海盐县高中2018-2019学年高二上学期第一次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海盐县高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求取出的这些卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )
A .232
B .252
C .472
D .484
2. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④
D .①③
3. 已知三棱锥S ABC -外接球的表面积为32π,0
90ABC ∠=,三棱锥S ABC -的三视图如图 所示,则其侧视图的面积的最大值为( )
A .4
B .
C .8
D .
4. 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )
A .
π B .2
π
C .4
π
D .
π
5. 设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则,类比这个结论可
知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,
则r=( )
A .
B .
C .
D .
6. 已知命题p :对任意x ∈R ,总有3x >0;命题q :“x >2”是“x >4”的充分不必要条件,则下列命题为真命题的是( )
A .p ∧q
B .¬p ∧¬q
C .¬p ∧q
D .p ∧¬q
7. 已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面
积为( )
A .4
﹣
B .4
﹣
C .
D .
+
8
. 已知向量=(﹣1,3),=(x ,2),且,则x=( )
A .
B .
C .
D .
9. 已知双曲线
﹣
=1的一个焦点与抛物线y 2=4
x 的焦点重合,且双曲线的渐近线方程为y=±x ,则
该双曲线的方程为( )
A .﹣
=1
B .
﹣y 2=1 C .x 2﹣
=1 D .﹣=1
10.在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12 B .8 C .6 D .4
11.棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )
A .=
B .0S =
C .0122S S S =+
D .20122S S S =
12.若f (x )为定义在区间G 上的任意两点x 1,x 2和任意实数λ(0,1),总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),则称这个函数为“上进”函数,下列函数是“上进”函数的个数是( )
①f (x )=,②f (x )=
,③f (x )=,④f (x )=
.
A .4
B .3
C .2
D .1
二、填空题
13.已知直线l 的参数方程是(t 为参数),曲线C 的极坐标方程是ρ=8cos θ+6sin θ,则曲线C 上到
直线l 的距离为4的点个数有 个.
14.1F ,2F 分别为双曲线22
221x y a b
-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,
若12PF F ∆______________.
【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.
15.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:
①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;
②若点P 到点A 的距离为
,则动点P 的轨迹所在曲线是圆;
③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;
④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝. 其中真命题是 (写出所有真命题的序号)
16.如图,在平面直角坐标系xOy 中,将直线y=与直线x=1及x 轴所围成的图形旋转一周得到一个圆锥,
圆锥的体积V 圆锥=
π()2dx=x 3|=
.
据此类推:将曲线y=x 2
与直线y=4所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V= .
17.函数f (x )=
﹣2ax+2a+1的图象经过四个象限的充要条件是 .
18.如图,正方形''''O A B C 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图的 周长为 .
1111]
三、解答题
19.已知函数
,(其中常数m >0)
(1)当m=2时,求f (x )的极大值;
(2)试讨论f (x )在区间(0,1)上的单调性;
(3)当m ∈[3,+∞)时,曲线y=f (x )上总存在相异两点P (x 1,f (x 1))、Q (x 2,f (x 2)),使得曲线y=f (x )在点P 、Q 处的切线互相平行,求x 1+x 2的取值范围.
20.如图所示,在正方体1111ABCD A BC D 中. (1)求11AC 与1B C 所成角的大小;
(2)若E 、F 分别为AB 、AD 的中点,求11AC 与
EF 所成角的大小.
21.(本小题满分12分)
已知平面向量(1,)a x =,(23,)b x x =+-,()x R ∈. (1)若//a b ,求||a b -;
(2)若与夹角为锐角,求的取值范围.
22.已知函数f (x )=lnx 的反函数为g (x ).
(Ⅰ)若直线l :y=k 1x 是函数y=f (﹣x )的图象的切线,直线m :y=k 2x 是函数y=g (x )图象的切线,求证:l ⊥m ;
(Ⅱ)设a ,b ∈R ,且a ≠b ,P=g (),Q=
,R=
,试比较P ,Q ,R 的
大小,并说明理由.
23.已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}
(1)若a=,求A∩B.
(2)若A∩B=∅,求实数a的取值范围.
24.已知函数f(x)=lnx+ax2+b(a,b∈R).
(Ⅰ)若曲线y=f(x)在x=1处的切线为y=﹣1,求函数f(x)的单调区间;
(Ⅱ)求证:对任意给定的正数m,总存在实数a,使函数f(x)在区间(m,+∞)上不单调;
(Ⅲ)若点A(x1,y1),B(x2,y2)(x2>x1>0)是曲线f(x)上的两点,试探究:当a<0时,是否存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0)?若存在,给予证明;若不存在,说明理由.
海盐县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)
一、选择题
1.【答案】
C
【解析】【专题】排列组合.
【分析】不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红色卡片,共有
种取法,由此可得结论.
【解答】解:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有种取法,两种红
色卡片,共有种取法,
故所求的取法共有﹣﹣=560﹣16﹣72=472
故选C.
【点评】本题考查组合知识,考查排除法求解计数问题,属于中档题.
2.【答案】B
【解析】解:由m、n是两条不同的直线,α,β,γ是三个不同的平面:
在①中:若m⊥α,n∥α,则由直线与平面垂直得m⊥n,故①正确;
在②中:若α∥β,β∥γ,则α∥γ,
∵m⊥α,∴由直线垂直于平面的性质定理得m⊥γ,故②正确;
在③中:若m⊥α,n⊥α,则由直线与平面垂直的性质定理得m∥n,故③正确;
在④中:若α⊥β,m⊥β,则m∥α或m⊂α,故④错误.
故选:B.
3.【答案】A
【解析】
考点:三视图.
【方法点睛】本题主要考查几何体的三视图,空间想象能力.空间几何体的三视图是分别从空间几何体的正面,
左面,上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱,面的位置,再确定几何体的形状,即可得到结果. 要能够牢记常见几何体的三视图.
4.【答案】C
【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为:cm;
已知球心到该截面的距离为1,所以球的半径为:,
所以球的体积为:=4π
故选:C.
5.【答案】C
【解析】解:设四面体的内切球的球心为O,
则球心O到四个面的距离都是R,
所以四面体的体积等于以O为顶点,
分别以四个面为底面的4个三棱锥体积的和.
则四面体的体积为
∴R=
故选C.
【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).
6.【答案】D
【解析】解:p:根据指数函数的性质可知,对任意x∈R,总有3x>0成立,即p为真命题,
q:“x>2”是“x>4”的必要不充分条件,即q为假命题,
则p∧¬q为真命题,
故选:D
【点评】本题主要考查复合命题的真假关系的应用,先判定p,q的真假是解决本题的关键,比较基础
7.【答案】A
【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,
若存在θ∈R,使得xcosθ+ysinθ+1=0成立,
则(cosθ+sinθ)=﹣1,
令sinα=,则cosθ=,
则方程等价为sin(α+θ)=﹣1,
即sin(α+θ)=﹣,
∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,
∴|﹣|≤1,即x2+y2≥1,
则对应的区域为单位圆的外部,
由,解得,即B(2,2),
A(4,0),则三角形OAB的面积S=×=4,
直线y=x的倾斜角为,
则∠AOB=,即扇形的面积为,
则P(x,y)构成的区域面积为S=4﹣,
故选:A
【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.
8.【答案】C
【解析】解:∵,
∴3x+2=0,
解得x=﹣.
故选:C.
【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.
9.【答案】B
【解析】解:已知抛物线y2
=4x的焦点和双曲线的焦点重合,
则双曲线的焦点坐标为(,0),
即c=,
又因为双曲线的渐近线方程为y=±x,
则有a2+b2=c2=10和=,
解得a=3,b=1.
所以双曲线的方程为:﹣y2=1.
故选B.
【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.
10.【答案】B
【解析】解:展开式通项公式为T r+1=•(﹣1)r•x3n﹣4r,
则∵二项式(x3﹣)n(n∈N*)的展开式中,常数项为28,
∴,
∴n=8,r=6.
故选:B.
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
11.【答案】A 【解析】
试题分析:不妨设棱台为三棱台,设棱台的高为2h 上部三棱锥的高为,根据相似比的性质可得:
220()2()a S a h
S a S a h
S '⎧=⎪+⎪⎨'⎪=+⎪⎩
,解得=A . 考点:棱台的结构特征. 12.【答案】C
【解析】解:由区间G 上的任意两点x 1,x 2和任意实数λ(0,1), 总有f (λx 1+(1﹣λ)x 2)≤λf (x 1)+(1﹣λ)f (x 2),
等价为对任意x ∈G ,有f ″(x )>0成立(f ″(x )是函数f (x )导函数的导函数), ①f (x )
=的导数f ′(x )
=,f ″(x )
=,故在(2,3)上大于0恒成立,故①为“上进”函数; ②f (x )
=的导数f ′(x )
=
,f ″(x )=
﹣
•
<0恒成立,故②不为“上进”函数;
③f (x )=的导数f ′(x )
=
,f ″(x )
=
<0恒成立,
故③不为“上进”函数; ④f (x )
=
的导数f ′(x )
=
,f ″(x )
=
,当x ∈(2,3)时,f ″(x )>0恒成立.
故④为“上进”函数. 故选C .
【点评】本题考查新定义的理解和运用,同时考查导数的运用,以及不等式恒成立问题,属于中档题.
二、填空题
13.【答案】 2
【解析】
解:由
,消去t 得:2x ﹣y+5=0,
由ρ=8cos θ+6sin θ,得ρ2=8ρcos θ+6ρsin θ,即x 2+y 2
=8x+6y ,
化为标准式得(x ﹣4)2+(y ﹣3)2
=25,即C 是以(4,3)为圆心,5为半径的圆.
又圆心到直线l的距离是,
故曲线C上到直线l的距离为4的点有2个,
故答案为:2.
【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题.
14.1
【解析】
15.【答案】①②④
【解析】解:对于①,∵BD1⊥面AB1C,∴动点P的轨迹所在曲线是直线B1C,①正确;
对于②,满足到点A的距离为的点集是球,∴点P应为平面截球体所得截痕,即轨迹所在曲线为圆,
②正确;
对于③,满足条件∠MAP=∠MAC1的点P应为以AM为轴,以AC1为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,
又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,③错误;
对于④,P到直线C1D1的距离,即到点C1的距离与到直线BC的距离比为2:1,
∴动点P的轨迹所在曲线是以C1为焦点,以直线BC为准线的双曲线,④正确;
对于⑤,如图建立空间直角坐标系,作PE⊥BC,EF⊥AD,PG⊥CC1,连接PF,
设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2﹣y2=1,
∴P点轨迹所在曲线是双曲线,⑤错误.
故答案为:①②④.
【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.
16.【答案】8π.
【解析】解:由题意旋转体的体积V===8π,
故答案为:8π.
【点评】本题给出曲线y=x2与直线y=4所围成的平面图形,求该图形绕xy轴转一周得到旋转体的体积.着重考查了利用定积分公式计算由曲边图形旋转而成的几何体体积的知识,属于基础题.
17.【答案】﹣.
【解析】解:∵f(x)=﹣2ax+2a+1,
∴求导数,得f′(x)=a(x﹣1)(x+2).
①a=0时,f(x)=1,不符合题意;
②若a>0,则当x<﹣2或x>1时,f′(x)>0;当﹣2<x<1时,f′(x)<0,
∴f(x)在(﹣2,1)是为减函数,在(﹣∞,﹣2)、(1,+∞)上为增函数;
③若a<0,则当x<﹣2或x>1时,f′(x)<0;当﹣2<x<1时,f′(x)>0,
∴f(x)在(﹣2,1)是为增函数,在(﹣∞,﹣2)、(1,+∞)上为减函数
因此,若函数的图象经过四个象限,必须有f(﹣2)f(1)<0,
即()()<0,解之得﹣.
故答案为:﹣
【点评】本题主要考查了利用导数研究函数的单调性与极值、函数的图象、充要条件的判断等知识,属于基础题.
18.【答案】8cm
【解析】
考点:平面图形的直观图.
三、解答题
19.【答案】
【解析】解:(1)当m=2时,
(x>0)
令f′(x)<0,可得或x>2;
令f′(x)>0,可得,
∴f(x)在和(2,+∞)上单调递减,在单调递增
故
(2)(x>0,m>0)
①当0<m<1时,则,故x∈(0,m),f′(x)<0;
x∈(m,1)时,f′(x)>0
此时f(x)在(0,m)上单调递减,在(m,1)单调递增;
②当m=1时,则,故x∈(0,1),有恒成立,
此时f(x)在(0,1)上单调递减;
③当m>1时,则,
故时,f′(x)<0;时,f′(x)>0
此时f(x)在上单调递减,在单调递增
(3)由题意,可得f′(x1)=f′(x2)(x1,x2>0,且x1≠x2)
即⇒
∵x1≠x2,由不等式性质可得恒成立,
又x1,x2,m>0
∴⇒对m∈[3,+∞)恒成立
令,则
对m∈[3,+∞)恒成立
∴g(m)在[3,+∞)上单调递增,
∴
故
从而“对m∈[3,+∞)恒成立”等价于“”
∴x1+x2的取值范围为
【点评】运用导数,我们可解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键
20.【答案】(1)60︒;(2)90︒.
【解析】
试
题解析:(1)连接AC ,1AB ,由1111ABCD A BC D -是正方体,知11AAC C 为平行四边形,
所以11//AC AC ,从而1B C 与AC 所成的角就是11AC 与1B C 所成的角.
由11AB AC B C ==可知160B CA ∠=︒,
即11AC 与
BC 所成的角为60︒.
考点:异面直线的所成的角.
【方法点晴】本题主要考查了异面直线所成的角的求解,其中解答中涉及到异面直线所成角的概念、三角形中位线与正方形的性质、正方体的结构特征等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,本题的解答中根据异面直线所成角的概念确定异面直线所成的角是解答的关键,属于中档试题.
21.【答案】(1)2或2)(1,0)(0,3)-.
【解析】
试题分析:(1)本题可由两向量平行求得参数,由坐标运算可得两向量的模,由于有两解,因此模有两个值;(2)两向量,a b 的夹角为锐角的充要条件是0a b ⋅>且,a b 不共线,由此可得范围. 试题解析:(1)由//a b ,得0x =或2x =-, 当0x =时,(2,0)a b -=-,||2a b -=, 当2x =-时,(2,4)a b -=-,||25a b -=.
(2)与夹角为锐角,0a b ∙>,2
230x x -++>,13x -<<,
又因为0x =时,//a b , 所以的取值范围是(1,0)
(0,3)-.
考点:向量平行的坐标运算,向量的模与数量积.
【名师点睛】由向量的数量积cos a b a b θ⋅=可得向量的夹角公式,当为锐角时,cos 0θ>,但当cos 0θ>时,可能为锐角,也可能为0(此时两向量同向),因此两向量夹角为锐角的充要条件是
0a b a b
⋅>且,a b 不同
向,同样两向量夹角为钝角的充要条件是0a b a b
⋅<且,a b 不反向.
22.【答案】
【解析】解:(Ⅰ)∵函数f (x )=lnx 的反函数为g (x ).
∴g (x )=e x
.,f (﹣x )=ln (﹣x ),
则函数的导数g ′(x )=e x
,f ′(x )=,(x <0),
设直线m 与g (x )相切与点(x 1,),
则切线斜率k 2=
=
,则x 1=1,k 2=e ,
设直线l 与f (x )相切与点(x 2,ln (﹣x 2)),则切线斜率k 1==
,则x 2=﹣e ,k 1=﹣,
故k 2k 1=﹣×e=﹣1,则l ⊥m . (Ⅱ)不妨设a >b ,
∵P ﹣R=g ()﹣=﹣=﹣
<0,∴P <R ,
∵P ﹣Q=g (
)﹣
=
﹣
==,
令φ(x)=2x﹣e x+e﹣x,则φ′(x)=2﹣e x﹣e﹣x<0,则φ(x)在(0,+∞)上为减函数,
故φ(x)<φ(0)=0,
取x=,则a﹣b﹣+<0,∴P<Q,
⇔==1﹣
令t(x)=﹣1+,
则t′(x)=﹣=≥0,
则t(x)在(0,+∞)上单调递增,
故t(x)>t(0)=0,
取x=a﹣b,则﹣1+>0,
∴R>Q,
综上,P<Q<R,
【点评】本题主要考查导数的几何意义的应用以及利用作差法比较大小,考查学生的运算和推理能力,综合性较强,难度较大.
23.【答案】
【解析】解:(1)当a=时,A={x|},B={x|0<x<1}
∴A∩B={x|0<x<1}
(2)若A∩B=∅
当A=∅时,有a﹣1≥2a+1
∴a≤﹣2
当A≠∅时,有
∴﹣2<a≤或a≥2
综上可得,或a≥2
【点评】本题主要考查了集合交集的求解,解题时要注意由A∩B=∅时,要考虑集合A=∅的情况,体现了分类讨论思想的应用.
24.【答案】
【解析】解:(Ⅰ)由已知得解得…
此时,(x>0).
(Ⅱ)(x>0).
(1)当a≥0时,f'(x)>0恒成立,此时,函数f(x)在区间(0,+∞)上单调递增,不合题意,舍去.…
(2)当a<0时,令f'(x)=0,得,f(x),f'(x)的变化情况如下表:
)
所以函数f(x)的增区间为(0,),减区间为(,+∞).…
要使函数f(x)在区间(m,+∞)上不单调,须且只须>m,即.
所以对任意给定的正数m,只须取满足的实数a,就能使得函数f(x)在区间(m,+∞)上不
单调.…
(Ⅲ)存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0).…
证明如下:令g(x)=lnx﹣x+1(x>0),则,
易得g(x)在x=1处取到最大值,且最大值g(1)=0,即g(x)≤0,从而得lnx≤x﹣1.(*)…
由,得.…
令,,则p(x),q(x)在区间[x1,x2]上单调递增.
且,
,
结合(*)式可得,,
.
令h(x)=p(x)+q(x),由以上证明可得,h(x)在区间[x1,x2]上单调递增,且h(x1)<0,h(x2)>0,…所以函数h(x)在区间(x1,x2)上存在唯一的零点x0,
即成立,从而命题成立.…
(注:在(Ⅰ)中,未计算b的值不扣分.)
【点评】本小题主要考查函数导数的几何意义、导数的运算及导数的应用,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程思想、化归与转化思想、分类与整合思想.。