第二、三章质点动力学
大学物理第2章质点动力学习题解答
大学物理第2章质点动力学习题解答-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第2章 质点动力学习题解答2-17 质量为2kg 的质点的运动学方程为 j t t i t r ˆ)133(ˆ)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。
解:∵j i dt r d a ˆ6ˆ12/22+== , j i a m F ˆ12ˆ24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。
F=(242+122)1/2=125N ,力与x 轴之间夹角为:'34265.0/︒===arctg F arctgF x y α2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b i t a r ˆsin ˆcos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。
证明:∵r j t b it a dt r d a 2222)ˆsin ˆcos (/ωωωω-=+-== r m a m F2ω-==, ∴作用于质点的合力总指向原点。
2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。
解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g ,f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律:②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ①+②可求得:g m m gm F a μμ-+-=2112将a 代入①中,可求得:2111)2(m m g m F m T +-=μf 1N 1m 1TaFN 2 m 2TaN 1 f 1 f 22-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。
大学物理第2章质点动力学
第2章质点动力学2.1 牛顿运动定律一、牛顿第一定律任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改 变这种状态为止。
二、牛顿第二定律物体所获得的加速度的大小与合外力的大小成正比,与物体的质量成反比, 方向与合外力的方向相同。
表示为f ma说明:⑵在直角坐标系中,牛顿方程可写成分量式f x ma *, f y ma y , f z ma z 。
⑶ 在圆周运动中,牛顿方程沿切向和法向的分量式f t ma t f n ma n⑷ 动量:物体质量m 与运动速度v 的乘积,用p 表示。
p mv动量是矢量,方向与速度方向相同。
由于质量是衡量,引入动量后,牛顿方程可写成dv m 一 dt 当 f 0时,r 0,dp 常量,即物体的动量大小和方向均不改变。
此结 论成为质点动量守恒定律三、 牛顿第三定律:物体间的作用力和反作用力大小相等,方向相反,且在同 一直线上。
物体同时受几个力f i ,f 2f n 的作用时,合力f 等于这些力的矢量和f n力的叠加原理d pdtf ma说明:作用力和反作用力是属于同一性质的力。
四、国际单位制量纲基本量与基本单位导出量与导出单位五、常见的力力是物体之间的相互作用。
力的基本类型:引力相互作用、电磁相互作用和核力相互作用。
按力的性质来分,常见的力可分为引力、弹性力和摩擦力。
六、牛顿运动定律的应用用牛顿运动定律解题时一般可分为以下几个步骤:隔离物体,受力分析。
建立坐标,列方程。
求解方程。
当力是变力时,用牛顿第二定律得微分方程形式求解。
例题例2-1如下图所示,在倾角为30°的光滑斜面(固定于水平面)上有两物体通过滑轮相连,已知叶3kg, m2 2kg,且滑轮和绳子的质量可忽略,试求每一物体的加速度a及绳子的张力F T(重力加速度g取9.80m • s 2)。
解分别取叶和m2为研究对象,受力分析如上图。
利用牛顿第二定律列方程:「m2g F TYL F T m1gsi n30o m1a绳子张力F T F T代入数据解方程组得加速度a 0.98m • s 2,张力F T 17.64N。
质点动力学的三个基本定律
质点动力学的三个基本定律
质点动力学的三个基本定律分别是:牛顿运动定律,动量定理和动量守恒定律,角动量定理和角动量守恒定律。
牛顿运动定律第一定律(惯性定律):任何质点如不受力的作用,则将保持原来静止或匀速直线运动状态。
第二定律:质点的质量与加速度的乘积等于作用于质点的力的大小,加速度的方向与力的方向相同。
第三定律:对应每个作用力必有一个与其大小相等、方向相反且在同一直线上的反作用力。
物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量(用字母I表示),即力与力作用时间的乘积,数学表达式为:
I=FΔt=Δp=mΔv=mv2-mv1
式中F指物体所受的合外力,mv1与mv2为发生Δt的初末态动量。
该式为矢量式,列式前一定要规定正方向!
动量守恒定律是现代物理学中三大基本守恒定律之一,若一个系统不受外力或所受合外力为零时,该系统的总动量保持不变。
角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律;反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质
点和质点系围绕该点(或轴)运动的普遍规律。
角动量守恒定律是对于质点,角动量定理可表述为质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。
大学物理章质点动力学习题答案
第二章 质点动 力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数;解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)s ∴=把式2代入式1得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r ;解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdt v F T mg mR αα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )m cos 3cos '3cos ,e v vdv rg d v vrv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩习题2-2图擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件;解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m,用质量不计的滑轮和细绳连接,并不计摩擦,则A和B 的加速度大小各为多少 ; 解:如图由受力分析得(1)(2)2(3)2(4)ggA AB B A B A BA B mg T ma T mg ma a a T T a a -=-===1解得=-52=-52-5如本题图所示,已知两物体A 、B 的质量均为m=,物体A 以加速度a =s 2 运动,求物体B 与桌面间的摩擦力;滑轮与连接绳的质量不计解:分别对物体和滑轮受力分析如图,由牛顿定律和动力学方程得,()()()1f 111f (1)''(2)2'(3)'2(4)5'6'7(4)7.22A T A TB T T A B T T T T m g F m a F F m a a a F F m m m F F F F mg m m aF N-=-======-+===解得2-6质量为M 的三角形木块,放在光滑的水平桌面上,另一质量为m 的木块放在斜面上如本题图所示;如果所有接触面的摩擦均可忽略不计,求M 的加速度和m 相对M 的加速度;AB 习题2-4图习题2-5图aθ习题2-3图ma AmgT A T B a Bmg解:如图m 相对M 的相对加速度为m a ',则 cos ,sin ,mxm my m a a a a θθ''''== 在水平方向,cos mxmx Mx mx mxMx m M a a a a a a a a θ'=-''∴=+=-+在竖直方向sin mymy myma a a a θ'='∴=由牛顿定律可得,sin cos cos sin sin mx mM my m MN ma ma ma mg N ma ma N Ma θθθθθ'-==-+'-===解得θ+θθ=2sin cos sin m M mg a M , 2()sin sin m M m g a M m θθ++= 2-7在一只半径为R 的半球形碗内,有一粒质量为m 的小钢球;当钢球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高解:取钢球为隔离体,受力分析如图所示,在图示坐标中列动力学方程得,2sin sin cos cos ()/n F ma mR F mg R h Rθωθθθ====-解得钢球距碗底的高度2ω-=g R h2-8光滑的水平面上放置一半径为R 的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦系数为μ;物体的初速率为v 0,求:1t 时刻物体的速率;2当物体速率从v 0减少到v 0/2时,物体所经历的时间及经过的路程;解:1设物体质量为m,取图示的自然坐标系,由牛顿定律得,02222tv 2v (1)(2)(3)4dv 4dt u v N n f t f Nv F ma m R dv F m a m dtF uF v dvu R dt ===-=-=-⎰⎰0由上三式可得=()R 对()式积分得=-习题2-6图00Rv v R v tμ∴=+(2) 当物体速率从v 0减少到v 0/2时,由上式00Rv vR v tμ∴=+可得物体所经历的时间0t R v μ'=经过的路程t t 000vdt dt ln 2Rv Rs R v t μμ''=+⎰⎰==2-9从实验知道,当物体速度不太大时,可以认为空气的阻力正比于物体的瞬时速度,设其比例常数为k;将质量为m 的物体以竖直向上的初速度v 0抛出; 1试证明物体的速度为t m ktm ke v e kmg v --+-=0)1(2证明物体将达到的最大高度为)1ln(020mgkv k g m k mv H +-=3证明到达最大高度的时间为)1ln(0mgkv k mt H +=证明:由牛顿定律可得0000220200ln (1)(2),()ln(13tvv mmt t k kx mg mg kv mdv dt mg kvmg kv m mg t v e v e k mg kv kmvdvdx mg kvmg kv u du kdvk mgdu k mgdudx mdu dx mdu m u m u mv kv m g x k k mg m t k --+-=++∴==-++=-++==∴=-+=-+∴=-+=⎰⎰⎰⎰dv(1)-mg-kv=m ,dt,dv -mg-kv=mv ,dx 令,)()0ln0t ln mg kv mg kvmg kv m v k mg k +++∴=+当时,=即为到达最高点的时间2-10质量为m 的跳水运动员,从距水面距离为h 的高台上由静止跳下落入水中;把跳水运动员视为质点,并略去空气阻力;运动员入水后垂直下沉,水对其阻力为-b v 2,其中b 为一常yf =-kvmgv量;若以水面上一点为坐标原点O,竖直向下为Oy 轴,求:1运动员在水中的速率v 与y 的函数关系;2跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率v 0的1/10假定跳水运动员在水中的浮力与所受的重力大小恰好相等解:运动员入水可视为自由落体运动,所以入水时的速度为0v =入水后如图由牛顿定律的0220//0100mg-f-F=ma mg=F f=bv dv a=dt v dy (2)0.4,0.1m vy ln 5.76m b y v v by m by m dv v dy dvb mv dyb dv m vv v e m v v v ---=∴-=-=====⎰⎰b将已知条件代入上式得,m=-=2-11一物体自地球表面以速率v 0竖直上抛;假定空气对物体阻力的值为f =-km v 2,其中k 为常量,m 为物体质量;试求:1该物体能上升的高度;2物体返回地面时速度的值;解:分别对物体上抛和下落时作受力分析如图,h120m 1ln()2v 01ln()2(2)m v=v 1gyvv vvdv dy g k g k y k g k g k k g vdvdy g k k =-++∴=-+∴+=-∴+⎰⎰⎰⎰222220max 222-/0dv mvdv (1)-mg-k v =m=,dt dy v v v 物体达到最高点时,=,故v h=y =dv mvdv下落过程中,-mg+k v =m=dt dy-v v ()2-12长为60cm 的绳子悬挂在天花板上,下方系一质量为1kg 的小球,已知绳子能承受的最大张力为20N ;试求要多大的水平冲量作用在原来静止的小球上才能将绳子打断解:由动量定理得000I mv I v m∆=-∆∴=,如图受力分析并由牛顿定律得,2020220/202.47mv T mg l mv T mg lmg I l I Ns-==+≥∴+∆≥∆≥2-13一作斜抛运动的物体,在最高点炸裂为质量相等的两块,最高点距离地面为;爆炸后,第一块落到爆炸点正下方的地面上,此处距抛出点的水平距离为100m;问第二块落在距抛出点多远的地面上 设空气的阻力不计解:取如图示坐标系,根据抛体运动规律,爆炸前,物体在最高点得速度得水平分量为()1010x 2x 12y 2x 0x (1),v 2mv mv 30mv mv 414v v 100x x v x t==+=2111121物体爆炸后,第一块碎片竖直下落的运动方程为1y =h-v t-gt 2当碎片落地时,y =0,t=t 则由上式得爆炸后第一块碎片抛出得速度为1h-gt 2=()t 又根据动量守恒定律,在最高点处有1=()211=-22联立以上()-()式得爆炸后第二块碎片抛出时的速度分量分别为=2=2x 11212x 2222y 222214.7v t 5y =h+v t -60,x 500my ms v v ms gt y --====21211h-gt 2t 爆炸后第二块碎片作斜抛运动,其运动方程为x =x +()1()2落地时由式(5)和(6)可解得第二块碎片落地点得水平位置=2-14质量为M 的人手里拿着一个质量为m 的物体,此人用与水平面成θ角的速率v 0向前跳去;当他达到最高点时,他将物体以相对于人为u 的水平速率向后抛出;问:由于人抛出物体,他跳跃的距离增加了多少假设人可视为质点解:取如图所示坐标,把人和物视为一系统,当人跳跃到最高点处,在向左抛物得过程中,满足动量守恒,故有()00000m cos ()v u mu v cos m mu v v- cos m sin t g m sin x vt um gv Mv m v u v v v v v θθθθθ=+-∆∆∆+M 式中为人抛物后相对地面的水平速率,-为抛出物对地面得水平速率,得=++M人的水平速率得增量为==+M而人从最高点到地面得运动时间为=所以人跳跃后增加的距离为==(+M )2-15铁路上有一静止的平板车,其质量为M,设平板车可无摩擦地在水平轨道上运动;现有N 个人从平板车的后端跳下,每个人的质量均为m,相对平板车的速度均为u;问:在下列两种情况下,1N 个人同时跳离;2一个人、一个人地跳离,平板车的末速是多少所得的结果为何不同,其物理原因是什么解:取平板车及N 个人组成的系统,以地面为参考系,平板车的运动方向为正方向,系统在该方向上满足动量守恒;考虑N 个人同时跳车的情况,设跳车后平板车的速度为v,则由动量守恒定律得 0=Mv+Nmv -uv =Nmu/Nm+M 1又考虑N 个人一个接一个的跳车的情况;设当平板车上商有n 个人时的速度为v n ,跳下一个人后的车速为v n -1,在该次跳车的过程中,根据动量守恒有M+nmv n =M v n -1+n-1m v n -1+mv n -1-u 2 由式2得递推公式v n -1=v n +mu/M+nm 3当车上有N 个人得时即N =n,v N =0;当车上N 个人完全跳完时,车速为v 0, 根据式3有,v N-1=0+mu/Nm+Mv N-2= v N-1+mu/N-1m+M ………….v 0= v 1+mu/M+nm将上述各等式的两侧分别相加,整理后得,0n 0mu v nm,1,2,3....v vM nm M Nm n N N +≤+=∑N=1=M+由于故有,即个人一个接一个地跳车时,平板车的末速度大于N 个人同时跳下车的末速度。
质点动力学知识点总结
质点动力学知识点总结1. 引言质点动力学是物理学中研究质点运动规律的分支,它是经典力学的基础。
本文档旨在总结质点动力学的核心知识点,包括牛顿运动定律、动量、动能、势能、功以及守恒定律等。
2. 牛顿运动定律2.1 牛顿第一定律(惯性定律)一个质点若未受外力,将保持静止状态或匀速直线运动。
2.2 牛顿第二定律(动力定律)质点的加速度与作用在其上的合外力成正比,与质点的质量成反比,加速度的方向与合外力的方向相同。
2.3 牛顿第三定律(作用与反作用定律)两个相互作用的质点之间的作用力和反作用力大小相等、方向相反。
3. 动量3.1 定义动量是质点的质量与其速度的乘积,是矢量量,表示为\( \vec{p} = m\vec{v} \)。
3.2 动量守恒定律在一个封闭系统中,若没有外力作用,系统内所有质点的动量之和保持不变。
4. 动能4.1 定义动能是质点由于运动而具有的能量,计算公式为\( K =\frac{1}{2}mv^2 \)。
4.2 动能定理合外力对质点所做的功等于质点动能的变化量。
5. 势能5.1 定义势能是质点由于位置或状态而具有的能量,与参考点的选择有关。
5.2 重力势能在重力场中,质点的重力势能计算公式为\( U = mgh \),其中\( h \)是质点相对于参考点的高度。
6. 功6.1 定义功是力在物体上作用时,由于物体的位移而对物体所做的工作,计算公式为\( W = \vec{F} \cdot \vec{d} \),其中\( \vec{F} \)是力,\( \vec{d} \)是在力的方向上的位移。
6.2 功的守恒在一个封闭系统中,若没有非保守力做功,系统内所有质点的机械能(动能与势能之和)保持不变。
7. 守恒定律7.1 机械能守恒定律在没有非保守力作用的封闭系统中,机械能守恒。
7.2 角动量守恒定律在一个封闭系统中,若没有外力矩作用,系统内所有质点的角动量之和保持不变。
8. 结论质点动力学是理解和描述宏观物体运动的基础。
大学物理第2章-质点动力学基本定律
势能的绝对值没有意义,只关心势能的相对值。 势能是属于具有保守力相互作用的系统 计算势能时必须规定零势能参考点。但是势能差是一定的,与零点的选择无关。 如果把石头放在楼顶,并摇摇欲坠,你就不会不关心它。 一块石头放在地面你对它并不关心。
重力势能:以地面为势能零点
01
万有引力势能:以无限远处为势能零点
m
o
θ
设:t 时刻质点的位矢
质点的动量
运动质点相对于参考原点O的角动量定义为:
大小:
方向:右手螺旋定则判定
若质点作圆周运动,则对圆心的角动量:
质点对轴的角动量:
质点系的角动量:
设各质点对O点的位矢分别为
动量分别为
二.角动量定理
对质点:
---外力对参考点O 的力矩
力矩的大小:
力矩的方向:由右手螺旋关系确定
为质点系的动能,
令
---质点系的动能定理
讨论
内力和为零,内力功的和是否为零?
不一定为零
A
B
A
B
S
L
例:炸弹爆炸,过程内力和为零,但内力所做的功转化为弹片的动能。
内力做功可以改变系统的总动能
例 用铁锤将一只铁钉击入木板内,设木板对铁钉的阻力与铁钉进入木板之深度成正比,如果在击第一次时,能将钉击入木板内 1 cm, 再击第二次时(锤仍以第一次同样的速度击钉),能击入多深? 第一次的功 第二次的功 解:
(1)重力的功
重力做功仅取决于质点的始、末位置za和zb,与质点经过的具体路径无关。
(2) 万有引力的功
*
设质量M的质点固定,另一质量m的质点在M 的引力场中从a运动到b。
M
a
b
笫二章质点动力学
F
13
四、力的分类
在目前的宇宙中,存在着四类基本的相互作用,所有的 运动现象的原因都逃不出这四类基本的力,各式各样的力只不 过是这四类基本力在不同情况下的不同表现.
四种力:万有引力,电磁力,强力和弱力
万有引力 电 磁 力
强力
弱力
适用范围 m
相互作用举 例
长程力
长程力
1015
1016
恒星结合在一 电子和原子核 质子和中子结 表征核子
起形成银河系 结合形成原子 合形成原子核 衰变的力
相对强度
1039
102
1
105
14
㈣ 牛顿运动定律应用
一、动力学的典型问题可归结为两类:
笫一类问题:己知作用于物体(质点)上的力,由力 学规律来决定该物体的运动情况或平衡状态.
笫二类问题:己知物体的运动情况或平衡状态,由 力学规律来推究作用于物体上各种力.
d 2
d 2
,
cos
d 2
1
整理以上方程可得:
dT N
1 dTd Td N
2
18
TA TB
dT T
0d
ln TA TB
TB TAe
讨论: 如果 0.25
则: 时, TB 0.46TA
2时, TB 0.21TA
10时, TB 0.00039TA
19
例题2-2 从实验知道,当物体速度不大时,可认为空 气阻力正比于物体的速度,问以初速度竖直向上运动 的物体,其速度将如何变化?
一、万有引力与重力
F
G
m1m2 r2
mr
1
m
2
重力:地球对表面物体的 万有引力mg
g
理论力学习题
第一章 质点运动学填空1. 在平面极坐标系中,单位向量的微分为: , ,速度的两个分量为 , ,加速度的两个分量为 。
2. 在自然坐标系下,单位向量的微分为: , 速度表示为: ,切向加速度为: ,法向加速度为: 。
3. 点M 沿螺旋线自外向内运动,如图所示。
它走过的弧长与时间的一次方成正比,则点的加速度越来越 (填:大、小、不变),点M 越跑越 (填:快、慢、不变)。
选择题1. 在直角坐标系下,某质点速度随时间的变化为:2234 (m/s)t i t j - ,则在1s 时,质点轨迹的曲率半径ρ= ( ) A. 0 m B. m ∞ C. 1 m D. 5 m计算和证明题:1. 有一作平面曲线运动的质点,其速度在y 轴上的投影于任何时刻均为常数c .试证:任何情况下,加速度的值可用下式表示3v a c ρ= ,其中v 为速率,ρ为轨道曲率半径.M·3. 质点作平面运动,其速率保持为常数.试证此质点速度矢量与加速度矢量相互垂直。
4. 一质点沿抛物线22y px =运动. 其切向加速度的量值为法向加速度量值的2k -倍.如此质点从弦的一端(,)2pp 以速率u 出发,试求其达到正焦弦另一端时的速率.)p )p5,质点沿着半径为r 的圆周运动,其加速度矢量与速度矢量间的夹角α保持不变。
求:(1),质点的速率随时间而变化的规律,(2),质点速率关于速度与x 之间夹角θ之间的函数关系。
已知初始时,速率为0v ,速度与x 轴夹角为0θ。
6,如图所示,细长杆A 端沿半径为R 的半圆槽底滑动,杆紧靠槽边以角速度ω倒下。
求:当杆与x 轴的夹角为ϕ时,杆的端点A 和杆上与槽边的接触点C 的速度。
开始时A 点在半圆槽底端A 0处。
x第二章 质点动力学填空题1.如果运动质点所受的力的作用线始终通过某一定点,我们称此力为有心力,而这个定点叫 。
2. 在直角坐标系下,某质点的动量为:32cos te i t j -- ,则作用在质点上的力F= 。
质点动力学知识点总结
质点动力学知识点总结质点动力学是物理学中非常重要的一个分支,它研究的是质点在力的作用下的运动规律。
在质点动力学中,我们通常假设质点的大小可以忽略不计,只考虑它的位置和速度,这样我们就可以用简单的数学模型描述质点的运动。
在本文中,我们将系统地总结质点动力学的一些基本知识点,包括质点的运动方程、牛顿运动定律、动量和能量等。
希望本文可以帮助读者更好地理解质点动力学的基本概念和原理。
一、质点的运动方程质点的运动可以用位置矢量 r(t) 来描述,它随时间 t 的变化可以用速度矢量 v(t) 来表示。
根据牛顿第二定律 F=ma,质点的运动方程可以写成:m*a = F,其中 m 是质点的质量,a 是质点的加速度,F 是作用在质点上的力。
根据牛顿运动定律,我们可以利用力学原理得到质点在外力作用下的运动规律。
二、牛顿运动定律牛顿运动定律是质点动力学的基础,它包括三条定律:1. 第一定律:物体静止或匀速直线运动时,外力平衡。
这是牛顿运动定律中最基本的一条定律,也是质点动力学的基础。
2. 第二定律:力的大小与加速度成正比,方向与加速度的方向相同。
这条定律描述了质点在外力作用下的加速度与力的关系,是质点动力学的重要定律之一。
3. 第三定律:作用力与反作用力大小相等,方向相反,且作用在不同物体上。
这条定律描述了两个物体之间的相互作用,也是质点动力学中不可或缺的定律之一。
三、动量动量是质点运动的另一个重要物理量,它定义为质点的质量 m 乘以它的速度 v,即 p=m*v。
根据牛顿第二定律 F=dp/dt,我们可以推导出动量的变化率与外力的关系,从而得到动量守恒定律。
动量守恒定律是质点动力学中非常重要的一个定律,它描述了在没有外力作用下,质点的动量将保持不变。
根据动量守恒定律,我们可以在实际问题中很方便地利用动量守恒来解决问题。
四、能量能量是质点动力学中另一个重要的物理量,它定义为质点的动能和势能的总和。
动能是质点由于速度而具有的能量,它和质点的质量和速度有关;势能是质点由于位置而具有的能量,它和质点的位置和作用力有关。
10--第二章 《质点动力学》总结
∫
Fc • dr ≡ 0
非保守力Fnc的特点:做功与路径有关。 的特点:做功与路径有关。 非保守力 的特点
∫
l
Fnc • dr ≡ 0不成立
2.势能 势能 重力势能 重力势能
E p = m gh
重力功 重力功
3. 质点系的功能原理
ex in nc
m' m 引力势能 引力势能 Ep = −G r 1 2 弹性势能 弹性势能 E p = kx 2
W + W = E − E0
引力功 引力功 m'm m'm W = − (−G ) − (−G ) rb ra 弹力功 弹力功
W = −(mghb − mgha )
4. 机械能守恒定律 ex in 当 W + W nc = 0 时,有 E = E 0 作用于质点系的外力和非保守内力不做功. 即:作用于质点系的外力和非保守内力不做功.
dp d(m ) dm v dv F= v +m = = dt dt dt dt dm dv 宏观低速 = 0, F = m = ma dt dt
二、力学中常见的几种力
1. 弹力 f = −kx 2. 静摩擦力(静摩擦力、滑动摩擦力) 静摩擦力(静摩擦力、滑动摩擦力) fsmax=µsN ( µs为最大静摩擦系数) 为最大静摩擦系数
F =0 ⇒ p=C
ex
五、动能、质点系的动能定理 动能、 所有外力和内力对质点系做功的代数和, 所有外力和内力对质点系做功的代数和,等于质 点系总动能的增量。 点系总动能的增量。
1 E k = mυ 2 ⇒ W ex + W in = Ek − Ek 0 2
六、势能、机械能守恒定律 势能、
第二章 质点动力学
第二章 质点动力学质点动力学的任务研究物体之间的相互作用,以及由于这种相互作用所引起的物体运动状态变化的规律,它的研究对象是质点和可以当作质点对待的质点系。
牛顿在1687年发表著作《自然哲学的数学原理》,在伽利略、开普勒等人工作的基础上,建立了牛顿三定律和万有引力定律,从牛顿运动定律出发可以导出刚体、流体、弹性体等的运动规律,从而建立起整个经典力学的体系。
一、牛顿第一定律 (1) 定律表述任何物体若不受其他物体对它的作用(或所受合力为零)将继续保持其静止的或匀速直线运动的状态。
数学形式:0F =∑ 时,=恒矢量v 。
第一定律是大量观察与实验事实的抽象与概括,它给出了物体机械运动状态改变的原因,即物体受到力的作用(合外力不为零),物体的机械运动状态(瞬时速度矢量)发生改变。
(2) 惯性和力的概念惯性的概念:任何物体保持原有运动状态不变的能力,是物质运动不灭性的表现,物体的惯性大小与参考系有关,或者说与所处时空性质有关。
牛顿第一定律也称为惯性定律。
力的概念:物体间的相互作用,在力的作用下物体的运动状态——瞬时速度矢量v 会发生改变。
(3) 惯性参考系牛顿第一定律的意义在于它表明一定存在着这样一类的参考系,在该系中所有不受力的物体都保持自己的速度不变。
这类参考系,称为惯性参考系,或称惯性系,不能成立的参考系称为非惯性系。
牛顿第一定律可作为判断一个参考系是惯性系还是非惯性系的理论依据。
通过力学实验可以判定一个参考系中牛顿第一定律是否成立,是不是惯性系。
对一般力学现象来说,地面参考系是一个足够精确的惯性系,可以应用牛顿运动定律求解质点动力学问题。
对于大量天文现象,以太阳中心为坐标原点、以指向任一恒星的直线为坐标轴建立的坐标系中,太阳系是一个惯性系。
牛顿定律只有在惯性系中才成立。
二、牛顿第二定律 (1) 定律表述物体受到合外力作用时,它所获得的加速度的大小与合外力的大小成正比,并与物体的质量成反比,加速度的方向与合外力的方向相同。
第二章--质点动力学2
W W1 W2
o
r
r1 dr r2
(3)功是过程量:功总是和质点旳某个运
动过程相联络
W dW F dr F cos d r
2、重力、引力、弹性力旳功
(1)重力作功
物体m沿途径 A 过B程中重力
旳功
W
B
dW
B mg dr
y2 mgdy
W
A
mgy2A
mgy1
y1
t1
i1 若 Fi合 0
i 1 n
则 P
mivi
恒矢量
i 1
动量守恒定律:
当系统合外力为零时,系统
旳总动量保持不变。t2
nn
讨论:
Fi合dt mivi mivi0
t1
i 1
i 1
(1)合外力为零或不受外力作用系统总
动量保持不变。
(2)合外力不为零,但合力在某方向分量 为零,则系统在该方向上旳动量守恒。
W mgy2 mgy1 重力势能 Ep mgh
W
G
m'm rB
G
m'm rA
W
1 2
kx22
1 2
kx12
引力势能 弹性势能
Mm
Ep G r
Ep
1 2
kx2
所以能够得到保守力旳功与势 能旳关系式
W Ep2 Ep1 Ep
(2)势能旳讨论 势能是属于存在保守内力旳系统旳, 具有保守力才干引入势能旳概念。 势能是状态旳函数。 势能值旳相对性与势能差旳绝对性。
式
(2)直角坐标系中,定理分量式 t2
I x Fxdt px2 px1
t1 t2
I y Fydt py2 py1
大学物理第2章_质点动力学_知识框架图和解题指导和习题
第2章 质点动力学一、基本要求1.理解冲量、动量,功和能等基本概念;2.会用微积分方法计算变力做功,理解保守力作功的特点;3.掌握运用动量守恒定律和机械能守恒定律分析简单系统在平面内运动的力学问题的思想和方法。
二、基本内容(一)本章重点和难点:重点:动量守恒定律和能量守恒定律的条件审核、综合性力学问题的分析求解。
难点:微积分方法求解变力做功。
(二)知识网络结构图:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧公式只有保守内力做功条件能量守恒定律公式合外力为条件动量守恒定律守恒定律动能定理动量定理基本定理能功冲量动量基本物理量)()0((三)容易混淆的概念: 1.动量和冲量动量是质点的质量与速度的乘积;冲量是合外力随时间的累积效应,合外力的冲量等于动量增量。
2.保守力和非保守力保守力是做功只与始末位置有关而与具体路径无关的力,沿闭合路径运动一周保守力做功为0;非保守力是做功与具体路径有关的力。
(四)主要内容: 1.动量、冲量动量:p mv =u r r冲量:⎰⋅=21t t dt F I ϖϖ2.动量定理:质点动量定理:⎰∆=-=⋅=2112t t v m P P dt F I ϖϖϖϖϖ 质点系动量定理:dtPd F ϖϖ=3.动量守恒定律:当系统所受合外力为零时,即0=ex F ϖ时,或in ex F F u r u r ? 系统的总动量保持不变,即:∑===n i i i C v m P 1ϖϖ4.变力做功:dr F r d F W BAB A⎰⎰=⋅=θcos ϖϖ(θ为)之间夹角与r d F ϖϖ直角坐标系中:)d d d ( z F y F x F W z y BAx ++=⎰5.动能定理:(1)质点动能定理:k1k221222121E E mv mv W -=-=(质点所受合外力做功等于质点动能增量。
)(2)质点系动能定理:∑∑==-=+ni ni E E W W1kio1ki inex(质点系所受外力做功和内力做功之和等于质点系动能增量。
大学物理第2章质点动力学章节总结及练习题
第2章 质点和质点系动力学(复习指南)一、基本要求掌握牛顿三定律及其适用条件,牛顿第二定律的微分形式和惯性系的概念;掌握万有引力(含重力)、弹性力、摩擦力的相关公式,能用微积分方法求解一维变力作用下的质点动力学问题.掌握功的概念和直线运动情况下变力做功的计算方法;掌握势能的概念,会计算重力、弹性力势能;理解保守力做功的特点.二、基本内容1.力、常见力力是物体间的相互作用.力是物体改变运动状态的原因. 常见力有万有引力、重力、弹性力、摩擦力. (1)万有引力、重力万有引力指存在于任何两个物质(质点)之间的吸引力.其数学表达式为r e rm m G F221 2211kg m N 1067.6 G引力的特点为:方向已知,大小与质点间的距离的平方成反比.重力为地球表面附近物体受地球的引力(忽略地球自转的影响).重力的特点为:大小已知,方向竖直向下指向地心.g m P 222EE kg m N 80.9 R Gmg(2)弹性力发生形变的物体,由于要恢复形变而对与它接触的物体产生的力叫弹力.弹力的表现形式有很多种,常见的有正压力、绳中张力、绳对物体的拉力、弹簧的弹力等.弹性力的特点为:方向已知,大小与运动状态有关.弹簧弹力:kx F ,x 为弹簧伸长量,弹力方向指向弹簧原长位置. (3)摩擦力两物体沿相互接触面方向有相对滑动或相对运动趋势时作用于接触面上阻碍物体相对运动的力为摩擦力,摩擦力分滑动摩擦力和静摩擦力.滑动摩擦力在相对滑动的速度不是太大或太小时,其大小与滑动速度无关,而和正压力N成正比,N f,f 的方向与相对滑动方向相反.静摩擦力为变力,其值介于0和最大静摩擦力之间,即max 000f f最大静摩擦力指两个有接触面的物体,沿接触面方向即将产生相对滑动时,通过接触面作用于两物体的摩擦力.在此以前两物体间的相互作用静摩擦力大小可以变化.对物体受力分析的顺序为:重力、弹力、摩擦力.在常见力分析中要特别注意静摩擦力. 2.惯性参考系(惯性系)惯性参考系就是用牛顿第一定律定义的参考系.牛顿定律只有在惯性参考系中才成立.惯性参考系有一个重要性质:相对于惯性参考系作匀速直线运动的任何其它参考系也一定是惯性参考系. 3.基本规律 ﹙1﹚牛顿第一定律第一定律明确了力是改变物体运动状态的原因,并反映出物体有保持原来运动状态不变的特性——惯性,第一定律定义了惯性系.﹙2﹚牛顿第二定律第二定律定量描述了外力作用与所产生的效果的关系,即力的作用与物体状态变化的定量关系.对第二定律应用需注意:①适用于惯性系.②适用于质点.③合外力与物体产生的加速度之间为一瞬时关系,合外力沿加速度方向.④第二定律为一矢量式,应用时常在坐标系中分解.在直角坐标系中有:z iz y iy x x ma F ma F ma F i ,,﹙3﹚牛顿第三定律牛顿第三定律指出力是物体间的相互作用.物体间有相互作用便存在相互作用力.应用第三定律需注意:①作用力,反作用力分别作用在相互作用的物体上,不是平衡力.②作用力、反作用力一定属于同种性质的力,同时产生,同时消失.③不论相互作用的两物体是运动还是静止,第三定律总成立. 4.功功是力的空间累积量:r F Wd d .功等于力和力的作用点位移的点积.功是标量,是一个代数量.当力的作用点没有位移或力与其作用点的位移相互垂直时,此力不做功.保守力做功只取决于相互作用质点的始末相对位置,而与各质点的运动路径无关.非保守力做功与路径有关. 5.势能物体间存在保守力相互作用才能引入相关势能.如地球对地面附近物体间存在重力作用,重力为保守力,引入重力势能.因为势能与物体间相对位置相关,所以,一方面势能属于存在保守力相互作用的系统,另一方面物体的位置描述是相对的,所以势能具有相对性.只有选定势能零点后,系统才有确定的势能值.例如一质量为m 的质点处于地面上h 高度,在没明确势能零点前不能确定m 和地球系统的势能大小,而且重力势能可正、可负、可以为零.但任意两个状态之间系统的势能差是确定的,与势能零点选取无关.势能是状态函数.在讨论涉及势能的功能问题时,必须:①选系统.②选势能零点[弹力势能(原长位置)、万有引力(无穷远)势能零点是确定的].③确定并描述初末状态的能量状态.弹簧弹性势能2k 21kx E ,k 为弹簧倔强系数,x 为相对原长位置(势能零点)的位移.三、例题详解2-1、质量为m 的子弹以速度0v 竖直射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K ,忽略子弹的重力,求:子弹射入沙土后,速度随时间变化的函数式.解:取竖直向下为y 轴正向.子弹进入沙土后受力为v K ,由牛顿定律t mK d d v v ∴vvd d t m K , v v v v 0d d 0t t m K ∴m Kt /0e v v2-2、物体沿x 轴作直线运动,所受合外力2610x F (SI ).试求该物体运动到m 4 x 处时外力做作的功解:J 168210d )610(d 3424x x x x x F W2-3、一人从10m 深的井中提水.起始时桶中装有10kg 的水,桶的质量为1kg ,由于水桶漏水,每升高1m 要漏去的水.求水桶匀速地从井中提到井口,人所做的功.解:选竖直向上为坐标y 轴的正方向,井中水面处为原点. 由题意知,人匀速提水,所以人所用的拉力F 等于水桶的重量 即:y gy mg ky P P F 96.18.1072.00 (SI )人的拉力所做的功为:J 980d )96.18.107(d d 10y y y F W W H2-4、一个弹簧下端挂质量为0.1kg 的砝码时长度为0.07m ,挂0.2kg 的砝码时长度为.现在把此弹簧平放在光滑桌面上,并要沿水平方向从长度m 10.01 l 缓慢拉长到m 14.02 l ,外力需做功多少解:设弹簧的原长为0l ,弹簧的劲度系数为k ,根据胡克定律: )(0.071.00l k g ,)(0.092.00l k g 解得:m 05.00 l ,N/m 49 k拉力所做的功等于弹性势能的增量:J 14.0)(21)(21201202p1p2l l k l l k E E W 四、习题精选2-1、一质点在力)25(5t m F (SI )的作用下,0 t 时从静止开始作直线运动,式中m 为质点的质量,t 为时间,则当s 5 t 时,质点的速率为(提示:变加速度运动,牛II 定律分离变量积分tmF d d v ) (A )50m·s -1. (B )25m·s -1. (C )0. (D )-50m·s -1.[ ]2-2、已知水星的半径是地球半径的倍,质量为地球的倍.设在地球上的重力加速度为g ,则水星表面上的重力加速度为:(提示:2EER GM g) [ ] (A )g 1.0 (B )g 25.0 (C )g 5.2 (D )g 42-3、质量分别为1m 和2m 的两滑块A 和B 通过一轻弹簧水平连接后置于水平桌面上,滑块与桌面间的摩擦系数均为 ,系统在水平拉力F 作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度A a 和B a 分别为(提示:注意加速度的瞬时性)[ ](A )0B A a a (B )0A a ,0B a (C )0A a ,0B a (D )0A a ,0B a2-4、如图所示,质量为m 的物体用细绳水平拉住,静止在倾角为 的固定的光滑斜面上,则斜面给物体的支持力为(提示:画受力分析图)[ ](A ) cos mg . (B ) sin mg . (C )cos mg . (D )sin mg. 2-5、一物体挂在一弹簧下面,平衡位置在O 点,现用手向下拉物体,第一次把物体由O 点拉到M 点,第二次由O 点拉到N 点,再由N 点送回M 点.则在这两个过程中(A )弹性力做的功相等,重力做的功不相等. (B )弹性力做的功相等,重力做的功也相等. (C )弹性力做的功不相等,重力做的功相等. (D )弹性力做的功不相等,重力做的功也不相等.(提示:弹力和重力都是保守力,做功只与始末位置有关,与路径无关)[ ]2-6、沿水平方向的外力F 将物体A 压在竖直墙上,由于物体与墙之间有摩擦力,此时物体保持静止,并设其所受静摩擦力为0f ,若外力增至F 2,则此时物体所受静摩擦力为_________.(提示:静摩擦力是变力,大小从受力平衡角度分析)2-7、如果一个箱子与货车底板之间的静摩擦系数为0 ,当这货车爬一与水平方向成 角的平缓山坡时,要不使箱子在车底板上滑动,车的最大加速度max a =______________________.(提示:以箱子为对象受力分析,最大加速度时摩擦力方向应沿斜面向上) 2-8、如图,在光滑水平桌面上,有两个物体A 和B 紧靠在一起.它们的质量分别为kg 2 A m ,kg 1 B m .今用一水平力N 3 F 推物体B ,则B 推A 的力等于_____.如用同样大小的水平力从右边推A ,则A 推B 的力等于__________.(提示:先整体,后部分,分析受力和加速度)2-9、质量kg 1 m 的物体,在坐标原点处从静止出发在水平面内沿x 轴运动,其所受合力方向与运动方向相同,合力大小为x F 23 (SI ),那么,物体在开始运动的3m 内,合力所做的功W =_______.(提示:变力做功,用元功定义,再积分)2-10、设作用在质量为1kg 的物体上的力36 t F (SI ).如果物体在这一力的作用下,由静止开始沿直线运动,求:在0到的时间间隔内,这个力对物体做功的大小__________.(提示:力是时间函数,参考教学例题,t F x F W d d d v ,v d d m t F )。
大学物理公式
第一章质点运动学国际基本物理量:长度(m),质量(kg),时间(s),电流(A),热力学温度(K),物质的量(mol),发光强度(cd)量纲:某一物理量借助有关定义或定律用基本量表示时,表达式中各基本量的指数。
例:F=ma, 则F导出单位为kg*m/(s^-2),力对质量,长度量纲为1,对时间量纲为-2。
§1.2质点运动描述位矢函数:r=r(t)或r={x(t),y(t),z(t)}其中r=xi+yj+zk ,︱r︳=√[x^2+y^2+z^2]消去t即可得轨迹方程速度:V=dr/dt=(Vx)i+(Vy)j+(Vz)k︱V︳=√[(Vx)^2+(Vy)^2+(Vz)^2]加速度:a=dv/dt=(Ax)i+(Ay)j+(Az)k︱a︳=√[(Ax)^2+(Ay)^2+(Az)^2]自然坐标系Eτ为切向量,EN为法向量V=(ds/dt)* Eτ=︱V︳*Eτa=(Aτ)+(AN)=(dv/dt)* Eτ+(v^2/ρ)*EN 其中ρ为该点的转弯半径︱a︳=√[(dv/dt)^2+(v^2/ρ)^2]加速度与切向夹角α=artan(AN/ Aτ)圆周运动角速度:ω=dθ/dt角加速度:β=dω/dt=(d^2θ)/(dt^2)有V=Rω, Aτ=Rβ, AN=Rω^2V=ω×R,求导得a=(Aτ)+(AN)=β×R+ω×v第二章质点动力学牛顿第一定律:惯性和力牛顿第二定律:P=mv,F=dP/dt=d(mv)/dt=m(dv/dt)=ma牛顿第三定律:F1=F2惯性力:F+Fo=MA’其中Fo=-MAo,Ao为所选参考系相对地面的加速度,A’为目标物体在所选参考系中的加速度功:dA=Fcosαdr ,A=∫F*dr功率:P=dA/dt=F*(dr/dt)=F*v保守力做功:只与初末位置有关平动功能原理:除重力外其他力作功等于平动机械能改变量机械能守恒:保守力做功情况下物体动能与势能相互转换而总合不变动能定理:∫F*ds=ΔEk动量定理:∫F*dt=ΔP动量守恒:F=0(F为合外力),则P1=P2=C(常矢量)质心:质点系中所有质点位矢乘上以该位置质点质量为权重的加权平均值第三章刚体力学转动定律:M=Jβ,与牛二(F=ma)类比,M为合外力矩,J为转动惯量,相当于m,β为角加速度,相当于a其中,J=∫r^2*dm回转半径:r=√(J/m)平行轴定理:若质量为m的刚体对过其质心c的某一转轴的转动惯量为Jc,则可知此刚体对于平行于该轴、和该轴相距为d的另一转轴的转动惯量J为:J=Jc+md^2刚体转动动能:Ek=(Jω^2)/2 类比平动动能:Jóm, ωóv刚体重力势能:Ep=mgh力矩的功:dA=M*dθ A=∫M*dθ功率:P=dA/dt= M*dθ/dt=M*ω刚体转动动能定理:A=∫M*dθ=∫Jωdω=[J(ω2)^2-J(ω1)^2]/2其中M为合外力矩注意类比平动转动功能原理:∫M*dθ=mg(H2-H1)+ [J(ω2)^2-J(ω1)^2]/2 其中M为除重力距外其他力矩之和刚体机械能守恒:mgH+ (Jω^2)/2=C(常量)角动量:L= Jω类比P=mv角动量定理:∫M*dt=L2-L1=ΔL 类比∫F*dt=ΔP角动量守恒:L= Jω=C,转动过程中合外力矩为零适用第六章电荷与电场库仑定律:F=(kq1q2)/r^2 其中k=1/(4πεo)真空中的介电常数:εo电场强度:E=F/q(试验)=kq(产生电场的电荷)/r^2场强叠加:dE= k(dq)/r^2 E=k∫[(dq)/r^2]体电荷密度:ρ=(dq)/(dV)面电荷密度:σ=(dq)/(dS)线电荷密度:λ=(dq)/(dL)电偶极距:Pe=ql,其中l为-q指向+q的径矢电偶极子中垂线上某点场强:E=Pe/(4πεoR^3)=kPe/R^3其中R为该点距中垂线中点距离无限长的均匀带电棒在距其距离为a处的点的场强为Ey=2kλ/a,其中λ为线电荷密度半无限长的均匀带电棒在距其距离为a处的点的场强为E=[(√2)*kλ]/a,其中λ为线电荷密度,方向为x轴,y轴角平分线方向均匀带电圆环轴线上任一点场强为:E=kQx/[(x^2+a^2)^(3/2)]其中Q为圆环带电量,a为圆环半径,x为该点到环心的距离均匀带电圆盘轴线上任一点的场强为:E=σ[1-x/√(R^2+x^2)]/(2εo)其中x为该点到圆盘中心距离,R圆盘半径,σ为面电荷密度无限大均匀带电板附近场强:E=σ/(2εo)电通量:dφ=E*dS 场强E也可表示为E= dφ/ d(S⊥)φ=∫E*dS,若S为闭合曲面,则φ=∮E*dS真空中的高斯定理:φ=∮E*dS=(∑q)/ εo一般取对称高斯面则面上场强E=(∑q)/( εoS)半径为R的均匀带电球壳的空间场强分布:r>R时,E=kq/(r^2)r<R时,E=0半径为R的均匀带电球体的空间场强分布:r≥R时,E=kq/(r^2)r<R时,E=krq/(R^3)无限长均匀带电直线空间场强分布:E=2kλ/r 其中r为该点到直线距离半径为R的无限长均匀带电圆柱面空间场强分布:r>R时,E=2kλ/rr<R时,E=0无限大均匀带电薄平板空间场强分布:E=σ/(2εo)一对电荷密度等值异号的无限大均匀带电薄平板空间场强分布:E=σ/εo静电场环路定理:dA=QoEdlcosθQo为试验电荷A=∫dA=kQoQ∫(1/r^2)*dr=kQoQ[(1/Ra)-(1/Rb)]其中Ra为目标电荷到试验电荷运动起点的距离,Rb为目标电荷到试验电荷运动终点的距离电势:U=∫E*dl电势差:Uab=Qo(Ua-Ub) Ua为起点电势,Ub为终点电势单个点电荷的电势分布:U=kq/r (r≠0) 其中r为该点到点电荷距离半径为R均匀带电球面电势分布:r>R时,U=kq/rr≤R时,U=kq/R半径为R的均匀带电(q)细圆环轴线上电势分布:U=kq/[√(R^2+x^2)] 其中x为该点距圆环中心距离当x>>R时,既点无限远,U=kq/x当x=0时,U=kq/R等势面:(1)与电场线正交(2)电场线方向为电势降落方向(3)电场越强处等势面越密,电场越弱处等势面越疏。
第02章-质点动力学
8
四 牛顿定律的应用
➢牛顿定律只适用于惯性系; ➢牛顿定律只适用于质点模型; ➢具体应用时,要写成坐标分量式。
在平面直角坐标系 在平面自然坐标系
Fx max
Fy
may
Fz
maz
F
m dv dt
mR
Fn
m v2 R
mR 2
2–3 动量 动量守恒定律
力的累积效应
F F
(t)对
对
r
t 积累 积累 W
3
一 惯性定律 惯性参考系 任何物体都要保持其静止或匀速直线运动状态,
直到外力迫使它改 变运动状态为止. 数学形式:F 0 时,v 恒矢量
➢ 定义了物体的惯性 任何物体都有保持其运动状 态不变的性质, 这一性质叫惯性. ➢ 定义了力 力是物体运动状态发生变化的原因. ➢ 定义了惯性参照系 物体在某参考系中, 不受其他 物体作用而保持静止或匀速直线运动状态 , 这个参考 系称为惯性系 . 相对惯性系静止或匀速直线运动的参 照系也是惯性系 .
W Fxdx Fydy Fzdz
21
功的大小与参照系有关
功的量纲和单位 dimW ML2T2 1J 1N m
2.功率 平均功率
P W t
瞬时功率 P lim W dW F v
t0 t
dt
P Fvcos
功率的单位 (瓦特)1W 1J s1 1kW 103 W
22
3 保守力的功 1) 重力的功 质量为m的质点在重力G作用 下由A点沿任意路径移到B点。 重力G只有z方向的分量
4
二 牛顿第二定律 惯性质量 引力质量 物体受到外力作用时,它所获得加速度的大小与
合外力的大小成正比;与物体的质量成反比;加速度 的方向与合外力 F 的方向相同。
《大学物理》第二章《质点动力学》课件
相对论中的质点动力学
相对论简介
01
相对论是由爱因斯坦提出的理论,包括特殊相对论和广义相对
论,对经典力学和电动力学进行了修正和发展。
质点动力学
02
在相对论中,质点的运动遵循质点动力学规律,需要考虑相对
论效应。
实际应用
03
相对论中的质点动力学在粒子物理、宇宙学和天文学等领域具
有重要意义,如解释宇宙射线、黑洞和宇宙膨胀等现象。
牛顿运动定律的应用
通过牛顿第二定律分析质点在各种力作用下的运动规律。
弹性碰撞和非弹性碰撞
碰撞的定义
两个物体在极短时间内相互作用的过 程。
弹性碰撞
两个物体碰撞后,动能没有损失,只 发生形状和速度方向的改变。
非弹性碰撞
两个物体碰撞后,动能有一定损失, 不仅发生形状和速度方向的改变,还 可能有物质交换。
01
运动分析
火箭发射过程中,需要分析火箭的加速 度、速度和位移等运动参数,以确定最 佳发射时间和条件。
02
03
实际应用
火箭发射的运动分析对于航天工程、 军事和商业发射等领域具有重要意义。Fra bibliotek球自转的角动量守恒
1 2
地球自转
地球绕自身轴线旋转,具有角动量。
角动量守恒
在没有外力矩作用的情况下,地球自转的角动量 保持不变。
相对论和量子力学
随着科学技术的不断发展,相对论和量子力学逐 渐兴起,对质点动力学产生了深远的影响。相对 论提出了新的时空观念和质能关系,而量子力学 则揭示了微观世界的奇特性质。
牛顿时代
牛顿在《自然哲学的数学原理》中提出了三大运 动定律和万有引力定律,奠定了经典力学的基础 。
现代
现代物理学在继承经典理论的基础上,不断探索 新的理论框架和实验手段,推动质点动力学的发 展和完善。
大学物理 - 1-6章练习附答案
第一章 质点运动学1、已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置。
解:∵ t tva 34d d +==分离变量,得 t t v d )34(d += 积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c故 2234t t v += 又因为 2234d d t t t x v +==分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t ,50=x ,∴52=c 故 521232++=t t x 所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v2、质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m -⋅,x 的单位为 m 。
质点在x =0处,速度为101s m -⋅,试求质点在任何坐标处的速度值。
解: ∵ xv v t x x v t v a d d d d d d d d ===分离变量: 2d (26)d v v adx x x ==+ 两边积分得c x x v ++=322221 由题知,0=x 时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v第二章 质点动力学1、质量为M 的大木块具有半径为R 的四分之一弧形槽,如图所示。
质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度。
解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR +=又下滑过程,动量守恒,以m 、M 为系统,则在m 脱离M 瞬间,水平方向有0=-MV mv联立以上两式,得2MgR v m M =+2、 哈雷彗星绕太阳运动的轨道是一个椭圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fdt d (mv )(1)
t2
v2 t1 Fdt v1 d (mv ) t2 Fdt mv2 mv1 (2)
t1
其中令
t2
t1
Fdt mv2 mv1 (2) t2 I Fdt
t1
即
I mv2 mv1
2
2
T
y:
求出
T cos mg
cos
g l
2
n
mg
1
例2-3:链条全长L,质量为m,均匀分布,开始l长部 分放在斜面上, (倾角 ),t 0时静止,忽略摩擦,求
链条末端离开平面时的速度。(斜面足够长,链条无形变) N2 T 解:设t时刻斜面部分链条长 N1 T 为x,那么斜面上链条质量为 m2 g m
由(2)的结果,电梯加速下降时,a<0,即得到
m1 m2 ar ( g a) m1 m2 2m1m2 T ( g a) m1 m2
例2-2 : 一圆锥摆,已知绳长为l , 匀角速度为 , 不记绳 的质量, 求摆角 .
解 : 设摆锤质量为 m, 则
n:
y
T sin man mr ml sin
三、牛顿第三定律
表述:物体A以力 F1作用在物体B上,物体B
同时以力 F2 作用在A上, F1、F2大小相等,方向 相反,且作用在同一直线上。
F12 F21
1. 成对出现,同时消失,性质相同; 2. 作用于不同物体,产生不同效果。
四、分析解决问题要点
1. 确定研究对象; 2. 受力分析(关键一步),运动分析;
t2 I Fdt mv2 mv1
t1
t2
F Fx i Fy j Fz k
状态由:
I x Fx dt mv2 x mv1x
t2
I y Fy dt mv2 y mv1 y
I z Fz dt mv2 z mv1z
解此方程组得到:
y
T
a1
m1
T
a2
m2
m1 m2 ar (a g ) m1 m2 2m1m2 T (a g ) m1 m2
o
m1 g
m2 g
讨论:
由(2)的结果,令a=0,即得到(1)的结果
m1 m2 ar g m1 m2 2m1m2 T g m1 m2
上两式消去T,得到:
y
T
a1
m1
T
a2
m2
m1 m2 ar g m1 m2
o
m1 g
m2 g
将ar代入上面任一式T,得到:
2m1m2 T g m1 m2
(2)电梯以加速度a上升时,A对地的加速度a-ar,B 的对地的加速度为a+ar ,根据牛顿第二定律,对A 和B分别得到:
T m1 g m1 (a ar ) T m2 g m2 (a ar )
m1 g
x
m1
L
x
由于链条仅作一维运动
则斜面部分
m1 g sin T m1a
T m2 a
(1)
(2)
平面部分
m xg sin (m1 m2 )a ma L dv dv dx dv a v (4) dt dx dt dx
(5)
(3)
(4)代入(3)式, 再分离变量 x vdv g sin dx L
解 : 任一时刻t小球受 水平力 情况 2 v 壁压力 Fn man m n s R 壁摩擦力 F r | Fn |
t0 s0
dv dv ds dv mv F m m mv r dt ds dt ds R
§2.1 牛顿运动定律及其应用
一、牛顿第一定律 自由物体永远保持静止或匀速直线动状态。
1.物体具有惯性
2.外力是物体运动状态 (v ) 改变的原因
3.只适用于惯性系
二、牛顿第二定律
表述:任一时刻物体动量的变化率总是等于 物体所受的合外力。
当 v C 时:m=const
dp d (mv ) F Fi dt dt
F
dv F m ma dt
…牛顿
m…千克
….米/秒 a
2
注意: 1. 只适用于质点及惯性系中;
2. 矢量性和瞬时性。 分量式: 直角坐标系 平面自然坐标系 2 dvx d x dv Fx max m dt m dt 2 F ma m dt 2 dv y d y v2 m 2 Fy ma y m Fn man m dt dt 2 dvz d z m 2 Fz maz m dt dt
P2 P 1
t2
t1
t2 F1dt Fn dt P2 P ……(5) 1
即:
I i P2 P1
n i 1
t1
……(6)
(6)式为质点系的动量定理.
即:
t2
t1
t2 F1dt Fn dt m R
2
F
n
o
时刻t
P
v
v2 Fn man m n R
dv v0 v
v
0
s
r R ds
v( s ) v0e
r s
R
又 S 2R
v v0e
2 r
例题2-1 设电梯中有一质量可以忽略的滑轮,在滑轮两侧 用 轻 绳 悬 挂 着 质 量 分 别 为 m1 和 m2 的 重 物 A 和 B , 已 知 m1>m2 。当电梯(1)匀速上升,(2)匀加速上升时,求绳中 的张力和物体A相对与电梯的加速度。 解:以地面为参考系,物体A和B为研究对象,分别
本章重点: 牛顿三定律,械能守恒定律,动量守恒定律,角动量守恒定律 本章难点: 用微积分方法求解一维变力作用下简单的质点动力学问题。 系统的势能,三大守恒定律。
第二章
牛顿运动定律
引言:前一章对质点运动进行了描述,此章介绍 质点为什么会处在某种状态以及这种状态 为什么会改变。
1687年牛顿提出了牛顿三定律解 决了此问题。
t1
I i P2 P1
n i 1
……(6)
质点系的动量定理:质点系所受外力的 总冲量等于质点系的总动量的增量。 注意:只有质点系的外力才能改变质点系 的总动量。
t1
t1 t2
t1 t2
说明:哪一方向的冲量只改变哪一方向的动量。 4.常用到平均冲力的概念
t2 F恒 t F变 (t ) dt
t1
t2 F恒 t F变 (t ) dt
t1
则平均冲力:
1 F 平 F恒 t
__
t2
t1
F变 (t ) dt
d (m1v1 m2v2 mn vn ) F1 F2 Fn dt ……(1)
(1)式称为质点系动量定理的微分形式. 令: P m1v1 m2v2 mn vn
又设 t1 t2 时间内质点总动量由 P P 1 2
b
v2
a t1
v1
t2
P2
P1
I
是物体运动量大小的量度 说明: 1. 动量P mv
同是一个物体掉下来,态度却如此不同呢?
t2 2.动量定理表示一个过程: I Fdt
3.应用中常用分量式: 设一质点受冲力
t1
时间 t1
v1 v1x i v1 y j v1z k v2 v2 x i v2 y j v2 z k
例:
fr
m1 受力分析
N
m1
T
m1 g
例 :已知 小球质量 m; A点初速 v0 (切向). 求绕行一周再过 A点时的速率.
A
壁毛糙 r
底光滑
R
v0
o
1.变慢 ? 不变 ? 为什么? 2.匀变速率、非均变?为 什么? 3.摩擦力Fr 方向? 大小与速率 v有无关系 ?
对(3)式两边积分:
dP ……(2) F1 F2 Fn dt 或: ( F1 F2 Fn )dt dP ……(3)
( F1 F2 Fn )dt dP ……(3)
对(3)式两边积分:
或:
t2
t1
( F1 F2 Fn )dt dP ……(4)
3. 建立坐标系,运用定律列写方程 (注意约束条件、关联方程);
4. 求解方程,统一单位(SI),讨论结果。
2. 受力分析,运动分析:
i)非接触力(重力、万有引力、电磁力); ii)接触力(正压力、张力、拉力、弹力、 支持力); iii)摩擦力 • 静摩擦力(被动力,受外界影响,可变) • 最大静摩擦力 f0 0 N • 滑动摩擦力
F23 F32
m1 F12 F13 F21 F31 m2 F23 F32 m3 F2
F1
F3
d m1 ( m1v1 ) F1 F12 F13 F1 dt F12 F13 d F21 ( m2v2 ) F2 F21 F23 dt F23 F31 m2 d F32 ( m3v3 ) F3 F32 F31 m3 dt F2 F3 以上三式相加: d ( m1v1 m2v2 m3v3 ) F1 F2 F3 dt 设有N个质点,则: d (m1v1 m2v2 mn vn ) F1 F2 Fn dt