人教版九年级上册数学课堂作业同步期中复习限时训练:《一元二次方程应用题》(一)
初三上册数学期中考一元二次方程同步练习
初三上册数学期中考一元二次方程同步练习
置信同窗们一定有着爱思索的头脑,聪明、矫捷的思想,查字典数学网小编正对初中先生整理的〝数学期中考一元
二次方程同步练习〞,希望同窗们在仔细的做题的同时也去了解其中的微妙。
1. 某商场礼品柜台元旦时期购进少量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快增加库存,商场决议采取适当的降价措施,调查发现,假设这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?
2. 小明将1000元存入银行,活期一年,到期后他取出600元后,将剩下局部(包括利息)继续存入银行,活期还是一年,到期后全部取出,正好是550元,请问活期一年的利率是多少?
3. 一个正方形的边长添加2cm,它的面积添加了40cm2,求这个正方形原来的边长?
4. 用一块长方形的铁片,把它的四角各剪去一个边长为4cm 的小方块,然后把四边折起来,做成一个没有盖的盒子,铁片的长是宽的2倍,做成盒子的容积是1 536cm3,求这块铁片的长和宽.
5. 我校生物兴味小组的同窗有一块长18米、宽12米的矩形实验园.为了便于同窗们观赏,现要开拓一横两纵三条等宽的小路.要使种植面积为176平方米,小路应该多宽?
6. 张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的局部刚好能围成一个容积为15m3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现购置这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了多少元钱?
小编为大家提供的数学期中考一元二次方程同步练习就到这里了,愿大家都能在学期努力,丰厚自己,锻炼自己。
人教版数学九年级上册《一元二次方程》应用题专项训练(含答案)
《一元二次方程》应用题专项训练1.某种商品零售价经过两次降价后的价格为降价前的81%,则平均每次降价()A.10%B.19%C.9.5%D.20%2.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.2x x5050(1)50(1)182++++=50(1)182+=B.2xC.50(12)182++++=x x+=D.5050(1)50(12)182x3.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2017年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2019年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2019年底共建设了多少万平方米廉租房.4. 某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x米,则可列方程为()A.(10)200x x+-=x x-= B.22(10)200C.(10)200++=x x+= D.22(10)200x x5. 由于国家出台对房屋的限购令,我省某地的房屋价格原价为2400元/2米,通过连续两次降价%a 后,售价变为2000元/2米,下列方程中正确的是( ) A .22400(1)2000a -= B .22000(1)2400a -= C .22400(1)2000a += D .22400(1)2000a -=6. 乌鲁木齐农牧区校舍改造工程初见成效,农牧区最漂亮的房子是学校.2016年市政府对农牧区校舍改造的投入资金是5786万元,2018年校舍改造的投入资金是8058.9万元,若设这两年投入农牧区校舍改造资金的年平均增长率为x ,则根据题意可列方程为 .7. 某商场在促销活动中,将原价36元的商品,连续两次降价%m 后售价为25元.根据题意可列方程为 .8. 某种药品原价为100元,经过连续两次的降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是___________.9. 如图(1),在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田,假设试验田面积为570m 2,求道路宽为多少?设道路宽为x m ,从图(2)的思考方式出发列出的方程是__________.10. 某校团委准备举办学生绘画展览,为美化画面,在长为30cm、宽为20的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等(如图),求彩纸的宽度.11. 通过市场调查,一段时间内某地区某一种农副产品的需求数量y(千克)与市场价格x(元/千克)(030x<<)存在下列关系:x(元/千克) 5 10 15 20y(千克)4500 4000 3500 3000又假设该地区这种农副产品在这段时间内的生产数量z(千克)与市场价格x(元/千克)成正比例关系:400z x=(030x<<).现不计其它因素影响,如果需求数量y等于生产数量z,那么此时市场处于平衡状态.(1)请通过描点画图探究y与x之间的函数关系,并求出函数关系式;5 10 15 20 25 x元/千克)y(千克)50004500400035003000O(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z与市场价格x 的函数关系发生改变,而需求数量y与市场价格x的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?12. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存......,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2 100元,每件衬衫应降价多少元?13. 云南省2017年至2018年茶叶种植面积......与产茶面积....情况如表所示,表格中的、y分别为2017年和2018年全省茶叶种植面积:年份种植面积(万亩)产茶面积(万亩)(1)请求出表格中x、y的值;(2)在2017年全省种植的产茶面积中,若平均每亩产茶52千克,为使我省2019年全省茶叶种植产茶总产量达到22万吨,求2017年至2019年全省年产茶总产量的平均增长率(精确到0.01).(说明:茶叶种植面积=产茶面积+未产茶面积)14. 某玩具店采购人员第一次用100元去采购“企鹅牌”玩具,很快售完.第二次去采购时发现批发价上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件.两批玩具的售价均为2.8元.问第二次采购玩具多少件?(说明:根据销售常识,批发价应该低于销售价)15.国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼准备以每平方米5000元的均价对外销售,由于新政策的出台,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案以供选择;①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?参考答案1. A2. B3. 解:(1)设每年市政府投资的增长率为x , 根据题意,得:2+2(1+x )+2(1+x )2=9.5, 整理,得:x 2+3x -1.75=0, 解之,得:x =275.1493⨯+±-,∴x 1=0.5 x 2=-0.35(舍去), 答:每年市政府投资的增长率为50%;(2)到2012年底共建廉租房面积=9.5÷3882=(万平方米). 4. C 5. D6. 25786(1)8058.9x +=7. 236(1%)25m -=8. 20%9. (322)(2)570x x x --= 10. 解:设彩纸的宽为x cm ,1分 根据题意,得(302)(202)23020x x ++=⨯⨯, 4分 整理,得2251500x x +-=,5分 解之,得15x =,230x =-(不合题意,舍去),7分答:彩纸的宽为5cm . 8分11. (1)描点略.1分 设y kx b =+,用任两点代入求得1005000y x =-+, 3分 再用另两点代入解析式验证. 4分(2)y z =,1005000400x x ∴-+=,10x ∴=.6分 ∴总销售收入10400040000=⨯=(元) 7分∴农副产品的市场价格是10元/千克,农民的总销售收入是40000元.8分(3)设这时该农副产品的市场价格为a 元/千克, 则(1005000)4000017600a a -+=+, 10分解之得:118a =,232a =.030a <<,18a ∴=.11分∴这时该农副产品的市场价格为18元/千克.12分12. 解:设每件衬衫应降价x 元,可使商场每天盈利2100元. 1分 根据题意,得(45)(204)2100x x -+=. 5分 解得:110x =,230x =.6分 因尽快减少库存,故30x =. 7分答:每件衬衫应降价30元. 8分13. 解:(1)据表格,可得792.7154.2298.6565.8x y y +=⎧⎨-+=⎩,解方程组,得371.3421.4.x y =⎧⎨=⎩,3分(2)设2006年至2008年全省茶叶种植产茶年总产量的平均增长率为p ,∵2006年全省茶叶种植产茶面积为267.2万亩,从而2006年全省茶叶种植产茶的总产量为267.20.05213.8944⨯=(万吨).5分据题意,得213.8944(1)22p +=,解方程,得1 1.26p +±≈, ∴0.26p = 或 2.26p =-(舍去),从而增长率为26%p =.答:2006年至2008年全省年产茶总产量的平均增长率为26%. 8分14. 解法一:设第二次采购玩具x 件,则第一次采购玩具(10)x -件,由题意得1001150102x x+=- 整理得 211030000x x -+= 解得 150x =,260x =.经检验150x =,260x =都是原方程的解.当50x =时,每件玩具的批发价为150503÷=(元),高于玩具的售价,不合题意,舍去;当60x =时,每件玩具的批发价为15060 2.5÷=(元),低于玩具的售价,符合题意,因此第二次采购玩具60件.解法二:设第一次采购玩具x 件,则第二次采购玩具(10)x +件,由题意得1001150210x x +=+ 整理得 29020000x x -+= 解得 140x =,250x =.经检验,140x =,250x =都是原方程的解.第一次采购40件时,第二次购401050+=件,批发价为150503÷=(元)不合题意,舍去;第一次采购50件时,第二次购501060+=件,批发价为15060 2.5÷=(元)符合题意,因此第二次采购玩具60件.15. 解:(1)设平均每次下调的百分率为x ,根据题意得:()2500014050x -=解此方程得:121191010x x ==,(不符合题意,舍去) 10x ∴=%答:平均每次下调的百分率为10%. (2)方案一:100405098%396900⨯⨯=(元) 方案二:1004050 1.5100122401400⨯-⨯⨯⨯=(元)∴方案一优惠.。
人教版九年级上册数学一元二次方程同步训练(含答案)
人教版九年级上册数学21.1一元二次方程同步训练一、单选题1.下列方程是一元二次方程的是( )A .2x -3=0B .2x -y =0C .20ax bx c ++= D .22310x x +-= 2.已知2x =-是方程220x ax ++=的一个根,则a 的值为( ) A .1 B .-1 C .3 D .3- 3.如果(m ﹣3)x 2+5x ﹣2=0是一元二次方程,则( )A .m ≠0B .m ≠3C .m =0D .m =3 4.若关于x 的方程2240x ax a ++=有一个根为3-,则a 的值是( ) A .9 B .4.5 C .3 D .3- 5.已知x m =是一元二次方程210x x --=的一个根,则代数式22021m m -+的值为( )A .2021B .2022C .2023D .20246.如果关于x 的一元二次方程()223390m x x m -++-=,有一个解是0,那么m 的值是( )A .3B .3-C .3±D .0或3- 7.若2x =是关于x 的一元二次方程20ax x b --=的一个根,则282a b +-的值为( )A .0B .2C .4D .6 8.将方程2315x x +=化成20ax bx c ++=的形式,则a ,b ,c 的值分别为( ) A .3,5,1B .3,5,-1C .3,-5,-1D .3,-5,1二、填空题9.把一元二次方程2244169x x x x -+=++化成一般形式是_________. 10.若2(3)10m x x --+=是关于x 的一元二次方程,则m 的取值范围是________. 11.关于x 的方程20x mx +=的一个根是2-,则m 的值为___________. 12.一元二次方程23470x x -+=的一次项系数是_________.13.若1x =是一元二次方程240x x m -+=的一个根,则m 的值为______. 14.若x a =是一元二次方程2620210x x --=的一个根,则261a a -+的值是______. 15.若()()2110m m x m x ++--=是关于x 的一元二次方程,则m 的值是______. 16.若关于x 的一元二次方程(m ﹣2)x 2+2x +(m 2﹣4)=0有一个根是0,则m =_____.三、解答题17.学完一元二次方程后,在一次数学课上,同学们说出了一个方程的特点:①它的一般形式为ax2+bx+c=0(a、b、c为常数,a≠0)①它的二次项系数为5①常数项是二次项系数的倒数的相反数你能写出一个符合条件的方程吗?18.当m为何值时,关于x的方程(m21mx +2(m﹣1)x﹣1=0是一元二次方程?19.已知﹣1是方程x2+ax﹣b=0的一个根,求a2﹣b2+2b的值.20.已知关于x的方程(m﹣1)x2+(m﹣2)x﹣2m+1=0.(1)m为何值时,此方程是一元一次方程?求出该一元一次方程的解;(2)m为何值时,此方程是一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数和常数项.参考答案:1.D2.C3.B4.B5.B6.B7.D8.D9.231080x x--=10.3m≠11.212.-413.314.202215.216.﹣217.5x2-2x-15=0(答案不唯一)18.m19.120.(1)m=1;x=﹣1(2)m≠1;二次项系数为m﹣1,一次项系数为m﹣2,常数项为﹣2m+1答案第1页,共1页。
初三数学上册课堂同步训练:用一元二次方程解决问题》-学习文档
初三数学上册课堂同步训练:用一元二次方程解
决问题》
知识,有助于沟通个人与外部世界的联系,使学生认识丰富多彩的世界,获取信息和知识,拓展视野。
快一起来阅读初三数学上册课堂同步训练吧。
1.在疾病的传播过程中,第一轮的传染源有1人,他传染给_______人,则第二轮的传染源有__人,共有__人在第二轮传染中被传染;两轮传染中总共有__人传染.
2.将传染问题公式化:有1人开始传染,第一轮传染给人,第二轮以同样的速度传染,两轮过后共有n人传染,可列方程为__.
3.九(3)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了420本图书,如果设全组共有名同学,依题意,可列出的方程是 ( )
4. 看下列一组数据:四边形有4个顶点,2条对角线;五边形有5个顶点,5条对角线;六边形有6个顶点,9条对角线__
(1) 则一个n边形(n3)有__条对角线;
(2) 若某一多边形对角线的条数为170条,则它的内角和为__.
5. 有一人患了流感,经过两轮传染后,共有144人患了流感.若设每轮传染中平均每人传染了人,则可列方程为__ .
6. 一次篮球锦标赛,每个队都进行了3场比赛后,有6个队被淘汰,剩下的队进行单循环赛,共进行了39场比赛,共有__个球队.
7. 由于雾霾影响,某地区前阶段呼吸道病又悄然进人幼儿园.据资料显示,若不进行有效控制,一个幼儿患病,经两轮传染,将有36人患病.问:
(1) 每一轮平均一个病)L能传染几人?
(2) 经三轮传染后,共有多少人患病?
现在是不是感觉查字典数学网初中频道为大家准备的初三数学上册课堂同步训练很关键呢?欢迎大家阅读与选择!。
人教版九年级上册数学同步练习《一元二次方程》(习题+答案)
21.1 一元二次方程内容提要1.只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.2.一元二次方程的一般形式是20ax bx c ++=(,,a b c 是已知数,且0a ≠).其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.基础训练1.如果4x =是一元二次方程223x x a -=的一个根,则常数a 的值是( ) A .2B .2-C .2±D .42.下列方程中是关于x 的一元二次方程的是( ) A .2210x x += B .20ax bx c ++= C .()()121x x -+= D .223250x xy y --=3.下列方程中是一元二次方程的是( )①()2210x +=;②26x y +=;③2450x x --=;④24505x -= A .①③④B .①④C .①③D .③④4.把方程()2235x -=化成一元二次方程的一般形式是. 5.若1x =是一元二次方程20x x c ++=的一个解,则2c =.6.已知1x =是一元二次方程20x mx n ++=的一个根,则222m mn n ++的值为.7.将下列方程化成一元二次方程的一般形式,并写出它们的二次项系数、一次项系数及常数项.(1)245x x -=; (2)24132x x =-; (3)26y y =.8.已知1x =是一元二次方程2400ax bx +-=的一个解,且a b ≠,求2222a b a b--的值.能力提高1.已知1是关于x 的一元二次方程()2110m x x -++=的一个根,则m 的值是( ) A .1B .1-C .0D .1-或12.a 是方程2230x x --=的一个解,则263a a -的值为( )A .3B .3-C .9D .9-3.若1x =是关于x 的一元二次方程230x mx n ++=的解,则62m n += .4.已知关于x 的方程224220x x p p --++=的一个根为p ,则p =.5.已知1x =-是一元二次方程20x mx n ++=的一个根,则222m mn n -+的值为.6.若实数m 满足210m +=,则44m m -+= .7.已知2510m m --=,则22125m m m -+=.8.2010年亚运会在广州举办,组委会决定对志愿者进行分批培训,某中学学生思思已受训合格,成为该校唯一的一名合格志愿者,并由她负责培训本校的第一批志愿者,再由思思和参加第一批培训且合格的志愿者培训第二批志愿者.已知参加两批培训的志愿者全部合格,经两批培训后,该校共有121名合格志愿者,若设该校每批培训中每个志愿者平均培训x 人,请列出满足条件方程. 拓展探究1.关于x 的方程()228192130m m x mx -++-=是否一定是一元二次方程,勤勤、聪聪两同学有不同意见.勤勤认为:原方程中二次项系数与m 有关,可能为零,所以不能确定这个方程就一定是一元二次方程.聪聪认为:原方程中二次项系数()2228198163433m m m m m -+=-++=-+≥,肯定不会等于零,所以可以确定这个方程一定是一元二次方程.你认为勤勤、聪聪两同学的意见谁正确?你从中有什么收获?2.教材或资料会出现这样的题目:把方程2122x x -=化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项,现在把上面的题目改编为下面的两个小题,请解答:(1)下列式子中,有哪几个是方程2122x x -=所化成的一元二次方程的一般形式?(答案只写序号)①21202x x --=;②21202x x -++=;③224x x -=;④2240x x -++=;⑤20--=.(2)方程2122x x -=化为一元二次方程的一般形式,它的二次项系数、一次项系数、常数项之间具有什么关系?21.1 参考答案:基础训练1.C 2.C 3.A 4.2212130x x-+=5.4 6.17.(1)2450x x--=,其中二次项系数为1,一次项系数为4-,常数项为5-;(2)242130x x+-=,其中二次项系数为4,一次项系数为2,常数项为13-;(3)260y y-+=,其中二次项系数为6-,一次项系数为1,常数项为0.8.()()()2220 2222a b a ba b a ba b a b+--+=== --.能力提高1.B 2.C 3.2-4.1 5.1 6.62 7.28 8.()11121x x x+++=拓展探究1.聪聪正确.2.解:(1)①②④⑤(2)若设它的二次项系数为()0a a≠,则一次项系数为2a-、常数项为4a-.。
人教版九年级数学上册解一元二次方程 同步练习含答案【优选范本】
21.2专题训练 一元二次方程的解法及配方法的应用一、一元二次方程的解法1.用直接开平方法解方程:(1)(4x -1)2=225;解:x 1=4,x 2=-72(2)13(x -2)2=8; 解:x 1=2+26,x 2=2-2 6(3)9x 2-6x +1=9;解:x 1=43,x 2=-23(4)3(2x +1)2-2=0.解:x 1=-12+66,x 2=-12-662.用配方法解方程:(1)2t 2-3t =-1;解:t 1=12,t 2=1(2)2x 2+5x -1=0;解:x 1=-5+334,x 2=-5-334(3)(2x -1)(3x -1)=3-6x ;解:x 1=12,x 2=-23(4)(2x -1)2=x(3x +2)-7.解:x 1=4,x 2=23.用公式法解方程:(1)x 2=6x +1;解:x 1=3+10,x 2=3-10(2)0.2x 2-0.1=0.4x ;解:x 1=2+62,x 2=2-62(3)2x -2=2x 2.解:原方程无实数根4.用因式分解法解方程:(1)(x -1)2-2(x -1)=0;解:x 1=3,x 2=1(2)5x(x -3)=(x -3)(x +1);解:x 1=3,x 2=14(3)(x +2)2-10(x +2)+25=0.解:x 1=x 2=35.用适当的方法解方程:(1)2(x -3)2=x 2-9;解:x 1=3,x 2=9(2)(2x +1)(4x -2)=(2x -1)2+2;解:x 1=-1+62,x 2=-1-62(3)(x +1)(x -1)+2(x +3)=8.解:x 1=1,x 2=-3二、配方法的应用(一)最大(小)值6.利用配方法证明:无论x 取何实数值,代数式-x 2-x -1的值总是负数,并求出它的最大值.解:-x 2-x -1=-(x +12)2-34,∵-(x +12)2≤0,∴-(x +12)2-34<0,故结论成立.当x =-12时,-x 2-x -1有最大值-347.对关于x 的二次三项式x 2+4x +9进行配方得x 2+4x +9=(x +m)2+n.(1)求m ,n 的值;(2)求x 为何值时,x 2+4x +9有最小值,并求出最小值为多少?解:(1)∵x 2+4x +9=(x +m)2+n =x 2+2mx +m 2+n ,∴2m =4,m 2+n =9,∴m =2,n =5(2)∵m=2,n=5,∴x2+4x+9=(x+2)2+5,∴当x=-2时,有最小值是5(二)非负数的和为08.已知a2+b2+4a-2b+5=0,求3a2+5b2-5的值.解:∵a2+b2+4a-2b+5=0,∴(a2+4a+4)+(b2-2b+1)=0,即(a+2)2+(b-1)2=0,∴a=-2,b=1.∴3a2+5b2-4=3×(-2)2+5×12-5=129.若a,b,c是△ABC的三边长且满足a2-6a+b2-8b+c-5+25=0,请根据已知条件判断其形状.解:等式变形为a2-6a+9+b2-8b+16+c-5=0,即(a-3)2+(b-4)2+c-5=0,由非负性得(a-3)2=0,(b-4)2=0,c-5=0,∴a=3,b=4,c=5.∵32+42=52,即a2+b2=c2,∴△ABC为直角三角形。
人教版九年级数学上一元二次方程期中复习题及答案.doc
一元二次方程复习与测试班级: 姓名: 得分:一、选择题(每小题3分,共30分)1.若(a -1)x 2+bx +c =0是关于x 的一元二次方程,则( ) A .a ≠0 B .a ≠1 C .a =1 D .a ≠-12.一元二次方程2x 2-(m +1)x +1=x (x -1)化成一般形式后二次项的系数为1,一次项的系数为-1,则m 的值为( )A .-1B .1C .-2D .23.用配方法解方程x 2-23x -1=0,正确的配方为( )A.⎝ ⎛⎭⎪⎫x -132=89B.⎝ ⎛⎭⎪⎫x -232=59C.⎝ ⎛⎭⎪⎫x -132+109=0D.⎝⎛⎭⎪⎫x -132=1094.一元二次方程x 2+x +14=0的根的情况是( )A .有两个不等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.一元二次方程x 2=3x 的根是( )A .x =3B .x =0C .x 1=0,x 2=3D .x 1=0,x 2=-36.若x 1,x 2是一元二次方程x 2+4x +3=0的两个根,则x 1x 2的值是( ) A .4 B .3 C .-4 D .-37.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是( )A .-3,2B .3,-2C .2,-3D .2,38.某品牌服装原价173元,连续两次降价后售价为127元,设两次降价的百分率为x,则下面所列方程中正确的是( )A .173(1+x )2=127B .173(1-2x )=127C .173(1-x )2=127D .127(1+x )2=1739.某城市为绿化环境,改善城市容貌,计划经过两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是( )A .19%B .20%C .21%D .22% 10.一个面积为120 cm 2的矩形花圃,它的长比宽多2 m ,则花圃的长是( ) A .10 m B .12 m C .13 m D .14 m二、填空题(每小题3分,共24分)11.方程(m +2)x |m |+3mx +5=0是关于x 的一元二次方程,则m =_______________.12.把一元二次方程(x -3)2=5化为一般形式为________________,二次项为________,一次项系数为__________,常数项为________.13.x 2+2x -5=0配方后的方程为____________.14.如果(m+n)(m+n+5)=0,则m+n=______.15.已知方程x2-3x+m=0的一个根是1,则它的另一个根是______,m的值是______.16.已知x1,x2是方程x2-3x-3=0的两根,不解方程可求得x21+x22=________.17.方程x(x-1)=x的解是________.18.有一个两位数等于其数字之和的4倍,其十位数字比个位数字小2,则这个两位数是________.三、解答题(共46分)19.(每题4分,共8分)解下列一元二次方程:(1)2x2-8x=0; (2)x2-3x-4=0.20.(本题6分)已知关于x的一元二次方程(2m-1)x2+3mx+5=0有一根是x=-1,求m的值.21.(本题10分)已知关于x的一元二次方程x2-mx-2=0.(1)对于任意实数m,判断此方程根的情况,并说明理由;(2)当m=2时,求方程的根.22.(本题10分)已知关于x的一元二次方程x2+(2m-3)x+m2=0的两个不相等的实数根α,β满足1α+1β=1,求m的值.23.(本题12分)某西瓜经营户以2元/千克的进价购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,该经营户要想每天赢利200元,应将每千克小型西瓜的售价降低多少元?参考答案:1——5BB DBC 6——10BACBB11、2 12、x 2-6x+4=0 x 2 -6 413、(x +1)2=6 14、0或-5 15、2 2 16、3 17、0 2 18、24 19、(1)x 1=0,x 2=4(2)x 1=4,x 2=-120、解:把x =-1代入原方程,得2m -1-3m +5=0,解得m =4. 21、解:(1)Δ=b 2-4ac =m 2+8,∵对于任意实数m ,m 2≥0, ∴m 2+8>0.∴对于任意的实数m ,方程总有两个不相等的实数根. (2)当m =2时,原方程变为x 2-2x -2=0,∵Δ=b 2-4ac =(-2)2-4×1×(-2)=12,∴x =2±122.解得x 1=1+3,x 2=1- 3.22、解:∵方程有两个不相等的实数根,∴Δ>0.∴(2m -3)2-4m 2>0.解得m <34.∵1α+1β=1,即α+βαβ=1. ∴α+β=αβ.又α+β=-(2m -3),αβ=m 2. 代入上式,得3-2m =m 2. 解得m 1=-3,m 2=1.∵m 2=1>34,故舍去.∴m =-3.23、解:设每千克小型西瓜的售价降低x 元,根据题意,得(3-2-x )·⎝ ⎛⎭⎪⎫200+x0.1×40-24=200,整理,得50x -25x +3=0,解得x 1=0.2,x 2=0.3.又为了促销,减少租房等固定成本 所以x 1=0.2舍去,只取x=0.3答:应将每千克小型西瓜的售价降低0.3元.。
人教版九年级上册 一元二次方程的应用 同步练习
一元二次方程的应用一、知识点1、握手问题;2、感冒问题;3、增长率问题二、知识学习1、回顾知识:(1)一元二次方程解法;(2)根的判别式;(3)根与系数的关系。
2、握手问题例1、参加聚会的每两个人都握了一次手,所有人共握手10次,有多少人参加聚会?例2、一个凸多边形共有20条对角线,它是几边形?是否存在有18条对角线的多边形?如果存在,它是几边形?如果不存在,请说明理由。
3、感冒问题例3、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?:如果按照这样的传染速度,三轮后有多少人患流感?4、增长率问题(1)平均增长率问题例4、某新华书店计划第一季度共发行图书122万册,其中一月份发行图书32万册,二、三月份平均每月增长率相同,求二、三月份各应发行图书多少万册?例5 某商厦二月份的销售额为100万元,三月份销售额下降了20%。
商厦从四月份起改进经营措施,销售额稳步上升,五月份销售额达到135.2万元,试求四、五两个月的平均增长率.(2)非平均增长率问题例6、已知某商店3月份的利润为10万元,5月份的利润为12.32万元,5月份月增长率比4月份增加了2个百分点.求4月份的月增长率.三、检测练习1、一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共 ( ).A .12人B .18人C .9人D .10人2、.某厂今年一月的总产量为500吨,三月的总产量为720吨,平均每月增长率是x ,列方程( )A.500(12)x +=720 B. 2500(1)720x += C. 2500(1)720x += D. 2720(1)500x -=3、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?4、某种细菌,一个细菌经过两轮繁殖后,共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌?5、参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签了45份合同,共有多少家公司参加商品交易会?6、参加一次足球联赛的每两队之间都进行两次比赛,共要比赛90场,共有多少队参加比赛?7、初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人?8、某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率相同,求两次降价的百分率.9、某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份营业额达到633.6万元,求3月份到5月份营业额的平均月增长率。
人教版九年级上册数学同步练习《实际问题与一元二次方程》(习题+答案)
21.3 实际问题与一元二次方程内容提要1.列一元二次方程解应用题应注意各类应用题中常见的等量关系,注意挖掘题目中隐含的等量关系.2.本节主要讨论增长率问题、几何图形面积问题、传播类型问题.应用一元二次方程解决实际问题时,也像以前学习一元一次方程一样,注意分析题意,抓住主要的数量关系,列出方程,把实际问题转化为数学问题来解决.3.求得方程的解后,注意检验其结果是否符合题意,然后得到原问题的解答. 基础训练(1)二次增长类型1.某商品原价为200元,连续两次降价%a 后售价为148元,下面所列方程正确的是( )A .()22001%148a +=B .()22001%148a -=C .()2200%148a +=D .()2200%148a -=2.某地区2013年投入教育经费2500万元,预计2015年投入教育经费3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A .225003600x =B .()2250013600x +=C .()225001%3600x +=D .()()225001250013600x x +++= 3.由于国家出台对房屋的限购令,某地房屋价格原价为2400元/平方米,通过连续两次降价%a 后,售价变为2000元/平方米,下列方程中正确的是( )A .()224001%2000a -=B .()220001%2400a -=C .()224001%2000a +=D .()224001%2400a -=4.某商场在促销活动中,将原价36元的商品,连续两次降价%m 后现价为25元.根据题意可列方程为 .5.某地区以旅游业为龙头的服务业将成为推动该区经济发展的主要动力.2013年全区全年旅游总收入大约1000亿元,如果到2015年全区全年旅游总收入要达到1440亿元,那么年平均增长率应为 .6.某公司只生产普通汽车和新能源汽车,该公司在去年的汽车产量中,新能源汽车占总产量的10%,今年由于国家能源政策的导向和油价上涨的影响,计划将普通汽车的产量减少10%,为保持总产量与去年相等,那么今年新能源汽车的产量应增加的百分数为.7.据报道,某市农作物秸秆的资源巨大,但合理利用量十分有限,2013年的利用率只有30%,大部分秸秆被直接焚烧了,假定该市每年产出的农作物秸秆总量不变,且合理利用量的增长率相同,要使2015年的利用率提高到60%,求每年的增长率. 1.41)8.某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工需比乙工程队单独施工多用30天才能完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队单独做a天后,再由甲、乙两工程队合作多少天(用含a的代数表示)可完成此项工程?(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使总施工费不超过64万元?基础训练1.某中学准备建一个面积为2375m的矩形游泳池,且游泳池的宽比长短10m.设游泳池的长为xm,则可列方程()A.()10375x x+=x x-=B.()10375C.()2210375x x+=x x-=D.()22103752.在一幅长60cm,宽40cm的矩形中学生书画作品的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个作品的面积是22816cm,设金色纸边的宽为xcm,那么x满足的方程是()A.()()++=6024022816x xB .()()60402816x x ++=C .()()602402816x x ++=D .()()604022816x x ++=3.某经济开发区今年一月份工业产值达50亿元,第一季度总产值为175亿元,问二月、三月平均每月的增长率是多少?设平均每月增长的百分率为x ,根据题意列得方程为( )A .()2501175x +=B .()250501175x ++=C .()()2501501175x x +++=D .()()250501501175x x ++++=4.一块正方形钢杆上截去3cm 宽的长方形钢条,剩下的面积是254cm ,则原来这块钢板的面积是 2cm .5.某小区准备在每两幢楼房之间开辟面积为300平方米的一块长方形绿地,并且长比宽多10米,设长方形绿地的宽为x 米,则可列方程为 .6.如图,为美化校园环境,某校计划在一块长为60米、宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米.(1)用含a 的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的38,求出此时通道的宽.7.思思家有一块长8m 、宽6m 的矩形空地,妈妈准备在该空地上建造一个花园,并使花园面积为空地面积的一半,思思设计了如下的四种方案供妈妈挑选,请你选择其中的一种方案帮思思求出图中的x 值.基础训练(3)传播类型1.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为( )A .8人B .9人C .10人D .11人2.一月份某地发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x ,依题意列出方程正确的是( )A .()21001250x +=B .()()210011001250x x +++=C .()21001250x -=D .()1001x +3.要某次聚会上,每两人都握了一次手,所有人共握手10次,设有x 人参加这次聚会,则列出方程正确的是( )A .()110x x -=B .()1102x x -= C .()110x x += D .()1102x x +=4.有4支球队要进行篮球比赛,赛制为单循环形式(每两队之间都赛一场),则一共需比赛场.5.2011年甲型H1N1流感病毒在某地有蔓延趋势,世界卫生组织提出各国要严加防控,因为曾经有一种流感病毒,若一人患了流感,经过两轮传染后共有81人患流感.如果设每轮传染中平均一个人传染x个人,那么可列方程为.6.由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降,由原来每千克16元下调到每千克9元.设平均每次下调的百分率为x,则根据题意可列方程为.7.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮传染后就会有81台电脑被感染,请你用学过的知识分析,每轮传染中平均一台电脑会传染几台电脑?若病毒得不到有效控制,3轮传染后,被传染的电脑会不会超过700台?8.一种电脑病毒NHK传播速度极快,每台带NHK病毒的电脑一天能传染若干台.(1)现有一台电脑感染上这种NHK病毒,开始两天共有225台电脑感染上NHK病毒,每台电脑每天平均传染了几台?(2)两天后,启用新的杀毒软件“小北毒霸”,平均一天一台带NHK病毒电脑以少传染5台的速度在递减,再过两天,共有多少台电脑感染上NHK病毒?能力提高1.在一幅长为80cm,宽为50cm的矩形中学生书画作品的四周镶一条相同的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个作品的面积是25400cm,设金色纸边的宽为xcm,那么x满足的方程是()A.213014000x x+-=+-=B.2653500x xC.213014000--=x xx x--=D.26535002.关于x 的方程的两根分别为13x =-,22x =,则这个方程可以为( )A .()()320x x --=B .()()320x x ++=C .()()320x x -+=D .()()320x x +-= 3.根据下列表格的对应值: x 3.233.24 3.25 3.26 2ax bx c ++0.06- 0.02- 0.03 0.07 判断方程20ax bx c ++=(0a ≠,a ,b ,c 为常数)的一个解x 的范围是( )A .3 3.23x <<B .3.23 3.24x <<C .3.24 3.25x <<D .3.25 3.26x <<4.如图,在宽为20m ,长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地,根据图中数据,计算耕地的面积为 .5.填空:22x x ++( )()22_______x =+.6.跳水运动员李玲从10米高台上跳水,她跳下的高度h (单位:米)与所用时间t (单位:秒)的关系是()()521h t t =--+,她从起跳到入水所用的时间是 .7.用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为()217x cm +,正六边形的边长为()22x x cm +(其中0x >).求这两段铁丝的总长.8.某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克.若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?9.某火车站从去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)10.为了倡导节能低碳的生活,某公司对集体宿舍用电作如下规定:一间宿舍一个月用电量若不超过a千瓦时,则一个月的电费为20元;若超过a千瓦时,则除了交20元外,超过部分每千瓦时要交100a 元.某宿舍3月份用电80千瓦时,交电费35元. (1)求a 的值; (2)该宿舍5月份交电费为45元,那么该宿舍当月用电量为多少千瓦时?拓展探究1.思思和同桌聪聪在课后复习时,对一道思考题进行了探索:一架2.5米长的梯子AB 斜靠在竖直的墙AC 上,这时B 到墙C 底端的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B 将向外移动多少米?(1)请你将思思对思考题的解答补充完整:解:设点B 将向外移动x 米,即1BB x =,10.7B C x =+,2211 2.50.70.42AC AC AA =--=. 而11 2.5A B =,在11Rt A B C ∆中,由2221111B C A C A B +=,得方程 ,解方程得1x =,2x = . ∴点B 将向外移动米. (2)解完思考题后,聪聪提出:①在思考题中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?②在思考题中,梯子的顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离,有可能相等吗?为什么?2.把一边长为40cm 的正方形硬纸板进行适当的剪裁,折成一个长方体盒子(纸板的厚度忽略不计).(1)如图,若在正方形硬纸板的四角各剪掉一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.①要使折成的长方体盒子的底面积为2484cm ,那么剪掉的正方形的边长为多少? ②折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分拆成一个有盖的长方体盒子,若折成的一个长方体盒子的表面积为2550cm ,求此时长方体盒子的长、宽、高(只需求出符合要求的一种情况).3.某校为培养青少年科技创新能力,举办了动漫制作活动,思思设计了点做圆周运动的一个雏形.如图所示,甲、乙两点分别从直径的两端点A ,B 以顺时针、逆时针的方向同时沿圆周运动.甲运动的路程l (cm)与时间t (s)满足关系:()213022l t t t =+≥,乙以4/cm s 的速度匀速运动,半圆的长度为21cm.(1)甲运动4s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运用了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?4.低碳生活的理念已逐步被人们所接受.据相关资料统计:一个人平均一年节约的用电,相当于减排二氧化碳约18千克;一个人平均一年少买的衣服,相当于减排二氧化碳约6千克.问题解决:甲、乙两校分别对本校师生提出“节约用电”“少买衣服”的倡议.2012年两校响应本校倡议的人数共60人,因此而减排的二氧化碳总量为600千克.(1)2012年两校响应本校倡议的人数分别为多少?(2)2012年到2014年,甲校响应本校倡议的人数每年增加相同的数量;乙校响应本校倡议的人数每年按相同的百分率增长.2013年乙校响应本校倡议的人数是甲校响应本校倡议人数的2倍;2014年两校响应本校倡议的总人数比2013年两校倡议的总人数多100人.求2014年两校因响应本校倡议减排二氧化碳的总量.数学应用请阅读下列材料:已知方程210x x +-=,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y ,则2y x =,所以2y x =.把2y x =代入已知方程,得21022y y ⎛⎫+-= ⎪⎝⎭.化简,得2240y y +-=,故所求方程为2240y y +-=.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式):(1)已知方程220x x +-=,求一个一元二次方程,使它的根分别是已知方程根的3倍,则所求方程为 ;(2)已知关于x 的一元二次方程20ax bx c ++=有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.应用2构造一元二次方程解决较复杂的几何问题:如图,等腰直角三角形ABC的直角边AB=,点P从A点出发,沿射线AB运动,点Q从点C出发,以相同的速度沿BC的延长2线运动,PQ与直线AC交于点D.当AP的长为何值时,PCQ∆的面积相等?∆与ABC数学应用1.解一元二次方程要观察方程的特点,灵活选取适当的方法来解.一般地,用配方法可以解任意一个一元二次方程.但对形如20a≠的一元二次方程,采用因式分解法+=()0ax bx求解更为简便.2.本章中还渗透了一些重要的数学思想方法,如在利用配方法解题过程中,体现了一种重要的数学思想方法——化归,即把一个一般的一元二次方程转化为“()2+=”的形x a b式;用配方法、公式法和因式分解法解一元二次方程时,抓住“降次”这一基本策略.在学习过程中,同学们应多加体会.3.列一元二次方程解应用题应注意各类应用题中常见的等量关系:(1)与几何图形有关的问题:这类应用题经常用到的几何知识有:①面积公式;②勾股定理.(2)有关增长率(或降低率)的问题:①若原有值为a,平均增长率为x,则一次增长后的值为()+,二次增长后的值为()2a x1+;②若原有值为b,平均降低率为y,则一a x1次降低后的值为()b y-,二次降低后的值为()21-;③解决这类问题时,如果原有值没b y1有具体给出,那么我们通常把它设为单位1.4.方程是一种重要的数学模型,许多代数、几何问题以及实际问题可以通过构造一元二次方程来解决.数学文化塔塔利亚发现的一元三次方程的解决1494的,意大利数学家帕西奥利对三次方程进行过艰辛的探索后作出极其悲观的结论.他认为在当时的数学中,求解三次方程,犹如化圆为方问题一样,是根本不可能的.费罗在帕西奥利作出悲观结论不久,大约在1500年左右,得到了3x mx n +=这样一类缺项三次方程的求解公式.大约1510年左右,帕西奥利将这一成果传给他的学生菲奥尔.1534年塔塔利亚宣称自己已得到了形如32x mx n +=这类没有一次项的三次方程的解的方法.菲奥尔与塔塔利亚二人相约在米兰进行公开比赛.双方各出三十个三次方程的问题,约定谁解出的题目多谁就获胜.塔塔利亚在1535年2月13日,在参加比赛前夕经过多日的苦思冥想后终于找到了多种类型三次方程的解法.于是在比赛中,他只用了两个小时的时间就轻而易举地解出了对方出的所有题目,而对方对他出的题目却一题都做不出来,这样他以30:0的战绩大获全胜,这次辉煌的胜利为塔塔利亚带来轰动一时的荣誉,塔塔利亚为这次胜利所激励,更加热心于研究一般三次方程的解法.到1541年,终于完全解决了三次方程的求解问题,卡尔达诺在此之前对三次方程求解问题已进行过长时间的研究,却没有得到结果.于是多次向塔塔利亚求教,开始都被塔塔利亚拒绝了.但最终在卡尔达诺立下永不泄密的誓言后,他于1539年3月25日向卡尔达诺公开了自己的秘密.但卡尔达诺并没有遵守自己的诺言,1545年他出版《大术》一书,将三次方程解法公之于众,从而使自己在数学界声名鹊起.由于卡尔达诺最早发表了求解三次方程的方法,因而数学上三次方程的解法至今仍被称为“卡达尔诺公式”,塔塔利亚之名反而湮没无闻了.一元三次方程的一般形式是320x sx tx u +++=,如果作一个横坐标平移3s y x =+,那么我们就可以把方程的二次项消去,所以我们只要考虑形如3x px q =+的三次方程.假设方程的解x 可以写成x a b =-的形式,这里a 和b 是待定的参数.代数方程,我们就有()322333a a b ab b p a b q -+-=-+,整理得()()333a b a b p ab q -=-++,由二次方程理论可知,一定可以适当选取a 和b ,使得在x a b =-的同时30ab p +=,这样上式就成为33a b q -=,两边各乘以327a ,就得到6333272727a a b qa -=,由3p ab =-可知6332727a p qa +=.这是一个关于3a的二次方程,所以可以解得a.进而可解出b和根x.学业评价21.3 参考答案:基础训练(1)1.B 2.B 3.D 4.()2361%25m -= 5.20% 6.90%7.设每年产出的农作物秸秆总量为a ,合理利用量的增长率是x ,由题意得()230%160%a x a ⋅⋅+=⋅,即()212x +=.所以10.41x ≈,2 2.41x ≈-(不合题意,舍去).故0.41x ≈,即每年秸秆合理利用量的增长率约是41%.8.(1)设乙单独做x 天完成此项工程,由题意得1120130x x ⎛⎫+= ⎪+⎝⎭,整理得2106000x x --=,解得130x =,220x =-,经检验:130x =,220x =-都是分式方程的解,但220x =-不符合题意舍去. 答:甲、乙两工程队单独完成此项工程各需要60天、30天.(2)设甲独做a 天后,甲、乙再合做203a ⎛⎫- ⎪⎝⎭天,可以完成此项工程. (3)由题意得()11 2.520643a a ⎛⎫⨯++-≤ ⎪⎝⎭,解得36a ≥. 答:甲工程队至少要独做36天后,再由甲、乙两工程队合作完成剩下的工程,才能使总施工费不超过64万元.基础训练(2)1.A 2.A 3.D 4.81 5.()10300x x +=6.(1)()()402602a a -- (2)57.方案一:根据题意,得()()186862x x --=⨯⨯,解得112x =,22x =.112x =不合题意,舍去,∴2x =,其他方案略.基础训练(3) 1.B 2.B 3.B 4.6 5.()1181x x x +++=或()2181x += 6.()21619x -=7.设每轮传染中平均每一台电脑会传染x 台电脑,依题意得()1181x x x +++=,()2181x +=,19x +=或19x +=-,18x =或210x =-(舍去),()()23118729700x +=+=>.答:每轮传染中平均每一台电脑会传染8台电脑,3轮传染后,被传染的电脑会超过700台.8.(1)设每台感染NHK 病毒电脑每天传染x 台,依题意得()11225x x x +++=,()21225x +=,115x +=±,114x =,216x =-(不合题意,舍去). 答:每台每天平均传染了14台.(2)第三天感染上NHK 病毒电脑有:()2252251452250+-=,第四天感染上NHK 病毒电脑有:()22502250145511250+--=答:第四天共有11250台电脑感染上NHK 病毒.能力提高1.B 2.D 3.C 4.2551m 5.18 146.2秒 7.由已知得,正四边形周长为()2517x +cm ,正六边形周长为()262x x +cm ,因为正五边形和正六边形的周长相等,所以()()2251762x x x +=+.整理得212850x x +-=,解得15x =,217x =-(舍去),故正五边形的周长为()25517210⨯+=(cm),又因为两段铁丝等长,所以这两段铁丝的总长为420cm .8.(1)解:设每千克核桃应降价x 元.根据题意,得()60401002022402x x ⎛⎫--⋅+⨯= ⎪⎝⎭.解得14x =,26x =.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为60654-=(元),54100%90%60⨯=. 答:该店应按原售价的九折出售.9.(1)设甲队单独完成这项工程需要x 个月,则乙队单独完成这项工程需要()5x -个月.由题意得()()565x x x x -=+-,解得12x =,215x =,因为12x =不合意,舍去,故15x =,510x -=. 答:甲队单独完成这项工程需要15个月,乙队单独完成这项工程需要10个月.(2)设在完成这项工程中甲队做了m 个月,则乙队做了2m 个月,由题意知:乙队每月的施工费为150万元,根据题意列不等式得10015015002m m +⨯≤,解得487m ≤,∵m 为正整数,∴m 的大整数值为8.答:完成这项工程,甲队最多施工8个月.10.(1)()802035100a a -+=.解得150a =,230a =.∵45a ≥,230a =不合题意,舍去.∴50a =. (2)设宿舍5月份用电量为x 千瓦时,()50502045100x -⨯+=,解得100x =, 答:该宿舍5月份用电量为100千瓦时.拓展探究 1.(1)()2220.72 2.5x ++= 0.8 2.2-(舍去) 0.8(2)①不会是0.9米 ②有可能.设梯子顶端从A 处下滑x 米,则有()()2220.7 2.4 2.5x x ++-=,解得 1.7x =或0x =(舍去). 2.(1)①设剪掉的正方形的边长为x cm ,则()2402484x -=,解得131x =(不合题意,舍去),29x =,∴剪掉的正方形的边长为9cm . ②侧面积有最大值.设剪掉的小正方形的边长为x cm ,盒子的侧面积S 为()4402x x -2cm ,即()2810800S x =--+,∴当10x =时,即当剪掉的正方形的边长为10cm 时,长方形盒子的侧面积最大为2800cm .(2)在如图的一种剪裁图中,设剪掉的长方形盒子的高为x cm .()()()()2402202202402550x x x x x x --+-+-=,解得135x =-(不合题意,舍去),215x =.∴剪掉的正方形的边长为15cm .此时长方体盒子的长为15cm ,宽为10cm ,高为5cm .3.(1)当4t =时,()213441422l cm =⨯+⨯=.答:甲运动4s 后的路程是14cm .(2) 设它们运动了ms 后第一次相遇,根据题意,得21342122m m m ⎛⎫++= ⎪⎝⎭,解得13m =,214m =-(不合题意,舍去).答:甲、乙从开始运动到第一次相遇时,它们运动了3s .(3)设它们运动了ns 后第二次相遇,213421322n n n ⎛⎫++=⨯ ⎪⎝⎭,解得17n =,218n =-(不合题意,舍去).答:甲、乙从开始运动到第二次相遇时,它们运动了7s .4.(1)设2012年甲校响应本校倡议的人数为x 人,乙校响应本校倡议的人数为y 人,依题意得60,186600.x y x y +=⎧⎨+=⎩解得20x =,40y =. ∴2012年甲、乙两校应倡议的人数分别是20人和40人.(2)设2012年到2014年,甲校响应本校倡议的人数每年增加m 人;乙校响应本校倡议的人数每年增长的百分率为n .依题意得()()()()()()2202401,20240120401100.m n m n m n ⎧+⨯=+⎪⎨+++=++++⎪⎩由①得20m n =,代入②并整理得22350n n +-=,解之得11n =,2 2.5n =-(负值舍去). ∴20m =,∴2014年两校响应本校倡议减排二氧化碳的总量:()()22022018401162040+⨯⨯++⨯=(千克). 答:2014年两次响应本校倡议减排二氧化碳的总量为2040千克.数学应用应用1 (1)2390y y +-=(2)设所求方程的根为y ,则()10y x x =≠,于是()10x y y=≠. 把1x y =代入方程20ax bx c ++=,得2110a b c y y ⎛⎫+⋅+= ⎪⎝⎭.去分母,得20a by cy ++=. 若0c =,有20ax bx += ,于是方程20ax bx c ++=有一个根为0,不符合题意.∴0c ≠. 故所求方程为()200cy bx a c ++=≠.应用2 设AP x =,当点P 在线段AB 上时,PCQ ∆与ABC ∆的面积不相等;当点P 在AB 的延长线上时,有()1222PCQ S x x ∆=-=,解得11x =,21x =-(舍去),即1AP =。
人教版九年级数学上册21.1 一元二次方程同步练习题含答案【新编】
人教版九年级数学上册第21章《一元二次方程》同步练习2带答案一、判断题(下列方程中,是一元二次方程的在括号内划“√”,不是一元二次方程的,在括号内划“×”)1.5x 2+1=0 ( )2.3x 2+x 1+1=0 ( ) 3.4x 2=ax (其中a 为常数) ( )4.2x 2+3x =0 ( ) 5.5132+x =2x ( ) 6.22)(x x + =2x ( )7.|x 2+2x |=4 ( )二、填空题1.一元二次方程的一般形式是__________.2.将方程-5x 2+1=6x 化为一般形式为__________.3.将方程(x +1)2=2x 化成一般形式为__________.4.方程2x 2=-8化成一般形式后,一次项系数为__________,常数项为__________.5.方程5(x 2-2x +1)=-32x +2的一般形式是__________,其二次项是__________,一次项是__________,常数项是__________.6.若ab ≠0,则a 1x 2+b1x =0的常数项是__________. 7.如果方程ax 2+5=(x +2)(x -1)是关于x 的一元二次方程,则a __________. 8.关于x 的方程(m -4)x 2+(m +4)x +2m +3=0,当m __________时,是一元二次方程,当m __________时,是一元一次方程.三、选择题1.下列方程中,不是一元二次方程的是_________.[ ]A .2x 2+7=0B .2x 2+23x +1=0C .5x 2+x1+4=0 D .3x 2+(1+x ) 2+1=02.方程x 2-2(3x -2)+(x +1)=0的一般形式是_________.[ ]A .x 2-5x +5=0B .x 2+5x +5=0C .x 2+5x -5=0D .x 2+5=03.一元二次方程7x 2-2x =0的二次项、一次项、常数项依次是_________.[ ]A .7x 2,2x ,0B .7x 2,-2x ,无常数项C .7x 2,0,2xD .7x 2,-2x ,04.方程x 2-3=(3-2)x 化为一般形式,它的各项系数之和可能是_________. [ ]A .2B .-2C .32-D .3221-+5.若关于x 的方程(ax +b )(d -cx )=m (ac ≠0)的二次项系数是ac ,则常数项为_________.[ ]A .mB .-bdC .bd -mD .-(bd -m )6.若关于x 的方程a (x -1)2=2x 2-2是一元二次方程,则a 的值是_________.[ ]A .2B .-2C .0D .不等于27.若x =1是方程ax 2+bx +c =0的解,则_________.[ ]A .a +b +c =1B .a -b +c =0C .a +b +c =0D .a -b -c =08.关于x 2=-2的说法,正确的是_________.[ ]A .由于x 2≥0,故x 2不可能等于-2,因此这不是一个方程B .x 2=-2是一个方程,但它没有一次项,因此不是一元二次方程C .x 2=-2是一个一元二次方程D .x 2=-2是一个一元二次方程,但不能解四、解答题现有长40米,宽30米场地,欲在中央建一游泳池,周围是等宽的便道及休息区,且游泳池与周围部分面积之比为3∶2,请给出这块场地建设的设计方案,并用图形及相关尺寸表示出来。
人教版九年级上册数学《一元二次方程的应用》解决问题专项练习(含答案)
人教版九年级上册数学《一元二次方程的应用》解决问题专项练习(含答案)1.近年来,在市委市政府的宏观调控下,某市的商品房成交均价涨幅控制在合理范围内,由2018年的均价5000元/m2上涨到2020年的均价6050元/m2.(1)试求这两年此市商品房成交均价的年平均增长率;(2)如果房价继续上涨,按(1)中上涨的百分率,请预测2021年此市的商品房成交均价.2.某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂成若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂成多少个有益菌?(2)按照这样的分裂速度,60个活体益生菌经过三轮培植后有多少个有益菌?3.有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字的积的3倍刚好等于这个两位数,求这个两位数.4.某校初二年级以班为单位进行篮球比赛,第一轮比赛是先把全年级平分成A、B两个大组,同一个大组的每两个班都进行一场比赛,这样第一轮A、B两个大组共进行了20场比赛,问该校初二年级共有几个班?5.如图,在一块长8m、宽6m的矩形绿地内,开辟出一个矩形的花圃,使四周的绿地等宽,已知绿地的面积与花圃的面积相等,求花圃四周绿地的宽.6.某商场销售一批名牌衬衫,平均每天能售出20件,每件盈利40元.经调查发现:如果这种衬衫的售价每降低1元时,平均每天能多售出2件.设每件衬衫降价x元.(1)降价后,每件衬衫的利润为元,销量为件;(用含x的式子表示)(2)为了扩大销售,尽快减少库存,商场决定釆取降价措施.但需要平均每天盈利1200元,求每件衬衫应降价多少元?7.“十一”黄金周期间,某旅游区,为吸引游客组团来此旅游,特推出了如下门票收费标准:标准一:如果人数不超过20人,门票价格70元/人;标准二:如果人数超过20人,每超过1人,门票价格降低2元,但门票价格不低于55元/人.(1)若某单位组织22名员工去此旅游区旅游,购买门票共需费用多少元?(2)若某单位共支付此旅游区门票费用共计1500元,试求该单位这次共有多少名员工去此旅游区旅游?8.为促进新旧功能转换,提高经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为25万元,经过市场调研发现,该设备的月销售量y(台)和销售单价x(万元)满足如图所示的一次函数关系.(1)求月销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于35万元,如果该公司想获得130万元的月利润,那么该设备的销售单价应是多少万元?参考答案1.解:(1)设这两年此市商品房成交均价的年平均增长率是x,根据题意得:5000(1+x)2=6050,(1+x)2=1.21,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:这两年此市商品房成交均价的年平均增长率是10%.(2)预测2021年此市的商品房成交均价为:6050(1+10%)=6655(元).答:预测2021年此市的商品房成交均价是6655元.2.解:(1)设每轮分裂中平均每个有益菌可分裂成x个有益菌,由题意,得60x2=24000,解得x1=20,x2=﹣20,∵x>0,∴x=20.答:每轮分裂中平均每个有益菌可分裂成20个有益菌.(2)由题意,得60×203=480000个.答:经过三轮培植后有480000个有益菌.3.解:设十位上的数字为x,则个位上的数字为(x+2),根据题意得:3x(x+2)=10x+(x+2),整理得:3x2﹣5x﹣2=0,解得:x1=2,x2=﹣(不合题意,舍去),∴x+2=4,∴这个两位数为24.4.解:设全年级共有2n个班,由题意得,解得n=5或n=﹣4(舍),2n=10.答:全年级一共10个班.5.解:设花圃四周绿地的宽为x m,依题意,得(8﹣2x)(6﹣2x)=×8×6,整理,得x2﹣7x+6=0,解得:x1=1,x2=6(不合题意,舍去).答:花圃四周绿地的宽为1m.6.解:(1)∵每件衬衫降价x元,∴每件衬衫的利润为(40﹣x)元,销量为(20+2x)件.故答案为:(40﹣x);(20+2x).(2)依题意,得:(40﹣x)(20+2x)=1200,整理,得x2﹣30x+200=0,解得x1=10,x2=20.∵为了扩大销售,增加盈利,尽快减少库存,∴x=20.答:每件衬衫应降价20元.7.解:(1)70﹣2×(22﹣20)=66(元/人),66×22=1452(元).答:购买门票共需费用1452元.(2)设该单位这次共有x名员工去此旅游区旅游,∵1500÷70=21(人),1500÷55=27,∴20<x≤27.依题意,得:x[70﹣2(x﹣20)]=1500,整理,得:x2﹣55x+750=0,解得:x1=25,x2=30(不合题意,舍去).答:该单位这次共有25名员工去此旅游区旅游.8.解:(1)设y与x的函数关系式为y=kx+b,依题意,得解得所以y与x的函数关系式为y=﹣5x+200.(2)依题知(x﹣25)(﹣5x+200)=130.整理方程,得x2﹣65x+1026=0.解得x1=27,x2=38.∵此设备的销售单价不得高于35万元,∴x2=38(舍),所以x=27.答:该设备的销售单价应是27 万元.。
九年级上册数学期中考试《一元二次方程》试题分类——解答题(1)
九年级上册数学期中考试《一元二次方程》试题分类——解答题(1)一.解答题(共25小题)1.解方程:(1)x2﹣5x﹣6=0;(2)x2﹣2x﹣1=0.2.关于x的一元二次方程x2+(2k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使得x1+x2和x1x2互为相反数?若存在,请求出k 的值;若不存在,请说明理由.3.解方程(1)(x+3)(x﹣3)=3;(2)x2﹣2x﹣3=0(用配方法);(3)(x﹣5)2=2(5﹣x);(4)6x2﹣x﹣2=0.4.已知关于x的方程x2﹣(2k+1)x+5(k﹣)=0.求证:(1)无论k取何值,该方程总有实数根;(2)若等腰△ABC的一边长a=4,另两边b、c恰好是该方程的两个根,求△ABC的周长.5.张师傅今年初开了一家商店,二月份开始盈利,二月份的盈利是5000元,四月份的盈利达到7200元,且从今年二月到四月,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率;(2)按照这个平均增长率,预计今年五月份的盈利能达到多少元?6.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?7.已知正数x是一元二次方程x2+2x﹣3=0的解,先化简再求值:(x﹣2)2+(x+3)(x﹣3).8.解方程(1)2(x+1)2=x+1;(2)2x2+3x+1=0(配方法).9.用适当的方法解方程:(1)x2﹣4x﹣5=0;(2)y(y﹣7)=14﹣2y;(3)2x2﹣3x﹣1=0.10.阅读理解:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,.∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,.∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0且(n﹣4)2=0,∴m=n=4.方法应用:(1)a2+4a+b2+4=0,则a=,b=;(2)已知x+y=8,xy﹣z2﹣4z=20,求(x+y)z的值.11.解方程:(1)x2﹣6x+4=0;(2)=.12.(1)计算:;(2)先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m是方程x2+x﹣2=0的根.13.解下列方程(1);(2)(x﹣4)2=2x﹣8.14.解方程:(1)4x(2x﹣1)=3(2x﹣1);(2)x2+2x﹣2=0.15.已知关于x的一元二次方程kx2﹣(2k+1)x+k+3=0有解,求k的取值范围.16.(1)解方程:x2﹣8x+1=0;(2)解不等式组,并把它的解集表示在数轴上.17.阅读理解:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m =4.方法应用:(1)a2+b2﹣10a+25=0,则a=,b=.(2)已知x+y=2,xy﹣z2﹣8z=17,求(x+y)z的值.18.悠悠食品店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售的总份数不变,这两种菜品一天的总利润是316元.求A种菜品每天销售多少份?19.(1)解方程:x2﹣6x﹣2=0;(2)解不等式组:.20.(1)解方程:x2+2x﹣6=0;(2)解不等式组:.21.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.22.仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.23.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?年收益是多少万元?(2)当每间商铺的年租金定为多少万元时,该公司的收益为275万元?(收益=租金﹣各种费用)24.商场某种商品平均每天可销售30件,每件盈利50元,为了减少库存,商场决定采取适当的降价措施,但每件商品盈利不得低于32元,经调查发现,每件商品每降价1元,商场每天可多售出2件.问每件商品降价多少元时,商场每天盈利可达2100元?25.如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD的面积为900m2.求菜园BC的长.九年级上册数学期中考试《一元二次方程》试题分类——解答题(1)参考答案与试题解析一.解答题(共25小题)1.解方程:(1)x2﹣5x﹣6=0;(2)x2﹣2x﹣1=0.【答案】(1)x1=6,x2=﹣1;(2)x 1=1,x2=1﹣.【解答】解:(1)x2﹣5x﹣6=0,(x﹣6)(x+1)=0,x﹣6=0,x+1=0,∴x1=6,x2=﹣1;(2)x2﹣2x﹣1=0,△=4+4=8,∴x==1,∴x 1=1,x2=1﹣.2.关于x的一元二次方程x2+(2k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)是否存在实数k,使得x1+x2和x1x2互为相反数?若存在,请求出k的值;若不存在,请说明理由.【答案】(1)k≤;(2)不存在.【解答】解:(1)根据题意得△=(2k﹣1)2﹣4k2≥0,解得k≤;(2)不存在.∵x1+x2=﹣(2k﹣1),x1x2=k2,而x1+x2和x1x2互为相反数,∴﹣(2k﹣1)+k2=0,解得k1=k2=1,∵k≤,∴不存在实数k,使得x1+x2和x1x2互为相反数.3.解方程(1)(x+3)(x﹣3)=3;(2)x2﹣2x﹣3=0(用配方法);(3)(x﹣5)2=2(5﹣x);(4)6x2﹣x﹣2=0.【答案】(1)x 1=2,x2=﹣2;(2)x1=3,x2=﹣1;(3)x1=5,x2=3;(4)x1=,x2=﹣.【解答】解:(1)方程整理得:x2﹣9=3,即x2=12,开方得:x=±2,解得:x 1=2,x2=﹣2;(2)方程整理得:x2﹣2x=3,配方得:x2﹣2x+1=4,即(x﹣1)2=4,开方得:x﹣1=2或x﹣1=﹣2,解得:x1=3,x2=﹣1;(3)方程整理得:(x﹣5)2+2(x﹣5)=0,分解因式得:(x﹣5)(x﹣5+2)=0,可得x﹣5=0或x﹣3=0,解得:x1=5,x2=3;(4)分解因式得:(3x﹣2)(2x+1)=0,可得3x﹣2=0或2x+1=0,解得:x1=,x2=﹣.4.已知关于x的方程x2﹣(2k+1)x+5(k﹣)=0.求证:(1)无论k取何值,该方程总有实数根;(2)若等腰△ABC的一边长a=4,另两边b、c恰好是该方程的两个根,求△ABC的周长.【答案】(1)见解析;(2)9或.【解答】解:(1)证明:,∵4(k﹣2)2≥0,即△≥0,∴无论取任何实数值,方程总有实数根;(2)∵△ABC是等腰三角形,∴b=c或b、c中有一个为4,①当b=c时,△=4(k﹣2)2=0,则k=2,方程化为,解得,而,∴、、4能够成三角形;△ABC的周长为;②当b=a=4或c=a=4时,把x=4代入方程,得,解得,方程化为,解得,x2=4,∵4、4、能够成三角形,∴△ABC的周长为.综上所述,△ABC的周长为9或.5.张师傅今年初开了一家商店,二月份开始盈利,二月份的盈利是5000元,四月份的盈利达到7200元,且从今年二月到四月,每月盈利的平均增长率都相同.(1)求每月盈利的平均增长率;(2)按照这个平均增长率,预计今年五月份的盈利能达到多少元?【答案】(1)每月盈利的平均增长率为20%;(2)按照这个平均增长率,预计今年五月份这家商店的盈利将达到8640元.【解答】解:(1)设每月盈利平均增长率为x,根据题意得:5000(1+x)2=7200.解得:x1=20%,x2=﹣220%(不符合题意,舍去),答:每月盈利的平均增长率为20%;(2)7200(1+20%)=8640(元),答:按照这个平均增长率,预计今年五月份这家商店的盈利将达到8640元.6.商店把进货价为8元的商品按每件10元售出,每天可销售200件,现采用提高售价的办法增加利润,已知这种商品每涨价0.5元,其销售量就减少10件,物价局规定该商品的利润率不得超过60%,问商店应将售价定为多少,才能使每天所得利润为640元?商店应进货多少件?【答案】12;160.【解答】解;设售价为x元,据题意得(x﹣8)(200﹣10×)=640,化简得x2﹣28x+192=0,解得x1=12,x2=16,又∵x﹣8≤8×60%,∴x≤12.8,∴x=16不合题意,舍去,∴x=12,200﹣10×=160(件).答:商店应将售价定为12元,才能使每天利润为640元,商店应进货160件.7.已知正数x是一元二次方程x2+2x﹣3=0的解,先化简再求值:(x﹣2)2+(x+3)(x﹣3).【答案】见试题解答内容【解答】解:x2+2x﹣3=0,分解因式得:(x﹣1)(x+3)=0,则x﹣1=0或x+3=0,解得:x1=1,x2=﹣3,∵x是正数,∴x=1,∴(x﹣2)2+(x+3)(x﹣3)=x2﹣4x+4+x2﹣9,=2x2﹣4x﹣5,当x=1时,原式=2×1﹣4﹣5=﹣7.8.解方程(1)2(x+1)2=x+1;(2)2x2+3x+1=0(配方法).【答案】见试题解答内容【解答】解:(1)2(x+1)2=x+1,分解因式得:(x+1)(2x+1)=0,则x+1=0或2x+1=0,解得:x1=﹣1,x2=;(2)2x2+3x+1=0,∴,∴,∴x1=﹣1,x2=.9.用适当的方法解方程:(1)x2﹣4x﹣5=0;(2)y(y﹣7)=14﹣2y;(3)2x2﹣3x﹣1=0.【答案】见试题解答内容【解答】解:(1)x2﹣4x﹣5=0,分解因式得:(x+1)(x﹣5)=0,则x+1=0或x﹣5=0,解得:x1=﹣1,x2=5.(2)y(y﹣7)=14﹣2y,分解因式得:(y﹣7)(y+2)=0,则y﹣7=0或y+2=0,解得:y1=7,y2=﹣2.(3)2x2﹣3x﹣1=0,∴a=2,b=﹣3,c=﹣1,则△=(﹣3)2﹣4×2×(﹣1)=17>0,∴x1=,x2=.10.阅读理解:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,.∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,.∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0且(n﹣4)2=0,∴m=n=4.方法应用:(1)a2+4a+b2+4=0,则a=﹣2 ,b=0 ;(2)已知x+y=8,xy﹣z2﹣4z=20,求(x+y)z的值.【答案】见试题解答内容【解答】解:(1)∵a2+4a+b2+4=0,∴a2+4a+4+b2=0,∴(a+2)2+b2=0,∴(a+2)2=0,b2=0,∴a=﹣2,b=0,故答案为:﹣2;0;(2)∵x+y=8,∴y=8﹣x,原式变形为x(8﹣x)﹣z2﹣4z=20,整理得,8x﹣x2﹣z2﹣4z=20,∴x2﹣8x+16+z2+4z+4=0,∴(x﹣4)2+(z+2)2=0,∴(x﹣4)2=0,(z+2)2=0,∴x=4,z=﹣2,∴y=8﹣x=4,∴(x+y)z=.11.解方程:(1)x2﹣6x+4=0;(2)=.【答案】见试题解答内容【解答】解:(1)方程整理得:x2﹣6x=﹣4,配方得:x2﹣6x+9=5,即(x﹣3)2=5,开方得:x﹣3=±,解得:x 1=3+,x2=3﹣;(2)去分母得:5x+10=6x﹣3,解得:x=13,经检验x=13是分式方程的解.12.(1)计算:;(2)先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m是方程x2+x﹣2=0的根.【答案】见试题解答内容【解答】(1)解:原式=9+1﹣2﹣1,=7.(2)解:原式=4m2﹣1﹣(m2﹣2m+1)+8m3÷(﹣8m),=4m2﹣1﹣m2+2m﹣1﹣m2,=2m2+2m﹣2,=2(m2+m﹣1),∵m是方程x2+x﹣2=0的根,∴m2+m﹣2=0,即m2+m=2,则原式=2×(2﹣1)=2.13.解下列方程(1);(2)(x﹣4)2=2x﹣8.【答案】见试题解答内容【解答】解:(1)两边都乘以(x+1)(x﹣1),得:x﹣1+2(x+1)=4,解得x=1,检验:x=1时,(x+1)(x﹣1)=0,所以原分式方程无解.(2)解:∵(x﹣4)2=2(x﹣4).∴(x﹣4)(x﹣6)=0,则x﹣4=0或x﹣6=0,∴x1=4,x2=6.14.解方程:(1)4x(2x﹣1)=3(2x﹣1);(2)x2+2x﹣2=0.【答案】见试题解答内容【解答】解:(1)∵4x(2x﹣1)=3(2x﹣1),∴8x2﹣10x+3=0,∴(2x﹣1)(4x﹣3)=0,则2x﹣1=0或4x﹣3=0,解得x=或x=;(2)∵x2+2x﹣2=0,∴a=1,b=2,c=﹣2,则△=22﹣4×1×(﹣2)=12>0,∴x==﹣1.15.已知关于x的一元二次方程kx2﹣(2k+1)x+k+3=0有解,求k的取值范围.【答案】见试题解答内容【解答】解:∵a=k,b=﹣(2k+1),c=3,∴△=b2﹣4ac=[﹣(2k+1)]2﹣4k×(k+3)≥0,且k≠0,解得:,故k的取值范围为:.16.(1)解方程:x2﹣8x+1=0;(2)解不等式组,并把它的解集表示在数轴上.【答案】见试题解答内容【解答】解:(1)∵x2﹣8x+1=0,(x﹣4)2=15,∴x﹣4=±,解得x 1=4+,x2=4﹣;(2),解①得:x>﹣1,解②得:x<2,则不等式组的解集是:﹣1<x<2..17.阅读理解:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m =4.方法应用:(1)a2+b2﹣10a+25=0,则a= 5 ,b=0 .(2)已知x+y=2,xy﹣z2﹣8z=17,求(x+y)z的值.【答案】见试题解答内容【解答】解:(1)∵a2+b2﹣10a+25=0,∴(a﹣5)2+b2=0,∴a=5,b=0,故答案为:a=5,b=0;(2)∵x+y=2,∴x=2﹣y,∵xy﹣z2﹣8z=17,∴﹣xy+z2+8z+17=0,∴(y﹣2)y+z2+8z+17=0,∴(y﹣1)2+(z+4)2=0,∴z+4=0,解得z=﹣4,∴(x+y)z=2﹣4=.18.悠悠食品店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.(1)该店每天卖出这两种菜品共多少份?(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售的总份数不变,这两种菜品一天的总利润是316元.求A种菜品每天销售多少份?【答案】见试题解答内容【解答】(1)设该店每天卖出A、B两种菜品分别为x份、y份,根据题意得,.解得:.答:该店每天卖出这两种菜品共60份.(2)设A种菜品售价降0.5a元,即每天卖(20+a)份,则B种菜品卖(40﹣a)份,每份售价提高0.5a元.(20﹣14﹣0.5a)(20+a)+(18﹣14+0.5a)(40﹣a)=316.即a2﹣12a+36=0a1=a2=6答:A种菜品每天销售26份.19.(1)解方程:x2﹣6x﹣2=0;(2)解不等式组:.【答案】见试题解答内容【解答】解:(1)x2﹣6x=2,x2﹣6x+9=11,(x﹣3)2=11,x﹣3=±,所以x 1=3+,x2=3﹣;(2)解①得x≤1,解②得x>﹣2,所以不等式组的解集为﹣2<x≤1.20.(1)解方程:x2+2x﹣6=0;(2)解不等式组:.【答案】见试题解答内容【解答】解:(1)∵x2+2x+1=6+1,∴(x+1)2=7,∴x+1=±,∴x=﹣1±;(2)∵,由①得:x≥﹣1,由②得:2x+8>4x+2,∴﹣2x>﹣6,∴x<3,∴﹣1≤x<3.21.已知关于x的方程x2﹣(k+3)x+3k=0.(1)若该方程的一个根为1,求k的值;(2)求证:不论k取何实数,该方程总有两个实数根.【答案】见试题解答内容【解答】(1)解:把x=1代入方程x2﹣(k+3)x+3k=0得1﹣k﹣3+3k =0,解得k=1;(2)证明:△=(k+3)2﹣4•3k=(k﹣3)2≥0,所以不论k取何实数,该方程总有两个实数根.22.仔细阅读下列解题过程:若a2+2ab+2b2﹣6b+9=0,求a、b的值.解:∵a2+2ab+2b2﹣6b+9=0∴a2+2ab+b2+b2﹣6b+9=0∴(a+b)2+(b﹣3)2=0∴a+b=0,b﹣3=0∴a=﹣3,b=3根据以上解题过程,试探究下列问题:(1)已知x2﹣2xy+2y2﹣2y+1=0,求x+2y的值;(2)已知a2+5b2﹣4ab﹣2b+1=0,求a、b的值;(3)若m=n+4,mn+t2﹣8t+20=0,求n2m﹣t的值.【答案】见试题解答内容【解答】解:(1)∵x2﹣2xy+2y2﹣2y+1=0∴x2﹣2xy+y2+y2﹣2y+1=0∴(x﹣y)2+(y﹣1)2=0∴x﹣y=0,y﹣1=0,∴x=1,y=1,∴x+2y=3;(2)∵a2+5b2﹣4ab﹣2b+1=0∴a2+4b2﹣4ab+b2﹣2b+1=0∴(a﹣2b)2+(b﹣1)2=0∴a﹣2b=0,b﹣1=0∴a=2,b=1;(3))∵m=n+4,∴n(n+4)+t2﹣8t+20=0∴n2+4n+4+t2﹣8t+16=0∴(n+2)2+(t﹣4)2=0∴n+2=0,t﹣4=0∴n=﹣2,t=4∴m=n+4=2∴n2m﹣t=(﹣2)0=1.23.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?年收益是多少万元?(2)当每间商铺的年租金定为多少万元时,该公司的收益为275万元?(收益=租金﹣各种费用)【答案】见试题解答内容【解答】解:(1)租出间数为:30﹣(130000﹣100000)÷5000=30﹣6=24间;收益为:(13﹣1)×24﹣6×0.5=285万元;(2)设每间商铺的年租金定为x万元,根据题意得:(x﹣1)×[30﹣(x﹣10)÷0.5]﹣[(x﹣10)÷0.5]×0.5=275,解得:x1=10.5,x2=15,则每间商铺的年租金定为10.5万元或15万元.24.商场某种商品平均每天可销售30件,每件盈利50元,为了减少库存,商场决定采取适当的降价措施,但每件商品盈利不得低于32元,经调查发现,每件商品每降价1元,商场每天可多售出2件.问每件商品降价多少元时,商场每天盈利可达2100元?【答案】见试题解答内容【解答】解:设每件商品降价x元,根据题意,得:(50﹣x)(30+2x)=2100,整理,得:x2﹣35x+300=0,解得x1=20,x2=15,∵50﹣x≥32,解得x≤18,∴x=15,答:每件商品降价15元时,商场每天盈利可达2100元.25.如图,空地上(空地足够大)有一段长为20m的旧墙MN,小敏利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长100m,矩形菜园ABCD 的面积为900m2.求菜园BC的长.【答案】见试题解答内容【解答】解:设AD=xm,则AB=(60﹣x)m,由题意,得(60﹣x)x=900,解得:x1=x2=30,答:菜园BC的长为30m.。
人教版九年级上册第21章 《一元二次方程》实际应用同步练习(一)
人教版九年级上册第21章《一元二次方程》实际应用同步练习(一)基础题训练(一):限时30分钟1.根据某网站发布的数据显示,某市二手房均价从今年2月份到4月份连续两次下降,由每平方米4200元下降到每平方米3402元.(1)求某市2月份到4月份二手房均价平均每次降价的百分率;(2)假设5月份的均价仍然下降相同的百分率,李明准备购买一套100平方米的二手房,他持有现金15万元,可以在银行贷款20万元,李明的愿望能否实现?2.水资源是人类赖以生存的最重要的自然资源,而我国是一个严重缺水的国家,人均水资源量只有2300m3,仅为世界平均水平的,在世界排第110位,是全球人均水资源最匮乏的国家之一,所以,“节约用水”是我们的义务,更是应尽的责任.今年2月份,为了解某社区400户居民的用水情况,进行了全面调查,发现仅有40%的住户具有节水意识,剩余60%的住户没有节水意识.并且,今年2月份,具有节水意识的住户平均每户的用水量比没有节水意识的住户平均每户的用水量少2m3,从而使得具有节水意识的住户该月的用水总量比没有节水意识的住户该月用水总量少1280m3.(1)求该社区具有节水意识的40%的住户今年2月份平均每户的用水量是多少立方米?(2)3月初,该社区举行了以“节约用水”为主题的宣传活动,使得3月份具有节水意识的住户比2月份增加了87.5%,且该部分住户3月份平均每户的用水量与2月份具有节水意识的住户的平均每户用水量相同,剩余住户还是没有节水意识;为了扩大宣传效果,4月初,该社区再次举行宣传活动,使得4月份具有节水意识的住户比3月份增加了3a 户,并且,具有节水意识的住户平均每户的用水量比(1)问中具有节水意识的住户平均每户的用水量还减少了(a﹣1)%,但仍然还有少数住户没有节水意识,在这种情况下,这400户居民4月份的总用水量比3月份的总用水量减少了a%:求a的值.(假设没有节水意识的住户每户每月的平均用水量始终保持不变)3.柠檬上市后,其中柠檬的新品种和新奇士因技术问题产量不多,今年终于突破研究大量上市,某超市准备大量进货,已知去年同期普通柠檬进价3元/斤,新奇士进价10元/斤,去年九月共进货900斤.(1)若去年九月两种柠檬进货总价不超过6200元,则新奇士最多能购进多少斤?(2)若超市今年九月上半月共购进1000斤的柠檬,其中普通柠檬进价与去年相同,新奇士进价降4元,结果普通柠檬按8元/斤,新奇士16元/斤的价格卖出后共获利8000元,下半月因临近中秋和国庆双节,两种柠檬进价在上半月基础上保持不变,售价一路上涨,超市调整计划,普通柠檬进货量与上半月持平,售价下降a%吸引顾客;新奇士进货量上涨%,售价上涨2a%,最后截至九月底,下半月获利比上半月的2倍少400元,求a的值.4.一块长30cm,宽12cm的矩形铁皮,(1)如图1,在铁皮的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作成一个底面积为144cm2的无盖方盒,如果设切去的正方形的边长为xcm,则可列方程为.(2)由于实际需要,计划制作一个有盖的长方体盒子,为了合理使用材料,某学生设计了如图2的裁剪方案,空白部分为裁剪下来的边角料,其中左侧两个空白部分为正方形,问能否折出底面积为104cm2的有盖盒子(盒盖与盒底的大小形状完全相同)?如果能,请求出盒子的体积;如果不能,请说明理由.5.11月份脐橙和柚子进入销售旺季,某大型水果超市的脐橙和柚子这两种水果很受欢迎,脐橙售价12元/千克,柚子售价9元/千克.(1)若第一周脐橙的销量比柚子的销量多200千克,要使这两种水果的销售总额达到6600元,则第一周应该销售脐橙多少千克?(2)若该水果超市第一周按照(1)中脐橙和柚子的销量销售这两种水果,并决定第二周继续销售这两种水果.第二周脐橙售价降低了0.05a元,销量比第一周增加了a%.柚子的售价保持不变,销量比第一周增加了a%,结果这两种水果第二周的销售总额比第一周增加了a%.求a的值.基础题训练(二):限时30分钟6.某中学兴趣小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边是由周长为30米的篱笆围成.如图所示,已知墙长为20米,设这个苗圃园垂直于墙的一边长为x米(1)若苗圃园的面积为108m2,求x的值,(2)苗圃园的面积能达到120m2吗?若能,求出x;若不能,说明理由.7.如图,在矩形ABCD中,AB=6cm,BC=8cm.点P从点B出发沿边BC向点C以2cm/s 的速度移动,点Q从C点出发沿CD边向点D以1cm/s的速度移动.如果P、Q同时出发,几秒钟后,可使△PCQ的面积为五边形ABPQD面积的?8.某演出队要购买一批演出服,商店给出如下条件:如果一次性购买不超过10件,每件80元;如果一次性购买多于10件,每增加1件,每件服装降低2元,但每件服装不得低于50元,演出队一次性购买这种演出服花费1 200元,请问此演出队购买了多少件这种演出服?9.今年以来,因生猪受到猪瘟的影响,导致多地猪肉价格连续上涨,引起了民众与政府的高度关注,当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至9月20日,猪肉价格不断上涨,9月20日比年初价格上涨了60%、某市民于某超市今年9月20日购买3千克猪肉花120元钱.(1)问:那么今年年初猪肉的价格为每千克多少元?(2)现在某超市以每千克30元的猪肉进货,按9月20日价格出售,平均一天能销售出100千克,经调查表明:猪肉的售价每千克下降1元,其日销售量就增加20千克,超市为了实现销售猪肉每天有1120元的销售利润,为了尽可能让顾客优惠应该每千克定价为多少元?10.九年级二班的一个综合实践活动小组去多个超市调查某种商品“五一节”期间的销售情况,下面是调查后小敏与其他两位同学交流的情况.小敏:“该商品的进价为12元/件.”同学甲:“定价为20元/件时,每天可售出240件.”同学乙:“单价每涨1元,每天少售出20件;单价每降1元,则每天多售出40件.”根据他们的对话,请你求出要使商品每天获利1920元应怎样合理定价?参考答案1.解:(1)设该市2月份到4月份二手房均价平均每次降价的百分率为x.依题意,得:4200(1﹣x)2=3402,解得:x1=0.1=10%,x2=1.9(舍去).答:平均每次降价的百分率为10%.(2)3402×(1﹣10%)×100=306180(元)=30.618(万元),∵15+20=35(万元),35>30.618,∴李明的愿望可以实现.2.解:(1)设没有节水意识的住户的平均每户的用水量为xm3,则具有节水意识的住户平均每户的用水量为(x﹣2)m3.由题意:240x﹣160(x﹣2)=1280,解得x=12.答:该社区具有节水意识的40%的住户今年2月份平均每户的用水量是10立方米.(2)由题意:(300+3a)•10(101﹣a)%+(100﹣3a)×12=[10×300+12×100]×(1﹣a%),整理得a2﹣21a﹣100=0解得a=25或﹣4(舍弃).答:a的值为25.3.解:(1)设去年九月超市购进新奇士x斤,则购进普通柠檬(900﹣x)斤,依题意,得:10x+3(900﹣x)≤6200,解得:x≤500.答:新奇士最多能购进500斤.(2)设超市今年九月上半月购进y斤普通柠檬,则购进(1000﹣y)斤新奇士,依题意,得:(8﹣3)y+(16﹣10+4)(1000﹣y)=8000,解得:y=400,∴1000﹣y=600.∵九月下半月获利比上半月的2倍少400元,∴[8(1﹣a%)﹣3]×400+[16(1+2a%)﹣10+4]×600(1+a%)=8000×2﹣400,整理,得:2.56a2+240a﹣7600=0,解得:a1=25,a2=﹣(不合题意,舍去).答:a的值为25.4.解:(1)设切去的正方形的边长为xcm,则折成的方盒的底面为长(30﹣2x)cm,宽为(12﹣2x)cm的矩形,依题意,得:(30﹣2x)(12﹣2x)=144.故答案为:(30﹣2x)(12﹣2x)=144.(2)设切去的正方形的边长为ycm,则折成的长方体盒子的底面为长(﹣y)cm,宽为(12﹣2y)cm的矩形,依题意,得:(﹣y)(12﹣2y)=104,整理,得:y2﹣21y+38=0,解得:y1=2,y2=19(不合题意,舍去),∴盒子的体积=104×2=208(cm3).答:能折出底面积为104cm2的有盖盒子,盒子的体积为208m3.5.解:(1)设第一周柚子的销售量为x千克.则脐橙的销售量为(x+200)千克,由题意,得9x+12(x+200)=6600.解得x=200.则x+200=400.答:第一周应该销售脐橙400千克;(2)(12﹣0.05a)×400×(1+a%)+9×200×(1+a%)=6600×(1+a%)解得a=0(舍去)或a=30.6.解:(1)由题意可知:(30﹣2x)x=108,解得:x=6或x=9,由于0<30﹣2x≤20,解得:5≤x<15,答:若苗圃园的面积为108m2,x的值为6m或9m.(2)由题意可知:(30﹣2x)x=120,∴x2﹣15x+60=0,∴△=152﹣4×60=﹣15<0,此时方程无解,答:苗圃园的面积不能达到120m27.解:设x秒钟后,可使△PCQ的面积为五边形ABPQD面积的,∵点P从点B出发沿边BC向点C以2cm/s的速度移动,点Q从C点出发沿CD边向点B以1cm/s的速度移动,∴CP=BC﹣BP=(8﹣2x)cm,CQ=xcm,∴S△CPQ=CP•CQ=(8﹣2x)•x,∴五边形ABPQD面积=6×8﹣(8﹣2x)•x,由题意可得:6×8﹣(8﹣2x)•x=(8﹣2x)•x×11,解得:x=2,∴2秒钟后,可使△PCQ的面积为五边形ABPQD面积的.8.解:设购买了x件这种服装,∵10×80=800<1200,∴x>10,根据题意得出:[80﹣2(x﹣10)]x=1200,解得:x1=20,x2=30,当x=30时,80﹣2(30﹣10)=40(元)<50不合题意舍去;答:购买了20件这种服装;9.解:(1)今年9月20日猪肉的价格=100÷2.5=40(元/千克).设今年年初猪肉的价格为每千克x元,依题意,得:(1+60%)x=40,解得:x=25.答:今年年初猪肉的价格为每千克25元.(2)设每千克降价y元,则日销售(100+20y)千克,依题意,得:(40﹣30﹣y)(100+20y)=1120,整理,得:y1=2,y2=3,∵尽可能让顾客优惠,∴y=3,∴40﹣y=37.答:应该每千克定价为37元.10.解:分两种情况考虑:①当涨价时,设每件商品定价为x元,则每件商品的销售利润为(x﹣12)元,每天可售出[240﹣20(x﹣20)]件,依题意,得:(x﹣12)[240﹣20(x﹣20)]=1920,整理,得:x2﹣44x+480=0,解得:x1=20,x2=24;②当降价时,设每件商品定价为y元,则每件商品的销售利润为(y﹣12)元,每天可售出[240+40(20﹣y)]件,依题意,得:(y﹣12)[240+40(20﹣y)]=1920,整理,得:y2﹣38y+360=0,解得:y1=20,y2=18.答:为了使该商品每天获利1920元,定价为18元/件、20元/件或24元/件.。
人教版九年级数学上册一元二次方程应用题(含答案)
一元二次方程应用题1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600展开后化简得:x²-44x+144=0即(x-36)(x-4)=0∴x=4或x=36(舍)即每件降价4元2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,增加了多少行多少列?解:设增加x (8+x)(12+x)=96+69x=3增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价关系式解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得:y=(x-30)[60+2(70-x)]-500=-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒?解:设边长x则(19-2x)(15-2x)=774x^2-68x+208=0x^2-17x+52=0(x-13)(x-4)=0,当x=13时19-2x<0不合题意,舍去故x=45.某商品进价为每件40元,如果售价为每件50元,每个月可卖出210件,如果售价超过50元,但不超过80元,每件商品的售价每上涨10元,每个月少卖1件,如果售价超过80元后,若再涨价,每件商品的售价每涨1元,每个月少卖3件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级上册数学课堂作业同步期中复习:
《一元二次方程应用题》(一)
(满分:100分限时60分钟)
1.近年来多肉植物风靡全国.花农王大伯分别培植了一批国产多肉与进口多肉.第一次出售国产多肉与进口多肉各100盆,售后发现:国产多肉的平均每盆利润是5元并且始终不变;进口多肉的平均每盆利润是15元,每增加1盆,进口多肉的平均每盆利润增加1元.王大伯计划第二次出售国产多肉与进口多肉共200盆,设进口多肉比第一次增加x 盆.
(1)用含x的代数式分别表示第二次国产多肉与进口多肉售完后的利润;
(2)要使第二次国产多肉与进口多肉售完后的总利润比第一次国产多肉与进口多肉售完后总利润多60%,求此时x的值.
2.某小区物业一直用洗涤剂和消毒水对小区进行清洁消毒,已知1桶洗涤剂和4桶消毒水的价格为150元,2桶洗涤剂和2桶消毒水的价格为140元,该小区原来一周会消耗2桶洗涤剂和4桶消毒水.
(1)求1桶洗涤剂和1桶消毒水的售价各是多少元?
(2)新冠疫情期间物业加大了小区清洁消毒力度,现在该小区每周消耗洗涤剂的数量在原来一周的基础上增加了2m%,每周消耗的消毒水数量比原来一周消耗的多桶.疫情期间洗涤剂价格上涨了m%,因异地购买每桶还需另付邮费5元;每桶消毒水的价格上涨了50%,也因异地购买每桶还需另付邮费10元,现在该小区疫情期间每周购买洗涤剂和消毒水的费用(含邮费)比原来每周费用的4倍还少m元,求m的值.
3.(1)用因式分解法解方程:5x2=4x
(2)一个直角三角形的三边长为三个连续的整数,求这个三角形的三条边长.
4.某水果超市第一次花费2200元购进甲、乙两种水果共350千克.已知甲种水果进价每千克5元,售价每千克10元;乙种水果进价每千克8元,售价每千克12元.
(1)第一次购进的甲、乙两种水果各多少千克?
(2)由于第一次购进的水果很快销售完毕,超市决定再次购进甲、乙两种水果,它们的进价不变.若要本次购进的水果销售完毕后获得利润2090元,甲种水果进货量在第一次进货量的基础上增加了2m%,售价比第一次提高了m%;乙种水果的进货量为100千克,售价不变.求m的值.
5.某商店分别花2000元和3000元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多50千克.
(1)该商品的进价是多少?
(2)若该商品每天的销售量y(千克)与销售单价x(元/千克)之间的函数关系式为:y=﹣10x+500,商品的售价定为多少元时,商店每天可以获利2210元?。