

①心肌缺血的典型表现是负荷试验心肌灌注影像出现显像分布稀疏或缺损,而静息或再分布影像呈正常或明显充填,提示为可逆性心肌缺血。

②可以准确评价心肌缺血的部位、范围、程度和冠脉的储备功能。

③可检出无症状的心肌缺血。

⑵冠心病危险度分级。

Ⅰ高危的影像有以下特征:①在两支以上冠状动脉供血区出现多发性可逆性缺损或出现较大范围的不可逆性灌注。

②定量或半定量分析有较大范围的可逆性灌注缺损。

③运动负荷后心肌显像剂肺摄取增加。

④运动后左心室立即呈暂时性扩大或右心室暂时性显影。

⑤左主干冠状动脉分布区的可逆性灌注缺损。

⑥休息时LVEF降低。

Ⅱ若低危表现或SPECT负荷心肌灌注显像正常,提示心脏事件年发生率低于1%,预后良好。

⑶负荷心肌灌注显像对冠心病的预测价值。

在冠心病概率较低的人群中阳性结果预测价值为36%,而在冠心病概率较高的人群中阳性结果预测价值为99%。

⑷缺血性心脏病治疗后的疗效评估。

冠心病患者在治疗前表现为病变部位可逆性缺损,治疗后择期进行心肌灌注显像,如出现可逆性损伤,则高度提示再狭窄或治疗无效。

如出现正常,则提示血管通畅,治疗有效。

2、心肌梗死的评价⑴急性心梗的诊断。

①负荷/静息心肌灌注图像表现为病变部位不可逆损伤。

②可较准确地判断心肌梗死的部位、大小和并发症的缺血面积。

③急性心梗是负荷试验的禁忌症,只能做静息显像。

心梗6h后即可表现为病变部位的灌注异常。

⑵急性胸痛的评估。

①在急性心梗的患者,一般静息心肌显像时都会发现有灌注缺损。

②临床上急诊心肌显像为正常的患者中,几乎没有急性心梗或不稳定性心绞痛发生,而心肌显像为异常的患者,80%以上的病人后来证实为急性心梗可不稳定性心绞痛。

核医学仪器基础知识

核医学仪器基础知识

放射性同位素可以用于治疗癌症、甲状腺问题和其他疾病。
放射性剂量计算原理
放射性剂量计算是核医学中的重要步骤,通过精确计算患者接受的辐射剂量, 确保安全和有效的治疗。
闪烁探测器
探测原理
闪烁探测器通过闪烁晶体的特性 来探测和测量放射性同位素发出 的闪烁光信号。
用途
闪烁探测器常用于核医学成像设 备,如伽马相机,能够提供全身 和局部的图像信息。
正电子发射断层扫描仪
正电子发射断层扫描仪(PET)是一种高分辨率的核医学成像技术,利用正电 子湮灭探测器测量正电子与电子湮灭产生的能量和位置信息,可用于诊断和 治疗。
正电子湮灭探测器
用于正电子发射计算机断层扫描仪,能够探测和测量正电子与电子湮灭产生的能量。
单光子发射计算机断层扫描仪
利用放射性同位素发射单个光子,可以对器官和组织进行断层扫描。
射线检测原理
1 放射性同位素发射射
线
2 探测器测量射线
核医学仪器中的探测器可
3 成像和分析
通过对测量数据进行成像
核医学利用放射性同位素
核医学仪器基础知识
核医学是一门应用放射性同位素成像和治疗的技术,涉及各种仪器和设备的 使用。本节将介绍核医学的基本知识,为您提供全面的了解。
核医学简介
核医学是一门集生物学、医学和物理学于一体的学科,通过应用放射性同位素技术来诊断疾病和治疗患者。
核医学仪器种类
闪烁探测器
常用的核医学成像设备,能够探测和测量放射性同位素发出的闪烁光信号。
单光子发射计算机断层扫 描仪
闪烁探测器还可用于单光子发射 计算机断层扫描仪,用于三维断 层成像。
正电子湮灭探测器
探测原理
正电子湮灭探测器能够探测和测量正电子与电子湮 灭产生的能量和位置信息。

第二章核医学仪器

第二章核医学仪器

第二章核医学仪器核医学仪器是指在医学中用于探测和记录放射性核素放出射线的种类、能量、活度、随时间变化的规律和空间分布等一大类仪器设备的统称,它是开展核医学工作的必备要素,也是核医学发展的重要标志。

根据使用目的不同,核医学常用仪器可分为脏器显像仪器、功能测定仪器、体外样本测量仪器以及辐射防护仪器等,其中以显像仪器最为复杂,发展最为迅速,在临床核医学中应用也最为广泛。

核医学显像仪器经历了从扫描机到γ照相机、单光子发射型计算机断层仪(single photon emission computed tomography,SPECT)、正电子发射型计算机断层仪(positron emission computed tomography,PET)、PET/CT、SPECT/CT及PET/MR的发展历程。

1948年Hofstadter开发了用于γ闪烁测量的碘化钠晶体;1951年美国加州大学Cassen成功研制第一台闪烁扫描机,并获得了第一幅人的甲状腺扫描图,奠定了影像核医学的基础。

1957年Hal Anger研制出第一台γ照相机,实现了核医学显像检查的一次成像,也使得核医学静态显像进入动态显像成为可能,是核医学显像技术的一次飞跃性发展。

1975年M. M. Ter-Pogossian 等成功研制出第一台PET,1976年John Keyes和Ronald Jaszezak分别成功研制第一台通用型SPECT和第一台头部专用型SPECT,实现了核素断层显像。

PET 由于价格昂贵等原因,直到20世纪90年代才广泛应用于临床。

近十几年来,随着PET/CT的逐渐普及,实现了功能影像与解剖影像的同机融合,使正电子显像技术迅猛发展。

同时,SPECT/CT及PET/MR的临床应用,也极大地推动了核医学显像技术的进展。

第一节核射线探测仪器的基本原理一、核射线探测的基本原理核射线探测仪器主要由射线探测器和电子学线路组成。

射线探测器实质上是一种能量转换装置,可将射线能转换为可以记录的电脉冲信号;电子学线路是记录和分析这些电脉冲信号的电子学仪器。

第二章核医学仪器

第二章核医学仪器

三、单光子发射型计算机断层仪
单光子发射型计算机断层仪(single photon emission computed tomography,SPECT)是一台高性能的γ照相 机的基础上增加了支架旋转的机械部分、断层床和图像 重建(reconstruction)软件,使探头能围绕躯体旋转 360o或180o,从多角度、多方位采集一系列平面投影像。 通过图像重建和处理,可获得横断面(transverse section)、冠状面(coronal section)和矢状面(sagittal section)的断层影像(tomogram)。
2、脉冲处理:将探头传过来的电信号转换成时间信号, 经过数字化、常分鉴别器处理后的脉冲信号用于符合电 路信号处理。
低能鉴别器、高能鉴别器
3、符合电路系统:通过符合电路系统处理获得湮灭反应 产生的信号后,就能确定有无正负电子符合事件发生。
4、死时间校正:计数率比SPECT系统高10倍,死时间影 响较大,要求系统速度快,减少计数丢失。
(2)计数管
(3)个人剂量监测仪:用于测量工作场所的照射剂量 和放射性工作人员的吸收剂量。
(4)表面污染及场所剂量监测仪:用于对工作人员体 表、衣物表面和工作场所有无放射性沾染和沾染多少 的检测。
表面污染监测仪
作业:
1 核医学探测仪器主要有哪些?其功能是什么? 2 写出几种主要核医学仪器的工作原理。
SPECT
(一)基本结构:
1、探头及电子学线路
结构和形状与γ照相机相似,探头有单探头、双探头、 多探头之分。
2、机架
机架要求重量轻、大环孔径大、体积小等特点,还 应具有可变角和滑环等新功能。
3、病人检查床
SPECT的重要部分,新的要求应有二维运动功能, 水平移动的精度要求高。

影像核医学复习知识点

影像核医学复习知识点

影像核医学复习知识点名词解释:◆标准化摄取值(SUV)描述病灶放射性摄取量的指标。

在18F-FDG PET 显像时,SUV 良恶性鉴别界限SUV>2.5考虑为恶性肿瘤。

SUV介于 2.0-2.5之间为临界范围。

SUV<2.0考虑为良性肿瘤◆超级显像是指骨放射性显著的普遍的摄取增加。

指肾影不明显,膀胱内放射性很少,骨影浓而清晰,软组织本底低,是弥漫性骨转移的一种表现,常见于继发性甲状旁腺功能亢进,前列腺癌骨转移,乳腺癌骨转移,少见于原发性甲亢,软骨病。

◆电子对生成当入射γ光子的能量>1.022MeV时,γ光子在原子核电场的作用下转化为一对正负电子,称为电子对生成◆电子准直:PET中如果相对的两个探头同时探测到正电子湮没辐射所产生的两个r 光子,那么辐射事件一定发生在两个探测点之间的连线上。

这种可利用湮没辐射和两个相对探头来确定辐射发生位置的方法称。

◆ECT(发射型计算机断层)指r照相机于计算机技术相结而进一步发展的核影像装置,它既继承了r照相机的功能又应用可计算机断层的原理。

较r相继增加了断层现象的能力。

是核素显像技术继扫描机和r照相机之后又一重大进步。

◆放射性核素:又称不稳定性核素,它能够自发地发生核内结构或能级的变化,同时可放出某种射线而转变为另一种核素。

◆放射性药品是指用于临床诊断或者治疗的放射性核素制剂或其标记药品,属于特殊管理的药品,它之所以特殊就在于其含有的放射性核素能发出射出射线,它不像普通药品那样依其明显的药理作用达到有目的地调节人体生理功能之功效,而是利用其发射的粒子或射线来达到诊断和治疗的目的。

◆放射性核纯度:是放射性药品中所要求的放射性核素其活度占样品放射性总活度的百分比。

它是反应放射性药品中是否含有或有多少放射性核杂志的重要指标◆放射化学纯度:是指放射性药品中所要求的化学形式的放射性占总放射性的百分比,是反映放射性化学杂质含量的重要指标◆放射性活度:用来描述放射性物质衰变强弱的物理量表示单位时间内发生衰变的原子核数,国际单位贝可(Bq)定义为每秒一次衰变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绪论核医学的物理学基础知识γ照相机单光子发射计算机断层(SPECT)正电子发射计算机断层显像(PET)核医学仪器的质量控制核的衰变及其方式一、有关的几个基本概念1、衰变2、母核和子核3、放射性核素和放射性同位素4、核衰变的自发性二、核的衰变形式1、β-衰变2、(β-γ)衰变3、同质异能衰变与内转换4、电子俘获5、β+衰变6、α衰变和核裂变γ照相机一、基本原理和组成(掌握)1、基本工作过程;2、准直器;3、晶体4、光导和光电倍增管、5、位置电路和能量电路6、成像装置二、γ照相机的性能指标(熟悉)1、固有性能;2、系统性能三、质控(熟悉)四、软件系统单光子发射断层扫描仪(SPECT)一、绪论二、SPECT的成像原理三、投影采样四、重建算法五、校正原理和质量控制六、单探头SPECT系统—— SPECT质量控制及校正七、衰减和散射校正八、软件和定量分析单光子发射断层扫描仪(SPECT)定量分析正电子发射断层扫描仪(PET)原理应用及进展引言基本工作原理与过程临床应用国外PET研究发展现状国内外市场概况国内PET研究发展现状1.简述放射性核素显像原理和特点。

放射性核素显像是利用脏器和病变组织对放射性药物摄取的差别,通过仪器来显示出脏器或病变组织影像的诊断方法。

采用的方法有两种:一种是利用正常脏器有选择性浓聚放射性药物的能力,而病变组织浓聚能力缺乏或减弱,在显像图上呈现为放射性缺损区或"冷"区,称为阴性显像。

另一种是病变组织有选择性浓聚放射性药物的能力,而正常的脏器摄取能力缺乏或较差,在显像图上呈现为放射性浓聚区或"热区",称为阳性显像。

显像在方式上又分为静态显像和动态显像两种。

静态显像,即在注入放射性药物后一定时间显示放射性药物在脏器或病变组织内的分布,主要用于检查器质性病变,特别是占位性病变(图1-1);动态显像即在一定时间内多次显像,以动态观察放射性药物在脏器和病变组织内的分布,所得结果不仅可反映病变的部位,而且能反映病变部位的功能状态。

(图1-2)2.什么是放射性核素?核衰变的方式有哪些?放射性核素是指原子核不稳定的核素,会自发地变成另一种核素,同时释放出一种或一种以上的射线放射性核素主要衰变方式有:α衰变、β- 衰变、β+衰变、核外电子俘获以及γ跃迁和同质异能跃迁。

3.简述射线和物质的相互作用。

它包括射线对物质的作用(引起物质的电离、激发等)和物质对射线的作用(引起射线的减速、散射及吸收等)两个相互联系的方面。

电离作用是指射线使物质中的原子失去轨道电子而形成正负离子对,它是某些探测器测量射线的物质基础,又是射线引起物理、化学变化及生物效应的主要机制。

电离作用的强弱常用射线在每厘米路程上产生的离子对数来度量,即电离密度或比电离。

激发作用指射线使某些原子的轨道电子从低能级跃迁至高能级。

当该电子退激时,这部分能量以光子或热能形式释出。

激发作用是另一些探测器工作的物理基础,也是射线引起物理、化学、生物效应的机制之一。

散射作用是指带电粒子受到物质原子核库仑电场的电作用时,或光子与物质的轨道电子碰撞时,射线发射偏离原来的方向而进行。

散射作用对测量及防护都有一定影响。

吸收作用是由于射线动能全部或将近全部丧失时,会和周围物质发生一些特殊的相互作用,如湮没,轫致辐射。

4.单位时间内通过粒子计数器的粒子数为N,若已知计数器的分辨时间为τ1,记录装置的分辨时间为τ2,试确定计数器的记录装置单位时间内输出的脉冲数,讨论下列情形:(1)τ1>τ2;(2)τ1<τ2。

5.γ照相机由哪几部分组成?最适宜的γ射线的能量为多少?γ相机通常由以下主要部分组成:准直器,探测器(晶体),光电倍增管(PMT),预放大器,放大器,脉冲高度分析器(PHA),X、Y位置电路、总和电路,以及显示或记录器件。

带有计算机的γ相机还有模/数(A/D)转换器和数字计算机。

最适宜的γ射线的能量为100~250keV。

6.影响定量SPECT的因素有哪些?给出均匀性校正的方法。

积分均匀度是指测量的投影之间的最大偏差;微分均匀度都是指在一定距离内(一般为5个像素之间)测量投影值的最大变化。

NEMA 标准中,对单探头SPECT ,使用0.1mci 的99mTc 点源,置于距UFOV 直径5倍距离处。

采集的图像矩阵为64×64,在图像中心处的计数至少达到4000以上,总计数需要累计到12M 以上。

同时采集的数据必须进行平滑处理,可采用九点窗口平滑: 1 2 1 2 4 2 1 2 1均匀度的计算:积分均匀度 =微分均匀度 =上式中Max 为UFOV 或CFOV 内的最大计数,Min 为最小计数。

将面源所成的像分为多个行、列,逐个比较每行、列中5个像素之间的计数差值,从而可以得到最大差值的行或列,Hi 为最大差值行(列)5个像素中的最大计数,Low 为最大差值行(列)5个像素中的最小计数。

导致不均匀性的原因可以分为两类:空间畸变以及点源灵敏度变化。

尤其对定量测量来说,将这两种因素加以区分并测量点源灵敏度的变化十分重要。

点源灵敏度的测量:用一个经过准直的99mTc 点源,在间距为3cm 的各点进行测量,各点的测量时间选择应保证每一点的计数值在100,000以上。

经过衰变校正后,点源灵敏度的计算如下:点源灵敏度 =均匀度校正:从上面的均匀度测量可以得到计数的平均值,如图一右下方所示。

对于每,得到一个均匀度校正矩阵因子,也可以分别对空间非线性和点源灵敏度分别进行校正,非线性的校正方法见下面,点源灵敏度的校正方法:用各位置测得的点源计数值除以平均值,得到一个点源灵敏度校正矩阵因子,用该矩阵因子与实际应用中的测量数据进行相乘可以得到均匀校正后的数据。

7.什么是核医学图像的断层重建?描述常用的几种重建技术。

知道了某个断层在所有观测角的一维投影,投影是断层图像沿投影线的积分,重建则是其逆运算,可以推出用投影表示断层图像的解析式。

就能计算出该断层的图像。

从投影求解断层图像的过程称作断层重建重建算法可分成解析法和迭代法两大类。

解析法是以中心切片定理(Central Slice Theorem)为理论基础的求逆过程。

常用的一种解析法称为滤波反投影法(Filte-redBack-Projection ,FBP)。

FBP 法首先在频率空间对投影数据进行滤波,再将滤波后的投影数据反投影得到重建断层图像。

滤波器选为斜坡函数和 某一窗函数的乘积,窗函数用于控制噪声,其形状权衡着统计噪声和空间分辨。

常用的窗函数有Hanning 窗,Hamming 窗,Butterworth 窗以及Shepp-Logan 窗。

迭代法首先给待求的断层图像赋予一个初始估计值(例如各象素的值均为1),根据此初始值计算出理论投影值,将它和实测投影值进行比较,计算出每个象素的修正量,对初始图像进行修正。

然后再根据新的断层图像估计值计算理论投影值,与实测投影值比较,再次修正断层图像估计值。

接着是第三次循环、第四次循环……。

只要修正方法正确,每次迭代都能更逼近正确的断层图像。

对断层图像修正的目标和准则各种各样,所以迭代方法种类繁多,如代数重建技术(Algebraic Reconstruction Technique,ART)、加权的最小平方(Weighted-Least Squares,WLS)法、共轭梯度法(Conjugate Gradient Met-hod)、最大似然函数—期望值最大化(Maximum Likelihood-Expectation Maximization,ML-EM)算法等等。

8.什么是放射性药物?用于PET的正电子核素有哪些?放射性药物:用于机体内进行医学诊断或治疗的含放射性核素标记的化合物或生物制剂。

9.绘制正电子发射断层扫描仪(PET)的结构原理框图,分析工作过程。

正负电子湮灭时产生两个向相反方向运动的511keV的γ光子,用相对放置的两个探测器来测量。

符合探测只记录两个511keV的γ光子同时被测到的湮灭事件,仅有一个探测器有输出,或能量不是511keV的事件被排除。

符合事件一定发生在两个探测器之间的符合探测区中,因此ACD又称作电子准直技术。

其工作过程:制作核素并配制有正电子衰变核素标记的放射性药物注射到病人体内,由于放射性核素在病人体内的物理作用,通过探测器探测到数据,在这个过程中数据通过光电倍增管放大,经过符合电路出路惊醒数据获取,在经过数据重组进行图像重建,并进行图像处理和分析得到理想的图像10.试论述核医学仪器的临床应用。

4-3PET在心血管疾病诊断中的应用PET 是唯一的能够精确确定心肌活力的无损检测手段,被用做黄金标准。

PET在神经系统疾病诊断中的应用PET 可以在确定帕金森症,诊断区别老年痴呆,舞蹈病,多梗死痴呆,假性痴呆等,以及在确定“中风”病情和制定治疗方案中都可起到关键作用;它可帮助确定癫痫病灶范围。

PET在肿瘤诊断和治疗中的应用PET在认知功能研究和新医药开发中的应用1.翻译和解释下列词语。

FWHM、CFOV、OSEM、ECTFWHM(full width at half maximum)半高宽:FHWH通常用作衡量核医学设备的下列性能参数:1功能仪准直器视野2成像系统的空间非线性3空间分辨率4非均匀性5灵敏度6能量分辨率CFOV(central field of view)中心视野:有效视场直径的75%大小的区域;OSEM (Ordered Subset Expectation Maximization) 有序子集最大期望值法:是很有应用前景的一种快速迭代重建算法,它是在最大似然期望法(Maximum Like-lihood Expectation maximization,MLEM)的基础上发展起来的,并且加快收敛速度,减少运算时间,提高图像质量ECT(Emission Computed Tomography)发射型计算机断层扫描:区别于X射线CT所采用的透射型计算机断层成像术(Transmission Computed Tomography,TCT)。

X射线CT对透过病人身体的X射线成像,得到人体组织衰减系数的三维图像,即解剖结构2. 请简述核医学仪器的种类。

核医学是利用伽玛射线在药物中标记后引入人体,通过核医学仪器设备对伽玛射线在人体中的分布情况,来判断人体脏器和组织的功能或代谢情况是否正常。

核医学实验室仪器:活度计,剂量计,环境监测仪,表面放射性沾染测量仪,全身计数器核医学体外诊断仪(样品测量装置):放免计数器,液闪计数器核医学功能仪:甲状腺功能仪,肾功能仪,心功能仪,脑血流量测定仪,骨密度仪,肺密度仪核医学影像设备:同位素扫描机,闪烁照相机,SPECT,PET,CT-PET3.γ相机准直器的功用是什么?有哪些类型?它们的成像特点和用途如何?准直器置于晶体探测器表面,用于限制进入探头视野γ射线的范围和方向,阻挡视野外γ射线进入探测器。

相关文档
最新文档