第2章 质点动力学
大学物理课件 第2章,质点动力学
![大学物理课件 第2章,质点动力学](https://img.taocdn.com/s3/m/da51ca8d8662caaedd3383c4bb4cf7ec4afeb6b4.png)
本章题头§2-1 牛顿运动定律英国物理学家, 经典物理学的奠基人.创立了经典力学的 基本体系光学,牛顿致力于光的颜色和光 的本性数学,建立了二项式定理,创立 了微积分牛顿 Issac Newton (1643-1727)天文学,发现了万有引力定律, 创制反射望远镜,初步观察到了 行星运动的规律。
一、牛顿第一定律 (Newton first law)惯性定律 任何物体都保持静止或匀速直线运动的状态, 直到受到力的作用迫使它改变这种状态为止。
意义惯性以及力的概念 1、定义了物体(质点)的惯性;2、说明了力是物体运动状态改变的原因定义了惯性参考系二、牛顿第二定律 (Newton second law)质点加速度的大小与所受合力的大小成正比 , 与质点自身的质量成反比; 加速度方向与合力方向相同。
牛顿第二定律的数学形式为 Fma 原始形式:F dPd mv dmvm dvdtdtdtdt当 v c 时,m 为常量 Fm dvmadt宏观低速运动时1、瞬时性: 之间一一对应(同生、同向、同变、同灭) n 2、力的叠加性:F F1 F2 Fi Fii =13、矢量性:具体运算时应写成分量式直角坐标系中: Fma maximay jmaz k Fxmaxmdv x dt Fyma ymdv y dt Fzmazmdvz dt 自然坐标系中: Fmam at anF mdv dtFnmv24、说明了质量是物体惯性的量度5、在一般情况下力, F是一个变力常见的几中变力形式:F F x kx常见的几中变力形式:F F t F F v kv弹性力 打击力 阻尼力6、适用对象:质点 7、成立的参考系:惯性系 8、成立的条件:宏观低速10'T 三、牛顿第三定律(Newton third law)物体A 以力F AB 作用于物体B 时, 物体B 也必定同时以力F BA 作用于物体A , F AB 与F BA 大小相等, 方向相反, 并处于同一条直线上,(物体间相互作用规律)mmT P 'P 地球F AB = F BA作用力与反作用力:1、它们总是成对出现。
第二章 非惯性系中的质点动力学
![第二章 非惯性系中的质点动力学](https://img.taocdn.com/s3/m/027ae6e7856a561252d36f6e.png)
M1-28
积分可得
mgR(cos jmax 1 1) m 2 R 2 sin 2 jmax 0 2
因 sin 2 jmax 1 cos2 jmax 上式变为
mgR(cos jmax 1) 1 m 2 R 2 (1 cos 2 jmax ) 0 2
z
或
2 R cos2 jmax 2 g cos jmax 2 g 2 R 0
2. 当加速度 ae 2 g tan 时,牵连惯性力 FIe 2mg tan ,应用 相对运动动能定理,有
m v 2 0 ( F cos )l (mg sin )l Ie 2 r
整理后得
y' m
FN FIe
mg θ ae x'
m 2 vr (mg sin )l 2
力大小为 FIe m 2 R sin j ,方向如图。 经过微小角度dj 时,此惯性力作功为
z
W FIe R cos jdj m 2 R sin j cos jRdj
相对运动的动能定理,得
R
0 0 mgR(1 cos j max )
jmax
0
Байду номын сангаас
j
mg
FIe
m 2 R 2 sin j cos j dj
vr 质点相对动参考系速度
M1-20
上式两端点乘相对位移
dr
dvr m dr F dr FIe dr FIC dr dt
dr 注意到vr , 且科氏惯性力垂直于vr , 有FIC dr 0, 则 dt mvr dvr F dr FIe dr
大学物理第2章质点动力学
![大学物理第2章质点动力学](https://img.taocdn.com/s3/m/a6a2d7e45f0e7cd1852536a3.png)
第2章质点动力学2.1 牛顿运动定律一、牛顿第一定律任何物体都保持静止或匀速直线运动状态,直到其他物体所作用的力迫使它改 变这种状态为止。
二、牛顿第二定律物体所获得的加速度的大小与合外力的大小成正比,与物体的质量成反比, 方向与合外力的方向相同。
表示为f ma说明:⑵在直角坐标系中,牛顿方程可写成分量式f x ma *, f y ma y , f z ma z 。
⑶ 在圆周运动中,牛顿方程沿切向和法向的分量式f t ma t f n ma n⑷ 动量:物体质量m 与运动速度v 的乘积,用p 表示。
p mv动量是矢量,方向与速度方向相同。
由于质量是衡量,引入动量后,牛顿方程可写成dv m 一 dt 当 f 0时,r 0,dp 常量,即物体的动量大小和方向均不改变。
此结 论成为质点动量守恒定律三、 牛顿第三定律:物体间的作用力和反作用力大小相等,方向相反,且在同 一直线上。
物体同时受几个力f i ,f 2f n 的作用时,合力f 等于这些力的矢量和f n力的叠加原理d pdtf ma说明:作用力和反作用力是属于同一性质的力。
四、国际单位制量纲基本量与基本单位导出量与导出单位五、常见的力力是物体之间的相互作用。
力的基本类型:引力相互作用、电磁相互作用和核力相互作用。
按力的性质来分,常见的力可分为引力、弹性力和摩擦力。
六、牛顿运动定律的应用用牛顿运动定律解题时一般可分为以下几个步骤:隔离物体,受力分析。
建立坐标,列方程。
求解方程。
当力是变力时,用牛顿第二定律得微分方程形式求解。
例题例2-1如下图所示,在倾角为30°的光滑斜面(固定于水平面)上有两物体通过滑轮相连,已知叶3kg, m2 2kg,且滑轮和绳子的质量可忽略,试求每一物体的加速度a及绳子的张力F T(重力加速度g取9.80m • s 2)。
解分别取叶和m2为研究对象,受力分析如上图。
利用牛顿第二定律列方程:「m2g F TYL F T m1gsi n30o m1a绳子张力F T F T代入数据解方程组得加速度a 0.98m • s 2,张力F T 17.64N。
第2章质点和质点系动力学
![第2章质点和质点系动力学](https://img.taocdn.com/s3/m/4576ca30bb68a98271fefac0.png)
☆
静止在车厢中的小球受到绳的拉力和重力的作用,
这两个力的合力不为零,小球与车厢一起以加速度运动,
符合牛顿第二定律。
在车厢参考系看来, 相对车厢小球静止,而受到的合力不为零, 这是由于车厢不是惯性系,因此牛顿第二定律不适用。
引入惯性力 (ma0 ) ,
T
拉力、重力、惯性力
这三个力的合力为零,
ma0
m
a0
引入惯性力后
牛顿第二定律
W
适用于车厢
这个非惯性系
等效原理 (阅读)
☆
《大学基础物理学》清华大学出版社(2003)-56页
N
m
N
mg
a
/
m
mg
2.参考系之间加速转动
☆
相对惯性系转动的参考系也不是惯性系。
要在转动参考系中应用牛顿第二定律也要引进惯性力,
但其中的惯性力与加速平动参考系中的惯性力不同。
fd kv
三 惯性力
☆
1.参考系之间加速平动
a K K 系为惯性系,K / 系相对 系作加速平动,加速度为 0
m 若质量为 的质点,在力 F
K a 相对于 系的加速度为 ,相对
的作用下,
K /系的加速度为
a
/
/
a a a0
对于 K 系F,由 于m设a 为惯m性(a系/,牛a顿0 )第二定律是成立
f
R —地球半径
—地球自转的角速度
—物体所在处的纬度
力学第2次课结束
例1
☆
在皮带运输机中, 设砖块与皮带之间的,
静摩擦系数为 s ,
砖块的质量为 m ,
大学物理——第2章-质点和质点系动力学
![大学物理——第2章-质点和质点系动力学](https://img.taocdn.com/s3/m/29acaabd960590c69ec37684.png)
a1 = cot α 方 向: tanθ = ax g
由式④得:
ay
θ 为 a 与 x 正向夹角
FN = m(g + a1) cosα
10
例2-2 阿特伍德机 (1)如图所示滑轮和绳子的质量均不计,滑 轮与绳间的摩擦力以及滑轮与轴间的摩擦力 均不计.且 m > m2 . 求重物释放后,物体 1 的加速度和绳的张力. 解: 以地面为参考系 画受力图,选取坐标如图
ar
ar
m1 m2
a
m g FT = m a1 1 1 m2g + FT = m2a2
a1 = ar a
FT 0
a2 = ar + a
m1 m2 ar = m + m (g + a) 1 2 a1 FT = 2m1m2 (g + a) P 1 m1 + m2
a2
y FT
y
P0 2
12
8
桥梁是加速度 a
例2-1 升降机以加速度a1上升,其中光滑斜面上有一物体m沿 斜面下滑. 求:物体对地的加速度 a ? y 斜面所受正压力的大小? 解: 由于升降机对地有加速度,为一非惯性 系,故选地面为参考系,设坐标如图.
FN
a1
a2
a = a2 + a1
在 x , y 方向上有:
G
α
x
ax = a2 a1 sin α a = a cosα 1 y
m1 m2
FT 0
m g FT = m a 1 1 m2 g + FT = m2a
m1 m2 a= g m1 + m2
2m m2 1 FT = g m + m2 1
大学物理_第2章_质点动力学_习题答案
![大学物理_第2章_质点动力学_习题答案](https://img.taocdn.com/s3/m/d9825c683968011ca2009108.png)
第二章 质点动力学2-1一物体从一倾角为30的斜面底部以初速v 0=10m·s 1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s 1,求该物体与斜面间的摩擦系数。
解:物体与斜面间的摩擦力f =uN =umgcos30物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-20(2)(31)s g u ∴=-把式(2)代入式(1)得,()222200.1983u v v=+2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。
解:小球在运动的过程中受到重力G 和轨道对它的支持力T .取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdt v F T mg mR αα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )2cos 2cos /m cos 3cos '3cos ,e v vdv rg d v gr vg rrv mg mg rmg ααααωαααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两者间摩擦系数为,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。
解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+-2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。
《大学物理》第2章 质点动力学
![《大学物理》第2章 质点动力学](https://img.taocdn.com/s3/m/22d077e4482fb4daa48d4b57.png)
TM
Tm
2Mm M m
g
a
ar
M M
m m
g
a
FM
TM
ar
F m
Tm m
a
M PM
ar
Pm
注:牛顿第二 定律中的加速 度是相对于惯 性系而言的 。
例2 在倾角 θ 30 的固定光滑斜面上放一质量为
M的楔形滑块,其上表面与水平面平行,在其上 放一质量为m的小球, M 和m间无摩擦,
且 M 2m 。
解:以弹簧原长处为坐标原点 。
Fx kx
F Bm A
元功:
O xB x
xA x
dW Fx dx kxdx
dx
弹力做功:W
xB xA
kxdx
1 2
kxA2
1 2
kxB2
2.3.4 势能 Ep
W保 Ep Ep0 Ep
Ep重 mgh
牛顿 Issac Newton(1643-1727) 杰出的英国物理学家,经 典物理学的奠基人.他的 不朽巨著《自然哲学的数 学原理》总结了前人和自 己关于力学以及微积分学 方面的研究成果. 他在光 学、热学和天文学等学科 都有重大发现.
第2章 质点动力学
2.1 牛顿运动定律 2.1.1 牛顿运动定律
1 牛顿第一定律(惯性定律) • 内容:一切物体总保持静止状态或匀速直线运动 状态,直到有外力迫使它改变这种状态为止。 • 内涵: 任何物体都有保持静止或匀速直线运动状态的趋势。 给出了力的定义 。 定义了一种参照系------惯性参照系。
非惯性参照系:相对于已知的惯性系作变速运动 的参照系。
惯性定律在非惯性系 中不成立。
2.2 动量定理 动量守恒定律
第2章 质点动力学
![第2章 质点动力学](https://img.taocdn.com/s3/m/48f435c69ec3d5bbfd0a74f7.png)
b
mg
也可以写成
∫ mg ⋅ dr = 0
17
2.4 势能 机械能守恒定律
3. 弹性力的功
f O xA
xB
fx = −kx
AAB = ∫ fx ⋅ dx =
xA xB
xB
x
∫ (−kx) ⋅ dx
xA
1 1 2 2 = kxA − kxB 2 2
弹性力对运动质点所做的功与质点运动的路径无 弹性力对运动质点所做的功与质点运动的路径无 只与其始、末位置有关。 关,只与其始、末位置有关。
=
( L) ra
rb
∫ ∫
b
FG ⋅ dr
GMm − 3 r ⋅ dr r
r
ra
rb
a
GMm = ∫ − 2 dr ( L) ra r GMm GMm = − rb ra
r ⋅ dr = r⋅ | dr | ⋅ cosϕ
= r ⋅ dr
15
2.4 势能 机械能守恒定律
万有引力的功
GMm GMm 1 1 A = − = −GMm( − ) ab rb ra ra rb
势 参 点 能 考
若选末态为势能零点
EPa =
∫f
(a)
保
⋅dr
20
2.4 势能 机械能守恒定律
常见的势能函数 1)重力势能 1)重力势能
EP = mgh
地面为势能零点 末态为势能零点
2)弹性势能 2)弹性势能
1 2 EP = kx 以弹簧原长为势能零点 2
M m 以无限远为势能零点 3)万有引力势能 3)万有引力势能 EP = −G r
12
2.3 动 能 定 理
笫二章质点动力学
![笫二章质点动力学](https://img.taocdn.com/s3/m/773d373a0a1c59eef8c75fbfc77da26925c5963b.png)
F
13
四、力的分类
在目前的宇宙中,存在着四类基本的相互作用,所有的 运动现象的原因都逃不出这四类基本的力,各式各样的力只不 过是这四类基本力在不同情况下的不同表现.
四种力:万有引力,电磁力,强力和弱力
万有引力 电 磁 力
强力
弱力
适用范围 m
相互作用举 例
长程力
长程力
1015
1016
恒星结合在一 电子和原子核 质子和中子结 表征核子
起形成银河系 结合形成原子 合形成原子核 衰变的力
相对强度
1039
102
1
105
14
㈣ 牛顿运动定律应用
一、动力学的典型问题可归结为两类:
笫一类问题:己知作用于物体(质点)上的力,由力 学规律来决定该物体的运动情况或平衡状态.
笫二类问题:己知物体的运动情况或平衡状态,由 力学规律来推究作用于物体上各种力.
d 2
d 2
,
cos
d 2
1
整理以上方程可得:
dT N
1 dTd Td N
2
18
TA TB
dT T
0d
ln TA TB
TB TAe
讨论: 如果 0.25
则: 时, TB 0.46TA
2时, TB 0.21TA
10时, TB 0.00039TA
19
例题2-2 从实验知道,当物体速度不大时,可认为空 气阻力正比于物体的速度,问以初速度竖直向上运动 的物体,其速度将如何变化?
一、万有引力与重力
F
G
m1m2 r2
mr
1
m
2
重力:地球对表面物体的 万有引力mg
g
第二章 质点动力学
![第二章 质点动力学](https://img.taocdn.com/s3/m/0c66ed82680203d8ce2f2489.png)
第二章 质点动力学质点动力学的任务研究物体之间的相互作用,以及由于这种相互作用所引起的物体运动状态变化的规律,它的研究对象是质点和可以当作质点对待的质点系。
牛顿在1687年发表著作《自然哲学的数学原理》,在伽利略、开普勒等人工作的基础上,建立了牛顿三定律和万有引力定律,从牛顿运动定律出发可以导出刚体、流体、弹性体等的运动规律,从而建立起整个经典力学的体系。
一、牛顿第一定律 (1) 定律表述任何物体若不受其他物体对它的作用(或所受合力为零)将继续保持其静止的或匀速直线运动的状态。
数学形式:0F =∑ 时,=恒矢量v 。
第一定律是大量观察与实验事实的抽象与概括,它给出了物体机械运动状态改变的原因,即物体受到力的作用(合外力不为零),物体的机械运动状态(瞬时速度矢量)发生改变。
(2) 惯性和力的概念惯性的概念:任何物体保持原有运动状态不变的能力,是物质运动不灭性的表现,物体的惯性大小与参考系有关,或者说与所处时空性质有关。
牛顿第一定律也称为惯性定律。
力的概念:物体间的相互作用,在力的作用下物体的运动状态——瞬时速度矢量v 会发生改变。
(3) 惯性参考系牛顿第一定律的意义在于它表明一定存在着这样一类的参考系,在该系中所有不受力的物体都保持自己的速度不变。
这类参考系,称为惯性参考系,或称惯性系,不能成立的参考系称为非惯性系。
牛顿第一定律可作为判断一个参考系是惯性系还是非惯性系的理论依据。
通过力学实验可以判定一个参考系中牛顿第一定律是否成立,是不是惯性系。
对一般力学现象来说,地面参考系是一个足够精确的惯性系,可以应用牛顿运动定律求解质点动力学问题。
对于大量天文现象,以太阳中心为坐标原点、以指向任一恒星的直线为坐标轴建立的坐标系中,太阳系是一个惯性系。
牛顿定律只有在惯性系中才成立。
二、牛顿第二定律 (1) 定律表述物体受到合外力作用时,它所获得的加速度的大小与合外力的大小成正比,并与物体的质量成反比,加速度的方向与合外力的方向相同。
第二章--质点动力学2
![第二章--质点动力学2](https://img.taocdn.com/s3/m/94fb3a0dac02de80d4d8d15abe23482fb5da025e.png)
W W1 W2
o
r
r1 dr r2
(3)功是过程量:功总是和质点旳某个运
动过程相联络
W dW F dr F cos d r
2、重力、引力、弹性力旳功
(1)重力作功
物体m沿途径 A 过B程中重力
旳功
W
B
dW
B mg dr
y2 mgdy
W
A
mgy2A
mgy1
y1
t1
i1 若 Fi合 0
i 1 n
则 P
mivi
恒矢量
i 1
动量守恒定律:
当系统合外力为零时,系统
旳总动量保持不变。t2
nn
讨论:
Fi合dt mivi mivi0
t1
i 1
i 1
(1)合外力为零或不受外力作用系统总
动量保持不变。
(2)合外力不为零,但合力在某方向分量 为零,则系统在该方向上旳动量守恒。
W mgy2 mgy1 重力势能 Ep mgh
W
G
m'm rB
G
m'm rA
W
1 2
kx22
1 2
kx12
引力势能 弹性势能
Mm
Ep G r
Ep
1 2
kx2
所以能够得到保守力旳功与势 能旳关系式
W Ep2 Ep1 Ep
(2)势能旳讨论 势能是属于存在保守内力旳系统旳, 具有保守力才干引入势能旳概念。 势能是状态旳函数。 势能值旳相对性与势能差旳绝对性。
式
(2)直角坐标系中,定理分量式 t2
I x Fxdt px2 px1
t1 t2
I y Fydt py2 py1
大学物理第2章_质点动力学_知识框架图和解题指导和习题
![大学物理第2章_质点动力学_知识框架图和解题指导和习题](https://img.taocdn.com/s3/m/52324b0b680203d8cf2f2452.png)
第2章 质点动力学一、基本要求1.理解冲量、动量,功和能等基本概念;2.会用微积分方法计算变力做功,理解保守力作功的特点;3.掌握运用动量守恒定律和机械能守恒定律分析简单系统在平面内运动的力学问题的思想和方法。
二、基本内容(一)本章重点和难点:重点:动量守恒定律和能量守恒定律的条件审核、综合性力学问题的分析求解。
难点:微积分方法求解变力做功。
(二)知识网络结构图:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧公式只有保守内力做功条件能量守恒定律公式合外力为条件动量守恒定律守恒定律动能定理动量定理基本定理能功冲量动量基本物理量)()0((三)容易混淆的概念: 1.动量和冲量动量是质点的质量与速度的乘积;冲量是合外力随时间的累积效应,合外力的冲量等于动量增量。
2.保守力和非保守力保守力是做功只与始末位置有关而与具体路径无关的力,沿闭合路径运动一周保守力做功为0;非保守力是做功与具体路径有关的力。
(四)主要内容: 1.动量、冲量动量:p mv =u r r冲量:⎰⋅=21t t dt F I ϖϖ2.动量定理:质点动量定理:⎰∆=-=⋅=2112t t v m P P dt F I ϖϖϖϖϖ 质点系动量定理:dtPd F ϖϖ=3.动量守恒定律:当系统所受合外力为零时,即0=ex F ϖ时,或in ex F F u r u r ? 系统的总动量保持不变,即:∑===n i i i C v m P 1ϖϖ4.变力做功:dr F r d F W BAB A⎰⎰=⋅=θcos ϖϖ(θ为)之间夹角与r d F ϖϖ直角坐标系中:)d d d ( z F y F x F W z y BAx ++=⎰5.动能定理:(1)质点动能定理:k1k221222121E E mv mv W -=-=(质点所受合外力做功等于质点动能增量。
)(2)质点系动能定理:∑∑==-=+ni ni E E W W1kio1ki inex(质点系所受外力做功和内力做功之和等于质点系动能增量。
大学物理_第2章_质点动力学_习题答案
![大学物理_第2章_质点动力学_习题答案](https://img.taocdn.com/s3/m/acdddd48e518964bcf847c40.png)
第二章 质点动力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数。
解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)s ∴=把式(2)代入式(1)得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。
解:小球在运动的过程中受到重力G 和轨道对它的支持力T.取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdtv F T mg m Rαα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )m cos 3cos '3cos ,e v vdv rg d v vrv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两习题2-2图者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。
解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。
大学物理B层次--第二章 质点动力学
![大学物理B层次--第二章 质点动力学](https://img.taocdn.com/s3/m/38f2ad16fad6195f312ba60a.png)
例题2-8 质量为m的质点,经时间t、以不变的速 率越过一水平光滑轨道60º 的弯角,求轨道作用于质 点的平均冲力的大小。 解 平均冲力可视为恒力,由动量定理有 m: I=F.t=m2-m 1
m
m 平均冲力 F= (2- 1 ) t (1) 这里|1 | = |2 | =。
求解(2- 1 )的方法有两个:
m
a
N
m
a
ma mg
22
§2-3 质点动量定理
1.冲量 冲量 I
t2
t1
Fdt , 对恒力F, I F (t2 t1 )
牛顿表述的第二定律是:F dp d (m )
2.质点动量定理
dt
dt
两边同乘dt, 再对上式积分,则可得到
I F dt p2 p1
m1
m2
m1g
m2g
(m1 m2 ) g m2 a0 a1 , m1 m2 (m1 m2 ) g m1a0 a2 m1 m2 (2 g a0 )m1m2 T m1 m2
12
例题2-3 一人在平地上拉一个质量为m的木箱匀速 地前进,木箱与地面的摩擦系数µ =0.6,肩上绳的支持点 距地面高度h=1.5m,问绳长L为多长时最省力? 解 先找出力与某个变量()的关系,再求极值。 水平方向:Fcos-fs=ma=0 (匀速) 竖直方向:Fsin+N-mg=0 , fs= µ N 解得: mg F cos sin L F有极小值的充要条件是: h N
19
2.加速平动参考系中的惯性力 在实际问题中常常需要在非惯性系中观察和分析 物体的运动。然而在非惯性系中牛顿定律是不成立。
如果在相对于惯性系S以加速度a作直线运动的非 惯性系S中,假定每个质量为m的物体除了受到真实的 外力F作用外,还受到一个附加的、假想的力Fi=-ma的 作用,那么我们就可以在非惯性系中形式地利用牛顿 定律来解决力学问题了。 这一假想的力: Fi=-ma 惯性力 请注意:这里的a不是物体m的加速度,而是非惯性 系S相对于惯性系S的加速度。
大学物理1,第2章 质点动力学
![大学物理1,第2章 质点动力学](https://img.taocdn.com/s3/m/f0bc068baf1ffc4fff47ac61.png)
O
x
mg
tan a1 , arctan a1
g
g
l
m
a1
(2)以小球为研究对象,当小车沿斜面作匀加速运
动时,分析受力如图,建立图示坐标系。
x方向:FT2 sin(α θ) mg sin α ma2
FT 2
y方向:FT2 cos(α θ) mg cos α 0 a2
m
FT2 m 2ga22 sin α a22 g 2
• 强力(strong interaction)
在原子核内(亚微观领域)才表现出来,存在于 核子、介子和超子之间的、把原子内的一些质子和中 子紧紧束缚在一起的一种力。
其强度是电磁力的百倍,两个相邻质子之间的强 力可达104 N 。力程:<10-15 m
• 弱力(weak interaction)
亚微观领域内的另一种短程力。导致衰变放出 电子和中微子。两个相邻质子之间的弱力只有10-2 N 左右。
重力(gravity) 重力是地球表面物体所受地球引力的一个分量。
G mg
g g0 (1 0.0035cos2 φ)
地理纬度角 g0 是地球两极处的重力加速度。
重力
引力
重力与重力加速度的方向都是竖直向下。
忽略地球自转的影响物体所受的重力就等于它所受的
万有引力:
mg
G
mEm R2
弹力(elastic force)
物体受到外力作用时,它所获得的加速度的大小与合 外力的大小成正比,与物体的质量成反比;加速度的
方向与合外力F的方向相同。 F kma
比例系数k与单位制有关,在国际单位制中k=1
瞬时性:是力F的瞬m时a 作m用d规v律 dt
F
第2章_质点动力学
![第2章_质点动力学](https://img.taocdn.com/s3/m/c6ba520031126edb6f1a10e1.png)
重点掌握变力的问题!
11
例:一根长为L,质量为M的柔软的链条,开始时链条 静止,长为L-l 的一段放在光滑的桌面上,长为l 的一段 铅直下垂。(1)求整个链条刚离开桌面时的速度;(2)求 链条由刚开始运动到完全离开桌面所需要的时间。 M dv dv dx dv xg 解: F xg Ma , a v L dt dt dx L dx
(1) F合 ma (2) a a a0
在加速平动参照系中: F惯 ma0 此时,F F惯 ma (4)
(4)式就在形式上与牛顿第二定律保持一致。
18
在加速平动参照系中:F惯 ma0
惯性力大小: 运动质点的质量m与非惯性系加速度 a的乘积。
*2.1.4 非惯性系 惯性力 非惯性系:相对于惯性系做加速运动的参考系。
在非惯性系内牛顿定律不成立。 1.平动加速系
设有一质点质量为m,相对于某一惯性系S,根据 牛顿第二定律,有: (1) F ma
合
设有另一参照系S/,相对于惯性系S以加速度
动,在S/参照系中,质点的加速度为
由运动的相对性,有:a a a0
2
牛顿第二定律:物体受到外力作用时,它所获得的加 速度的大小与合外力的大小成正比,与物体的质量成 反比,加速度的方向与合外力的方向相同。
数学形式:F ma 或 F m dv dt
在直角坐标系Oxyz中: 在自然坐标系中 :
Fix max Fiy ma y Fiz maz
在匀角速转动参考系中应用牛顿定律, 必须设想物体又受到另外一个与拉力大小相 等但方向相反的惯性力的作用,
2 Fi mω r
大学物理 第二章 质点动力学
![大学物理 第二章 质点动力学](https://img.taocdn.com/s3/m/7dc2e50610661ed9ac51f318.png)
A Fs cos
A F s
(2-27)
式中为力F与位移 s之间的夹角。 根据矢量标积的定义,上式可以写成:
(2-28) 注意:如果力为变力,或质点作曲线运动,力作的功就不 能用上式来计算,而应该应用微积分的方法来计算力作的功。
设质点在变力 F 的作用下,沿曲线从A点运动到B点。将A 到B 的路径分成许多小段,任取一小段位移,用 d r 来表示。由 于 d r 非常微小,可以认为质点在这段位移元上所受的力为恒 力,则力对质点作的元功为:
A
在直角坐标系中:
A Fx dx Fy dy Fz dz Fx dx Fy dy Fz dz
二、质点的动能定理:
dr vB B 1 2 1 2 dv A m dr m dv mvdv mvB mvA A A vA dt dt 2 2 即:合力对质点所作的功等于质点始、末两状态的动能 的增量。 所以说:功是动能变化的量度。
F dv 解: 6t m dt
dx v 3t dt
2
dx 3t 2dt
A
x
0
3 36 t F 3 t d t Fdx dt 144J
2 0
t
2
0
2 P F v 12t 3t 288W
补充例题
例4 已知用力 F从竖直方向缓慢拉质量为m 的小球,且 F 保持方向不变。 求 = 0 时,F 作的功。 L θ 解: F T sin θ 0 T cosθ mg 0 T
B
课后思考及作业
阅读:P60-68 作业:习题2-25、习题2-26
2 2 2 4 2 2
由点(2,0) 到点(2,4)由于x=2为常量,dx=0,所以:
第02章-质点动力学
![第02章-质点动力学](https://img.taocdn.com/s3/m/bdd929ea970590c69ec3d5bbfd0a79563d1ed41d.png)
8
四 牛顿定律的应用
➢牛顿定律只适用于惯性系; ➢牛顿定律只适用于质点模型; ➢具体应用时,要写成坐标分量式。
在平面直角坐标系 在平面自然坐标系
Fx max
Fy
may
Fz
maz
F
m dv dt
mR
Fn
m v2 R
mR 2
2–3 动量 动量守恒定律
力的累积效应
F F
(t)对
对
r
t 积累 积累 W
3
一 惯性定律 惯性参考系 任何物体都要保持其静止或匀速直线运动状态,
直到外力迫使它改 变运动状态为止. 数学形式:F 0 时,v 恒矢量
➢ 定义了物体的惯性 任何物体都有保持其运动状 态不变的性质, 这一性质叫惯性. ➢ 定义了力 力是物体运动状态发生变化的原因. ➢ 定义了惯性参照系 物体在某参考系中, 不受其他 物体作用而保持静止或匀速直线运动状态 , 这个参考 系称为惯性系 . 相对惯性系静止或匀速直线运动的参 照系也是惯性系 .
W Fxdx Fydy Fzdz
21
功的大小与参照系有关
功的量纲和单位 dimW ML2T2 1J 1N m
2.功率 平均功率
P W t
瞬时功率 P lim W dW F v
t0 t
dt
P Fvcos
功率的单位 (瓦特)1W 1J s1 1kW 103 W
22
3 保守力的功 1) 重力的功 质量为m的质点在重力G作用 下由A点沿任意路径移到B点。 重力G只有z方向的分量
4
二 牛顿第二定律 惯性质量 引力质量 物体受到外力作用时,它所获得加速度的大小与
合外力的大小成正比;与物体的质量成反比;加速度 的方向与合外力 F 的方向相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 质点动力学一、选择题1. 如图1所示,物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的 (A) 速度逐渐减小, 加速度逐渐减小 (B) 速度逐渐减小, 加速度逐渐增大 (C) 速度继续增大, 加速度逐渐减小(D) 速度继续增大, 加速度逐渐增大 [ ] 2. 一物体作匀速率曲线运动, 则(A) 其所受合外力一定总为零 (B) 其加速度一定总为零 (C) 其法向加速度一定总为零 (D) 其切向加速度一定总为零[ ]3. 对一运动质点施加以恒力, 质点的运动会发生什么变化? (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性(C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化 [ ] 4. 用细绳系一小球使之在竖直平面内作圆周运动, 小球在任意位置 (A) 都有切向加速度 (B) 都有法向加速度(C) 绳子的拉力和重力是惯性离心力的反作用力(D) 绳子的拉力和重力的合力是惯性离心力的反作用力 [ ] 5. 如图2所示,三艘质量均为0m 的小船以相同的速度v鱼贯而行.今从中间船上同时以速率u (与速度v 在同一直线上)把两个质量均为m 的物体分别抛到前后两船上. 水和空气的阻力均不计, 则抛掷后三船速度分别为(A) v ,v ,v(B) u +v ,v ,u -v (C) u m m m 0++v ,v ,u m m m+-v(D) u m m m 0++v ,v ,u mm m 0+-v [ ] 6. 质量为m 的铁锤竖直落下, 打在木桩上并停下. 设打击时间为∆t , 打击前铁锤速率为v ,则在打击木桩的时间内, 铁锤所受平均合外力的大小为(A)t m ∆v (B) mg t m -∆v (C) mg t m +∆v (D) tm ∆v2 [ ]7. 用锤压钉不易将钉压入木块, 用锤击钉则很容易将钉击入木块, 这是因为 (A) 前者遇到的阻力大, 后者遇到的阻力小 (B) 前者动量守恒, 后者动量不守恒 (C) 后者锤的动量变化大, 给钉的作用力就大(D) 后者锤的动量变化率大, 给钉的作用力就大 [ ] 8. 质点系的内力可以改变(A) 系统的总质量 (B) 系统的总动量图1图2v0y 021y012vy 图4(C) 系统的总动能 (D) 系统的总角动量 [ ]9..设一子弹穿过厚度为l 的木块其初速度大小至少为v .如果木块的材料不变, 而厚度增为2l , 则要穿过这木块, 子弹的初速度大小至少要增为(A) 2v (B)v 2 (C)v 21(D)2v [ ] 10. 一力学系统由两个质点组成,它们之间只有引力作用,若两质点所受外力的矢量和为零,则此系统(A) 动量、机械能以及对一轴的角动量守恒 (B) 动量、机械能守恒,但角动量是否守恒不能断定 (C) 动量守恒,但机械能和角动量守恒与否不能断定(D) 动量和角动量守恒,但机械能是否守恒不能断定 [ ]二、填空题1. 如图3所示,置于光滑水平面上的物块受到两个水平力的作用.欲使该物块处于静止状态,需施加一个大小为 、方向向 的力;若要使该物块以1s m 5-⋅的恒定速率向右运动,则需施加一个大小为 、方向向 的力.2. 机枪每分钟可射出质量为g 20的子弹900颗, 子弹射出速率为-1s m 800⋅,则射击时的平均反冲力为 .3. 如图4所示,质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为021y ,水平速率为012v ,则碰撞过程中:(1)地面对小球的垂直冲量的大小为_____;(2)地面对小球的水平冲量的大小为_________。
4. 质量为10 kg 的物体在变力作用下从静止开始作直线运动, 力随时间的变化规律是t F 43+=(式中F 以N 、t 以s 计). 由此可知, 3 s 后此物体的速率为5.一质点受力i x F 23=(SI)作用, 沿x 轴正方向运动. 在从x = 0到x = 2 m 的过程中, 力F 做功为 .6. 一个质点在几个力同时作用下的位移为k j i r654+-=∆(SI), 其中一个恒力为k j i F953+--=(SI).这个力在该位移过程中所做的功为 .7. 一质点在如图5所示的坐标平面内作圆周运动,有一力)(0j y i x F F+=作用在质点上.在该质点从坐标原点运动到)2,0(R 位置过程中,力F对它所作的功为 .三、计算题1. 飞机降落时的着地速度大小10h km 90-⋅=v ,方向与地面平行,飞机与地面间的摩擦系数10.0=μ,迎面空气阻力为2v x C ,升力为2v y C (v 是飞机在跑道上的滑行速度,xC 图3图5和y C 均为常数).已知飞机的升阻比5==xy C C K ,求飞机从着地到停止这段时间所滑行的距离.(设飞机刚着地时对地面无压力)2. 质量为45.0kg 的物体,由地面以初速60.0m/s 竖直向上发射。
物体受到空气的阻力为f F k =-v ,且10.03N m s k -=⋅⋅。
求:(1)物体发射到最大高度所需的时间; (2)最大高度为多少?3. 一颗子弹在枪筒里前进时所受的合力大小为t F 31044005⨯-=(SI),子弹从枪口射出的速率为3001s m -⋅.假设子弹离开枪口时合力刚好为零,求:(1) 子弹走完枪筒全长所用的时间 t ; (2) 子弹在枪筒中所受的冲量 I ; (3) 子弹的质量 m .4. 矿砂从传送带A 落到另一传送带B(如图6所示),其速度的大小11s m 4-⋅=v ,速度方向与竖直方向成30°角;而传送带B 与水平线成15°角,其速度的大小12s m 2-⋅=v .如果传送带的运送量恒定,设为1m h kg 2000-⋅=q ,求矿砂作用在传送带B上的力的大小和方向.5. 质量为m 的跳水运动员,从10.0m 高台上由静止跳下落入水中。
高台与水面距离为h 。
把跳水运动员视为质点,并略去空气阻力。
运动员入水后垂直下沉,水对其阻力为2b v ,其中b 为一常量。
若以水面上一点为坐标原点o ,竖直向下为oy 轴,求:(1)运动员在水中的速率v 与y 的函数关系;(2)若/0.40/m b m =,跳水运动员在水中下沉多少距离才能使其速率v 减少到落水速率0v 的1/10? (假定跳水运动员在水中的浮力与所受的重力大小恰好相等)6. 高为h 的光滑桌面上,放一质量为m 的木块.质量为0m 的子弹以速率v 0沿图7所示方向( 图中θ 角已知)射入木块并与木块一起运动.求:木块落地时的速率.7. 两球A ﹑B 质量相等(A B m m m ==),在光滑的水平面上相碰如图8所示。
碰前速度分别为080m/s A =v ,00B =v ;碰撞后分别沿与原A 球运动方向成030和045角前进。
试求:(1)碰撞后两球的速度A v 和B v ; (2)因碰撞损失原有动能的百分之几?8. 地球可看作半径 R = 6400 km 的球体,一颗人造地球卫星在地面上空h = 800 km 的圆形轨道上以v 1=7.5 km ⋅s -1的速度绕地球运行.今在卫星外侧点燃一个小火箭,给卫星附加一个指向地心的分速度v 2 = 0.2 km ⋅s -1.问此后卫星的椭圆轨道的近地点和远地点离地面各多少公里?图6图8第2章 质点动力学答案一、选择题1.[ C ];2.[ D ];3.[ B ];4.[ B ];5.[ C ];6.[ A ];7.[ D ];8.[ C ];9.[ B ];10.[ C].二、填空题1. 3N ,左;2. 240 N ;3. (1)0 )21(gy m + (2)021mv -4. 12.7m s -⋅;5 8 J ;6. 67 J ;7. 202R F三、计算题1. 解 以飞机着地处为坐标原点,飞机滑行方向为x 轴,竖直向上为y 轴,建立直角坐标系如图9所示.飞机在任一时刻(滑行过程中)受力如图所示,其中N f F F μ=为摩擦力,2v x C F =阻为空气阻力,2v y C F =升为升力.由牛顿运动定律列方程:xm t x x m t mF C Fx xd d d d d d d d N 2v v v v v =⋅==--=∑μ (1) 0N 2=-+=∑mg F C Fy yv (2)由以上两式可得 ()xm C C mg xy d d 22vvvv=---μ 分离变量积分: ⎰⎰-+-=vv v v 0])([2)d(d 220y x xC C mg m x μμ 得飞机坐标x 与速度v 的关系()()()220ln 2vv y x y x y x C C mg C C mg C C mx μμμμμ-+-+-= 令v = 0,得飞机从着地到静止滑行距离为 ()mgC C mg C C mx y x y x μμμμ20max)(ln 2v -+-=根据题设条件,飞机刚着地时对地面无压力,即 5,020N ===-=xy y C C k C mg F 又v得 2255,v v mg C C mg C y x y ===所以有 ()⎪⎪⎭⎫ ⎝⎛-=μμ51ln 512520m axg x v ()m 217m 1.051ln 1.05110236001090523=⎪⎭⎫ ⎝⎛⨯⨯-⨯⨯⎪⎪⎭⎫⎝⎛⨯⨯= 2解(1)物体在空中受重力和空气阻力的作用而减速。
由牛顿运动定律 d d mg k mt--=vv图9f N分离变量积分001d d tt m mg k =-+⎰⎰v v v 0ln(1) 6.11s k mt k mg=+≈v(2)利用 d d d d d d d d y t y t y==v v v v 代入d d mg k mt--=vv 中,并分离变量积分得 000d d y v m y mg k =-+⎰⎰v v v00ln(1)183m k m mgy k k mg ⎡⎤=-+-≈⎢⎥⎣⎦v v3解: (1) 由题意,子弹离开枪口时所受合力为零,即031044005=⨯-=t F , 子弹在枪筒中运动的时间 s 003.0s 10440035=⨯⨯=t (2) 根据冲量定义,子弹在枪筒中所受合力的冲量为s N 6.0d 3104400d 003.0050⋅=⎪⎪⎭⎫ ⎝⎛⨯-==⎰⎰t t t F I t(3) 以子弹为研究对象,根据动量定理0v v m m I -=,式中10s m 300,0-⋅==v v . 所以 3006.0⨯=mg 2kg 102kg 3006.03=⨯==-m 4. 解:设在极短时间t ∆内落在传送带B 上矿砂的质量为m ,即t q m ∆=m ,如图10矢量图所示,矿砂动量的增量 ()12v v vm m m -=∆设传送带对矿砂平均作用力为F ,由动量定理=∆⋅t F ()12v v v m m m -=∆ () 75cos 2212221m 12v v v v v v -+=∆-=q t m F N 21.2N 75cos 242243600200022=⨯⨯⨯-+=方向由正弦定理确定: ()θsin 75sin 2v v m m =∆ 29=θ由牛顿第三定律,矿砂作用在传送带B 上作用力与F大小相等,方向相反,即大小为2.21 N ,方向偏离竖直方向1°,指向前下方.图10(∆5. 解 (1)运动员入水前作自由落体运动,入水时的速度0=v ,入水后mg F Fma --=阻浮由题意可知2d d b mt-=vv ,而d d d d d d d d y t t y y ==v v v v ,所以 2d d b m y-=vv v将上式分离变量,积分得00d d yby m-=⎰⎰v v v v//0by m by m e --=v v(2)将已知条件代入上式得 0ln 5.76m m y b =-=vv 6. 解 (1) 0m 和m 完全非弹性碰撞, 水平方向无外力,系统水平动量守恒v v )(c o s 000m m m +=θ(1) 0m 和m 一起由桌边滑下至落地,无外力,只受重力(保守内力)作用,系统机械能守恒.以地面为重力势能零点,得20020)(21)()(21u m m gh m m m m +=+++v (2) 由(1)、(2)式得0m 和m 落地的速率gh mm m gh u 2)cos (220002++=+=θv v7解(1) 取如图11所示的坐标,动量守恒定律可取两个 分量形式。