九年级数学综合应用题(一)(含答案)
初中数学九年级数学试题及答案
九年级数学综合试题题目 一 二 三 四 五 六 总 分 分数一、填空(每小题3分,共30分)1、已知m 是方程210x x --=的一个根,则代数式2m m -=2、一名同学在掷骰子,连续抛了9次都没有点数为6的面朝上,当他掷第10次时,点数为6的面朝上是 事件。
3、已知231,3,a b ab -=-=则(1)(1)a b +-=4、如图,⊙O 是ABC ∆的外接圆,030C ∠=,2AB cm =, 则⊙O 的半径为 cm 。
5、已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a =_______. 6、如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为_______cm 。
7、如图,将一块斜边长为12cm ,60B ∠=°的直角三角板ABC ,绕点C 沿逆时针方向旋转90°至A B C '''△的位置,再沿CB 向右平移,使点B '刚好落在斜边AB上,那么此三角板向右平移的距离是 cm .8、如图,A 是第一象限里的点,点B 是点A 关于原点的对称点, 点C 是点A 关于x 轴的对称点,则以点A ,B ,C 为顶点的三角 形是 三角形。
9、如图是44⨯正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形. 10、已知:关于x 的一元二次方程221()04x R r x d -++=没有实数 根,其中R 、r 分别为⊙O 1和⊙O 2的半径,d 为此两圆的圆心距,则⊙O 1和⊙O 2的位置关系为 。
二、选择题(每小题3分,共18分)11、下列图形中既是轴对称图形又是中心对称图形的是( )A B C D12、如图所示,电路图上有A 、B 、C 三个开关和一个小灯泡,闭合开关C 或者同时闭合开关A 、B ,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于( ).A 、32B 、21C 、31D 、4113、已知:m n ,是两个连续自然数()m n <,且q mn =.设p q n q m =++-,则p ( )A.总是奇数B.总是偶数C.有时是奇数,有时是偶数D.有时是有理数,有时是无理数14、如图,⊙O 内切于ABC ∆,切点分别为D ,E ,F ,已知050B ∠=,060C ∠=,连接OE 、OF 、DE 、DF ,那么EDF ∠等于( )A 、055B 、040C 、065D 、07015、为执行“一免一补”政策,我市2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( ) A.225003600x =B.22500(1)3600x +=C.22500(1%)3600x +=D.22500(1)2500(1)3600x x +++=16、如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好 经过圆心O ,则折痕AB 的长为( ) A.2cm B.3cm C.23cmD.25cm三、解答题(第17题6分,18、19题7分共20分) 17、计算:127122(2)23-⨯+-OABA B A '()C C 'B 'A B C18、如图,ABC ∆中,∠=∠Rt ACB ,2,8==BC AB ,求斜边AB 上的高CD .19、小军与小玲共同发明了一种“字母棋”,进行比胜负的游戏.她们用四种字母做成10只棋子,其中A 棋1只,B 棋2只,C 棋3只,D 棋4只.“字母棋”的游戏规则为: ①游戏时两人各摸一只棋进行比赛称一轮比赛,先摸者摸出的棋不放回;②A 棋胜B 棋、C 棋;B 棋胜C 棋、D 棋;C 棋胜D 棋;D 棋胜A 棋;③相同棋子不分胜负.(1)若小玲先摸,问小玲摸到C 棋的概率是多少?(2)已知小玲先摸到了C 棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲胜小军的概率是多少?(3)已知小玲先摸一只棋,小军在剩余的9只棋中随机摸一只,问这一轮中小玲希望摸到哪种棋胜小军的概率最大?四、每小题8分,共16分。
人教版九年级数学(上下全册)综合测试卷(附带参考答案)
人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。
2021年九年级中考数学第三轮冲刺:列方程或方程组解应用题 综合性专题复习(一)
2021年中考数学第三轮冲刺:列方程或方程组解应用题综合性专题复习(一)1、某出租汽车公司计划购买A型和B型两种节能汽车,若购买A型汽车4辆,B 型汽车7辆,共需310万元;若购买A型汽车10辆,B型汽车15辆,共需700万元.(1)A型和B型汽车每辆的价格分别是多少万元?(2)该公司计划购买A型和B型两种汽车共10辆,费用不超过285万元,且A 型汽车的数量少于B型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.2、新冠肺炎疫情期间,部分小区出现防疫物资紧缺,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种防疫物品共2000件送往各小区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种防疫物品每件的价格各是多少元?(2)经调查,各小区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?3、某养殖场为了响应党中央的扶贫政策,今年起采用“场内+农户”养殖模式,同时加强对蛋鸡的科学管理,蛋鸡的产蛋率不断提高,三月份和五月份的产蛋量分别是2.5万千克与3.6万千克,现假定该养殖场蛋鸡产蛋量的月增长率相同.(1)求该养殖场蛋鸡产蛋量的月平均增长率;(2)假定当月产的鸡蛋当月在各销售点全部销售出去,且每个销售点每月平均销售量最多为0.32万千克. 如果要完成六月份的鸡蛋销售任务,那么该养殖场在五月份已有的销售点的基础上至少再增加多少个销售点?4、某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?5、从甲市到乙市乘坐高铁列车的路程为180千米,乘坐普通列车的路程为240千米,高铁列车的平均速度是普通列车的平均速度的3倍,高铁列车的乘车时间比普通列车的乘车时间缩短了2小时.(1)求高铁列车的平均速度是每小时多少千米;(2)某日王老师要去距离甲市大约405m的某地参加14:00召开的会议,如果他买到当日10:40从甲市至该地的高铁票,而且从该地高铁站到会议地点最多需要1.5h,试问在高铁列车准点到达的情况下他能在开会之前到达吗?6、端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?7、某学校举行“青春心向党建功新时代”演讲比赛活动,准备购买甲、乙两种奖品,小昆发现用480元购买甲种奖品的数目恰好与用360元购买乙种奖品的数目相等,已知甲种奖品的单价比乙种奖品的单价多10元.(1)求甲、乙两种奖品的单价各是多少元?(2)如果需要购买甲乙两种奖品共100个,且甲种奖品的数目不低于乙种奖品数目的2倍,问购买多少个甲种奖品,才使得总购买费用最少?8、某超市销售A、B两款保温杯,已知B款保温杯的销售单价比A款保温杯多10元,用480元购买B款保温杯的数量与用360元购买A款保温杯的数量相同.(1)A、B两款保温杯的销售单价各是多少元?(2)由于需求量大,A、B两款保温杯很快售完,该超市计划再次购进这两款保温杯共120个,且A款保温杯的数量不少于B款保温杯数量的两倍.若A款保温杯的销售单价不变,B款保温杯的销售单价降低10%,两款保温杯的进价每个均为20元,应如何进货才能使这批保温杯的销售利润最大,最大利润是多少元?9、同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?10、新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A、B两种花苗.据了解,购买A 种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.(1)求A、B两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A、B两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?11、某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?12、某工厂计划生产甲、乙两种产品共2500吨,每生产1吨甲产品可获得利润0.3万元,每生产1吨乙产品可获得利润0.4万元.设该工厂生产了甲产品x(吨),生产甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每生产1吨甲产品需要A原料0.25吨,每生产1吨乙产品需要A原料0.5吨.受市场影响,该厂能获得的A原料至多为1000吨,其它原料充足.求出该工厂生产甲、乙两种产品各为多少吨时,能获得最大利润.13、某企业承接了27000件产品的生产任务,计划安排甲、乙两个车间的共50名工人,合作生产20天完成.已知甲、乙两个车间利用现有设备,工人的工作效率为:甲车间每人每天生产25件,乙车间每人每天生产30件.(1)求甲、乙两个车间各有多少名工人参与生产?(2)为了提前完成生产任务,该企业设计了两种方案:方案一甲车间租用先进生产设备,工人的工作效率可提高20%,乙车间维持不变.方案二乙车间再临时招聘若干名工人(工作效率与原工人相同),甲车间维持不变.设计的这两种方案,企业完成生产任务的时间相同.①求乙车间需临时招聘的工人数;②若甲车间租用设备的租金每天900元,租用期间另需一次性支付运输等费用1500元;乙车间需支付临时招聘的工人每人每天200元.问:从新增加的费用考虑,应选择哪种方案能更节省开支?请说明理由.14、某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.15、清明时节“雨后绿初见,择艾作青团”.“元祖“推出一款鲜花青团和一款芒果青团,鲜花青团每个售价是芒果青团的54倍,4月份鲜花青团和芒果青团总计销售6000个.鲜花青团销售额为250000元,芒果青团销售额为280000元.(1)求鲜花青团和芒果青团的售价?(2)5月份正值“元祖”店庆,计划再生产12000个青团回馈新老顾客,但考虑到芒果青团较受欢迎,同时也考虑受机器设备限制,因此芒果青团的个数不少于鲜花青团个数的32,且不多于鲜花青团的2倍,其中,鲜花青团每个让利3元销售,芒果青团售价不变,问:“元祖”如何设计生产方案?可使总销售额最大,并求出总销售额的最大值.16、2020年全民抗疫期间,抗疫志士莫小贝购进一条生产线生产抗疫物质. 已知该生产线的三个操作平台分别排列在同一直线上,顺次是甲、乙、丙,其中甲乙平台之间的距离为40米,乙丙平台之间的距离为60米,操作甲、乙、丙平台分别需要20人、70人、60人. 由于时间仓促无法做到完全自动化,需要在三个平台之间建立一个原材料供给站让工人自取,有如下两个方案:方案一:让所有工人到供给站的距离总和最小;方案二:让甲、丙平台所有工人到供给站的距离之和等于乙平台所有工人到供给站的距离之和.(1)若按照方案一建站,供给站距离甲平台多少米?(2)若按照方案二建站,供给站距离甲平台多少米?(3)在(2)的条件下,若甲平台的工人数增加a 人(22 a ),那么随着a 的增大,供给站将距离甲平台将越来越远,还是越来越近?请说明理由.17、国务院新闻办公室举行新闻发布会,经过7年多的精准扶贫,4年多的脱贫攻坚战,全国现行标准下的贫困人口减少了9348万人。
中考数学 综合能力提升练习一(含解析)-人教版初中九年级全册数学试题
综合能力提升练习一一、单选题1.如图,⊙O上有两点A与P,且OA⊥OP,若A点固定不动,P点在圆上匀速运动一周,那么弦AP的长度与时间的函数关系的图象可能是( )①②③④A. ①B. ③C. ①或③D . ②或④2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A. 3B. 5C. 8D. 112﹣x﹣2=0的近似解时作了如下列表计算.观察表中对应的数据,可以估计方程的其中一个解的整数部分是()x 1 2 3 42x2﹣x﹣2 ﹣14 13 26A. 4B. 3C. 2D. 14.三棱柱的顶点个数是()A. 3B. 4C. 5D. 62+3x+1=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根 C. 没有实数根 D. 只有一个实数根6.有理数a、b在数轴上的位置如图所示,则下列各式符号的判断正确的是()A. a2﹣b>0B. a+|b|>0 C. a+b2>0 D. 2a+b>07.满足x-5>3x+1的x的最大整数是()A. 0B. -2C. -3D. -48.如图,Rt△APC的顶点A,P在反比例函数y=的图象上,已知P的坐标为(1,1),tanA=(n≥2的自然数);当n=2,3,4…2010时,A的横坐标相应为a2, a3, a4,…,a2010,则+++…+=()A. B. 2021 054 C. 2022060D.二、填空题9.已知△ABC的三个内角分别是∠A、∠B、∠C,若∠A=30°,∠C=2∠B,则∠B=________ °.10.如图,等腰直角三角形 ABC 中,∠BAC=90°,AB=AC,点 M,N 在边 BC 上,且∠MAN=45°.若 BM=1, =3,则 MN 的长为________ .11.计算:( +1)(3﹣)=________.12.一个多边形的每一个内角为108°,则这个多边形是________ 边形,它的内角和是________m________时,不等式mx<7的解集为x>-5℃,冷库乙的温度是-15℃,则温度高的是冷库________.三、计算题15.计算:16.计算:()2+(π﹣2016)0﹣4cos60°+()﹣3.17.先化简,再求值:÷(a﹣),其中a=2+ ,b=2﹣.18.计算(1)计算:+()﹣1﹣2cos60°+(2﹣π)0;(2)化简:.19.已知x﹣y=5,xy=4,求x2+y2的值.20.解方程:﹣= .四、解答题21.如图,△ABC中,AB=AC,∠BAC=120°,D为BC的中点,DE⊥AC于E,AE=2,求CE的长.22.如图,在四边形ABCD中,AD、BD相交于点F,点E在BD上,且.(1)∠1与∠2相等吗?为什么?(2)判断△ABE与△AC D是否相似?并说明理由.23.计算:|﹣3|﹣2.24.解方程组:.五、综合题25.甲、乙两人周末从同一地点出发去某景点,因乙临时有事,甲坐地铁先出发,甲出发0.2小时后乙开汽车前往.设甲行驶的时间为x(h),甲、乙两人行驶的路程分别为y1(km)与y2(km).如图①是y1与y2关于x的函数图象.(1)分别求线段OA与线段BC所表示的y1与y2关于x的函数表达式;(2)当x为多少时,两人相距6km?(3)设两人相距S千米,在图②所给的直角坐标系中画出S关于x的函数图象.答案解析部分一、单选题1.如图,⊙O上有两点A与P,且OA⊥OP,若A点固定不动,P点在圆上匀速运动一周,那么弦AP的长度与时间的函数关系的图象可能是( )①②③④A. ①B. ③C. ①或③D . ②或④【答案】C【考点】二次函数的图象【解析】【分析】由图中可知:长度d是一开始就存在的,如果点P向上运动,那么d的距离将逐渐变大;当点P运动到和0,A在同一直线上时,d最大,随后开始变小;当运动到点A时,距离d为0,然后继续运动,d开始变大;到点P时,回到原来高度相同的位置.①对,②没有回到原来的位置,应排除.④回到原来的位置后又继续运动了,应排除.如果点P向下运动,那么d的距离将逐渐变小,到点A的位置时,距离d为0;继续运动,d的距离将逐渐变大;当点P运动到和0,A在同一直线上时,d最大,随后开始变小,到点P时,回到原来高度相同的位置.③对.故选C.2.已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A. 3B. 5C. 8D. 11【答案】C【考点】三角形三边关系【解析】【解答】解:根据三角形的三边关系,得第三边大于:8﹣3=5,小于:3+8=11.则此三角形的第三边可能是:8.故选:C.【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值X围,再进一步选择.2﹣x﹣2=0的近似解时作了如下列表计算.观察表中对应的数据,可以估计方程的其中一个解的整数部分是()x 1 2 3 42x2﹣x﹣2 ﹣14 13 26A. 4B. 3C. 2D. 1【答案】D【考点】估算一元二次方程的近似解【解析】【解答】解:根据表格中的数据,知:方程的一个解x的X围是:1<x<2,所以方程的其中一个解的整数部分是1.故选D.【分析】根据表格中的数据,可以发现:x=1时,2x2﹣x﹣2=﹣1;x=2时,2x2﹣x﹣2=4,故一元二次方程2x2﹣x﹣2=0的其中一个解x的X围是1<x<2,进而求解.4.三棱柱的顶点个数是()A. 3B. 4C. 5D. 6【答案】D【考点】认识立体图形【解析】【解答】解:一个直三棱柱由两个三边形的底面和3个长方形的侧面组成,根据其特征及欧拉公式V+F﹣E=2可知,它有6个顶点,故选:D.【分析】一个直三棱柱是由两个三边形的底面和3个长方形的侧面组成,根据其特征及欧拉公式V+F﹣E=2进行填空即可.2+3x+1=0的根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根 C. 没有实数根 D. 只有一个实数根【答案】A【考点】根的判别式【解析】【解答】解:∵a=1,b=3,c=1,∴△=b2﹣4ac=32﹣4×1×1=5>0,∴有两个不相等的实数根.故选A.【分析】首先求得△=b2﹣4ac的值,然后即可判定一元二次方程x2+3x+1=0的根的情况.6.有理数a、b在数轴上的位置如图所示,则下列各式符号的判断正确的是()A. a2﹣b>0B. a+|b|>0 C. a+b2>0 D. 2a+b>0【答案】A【考点】数轴【解析】【解答】解:根据数轴得a<﹣1,0<b<1,∴a2>1,b2<1,∴a2﹣b>0,故A正确;∴a+|b|<0,故B错误;∴a+b2<0,故C错误;∴2a+b<0,故D错误,故选A.【分析】根据数轴可得出a<﹣1,0<b<1,再判断a2, b2的X围,进行选择即可.7.满足x-5>3x+1的x的最大整数是()A. 0B. -2C. -3D. -4【答案】D【考点】解一元一次不等式,一元一次不等式的整数解【解析】【分析】先移项,再合并同类项,最后化系数为1,即可求得结果.x-5>3x+1-2x>6x<-3所以满足条件的x的最大整数是-4故选D.【点评】计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.8.如图,Rt△APC的顶点A,P在反比例函数y=的图象上,已知P的坐标为(1,1),tanA=(n≥2的自然数);当n=2,3,4…2010时,A的横坐标相应为a2, a3, a4,…,a2010,则+++…+=()A. B. 2021 054 C. 2022060D.【答案】B【考点】反比例函数的图象,反比例函数的性质,探索数与式的规律【解析】【分析】设CP=m,由tanA==得AC=mn,则A(1-m,1+mn),将A点坐标代入y=中,得出a n=1-m的表达式,寻找运算规律.【解答】依题意设CP=m,∵P点横坐标为1,则C点横坐标为1-m,即a n=1-m,又∵tanA==,∴AC=mn,则A(1-m,1+mn),将A点坐标代入y=中,得(1-m)(1+mn)=1,1-m+mn-m2n=1,m(n-1-mn)=0,则n-1-mn=0,1-m=,则a n=1-m=,即=n,∴+++…+=2+3+4+…+2010==2021054.故选B.【点评】本题主要考查反比例函数的图象和性质,关键是根据三角函数值设直角三角形的边长,表示A点坐标,根据A点在双曲线上,满足反比例函数解析式,从而得出一般规律.二、填空题9.已知△ABC的三个内角分别是∠A、∠B、∠C,若∠A=30°,∠C=2∠B,则∠B=________ °.【答案】50【考点】三角形内角和定理【解析】【解答】解:∵在△ABC中,∠A=30°,∠C=2∠B,∠A+∠B+∠C=180°,∴30°+3∠B=180°,∴∠B=50°.故答案是:50.【分析】根据三角形内角和是180°列出等式∠A+∠B+∠C=180°,据此易求∠B的度数.10.如图,等腰直角三角形 ABC 中,∠BAC=90°,AB=AC,点 M,N 在边 BC 上,且∠MAN=45°.若 BM=1, =3,则 MN 的长为________ .【答案】【考点】全等三角形的判定与性质,勾股定理的应用【解析】【解答】将逆时针旋转得到,连接,是等腰直角三角形,在和中,由勾股定理得,【分析】根据旋转的性质得到对应边、对应角相等;由△ABC是等腰直角三角形,得到△MAN≌△FAN,得到对应角、对应边相等,再根据勾股定理求出MN 的长.11.计算:( +1)(3﹣)=________.【答案】2【考点】二次根式的混合运算【解析】【解答】解:原式= ( +1)(﹣1)= ×(3﹣1)=2 .故答案为2 .【分析】先把后面括号内提,然后利用平方差公式计算.12.一个多边形的每一个内角为108°,则这个多边形是________ 边形,它的内角和是________【答案】五;540°【考点】多边形内角与外角【解析】【解答】解:∵多边形的每一个内角都等于108°,∴多边形的每一个外角都等于180°﹣108°=72°,∴边数n=360°÷72°=5,内角和为(5﹣2)×180°=540°.故答案为:五;540°.【分析】先求出这个多边形的每一个外角的度数,再用360°除以一个外角的度数即可得到边数.m________时,不等式mx<7的解集为x>【答案】<0【考点】不等式的性质【解析】【解答】根据不等式mx<7的解集为x>,可以发现不等号的方向发生了改变,根据不等式的性质,所以m<0.【分析】可根据不等式的性质,两边同时除以负数,不等号发生改变.-5℃,冷库乙的温度是-15℃,则温度高的是冷库________.【答案】甲【考点】有理数大小比较【解析】【解答】解:∵-5>-15∴温度高的是冷库甲故答案为:甲【分析】比较-5和-15的大小,可解答。
初三数学综合测试卷及答案
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 0.1010010001……2. 已知等腰三角形底边长为8cm,腰长为10cm,则其面积为()A. 32cm²B. 40cm²C. 48cm²D. 80cm²3. 下列函数中,一次函数是()A. y = 2x² - 3x + 1B. y = √x + 1C. y = 2x + 3D. y = 3/x4. 已知一元二次方程x² - 5x + 6 = 0,则其解为()A. x₁ = 2, x₂ = 3B. x₁ = 3, x₂ = 2C. x₁ = 6, x₂ = 1D. x₁ = 1, x₂ = 65. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)6. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 2,5,8,11C. 3,6,9,12D. 4,7,10,137. 若直角三角形的两条直角边长分别为3cm和4cm,则斜边长为()A. 5cmB. 6cmC. 7cmD. 8cm8. 下列命题中,正确的是()A. 若a > b,则a² > b²B. 若a > b,则ac > bcC. 若a > b,则a² > b²D. 若a > b,则ac > bc9. 已知正方形的边长为a,则其对角线长为()A. aB. √2aC. 2aD. a√210. 在等腰三角形ABC中,若底边BC=8cm,腰AB=AC=10cm,则三角形ABC的周长为()A. 24cmB. 26cmC. 28cmD. 30cm二、填空题(每题4分,共40分)11. 分数 3/4 与 -1/2 的差是 ________。
初三数学应用题大全及答案
初三数学应用题大全及答案例1、今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元。
假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500(B.2500(1+x)2=3500C.2500(1+x%)2=3500D.2500(1+x)+2500(1+x)2=3500【解答】解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.例2、为落实素质教育要求,促进学生全面发展,某市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元。
则该学校为新增电脑投资的年平均增长率是,从2009年到2011年,该中学三年为新增电脑共投资万元。
【解答】解:设该学校为新增电脑投资的年平均增长率是x11(1+x)2=18.59x=30%(则该学校为新增电脑投资的年平均增长率是30%11×(1+30%)=14.3万元11+14.3+18.59=43.89万元故答案为:30%;43.89练习1、股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。
已知一只股票某天跌停,之后两天时间又涨回到原价。
若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=【解答】解:设平均每天涨x,则90%(1+x)2=1,即(1+x)2=,故选B。
(2、某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.﹣220%D.30%【解答】解:设每年投资的增长率为x,根据题意,得:5(1+x)2=7.2解得:x1=0.2=20%,x2=﹣2.2(舍去),故每年投资的增长率为为20%,故选:A3、随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆。
(完整版)【精选资料】初三数学综合练习一及答案(最新整理)
与x轴的两个交点的横坐标均为整数,且m<5,则整数m的值为
三、解答题
13.计算: 2 3 — tan30° ÷ 1 + 8 . 3
C D
A
B
第11题
.
14.解方程: 1 3 . x2 x
15.先化简,再求值:
(
a
2
2
1)
a2 a2
a 4
,其中
a
1.
解:
16. 已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.
.
∴丙被录用
19. 解:在梯形ABCD中,AB∥CD,∴∠1=∠2. ∵∠ACB=∠D=90°∴∠1+∠3=90°,∠2+∠B=90°
∴∠3=∠B. ∴ tan 3 tan B 2 3
DC
在Rt△ACD中,CD=4,tan∠3=
AD ∴ AD CD 6 .∴ AC AD2 CD2 2 13 .
15. 解:原式= 2 a 2 (a 2)(a 2) a 2 . 当 a 1时,原式= - 1+ 2 = - 1
a2
a(a 1)
a 1
- 1- 1 2
16、证明:∵AD∥BC, ∴∠DAE=∠1.
∵AE=AB, ∴∠1=∠B.
A
∴∠B=∠DAE. 又AD=BC,
∴△ABC≌△AED. ∴DE=AC.
tan 3
D
C
1
3 2
A
B
AC 2
在Rt△ACB中,tan∠B= =
13 2
=
∴BC=3
13
BC BC 3
AB=
AC 2 + BC 2 =
(2 13)2 + (3 13)2 = 13
初三数学应用题大全及答案
初三数学应用题大全及答案
初三数学应用题大全及答案
1. 小珠旅游团里有男生9人,女生3人。
他们分为三个组,每组男生
和女生的比例相同,每组人数为4人。
请问小珠团里有几组?
答案:小珠团里有3组。
2. 一班有20名学生,其中10名男生,10名女生,两人两人一组,每
个组一个男生一个女生,每组都不一样,写出所有可能的组合方式。
答案:男生女生组合方式为:1男1女,2男2女,3男3女,4男4女,5男5女,6男6女,7男7女,8男8女,9男9女,10男10女。
3. 一条条形码共有32位,每8位作为一组,每组有多少个?
答案:一条条形码共有32位,每8位作为一组,则一共有4组。
4. 一家餐馆有4桌正在用餐,每桌客人人数相同,共有28人,请问每桌客人数有多少?
答案:每桌客人数有7人。
5. 有3把锁,组合为ABC,其中A、B、C代表3种颜色,则有多少种组合方式?
答案:有6种组合方式,分别为:ABC、ACB、BAC、BCA、CAB、CBA。
人教版九年级上册数学第二十二章二次函数综合应用题综合训练
人教版九年级上册数学第二十二章二次函数综合应用题综合训练1.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,已知2盆盆景与1盆花卉的利润共300元,1盆盆景与3盆花卉的利润共200元.(1)求1盆盆景和1盆花卉的利润各为多少元?(2)调研发现:盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆;花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后利润分别为W1,W2(单位:元).①求W1,W2关于x的函数关系式;①当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少元?2.网络销售已经成为一种热门的销售方式,某公司在某网络平台上进行直播销售板栗.已知板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足一次函数关系,下表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于30元/kg.设公司销售板栗的日获利为w(元).(1)请求出日销售量y与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利w最大?最大利润为多少元?(3)当销售单价在什么范围内时,日获利w不低于42000元?3.商场某种商品平均每天可销售20件,每件可获利40元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)每件商品降价多少元时,商场日销售额可达到1200元?(2)若商场平均每天赢利最多,应降价多少元?获得的最大利润为多少?4.“水幕电影”的工作原理是把影像打在抛物线状的水幕上,通过光学原理折射出图象,水幕是由若干个水嘴喷出的水柱组成的,如图所示,水柱的最高点为M ,2m AB =,10m BM =,水嘴高6m AD =,以A 为坐标原点,AB 所在的直线为x 轴,AD 所在的直线为y 轴建立平面直角坐标系,求出图中抛物线的表达式.5.一小球M 从斜坡OA 上的点O 处抛出,球的抛出路线是抛物线的一部分,建立如图所示的平面直角坐标系,斜坡可以用一次函数12y x =刻画.若小球到达最高点的坐标为(4,8).(1)求抛物线的函数解析式(不写自变量x 的取值范围);(2)小球在斜坡上的落点A 的垂直高度为________米;(3)若要在斜坡OA 上的点B 处竖直立一个高4米的广告牌,点B 的横坐标为2,请判断小球M 能否飞过这个广告牌?通过计算说明理由;(4)求小球M 在飞行的过程中离斜坡OA 的最大高度.6.如图,有长为30m 的篱笆,现一面利用墙(墙的最大可用长度a 为9m )围成中间隔有一道篱笆的矩形花圃,设花圃的宽AB 为m x ,面积为2m S .(1)求S 与x 的函数关系式,并写出x 的取值范围;(2)如果围成花圃的面积为263m ,那么AB 应确定多长?7.“互联网+”让我国经济更具活力,直播助销就是运用“互联网+”形成的一种生机勃勃的销售方式.农村电商小李在某电商平台上直播销售一种农产品,每件农产品的成本为40元,每销售一件农产品,需向电商平台缴纳推广费2元.物价部门规定,该农产品的销售单价不高于成本价的2倍,经市场调研发现,每月的销售量y (件)与销售单价x (元)满足如图所示的一次函数关系.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)当农产品的销售单价定为多少元时,每月的销售利润最大?最大利润是多少?。
2019-2020学年九年级数学中考实际应用题综合强化训练(含答案)
2019-2020学年九年级数学中考实际应用题综合强化训练(含答案)1.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?2.某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.3.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)152530千克数404020(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?4.某进口专营店销售一种“特产”,其成本价是20元/千克,根据以往的销售情况描出销量y(千克/天)与售价x(元/千克)的关系,如图所示.(1)试求出y与x之间的一个函数关系式;(2)利用(1)的结论:①求每千克售价为多少元时,每天可以获得最大的销售利润.②进口产品检验、运输等过程需耗时5天,该“特产”最长的保存期为一个月(30天),若售价不低于30元/千克,则一次进货最多只能多少千克?5.为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a 万元,请求出a的取值范围.6.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.7.某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2104年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.8.某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.(1)求甲、乙每个商品的进货单价;(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?9.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?10.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:甲乙原料成本128销售单价1812生产提成10.8(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)11.旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?12.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?13.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:黄瓜的种植成本是1元/kg,售价是1.5元/kg;茄子的种植成本是1.2元/kg,售价是2元/kg.(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?14.某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?15.我市为全面推进“十个全覆盖”工作,绿化提质改造工程如火如荼地进行,某施工队计划购买甲、乙两种树苗共600棵对某标段道路进行绿化改造,已知甲种树苗每棵100元,乙种树苗每棵200元.(1)若购买两种树苗的总金额为70000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?16.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B 两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A 种型号健身器材至少要购买多少套?17.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.2019-2020学年九年级数学中考实际应用题综合强化训练(含答案)1.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?【解答】解:(1)设每吨水的政府补贴优惠价为m元,市场调节价为n元.,解得:,答:每吨水的政府补贴优惠价2元,市场调节价为3.5元.(2)当0≤x≤14时,y=2x;当x>14时,y=14×2+(x﹣14)×3.5=3.5x﹣21,故所求函数关系式为:y=;(3)∵26>14,∴小英家5月份水费为3.5×26﹣21=69元,答:小英家5月份水费69吨.2.某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.【解答】解:(1)设A型污水处理设备的单价为x万元,B型污水处理设备的单价为y万元,根据题意可得:,解得:.答:A型污水处理设备的单价为12万元,B型污水处理设备的单价为10万元;(2)设购进a台A型污水处理器,根据题意可得:220a+190(8﹣a)≥1565,解得:a≥1.5,∵A型污水处理设备单价比B型污水处理设备单价高,∴A型污水处理设备买越少,越省钱,∴购进2台A型污水处理设备,购进6台B型污水处理设备最省钱.3.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)152530千克数404020(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?【解答】解:(1)根据题意得:=22(元/千克).答:该什锦糖的单价是22元/千克;(2)设加入丙种糖果x千克,则加入甲种糖果千克,根据题意得:≤20,解得:x≤20.答:加入丙种糖果20千克.4.某进口专营店销售一种“特产”,其成本价是20元/千克,根据以往的销售情况描出销量y(千克/天)与售价x(元/千克)的关系,如图所示.(1)试求出y与x之间的一个函数关系式;(2)利用(1)的结论:①求每千克售价为多少元时,每天可以获得最大的销售利润.②进口产品检验、运输等过程需耗时5天,该“特产”最长的保存期为一个月(30天),若售价不低于30元/千克,则一次进货最多只能多少千克?【解答】解:(1)设y与x之间的一个函数关系式为y=kx+b,则,解得.故函数关系式为y=﹣2x+112;(2)依题意有w=(x﹣20)(﹣2x+112)=﹣2(x﹣38)2+324,故每千克售价为38元时,每天可以获得最大的销售利润;(3)由题意可得,售价越低,销量越大,即能最多的进货,设一次进货最多m千克,则≤30﹣5,解得:m≤1300.故一次进货最多只能是1300千克.5.为了经济发展的需要,某市2014年投入科研经费500万元,2016年投入科研经费720万元.(1)求2014至2016年该市投入科研经费的年平均增长率;(2)根据目前经济发展的实际情况,该市计划2017年投入的科研经费比2016年有所增加,但年增长率不超过15%,假定该市计划2017年投入的科研经费为a 万元,请求出a的取值范围.【解答】解:(1)设2014至2016年该市投入科研经费的年平均增长率为x,根据题意,得:500(1+x)2=720,解得:x1=0.2=20%,x2=﹣2.2(舍),答:2014至2016年该市投入科研经费的年平均增长率为20%.(2)根据题意,得:×100%≤15%,解得:a≤828,又∵该市计划2017年投入的科研经费比2016年有所增加故a的取值范围为720<a≤828.少是226万元.6.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.【解答】解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.7.某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2104年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B 两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.(1)求A品牌产销线2018年的销售量;(2)求B品牌产销线2016年平均每份获利增长的百分数.【解答】解:(1)9.5﹣(2018﹣2015)×0.5=8(万份);答:品牌产销线2018年的销售量为8万份;(2)设A品牌产销线平均每份获利的年递减百分数为x,B品牌产销线的年销售量递增相同的份数为k万份;根据题意得:,解得:,或(不合题意,舍去),∴,∴2x=10%;答:B品牌产销线2016年平均每份获利增长的百分数为10%.8.某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.(1)求甲、乙每个商品的进货单价;(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?【解答】解:(1)设甲每个商品的进货单价是x元,每个乙商品的进货单价是y元.根据题意得:,解得:,答:甲商品的单价是每件100元,乙每件80元;(2)设甲进货x件,乙进货(100﹣x)件.根据题意得:,解得:48≤x≤50.又∵x是正整数,则x的正整数值是48或49或50,则有3种进货方案;(3)销售的利润w=100×10%x+80(100﹣x)×25%,即w=2000﹣10x,则当x取得最小值48时,w取得最大值,是2000﹣10×48=1520(元).此时,乙进的件数是100﹣48=52(件).答:当甲进48件,乙进52件时,最大的利润是1520元.9.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?【解答】解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.10.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:甲乙原料成本128销售单价1812生产提成10.8(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)【解答】解:(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据题意得:13y+8.8(20﹣y)≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,当y=15时,W最大,最大值为91万元.11.旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?【解答】解:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍数,∴每辆车的日租金至少应为25元;(2)设每辆车的净收入为y元,当0<x≤100时,y=50x﹣1100,1随x的增大而增大,∵y1的最大值为50×100﹣1100=3900;∴当x=100时,y1当x>100时,y=(50﹣)x﹣11002=﹣x2+70x﹣1100=﹣(x﹣175)2+5025,的最大值为5025,当x=175时,y25025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.12.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?【解答】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得=,解得:x=2000.经检验,x=2000是原方程的根.答:去年A 型车每辆售价为2000元;(2)设今年新进A 型车a 辆,则B 型车(60﹣a)辆,获利y 元,由题意,得y=a+(60﹣a),y=﹣300a+36000.∵B 型车的进货数量不超过A 型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣300a+36000.∴k=﹣300<0,∴y 随a 的增大而减小.∴a=20时,y 最大=30000元.∴B 型车的数量为:60﹣20=40辆.∴当新进A 型车20辆,B 型车40辆时,这批车获利最大.13.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?解:(1)设采摘黄瓜x 千克,采摘茄子y 千克,根据题意,得黄瓜的种植成本是1元/kg,售价是1.5元/kg ;茄子的种植成本是1.2元/kg,售价是2元/kg .+y=40+1.2y=42.=30=10.答:采摘黄瓜30千克,采摘茄子10千克.(2)30×(1.5-1)+10×(2-1.2)=23(元).答:采摘的黄瓜和茄子可赚23元.14.某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?【解答】解:设甲队单独完成此项工程需要x天,乙队单独完成需要(x+5)天.依据题意可列方程:+=,解得:x1=10,x2=﹣3(舍去).经检验:x=10是原方程的解.设甲队每天的工程费为y元.依据题意可列方程:6y+6(y﹣4000)=385200,解得:y=34100.甲队完成此项工程费用为34100×10=341000元.乙队完成此项工程费用为30100×15=451500元.答:从节省资金的角度考虑,应该选择甲工程队.15.我市为全面推进“十个全覆盖”工作,绿化提质改造工程如火如荼地进行,某施工队计划购买甲、乙两种树苗共600棵对某标段道路进行绿化改造,已知甲种树苗每棵100元,乙种树苗每棵200元.(1)若购买两种树苗的总金额为70000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?【解答】解:(1)设购买甲种树苗x棵,购买乙种树苗y棵,由题意,得,解得:,答:购买甲种树苗500棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a棵,则购买乙种树苗(100﹣a)棵,由题意,得100a≥200(600﹣a),解得:a≥400.答:至少应购买甲种树苗400棵16.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B 两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A 种型号健身器材至少要购买多少套?【解答】解:(1)设购买A种型号健身器材x套,B型器材健身器材y套,根据题意,得:,解得:,答:购买A种型号健身器材20套,B型器材健身器材30套.(3)设购买A型号健身器材m套,根据题意,得:310m+460(50﹣m)≤18000,解得:m≥33,∵m为整数,∴m的最小值为34,答:A种型号健身器材至少要购买34套.17.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.【解答】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意,得:,解得:,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50﹣m)=﹣2m+350,∵﹣2<0,。
人教版九年级数学中考真题分类(解答题)专练: 圆的综合(一)有答案
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯人教版九年级数学中考真题分类(解答题)专练:圆的综合(一)1.(2020•齐齐哈尔)如图,AB为⊙O的直径,C、D为⊙O上的两个点,==,连接AD,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.2.(2020•泸州)如图,AB是⊙O的直径,点D在⊙O上,AD的延长线与过点B的切线交于点C,E为线段AD上的点,过点E的弦FG⊥AB于点H.(1)求证:∠C=∠AGD;(2)已知BC=6,CD=4,且CE=2AE,求EF的长.3.(2020•乐山)如图1,AB是半圆O的直径,AC是一条弦,D是上一点,DE⊥AB于点E,交AC于点F,连结BD交AC于点G,且AF=FG.(1)求证:点D平分;(2)如图2所示,延长BA至点H,使AH=AO,连结DH.若点E是线段AO的中点.求证:DH是⊙O的切线.4.(2020•安徽)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.5.(2020•德州)如图,点C在以AB为直径的⊙O上,点D是半圆AB的中点,连接AC,BC,AD,BD.过点D作DH∥AB交CB的延长线于点H.(1)求证:直线DH是⊙O的切线;(2)若AB=10,BC=6,求AD,BH的长.6.(2020•甘孜州)如图,AB是⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:∠CAD=∠CAB;(2)若=,AC=2,求CD的长.7.(2020•金华)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.8.(2020•铜仁市)如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D 是直径AB延长线上一点,且∠BCE=∠BCD.(1)求证:CD是⊙O的切线;(2)若AD=8,=,求CD的长.9.(2020•衢州)如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.10.(2020•嘉兴)已知:如图,在△OAB中,OA=OB,⊙O与AB相切于点C.求证:AC=BC.小明同学的证明过程如下框:证明:连结OC,∵OA=OB,∴∠A=∠B,又∵OC=OC,∴△OAC≌△OBC,∴AC=BC.小明的证法是否正确?若正确,请在框内打“√”;若错误,请写出你的证明过程.参考答案1.(1)证明:连接OD,∵==,∴∠BOD=180°=60°,∵=,∴∠EAD=∠DAB=BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EAD+∠EDA=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,AB=6,∴BD=AB=3,∴AD==3.2.(1)证明:如图1,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵BC是⊙O的切线,∴∠ABC=90°,∴∠C+∠CAB=90°,∴∠C=∠ABD,∵∠AGD=∠ABD,∴∠AGD=∠C;(2)解:∵∠BDC=∠ABC=90°,∠C=∠C,∴△ABC∽△BDC,∴,∴=,∴AC=9,∴AB==3,∵CE=2AE,∴AE=3,CE=6,∵FH⊥AB,∴FH∥BC,∴△AHE∽△ABC,∴,∴==,∴AH=,EH=2,如图2,连接AF,BF,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AFH+∠BFH=∠AFH+∠FAH=90°,∴∠FAH=∠BFH,∴△AFH∽△FBH,∴=,∴=,∴FH=,∴EF=﹣2.3.证明:(1)如图1,连接AD、BC,∵AB是半圆O的直径,∴∠ADB=90°,∵DE⊥AB,∴∠ADE=∠ABD,又∵AF=FG,即点F是Rt△AGD的斜边AG的中点,∴DF=AF,∴∠DAF=∠ADF=∠ABD,又∵∠DAC=∠DBC,∴∠ABD=∠DBC,∴=,∴即点D平分;(2)如图2所示,连接OD、AD,∵点E是线段OA的中点,∴,∴∠AOD=60°,∴△OAD是等边三角形,∴AD=AO=AH,∴△ODH是直角三角形,且∠HDO=90°,∴DH是⊙O的切线.4.(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∴∠DAF+∠AFD=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∵∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.5.(1)证明:连接OD,∵AB为⊙O的直径,点D是半圆AB的中点,∴∠AOD=AOB=90°,∵DH∥AB,∴∠ODH=90°,∴OD⊥DH,∴直线DH是⊙O的切线;(2)解:连接CD,∵AB为⊙O的直径,∴∠ADB=∠ACB=90°,∵点D是半圆AB的中点,∴=,∴AD=DB,∴△ABD是等腰直角三角形,∵AB=10,∴AD=10sin∠ABD=10sin45°=10×=5,∵AB=10,BC=6,∴AC==8,∵四边形ABCD是圆内接四边形,∴∠CAD+∠CBD=180°,∵∠DBH+∠CBD=180°,∴∠CAD=∠DBH,由(1)知∠AOD=90°,∠OBD=45°,∴∠ACD=45°,∵DH∥AB,∴∠BDH=∠OBD=45°,∴∠ACD=∠BDH,∴△ACD∽△BDH,∴,∴=,解得:BH=.6.(1)证明:如图1,连接OC,,∵CD是切线,∴OC⊥CD.∵AD⊥CD,∴AD∥OC,∴∠1=∠4.∵OA=OC,∴∠2=∠4,∴∠1=∠2,即∠CAD=∠CAB.(2)解:如图2,连接BC,∵=,∴设AD=2x,AB=3x,∵AB是⊙O的直径,∴∠ACB=∠ADC=90°,∴∠ACB=90°,∵AD⊥DC,∴∠ADC=90°,∵∠DAC=∠CAB,∴△ACD∽△ABC,∴=,∴=,解得,x1=2,x2=﹣2(舍去),∴AD=4,∴CD==2.7.解:(1)∵的半径OA=2,OC⊥AB于点C,∠AOC=60°,∴AC=OA•sin60°=2×=,∴AB=2AC=2;(2)∵OC⊥AB,∠AOC=60°,∴∠AOB=120°,∵OA=2,∴的长是:=.8.(1)证明:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥AB,∴∠CEB=90°,∴∠ECB+∠ABC=∠ABC+∠CAB=90°,∴∠A=∠ECB,∵∠BCE=∠BCD,∴∠A=∠BCD,∵OC=OA,∴∠A=∠ACO,∴∠ACO=∠BCD,∴∠ACO+∠BCO=∠BCO+∠BCD=90°,∴∠DCO=90°,∴CD是⊙O的切线;(2)解:∵∠A=∠BCE,∴tan A==tan∠BCE==,设BC=k,AC=2k,∵∠D=∠D,∠A=∠BCD,∴△ACD∽△CBD,∴==,∵AD=8,∴CD=4.9.(1)证明:∵AE=DE,OC是半径,∴=,∴∠CAD=∠CBA.(2)解:∵AB是直径,∴∠ACB=90°,∵AE=DE,∴OC⊥AD,∴∠AEC=90°,∴∠AEC=∠ACB,∴△AEC∽△BCA,∴=,∴=,∴CE=3.6,∵OC=AB=5,∴OE=OC﹣EC=5﹣3.6=1.4.10.解:证法错误;证明:连结OC,∵⊙O与AB相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC.。
2021年深圳市中考数学综合应用题练习
2021年深圳市中考数学综合应用题练习一、选择题1. 某球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双球鞋,则列出方程为( )A. 10%x =330B. (1-10%)x =330C. (1-10%)2x =330D. (1+10%)x =3302.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折3. 某旅店一共有70个房间,大房间每间住8个人,小房间每间住6个人,一共480名学生刚好住满,设大房间有x 个,小房间有y 个。
下列方程正确的是( )A. ⎩⎪⎨⎪⎧x +y =70,8x +6y =480B. ⎩⎪⎨⎪⎧x +y =70,6x +8y =480C. ⎩⎪⎨⎪⎧x +y =480,6x +8y =70D. ⎩⎪⎨⎪⎧x +y =480,8x +6y =70 4.已知甲车行驶35千米与乙车行驶45千米所用的时间相同,且乙车每小时比甲车多行驶15千米,设甲车的速度为x 千米/小时,依题意列方程正确的是( )A .354515x x =-B .354515x x =+C .354515x x =-D .354515x x =+ 5.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场,一汽贸公司经销某品牌新能源汽车,去年销售总额为5 000万元.今年1~5月份,每辆车的销售价格比去年降低1万元,销售数量与去年一整年的相同.销售总额比去年整年的少20%.今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元根据题意列方程正确的是( )A .5 000x +1=5 000(1-20%)xB .5 000x +1=5 000(1+20%)x C .5 000x -1=5 000(1-20%)x D .5 000x -1=5 000(1+20%)x 6. 如图,把一块长为40 cm ,宽为30 cm 的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒。
中考数学应用题分类及参考答案(精编)
中考数学应用题分类及参考答案(精编)一、方程应用1.为加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.求月平均增长率.2.一带一路给沿线地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元,求每件产品的实际定价是多少元?3.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,甲志愿者计划完成此项工作的天数?二、一次函数应用4.低碳生活绿色出行的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为_________;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?三、二次函数应用5.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.四、解直角三角形应用6.灯塔是港口城市的标志性建筑之一,如图所示,在点B处测得灯塔最高点A的仰角∠ABD=45°,再沿BD方向前进至C处测得最高点A的仰角∠ACD=60°,BC=15.3m,求灯塔的高度AD(结果精确到1m,参考数据:√ 2≈1.41,√ 3≈1.73)7.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB的高度,他从古塔底部点B处前行30m到达斜坡CE的底部点C处,然后沿斜坡CE前行20m到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1:√ 3,且点A,B,C,D,E 在同一平面内,求小明同学测得古塔AB的高度.8.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B处仰角为30°,求甲楼的高度.五、方程与不等式应用9.某市为创建文明城市,开展美化绿化城市活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?六、方程与函数应用10.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?七、一次函数与二次函数应用11.某汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数y(辆)有如下关系:(1)观察表格,辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:请求出公司的最大月收益是多少元.八、解直角三角形与方程应用12.如图是某滑雪场的横截面示意图,雪道分为AB,BC两部分,小明同学在C点测得雪道BC 的坡度i=1:2.4,在A点测得B点的俯角∠DAB=30°.若雪道AB长为270m,雪道BC长为260m.(1)求该滑雪场的高度h;(2)据了解,该滑雪场要用两种不同的造雪设备来满足对于雪量和雪质的不同要求,其中甲设备每小时造雪量比乙设备少35m3,且甲设备造雪150m3所用的时间与乙设备造雪500m3所用的时间相等.求甲、乙两种设备每小时的造雪量.九、解直角三角形与圆应用13.如图1,Rt△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠C=90°,其外接圆半径为R.根据锐角三角函数的定义:sinA=ac ,sinB=bc,可得asinA=bsinB=csinC=2R,即asinA=bsinB=csinC=2R(规定sin90°=1).(1)探究活动:如图2,在锐角△ABC中,a,b,c分别是∠A,∠B,∠C的对边,其外接圆半径为R,那么:asinA ( )bsinB( )csinC(用>、=或<连接),并说明理由.事实上,以上结论适用于任意三角形.(2)初步应用:在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,∠A=60°,∠B=45°,a=8,求b.(3)综合应用:如图3,在某次数学活动中,小玲同学测量一古塔CD的高度,在A处用测角仪测得塔顶C的仰角为15°,又沿古塔的方向前行了100m到达B处,此时A,B,D三点在一条直线上,在B处测得塔顶C的仰角为45°,求古塔CD的高度.(结果保留小数点后一位,参考数据:√3≈1.732,sin15°=√6−√24)十、方程、不等式与函数应用14.要制作200个A,B两种规格的顶部无盖木盒,A种规格是长、宽、高都为20cm的正方体无盖木盒,B种规格是长、宽、高各为20cm,20cm,10cm的长方体无盖木盒,如图1.现有200张规格为40cm×40cm的木板材,对该种木板材有甲,乙两种切割方式,如图2.切割,拼接等板材损耗忽略不计.(1)设制作A种木盒x个,则制作B种木盒__________个;若使用甲种方式切割的木板材y 张,则使用乙种方式切割的木板材__________张;(2)该200张木板材恰好能做成200个A和B两种规格的无盖木盒,请分别求出A,B木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A种木盒的销售单价定为a元,B种木盒的销售单价定为(20-12a)元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.参考答案1.解:设月平均增长的百分率是x,则该超市二月份的营业额为100(1+x)万元,三月份的营业额为100(1+x)2万元,依题意,得1000+1000(1+x)+1000(1+x)2=3990. 2.解:设每件产品的实际定价是x 元,则原定价为(x+40)元.5000x+40=4000x,解得x =160 ,经检验x =160是原方程的解.3.解:设甲志愿者计划完成此项工作需x 天,故甲的工效都为:1x ,由于甲、乙两人工效相同,则乙的工效为1x ,甲前两个工作日完成了1x ×2,剩余的工作量甲完成了1x (x −2−3),乙在甲工作两个工作日后完成了1x (x −2−3),则2x +2(x−2−3)x=1,解得x=8,经检验,x=8是原方程的解.4.解析:(1)在OA 段,速度=100.5 =20km/h(2)当1.5≤x ≤2.5时,设y=20x+b,把(1.5,10)代入得到,10=20×1.5+b,解得b=﹣20,y=20x ﹣20,当x=2.5时,解得y=30,乙地离小红家30千米.5(1)证明:∵矩形MEFN 与矩形EBCF 面积相等 ∴ME =BE,AM =GH∵四块矩形花圃的面积相等,即S 矩形AMND =2S 矩形MEFN ∴AM =2ME ∴AE =3BE (2)∵篱笆总长为100m∴2AB+GH+3BC =100即2AB+12AB+3BC=100 ∴AB=40-65 BC 设BC 的长度为xm,矩形区域ABCD 的面积为ym 2则y=BC ·AB=x(40- 65x)=−65x 2+40x ∵x>0,40- 65x>0 ∴0<x<1003∴ y=−65x 2+40x(0<x<1003)6.36m7.(20+10√ 3)m 8.(36﹣10√ 3)m9(1)设原计划每年绿化面积为x 万平方米,则实际每年绿化面积为1.6x 万平方米,根据题意,得360x−3601.6x =4解得x=33.75,经检验x=33.75是原分式方程的解,1.6x=1.6×33.75=54(2)设平均每年绿化面积增加a 万平方米,根据题意得54×2+2(54+a)≥360,解得a ≥72,则至少每年平均增加72万平方米. 10(1)y =10x+100(2)由题意得(10x+100)×(55﹣x ﹣35)=1760,整理得x 2﹣10x ﹣24=0,x 1=12,x 2=﹣2(舍去),55﹣x =43,这种消毒液每桶实际售价43元.11(1)设解析式y=kx+b,由题意得{3000k +b =1003200k +b =96,解得{k =−150b =160 ∴y 与x 间的函数关系是y =−150x +160(2)填表如下:(3)W =(−50x +160)(x −150)−(x −3000) =(−150x 2+163x −24000)−(x −3000) =−150x 2+162x −21000=−150(x −4050)2+307050当x=4050时,W 最大=307050,所以,当每辆车的月租金为4050元时,公司获得最大月收益307050元.12(1)过B 作BF ∥AD,过D 过AF ⊥AD,两直线交于F,过B 作BE 垂直地面交地面于E,如图:根据题知∠ABF =∠DAB =30°,AF =12AB =135m,BE:CE =1:2.4 设BE 长t 米,则CE 长2.4t 米. ∵BE 2+CE 2=BC2∴t 2+(2.4t)2=2602,解得t =100m(负值舍去),h =AF+BE =235m(2)设甲种设备每小时的造雪量是xm 3,则乙种设备每小时的造雪量是(x+35)m 3,根据题意得150x=500x+35,解得x =15,经检验,x =15是原方程的解,也符合题意,x+35=50.答:甲种设备每小时的造雪量是15m 3,则乙种设备每小时的造雪量是50m 3. 13(1)探究活动:a sinA = b sinB = csinC理由:如图2,过点C 作直径CD 交⊙O 于点D,连接BD. ∴∠A=∠D,∠DBC=90°∴sinA=sinD,sinD=a 2R ∴asinA = aa 2R=2R同理可证:b sinB =2R,c sinC =2R ∴a sinA = b sinB = csinC =2R (2)初步应用:∵asinA = bsinB =2R ∴8sin60° = bsin45° ∴b=8sin45°sin60°=8√63(3)综合应用:由题意得:∠D =90°,∠A =15°,∠DBC =45°,AB =100 ∴∠ACB =30°设古塔高DC=x,则BC=√2x ,AB sin∠ACB =BCsinA ,100sin30°=√2xsin15°,x=50(√3-1=36.6,古塔CD=36.6m.14(1)要制作200个A,B 两种规格的顶部无盖木盒,制作A 种木盒x 个,故制作B 种木盒(200-x)个;有200张规格为40cm ×40cm 的木板材,使用甲种方式切割的木板材y 张, 故使用乙种方式切割的木板材(200-y)张.(2)使用甲种方式切割的木板材y 张,则可切割出4y 个长、宽均为20cm 的木板,使用乙种方式切割的木板材(200-y)张,则可切割出8(200-y)个长为10cm,宽为20cm 的木板; 设制作A 种木盒x 个,则需要长、宽均为20cm 的木板5x 个,制作B 种木盒(200-x)个,则需要长、宽均为20cm 的木板(200-x)个,需要长为10cm 、宽为20cm 的木板4(200-x)个; 故{4y =5x +(200−x)8(200−y)=4(200−x),解得{x =100y =150 故制作A 种木盒100个,制作B 种木盒100个,使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张.(3)用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元,且使用甲种方式切割的木板150张,使用乙种方式切割的木板材50张,总成本为150×5+8×50=1150(元)两种木盒的销售单价均不能低于7元,不超过18元,所以{7≤a ≤187≤20−12a ≤18,解得{7≤a ≤184≤a ≤26,a 的取值范围为7≤a ≤18. 设利润为W,则W=100a+100(20-12a)-1150整理得W=850+50a,当a=18时,W 有最大值,最大值为850+50×18=1750,此时B 种木盒的销售单价定为20-12×18=11(元)即A 种木盒的销售单价定为18元,B 种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元.。
九上应用题含答案
九上应用题含答案1. 问题:某工厂计划生产一批零件,原计划每天生产100个,实际每天生产120个。
原计划需要30天完成,实际提前了几天完成?答案:首先,我们需要计算原计划的总零件数和实际生产的总零件数。
原计划总零件数 = 每天生产零件数× 计划生产天数= 100 × 30 = 3000个实际每天生产120个零件,那么实际生产的总零件数也是3000个。
接下来,我们计算实际需要的天数:实际生产天数 = 总零件数÷ 实际每天生产零件数= 3000 ÷ 120 = 25天最后,我们计算提前完成的天数:提前完成天数 = 原计划生产天数 - 实际生产天数 = 30 - 25 = 5天所以,实际提前了5天完成。
2. 问题:某书店购进一批图书,进价为每本10元,标价为每本15元。
书店决定进行促销活动,每本图书打8折出售。
问书店每卖出一本图书能赚多少钱?答案:首先,我们需要计算每本图书的售价:售价 = 标价× 折扣= 15 × 0.8 = 12元接下来,我们计算每本图书的利润:利润 = 售价 - 进价 = 12 - 10 = 2元所以,书店每卖出一本图书能赚2元。
3. 问题:一个长方体的长、宽、高分别为a、b、c,求其体积。
答案:长方体的体积可以通过以下公式计算:体积 = 长× 宽× 高= a × b × c所以,长方体的体积为abc立方单位。
4. 问题:某班有50名学生,其中男生占60%,女生占40%。
如果从全班中随机抽取一名学生,抽到男生的概率是多少?答案:首先,我们需要计算男生和女生的人数:男生人数 = 总人数× 男生百分比= 50 × 60% = 30人女生人数 = 总人数× 女生百分比= 50 × 40% = 20人接下来,我们计算抽到男生的概率:抽到男生的概率 = 男生人数÷ 总人数= 30 ÷ 50 = 0.6所以,抽到男生的概率是0.6,或者说60%。
初三(九年级)数学一元二次方程应用题专项练习(带答案)
一元二次方程应用题专项练习题(带答案)一、面积问题01、一个面积为120 2 m. 苗圃的长和宽各是多少?02、有一条长为16 m的绳子,你能否用它围出一个面积为15的长、宽各是多少?03、如图,在一块长35 m、宽26 m的矩形地面上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,要使剩余部分的面积为850道路的宽应为多少?04、如图所示,在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的总面积为570m2,道路应为多宽?05、一块四周镶有宽度相等的花边的地毯如图所示,它的长为8 m,宽为5 m. 如果地毯中央长方形图案的面积为1806、在一幅长90 cm、宽40 cm的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的72%,那么金色纸边的宽应该是多少?07、有一面积为 5 m,另一边剪短2 m,恰好变成一个正方形,这个正方形的边长是多少?08、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17 cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.09、如图,在Rt△ACB中,∠C=90°,AC=8 m,BC=6 m,点P、Q同时由A、B两点出发分别沿AC、BC方向向点C匀速移动(到点C为止),它们的速度都是1 m/s. 经过几秒△PCQ的面积是Rt△ACB面积的一半?二、体积问题10、长方体木箱的高是8 dm,长比宽多5 dm,体积是528 .11、将一块正方形铁皮的四角各剪去一个边长为4 cm的小正方形,做成一个无盖的盒子.已知盒子的容积是400 .三、数的问题12、两个数的差等于4,积等于45,求这两个数.13、三个连续整数两两相乘,再求和,结果为242,这三个数分别是多少?14、有五个连续整数,前三个数的平方和等于后两个数的平方和,求这五个数.15、若两个连续整数的积是56,则它们的和是 ( )A. 11B. 15C. -15 D .±1516、一个直角三角形三边的长为三个连续偶数,求这个三角形的三条边长.四、变化率问题(增长或减少)17、某公司前年缴税40万元,今年缴税48.4万元,该公司缴税的年平均增长率为多少?18、某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为3528元/台,则平均每次降价的百分率为______.19、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均则由题意列方程应为( )A. 200(1+x)2=1000B. 200+200×2x=1000C. 200+200×3x=1000D. 200[1+(1+x)+(1+x)2]=100020、某商场今年1月份销售额为100万元,2月份销售额下降了10%,该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3、4月份月销售额的平均增长率.五、利润问题21、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果衬衫每降价1元,商场平均每天可多售出2件.若商场平均每天要赢利1200元,每件衬衫应降价多少元?22、某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克。
初三数学一元二次方程应用题及答案
第1章(九上)一元二次方程解决问题一、选择1、某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,则这个百分数为 ( )A 、10% B 、20% C 、120% D 、180%2、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为 ( )A 、200(1+x)2=1000 B 、200+200×2x=1000 C 、200+200×3x=1000 D 、200[1+(1+x)+(1+x)2]=10003、某农户种植花生,原来种植的花生亩产量为200千克,出油率为50%(即每100千克花生可加工成花生油50千克).现在种植新品种花生后,每亩收获的花生可加工成花生油132千克,其中花生出油率的增长率是亩产量的增长率的21.则新品种花生亩产量的增长率为 ( )A 、20% B 、30% C 、50% D 、120% 4、若两个连续整数的积是56,则它们的和是 ( ) A 、±15 B、15 C 、-15 D 、11二、填空5、市政府为了解决市民看病难的问题,决定下调药品的价格。
某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率是 。
6、一种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是 。
7、高温煅烧石灰石(CaCO 3)可以制取生石灰(CaO) 和二氧化碳(CO 2).如果不考虑杂质及损耗,生产石灰14吨就需要煅烧石灰石25吨,那么生产石灰224万吨,需要石灰石 万吨。
8、解方程22(1)1x x +++26(1)1x x ++=7时,利用换元法将原方程化为6y 2—7y+2=0,则应设y=_____。
9、某地区开展“科技下乡”活动三年来,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次。
(整理)初中数学综合类应用题测试卷(含答案)
初中数学综合类应用题测试卷一、单选题(共3道,每道33分)1.在某市开展城乡综合治理的活动中,需要将A,B,C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D,E两地进行处理.已知运往D地的数量比运往E地的数量的2倍少10立方米.A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地不超过12立方米,已知从A,B,C 三地把垃圾运往D,E两地处理所需费用如下表:(1)求运往两地的数量各是多少立方米? (2)求A、C两地运往D、E两地有几种方案? (3)在(2)的条件下,当a为多少时总费用最少?()A.90,50;2;22B.90,50;2;21C.50, 90;3;22D.50, 90;3;21答案:B试题难度:三颗星知识点:一元一次不等式组的应用;一元一次方程的应用;2.东艺中学初三(1)班学生到雁鸣湖春游,有一项活动是划船.游船有两种,甲种船每条船最多只能坐4个人,乙种船每条船最多只能坐6个人.已知初三(1)班学生的人数是5的倍数,若仅租甲种船,则不少于12条;若仅租乙种船,则不多于9条. (1)求初三(1)班学生的人数; (2)如果甲种船的租金是每条船10元,乙种船的租金是每条船12元.应怎样租船,才能使每条船都坐满,且租金最少?A.50;甲船2条,乙船7条B.50;甲船5条,乙船5条C.50;甲船8条,乙船7条D.50;甲船11条,乙船1条答案:A试题难度:三颗星知识点:一元一次不等式组的应用;二元一次方程组的应用3.红星药业股份公司为支援某受洪水灾害地区人民灾后治病防病,准备捐赠一种急需药品共320箱,该公司备有多辆甲、乙两种型号的货车,如果用甲型车若干辆,装满每辆车后还余下20箱药未装;如果用同样辆数的乙型车装,则有一辆车还可以装30箱(此时其余各车已装满).已知装满时,每辆甲型车比乙型车少装10箱. (1)求甲、乙两型车每辆装满时,甲能装箱药品,乙能装箱药品; (2)如果将这批药品从公司运到灾区的运输成本(含油费、过路费、损耗等)甲、乙两型车分别为320元/辆,350元/辆.设派甲型车a辆,乙型车b辆时,运输的总成本为z元.请你提出一个派车方案:要保证320箱药恰好装完,又使运输的总成本z最低,求此时a= ,b= . ()A.60,70;3,2B.70,60;2,3C.60,70;2,3D.70,60;3,2答案:A试题难度:三颗星知识点:分式方程的应用;一元一次不等式组的应用;。
人教版九年级上册数学实际问题与二次函数 应用题专题训练(带答案)
实际问题与二次函数应用题专题训练1.某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.(1) 饲养场的长为米(用含a的代数式表示).(2) 若饲养场的面积为288m2,求a的值.(3) 当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?2.在新秦淮区的对口扶贫活动中,企业甲将经营状况良好的某消费品专卖店,以188万元的优惠价转让给了尚有120万无息贷款还没有偿还的小型福利企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支 5.6万元后,逐步偿还转让费(不计利息).如果维持乙企业的正常运转每月除职工最低生活费外,还需其他开支 2.4万元,并且从企业甲提供的相关资料中可知这种热门消费品的进价是每件12元,月销售量y(万件)与销售单价x(元)之间的函数关系式是y=−x+20.(1) 当商品的销售单价为多少元时,扣除各类费用后的月利润余额最大?(2) 企业乙依靠该店,能否在3年内偿还所有债务?3.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=−2x+ 240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1) 求y与x的关系式;(2) 当x取何值时,y的值最大?(3) 如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?4.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1) 求出y与x之间的函数关系式;(2) 如果商店销售这种商品,每天要获得1500元利润,那么每件商品的销售价应定为多少元?(3) 写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?5.某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果毎件童装降价1元,那么平均每天可多售出2件,设每件降价x元(x>0),平均每天可盈利y元.(1) 写出y与x的函数关系式;(2) 当该专卖店每件童装降价多少元时,平均每天盈利400元?(3) 该专卖店要想平均每天盈利600元,可能吗?请说明理由.6.某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=−x+60(30≤x≤60).设这种双肩包每天的销售利润为ω元.(1) 求ω与x之间的函数表达式;(2) 这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3) 如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?7.某商店出售一款商品,商店规定该商品的销售单价不低于68元.经市场调查反映,该商品的日销售量y(件)与销售单价x(元)之间满足一次函数关系.关于该商品的销售单价,日销售量,日销售利润的部分对应数据如下表:[注:日销售利润=日销售量×(销售单价−成本单价)]销售单价x(元)757882日销售量y(件)15012080日销售利润w(元)52504560m(1) 求y关于x的函数关系式,并直接写出自变量的取值范围;(2) ①根据以上信息,填空:该产品的成本单价是元,表中m的值是;②求w关于x的函数关系式;(3) 求该商品日销售利润的最大值.8.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=−x+26.(1) 求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2) 该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3) 第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.9.某公司经过市场调查发现,该公司生产的某商品在第x天的销售单价为(x+20)元/件(1≤x≤50),且该商品每天的销量满足关系式y=200−4x.已知该商品第10天的售价按8折出售,仍然可以获得20%的利润.(1) 求公司生产该商品每件的成本为多少元?(2) 问销售该商品第几天时,每天的利润最大?最大利润是多少?(3) 该公司每天还需要支付人工、水电和房租等其它费用共计a元,若公司要求每天的最大利润不低于2200元,且保证至少有46天盈利,则a的取值范围是(直接写出结果).10.某科技开发公司研制出一种新型产品,每件产品的成本为2400元,销售单价定为3000元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1) 商家一次购买这种产品多少件时,销售单价恰好为2600元?(2) 设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数解析式,并写出自变量x的取值范围.(3) 该公司的销售人员发现:当商家一次购买这种产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其他销售条件不变)11.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲,宾馆需对游客居住的每个房间每天支出20元的各种费用.(1) 当每个房间的定价增加120元时,求一天订出的房间数;(2) 设每个房间的房价定价增加x元(x为10的正整数倍),宾馆一天的利润为w元,求w与x的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?12.某种蔬菜每千克售价y1(元)与销售月份x之间的关系如图①所示,每千克成本y2(元)与销售月份x之间的关系如图②所示,其中图①中的点在同一条线段上,图②中的点在对称轴平行于y轴的同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1) 求出y1与x函数关系式.(2) 求出y2与x函数关系式.(3) 设这种蔬菜每千克收益为ω元,试问在哪个月份岀售这种蔬菜,ω将取得最大值?并求出此最大值.(收益=售价−成本)13.A,B两书店都有同版《英汉小词典》一书出售,封底标价为20元,现两书店都同时进行促销活动,A书店一律按标价的7折销售;B书店若只购1本则按标价销售,若一次性购买多于1本,但不多于20本时,每多购1本,每本售价在标价的基础上优惠2%(例如买两本,每本价优惠2%;买3本每本价优惠4%,依此类推),若多于20本时,每本售价为12元;设在A,B两书店购此书总价分别为y A,y B.(1) 试分别写出y A,y B与购书本数x之间的函数关系式.(2) 如果老师给你176元钱,要你去B书店买该书,问一次性最多能购买此书多少本?若要你去A书店最多又能购买此书多少本呢?(3) 若要分别在A,B两书店一次性购买此书相同本数(x本)时,问当x(0<x≤20)为多少,购此书总价y A与y B相差最大,最大值是多少?14.某货车销售公司,分别试销售两种型号货车各一个月,并从中选择一种长期销售,设每月销售量为x辆,若销售甲型货车,每月销售的利润为y1(万元),已知每辆甲型货车的利润为(m+6)万元,(m是常数,9≤m≤11),每月还需支出其他费用8万元,受条件限制每月最多能销售甲型货车25辆;若销售乙型货车,每月的利润y2(万元)与x的函数关系式为y2=ax2+bx−25,且当时x=10,y2=20,当x=20时,y2=55,受条件限制每月最多能销售乙型货车40辆.(1) 分别求出y1,y2与x的函数关系式,并确定x的取值范围;(2) 分别求出销售这两种货车的最大月利润;(最大利润能求值的求值,不能求值的用式子表示)(3) 为获得最大月利润,该公司应该选择销售哪种货车?请说明理由.15.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1) 写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2) 求销售单价为多少元时,该文具每天的销售利润最大;(3) 商场的营销部结合上述情况,提出了A,B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元,请比较哪种方案的最大利润更高,并说明理由.16.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1) 直接写出y与x之间的函数关系式;(2) 如何确定销售价格才能使月利润最大?求最大月利润;(3) 为了使每月利润不少于6000元应如何控制销售价格?17.2021年3月南山区在深圳湾举办风筝节,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个.请回答以下问题:(1) 用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2) 王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3) 当售价定为多少时,王大伯获得利润最大,最大利润是多少?18.某商场经调研得出某种商品每天的利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx−75,其图象如图所示.时,二次函数y=ax2+bx+c(a≠0)有最小(大)值)(参考公式:当x=−b2a(1) 求a与b的值;(2) 销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?(3) 销售单价定在多少时,该种商品每天的销售利润为21元?结合图象,直接写出销售单价定在什么范围时,该种商品每天的销售利润不低于21元?19.通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散.学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y 越大表示注意力越集中).当0≤x≤10时,图象是抛物线的一部分,当10<x≤20和20<x≤40时,图象是线段.(1) 当0≤x≤10时,求注意力指标数y与时间x的函数关系式;(2) 一道数学综合题,需要讲解24分钟.问老师能否经过适当安排,使学生听这道题时,注意力的指标数都不低于36?20.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1) 请直接写出y与x之间的函数关系式和自变量x的取值范围;(2) 将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?答案一、解答题1. 【答案】(1) 60−3a(2) 依题意,列方程 a (60−3a )=288,解得 a 1=12;a 2=8(舍去),∴a =12.(3) a (60−3a )=−3a 2+60a =−3(a −10)2+300,∵2<60−3a ≤27,当 a =11 时,最大面积是 297 m 2.2. 【答案】(1) 设扣除各类费用后的月利润余额 W 万元.根据题意,得W =(x −12)y −5.6−2.4=(x −12)(−x +20)−5.6−2.4=−x 2+32x −248=−(x −16)2+8.当 x =16 时,W 最大值=8. 答:当商品的销售单价为 16 元时,扣除各类费用后的月利润余额最大.(2) 按扣除各类费用后的月利润余额最大值 8 万元计算,3 年总利润为:8×12×3=288 万元.所有债务为:188+120=308 万元.∵288<308,∴ 不能在 3 年内偿还所有债务.3. 【答案】(1) y =(x −50)⋅w=(x −50)⋅(−2x +240)=−2x 2+340x −12000,∴y 与 x 的关系式为 y =−2x 2+340x −12000.(2) y =−2x 2+340x −12000=−2(x −85)2+2450,∴ 当 x =85 时,y 的值最大.(3) 当 y =2250 时,可得方程 −2(x −85)2+2450=2250.解这个方程,得 x 1=75,x 2=95.根据题意,x 2=95 不合题意应舍去.∴ 当销售单价为 75 元时,可获得销售利润 2250 元.4. 【答案】(1) 设 y 与 x 之间的函数关系式为 y =kx +b (k ≠0),由所给函数图象可知:{130k +b =50,150k +b =30,解得:{k =−1,b =180,故 y 与 x 的函数关系式为 y =−x +180.(2) 根据题意,得:(x −100)(−x +180)=1500.整理,得:x 2−280x +19500=0.解得:x =130.或x =150.答:每件商品的销售价应定为 130 元或 150 元.(3) ∵y =−x +180,∴W =(x −100)y =(x −100)(−x +180)=−x 2+280x −18000=−(x −140)2+1600,∴ 当 x =140 时,W 最大=1600,∴ 售价定为 140 元/件时,每天最大利润 W =1600 元.5. 【答案】(1) 根据题意y =(20+2x )(60−40−x ),y =−2x 2+20x +400(0<x <20).(2) 当 y =400 时,−2x 2+20x +400=400,解得 x 1=10,x 2=0(舍).答:当每件童装降价 10 元时平均每天盈利 400 元.(3) 不可能盈利 600 元.当 y =600 时,600=−2x 2+20x +400,x 2−10x +100=0,Δ=(−10)2−4×1×100=−300<0.方程无实数根.答:不可能盈利 600 元.6. 【答案】(1) ω=(x −30)⋅y=(−x +60)(x −30)=−x 2+30x +60x −1800=−x 2+90x −1800.ω 与 x 之间的函数表达式为 ω=−x 2+90x −1800.(2) 根据题意得,ω=−x 2+90x −1800=−(x −45)2+225.∵−1<0,当 x =45 时,ω 有最大值,最大值是 225.即这种双肩包销售单价定为 45 元时,每天的销售利润最大,最大利润是 225 元.(3) 当 ω=200 时,−x 2+90x −1800=200,解得 x 1=40,x 2=50.∵50>48,∴x 2=50 不符合题意,舍去.故该商店销售这种双肩包每天要获得 200 元的销售利润,销售单价应定为 40 元.7. 【答案】(1) 设 y =kx +b ,将 (75,150),(78,120) 代入,{75k +b =150,78k +b =120,∴{k =−10,b =900.∴y =−10x +900(68≤x ≤90).(2) ① 40;3360② w =y (x −40)=(−10x +900)(x −40)=−10x 2+1300x −36000.(3) w =−10(x −65)2+6250,∵a =−10<0,∴w 有最大值,∵ 当 x ≥65 时,w 随 x 的增大而减小,而 68≤x ≤90,∴ 当 x =68 时,w max =−10(68−65)2+6250=6160,即该商品日销售利润的最大值为 6160 元.8. 【答案】(1) W 1=(x −6)(−x +26)−80=−x 2+32x −236.(2) 由题意:20=−x 2+32x −236.解得:x =16,答:该产品第一年的售价是 16 元.(3) 由题意:7≤x ≤16,W 2=(x −5)(−x +26)−20=−x 2+31x −150,∵7≤x ≤16,∴x =7 时,W 2 有最小值,最小值 =18(万元),答:该公司第二年的利润 W 2 至少为 18 万元.9. 【答案】(1) 设成本为 m 元,10+20=30,30×0.8=24,24−m m =20%,解得m =20,答:公司生产该商品每件成本为 20 元.(2) 设利润为 Z ,则利润 Z =(200−4x )x =−4x 2+200x ,当 x =25 时,利润最大,最大利润为:2500 元,答:第 25 天时利润最大,最大利润为 2500 元.(3) 0<a ≤30010. 【答案】(1) 设商家一次购买这种产品 x 件时,销售单价恰好为 2600 元.由题意,得3000−10(x −10)=2600,解得x =50.故商家一次购买这种产品 50 件时,销售单价恰好为 2600 元.(2) 当 0≤x ≤10 时,y =(3000−2400)x =600x ;当 10<x ≤50 时,y =x [3000−10(x −10)−2400]=−10x 2+700x ;当 x >50 时,y =(2600−2400)x =200x .故 y 与 x 之间的函数解析式为y ={600x,0≤x ≤10,且x 为整数−10x 2+700x,10<x ≤50,且x 为整数200x,x >50,且x 为整数. (3) 若要满足一次购买的数量越多,公司所获的利润越大,则 y 应随 x 的增大而增大.y =600x 及 y =200x 均是 y 随 x 的增大而增大,二次函数 y =−10x 2+700x =−10(x −35)2+12250,当 10<x ≤35 时,y 随 x 的增大而增大;当 35<x ≤50 时,y 随 x 的增大而减小,因此 x 的取值范围只能为 10<x ≤35,即一次购买的数量为 35 件时的销售单价应为调整后的最低销售单价.当 x =35 时,销售单价为 3000−10×(35−10)=2750(元).故公司应将最低销售单价调整为 2750 元.11. 【答案】(1) 50−12010=38(间). (2) w =(50−x 10)×(180+x −20)=−110x 2+34x +8000.(3) ∵−110<0,∴ 抛物线开口向下,抛物线有最高点,函数有最大值,∴ 当 x =−b 2a =34−2×(−110)=170 时, w 最大值=4ac−b 24a =4×(−110)×8000−3424×(−110)=10890. 50−170÷10=33 间.答:一天订住 33 个房间利润最大,最大为 10890 元.12. 【答案】(1) 设 y 1=kx +b ,∵ 直线经过 (3,5),(6,3),{3k +b =5,6k +b =3,解得:{k=−23, b=7.∴y1=−23x+7(3≤x≤6,且x为整数)(2) 设y2=a(x−6)2+1,把(3,4)代入得:4=a(3−6)2+1,解得a=13,∴y2=13(x−6)2+1.(3) 由题意得ω=y1−y2=−23x+7−[13(x−6)2+1]=−13(x−5)2+73,当x=5时,ω最大值=73.故5月出售这种蔬菜,每千克收益最大.13. 【答案】(1) 在A书店购书的总费用为:y A=20×0.7x=14x,在B书店购书的总费用为:y B={20×[1−2%(x−1)]×x,0<x≤20 12x,x>20化简整理得:y B={1025x−25x2,0<x≤20 12x,x>20(2) B书店:当x>20时,12×20=240(元)>176元,∴在B书店购买的本数不多于20件,∴1025x−25x2=176,解得:x1=11或x2=40(舍),∴在B书店,176元钱最多购买此书11本.A书店:14x=176,解得:x=1247≈12,∴在A书店,176元钱最多购买此书12本.(3) ∵当0<x≤20时,设y=y A −y B =14x −1025x +25x 2=25x 2−325x =25(x −8)2−1285, ∵25>0,开口向上,且对称轴为 x =8,∴ 当 x =20 时,y 有最大值,最大值 y =32.14. 【答案】(1) 根据题意,得y 1=(m +6)x −8,(0≤x ≤25).将 x =10,y 2=20,x =20,y 2=55 代入 y 2=ax 2+bx −25,{100a +10b −25=20,400a +20b −25=55, 解得:{a =−120,b =5.∴y 2=−120x 2+5x −25,(0≤x ≤40).(2) ∵m 是常数,(9≤m ≤11),∴m +6>0,∴y 1 随 x 的增大而增大,∴ 当 x =25 时,y 1 取得最大值,最大值为 25m +142.∵y 2=−120(x −50)2+100,∴ 当 x <50 时,y 随 x 的增大而增大,∵0≤x ≤40,∴ 当 x =40 时,y 2 有最大值,最大值为 95.(3) ∵y 1 的最大值为 25m +142.且 9≤m ≤11,∴367≤y 1≤417,y 2 有最大值为 95,∴95<367.故应选择甲种货车.15. 【答案】(1) 由题意得,销售量 =250−10(x −25)=−10x +500,则w =(x −20)(−10x +500)=−10x 2+700x −10000.(2) w =−10x 2+700x −10000=−10(x −35)2+2250.因为 −10<0,所以函数图象开口向下,w 有最大值,当 x =35 时,w 最大=2250,故当单价为 35 元时,该文具每天的利润最大.(3) A 方案利润高,理由如下:A 方案中:20<x ≤30,故当 x =30 时,w 有最大值,此时 w A =2000;B 方案中:{−10x +500≥10,x −20≥25,故 x 的取值范围为:45≤x ≤49,因为函数 w =−10(x −35)2+2250,对称轴为直线 x =35,所以当 x =45 时,w 有最大值,此时 w B =1250,因为 w A >w B ,所以A 方案利润更高.16. 【答案】(1) 由题意可得y ={300−10x (0≤x ≤30),300−20x (−20≤x <0);(2) 由题意可得w ={(20+x )(300−10x )(0≤x ≤30),(20+x )(300−20x )(−20≤x <0).化简得w ={−10x 2+100x +6000(0≤x ≤30),−20x 2−100x +6000(−20≤x <0).即w ={−10(x −5)2+6250(0≤x ≤30),−20(x +52)2+6125(−20≤x <0).由题意可知 x 应取整数,故当 x =−2 或 x =5 时,w <6125<6250,故当销售价格为 65 元时,利润最大,最大利润为 6250 元;(3) 由题意 w ≥6000,如图,令 w =6000,即6000=−10(x −5)2+6250,6000=−20(x +52)2+6125,解得x 1=−5,x 2=0,x 3=10,所以−5≤x ≤10,故将销售价格控制在 55 元到 70 元之间(含 55 元和 70 元)才能使每月利润不少于 6000 元.17. 【答案】(1) 设蝙蝠型风筝售价为 x 元时,销售量为 y 个,据题意可知:y =180−10(x −12)=−10x +300(12≤x ≤30).(2) 设王大伯获得的利润为 W ,则 W =(x −10)y =−10x 2+400x −3000, 令 W =840,则−10x 2+400x −3000=840,解得:x 1=16,x 2=24,答:王大伯为了让利给顾客,并同时获得 840 元利润,售价应定为 16 元.(3) ∵W =−10x 2+400x −3000=−10(x −20)2+1000,∵a =−10<0,∴ 当 x =20 时,W 取最大值,最大值为 1000.答:当售价定为 20 元时,王大伯获得利润最大,最大利润是 1000 元.18. 【答案】(1) y =ax 2+bx −75 图象过点 (5,0),(7,16),所以 {25a +5b −75=0,49a +7b −75=16,解得:{a =−1,b =20.(2) 因为 y =−x 2+20x −75=−(x −10)2+25,所以当 x =10 时,y 最大=25.答:销售单价为 10 元时,该种商品每天的销售利润最大,最大利润为 25 元.(3) 销售单价在 8≤x ≤12 时,销售利润不低于 21 元.19. 【答案】(1) 设 0≤x ≤10 时的抛物线为 y =ax 2+bx +c .由图象知抛物线过 (0,20),(5,39),(10,48) 三点,∴{c =20,25a +5b +c =39,100a +10b +c =48, 解得 {a =−15,b =245,c =20,∴y =−15x 2+245x +20(0≤x ≤10).(2) 由图象知,当 20<x ≤40 时,y =−75x +76,当 0≤x ≤10 时,令 y =36,得 36=−15x 2+245x +20, 解得 x 1=4,x 2=20(舍去);当 20<x ≤40 时,另 y =36,得 36=−75x +76,解得 x =2007=2847. ∵2847−4=2447>24,∴ 老师可以通过适当的安排,在学生的注意力指标数不低于 36 时,讲授完这道数学综合题.20. 【答案】(1) y =300−10(x −44)=−10x +740,44≤x ≤52.(2) w=(x−40)(−10x+740)=−10(x−57)2+2890,当x<57时,w随x的增大而增大,而44≤x≤52,∴当x=52时,w有最大值,最大值为2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润2640元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生做题前请先回答以下问题
问题1:应用题的处理思路:
1.理解题意,梳理信息
综合类应用题信息的呈现形式:
①__________——要清楚变量含义、变量间关系;
②__________、__________——明确文字信息与图象、表格中量的对应关系;
③__________——抓取关键词、关键语句、量与量之间关系.
如:×××与×××成正比例;
售价每上涨××元,每个月少卖××件.
④__________
如:自变量、因变量的范围限制,整数、正数等.
2.辨识类型,建立模型
3.求解验证,回归实际
综合应用题(一)
一、单选题(共5道,每道20分)
1.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
(1)m关于x的一次函数表达式为( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:一次函数的应用
2.(上接第1题)(2)设销售该产品每天的利润为y元,则y关于x的函数表达式为________;在90天内该产品第_______天的销售利润最大;最大利润是_______元.( )
A.;20;12800
B.;50;10000
C.;40;7200
D.;50;6000
答案:C
解题思路:
试题难度:三颗星知识点:二次函数的应用
3.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第天生产的粽子数量为只,
与满足如下关系式:.
(1)李明第_______天生产的粽子数量为450只.( )
A.9
B.11
C.12
D.15
答案:B
解题思路:
试题难度:三颗星知识点:一次函数的应用
4.(上接第3题)(2)如图,设第天每只粽子的成本是元,与之间的关系可用图中的函数图象来刻画.若李明第天创造的利润为元,则与之间的函数关系式为_______,第_______天的利润最大,最大值是_______元(利润=出厂价-成本).( )
A.;9;741
B.;15;2679
C.;9;741
D.;12;768
答案:D
解题思路:
试题难度:三颗星 知识点:二次函数的应用
5.(上接第3,4题)(3)设(2)小题中第m 天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价( )元.
A.1.6
B.0.1
C.1.7
D.0.2
答案:B
解题思路:
试题难度:三颗星知识点:不等式的应用。