基于马赛克技术的秘密图像共享

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于马赛克技术的秘密图像共享
翟圣云;毛倩;王兵
【摘要】在传统的秘密图像共享算法中,通常产生类似噪声的影子图像,极易引起攻击者的注意.针对这一问题,文中根据马赛克技术提出了一种产生有意义的影子图像算法.通过图像相似度的比较,可将秘密图像共享到载体图像中,得到含有秘密图像信息的马赛克图像.然后采用可逆信息隐藏的技术将图像块的位置序列隐藏到马赛克图像中,得到完整的影子图像.通过文中所提算法产生的影子图像,既可避免攻击者的注意又能恢复出无损的秘密图像.
【期刊名称】《电子科技》
【年(卷),期】2015(028)011
【总页数】4页(P166-169)
【关键词】秘密图像共享;马赛克技术;直方图平移;可逆信息隐藏
【作者】翟圣云;毛倩;王兵
【作者单位】上海理工大学光电信息与计算机工程学院,上海200093;上海理工大学光电信息与计算机工程学院,上海200093;上海理工大学光电信息与计算机工程学院,上海200093
【正文语种】中文
【中图分类】TP391.41
为提高图像及秘密信息的安全性,有时需要将产生的信息进行隐藏。

文献[1]的
算法中,在加密之前预留出待隐藏信息的位置,然后再进行图像的加密。

这样容易实现在加密图像中的信息隐藏,并且也能提取出无损的隐藏信息和恢复出无损图像。

文献[2]中将JPEG 比特流加密成适当的有序结构,通过修改加密的比特流来隐
藏秘密信息。

在图像中进行信息隐藏会使得图像的PSNR 值降低,因此,产生了
多种提高图像PSNR 值的算法。

与其不同,文献[3]通过增强载体图像的对比度来提高图像的视觉效果。

文献[4]提出了一种基于二维残差直方图的可逆数据隐藏算法,通过统计图像中像素对的残差值频率来获得二维的残差直方图,然后对二维残差直方图进行修改来实现信息的隐藏。

Lai 和Tsai 在文献[5]中提出了一种新的秘密图像隐藏算法,根据图像的相似度将秘密图像隐藏到载体图像中。

Lee 和Tsai 在文献[6]中对之前Lai提出的算法做了进一步的改进,在图像分块之后,将秘密图像块与载体图像块进行相似度的比较和颜色的转换,最终将秘密图像转换成载体图像,进一步提高了秘密图像的安全性。

秘密图像共享技术是将秘密图像进行分散,进而降低秘密图像被泄露的风险。

Bhattacharje 等人在文献[7]中利用无序数组和像素的重新排列提出了一个(n,n)阈值的秘密图像共享算法,该算法能够产生比原秘密图像尺寸小的影子图像,便于图像的保存、传递和隐藏。

在大部分的秘密图像共享的算法中会使用密钥产生随机序列来置乱秘密图像的像素,以保证共享的安全性。

文献[8]提出了一种按照数字图像固有特性来置乱图像像素的算法,这种算法不用事先设定密钥就可以实现共享。

基于(k,n)阈值的秘密图像共享思想,在文献[9]中,Nag 等人将秘密图像分割成非重叠的具有k 个像素的图像块,每k 个像素可构成一个影子图像中的
m 个像素,其中。

通过任意的不少于k 个的影子图像即可重建出秘密图像。

根据
参与者的地位和重要性分配与其同等重要的影子图像,文献[10]提出了(t,s,k,n)的秘密图像共享算法,即将一个秘密图像分成n 个影子图像,其中有s 个重要
的影子图像,n-s 个不重要的。

当拥有k 个影子图像且其中含有至少t 个重要的
影子图像才可以恢复出秘密图像。

文献[11]根据分层秘密共享的思想提出了分层阈值秘密图像共享的算法,在这种算法中,影子图像被分成不同的层次,并且阈值结构由阈值要求的顺序决定。

只有当影子图像中含有满足条件的阈值时才能够恢复出无损的秘密图像。

本文在文献[12]的基础上依据Lo 和Hu 在文献[13]中提出的在残差图像中隐藏信息的方法,将秘密图像共享过程中产生的信息隐藏到马赛克图像中,实现秘密图像的无损恢复。

1 非噪声份额的秘密图像共享算法
本文所提算法由以下3 部分组成:秘密图像共享、可逆的信息隐藏和提取、无损秘密图像恢复,其共享过程如图1 所示。

图1 秘密图像共享框图
1.1 秘密图像共享
将一个大小为Sw×Sh 秘密图像平均分割成n 个大小为的子秘密图像,然后对每个子秘密图像和每个大小为Tw×Th 的载体图像进行分块处理,如图2所示,每个小块的大小记为k1×k2。

图2 图像块的产生过程
式(1)中,mi 表示图像块Si 或者Ti 中的像素平均值;di 表示图像块Si 或Ti 中的像素的标准差;p 和q 是计算参数;fi 表示图像块的特征值;sij表示秘密图像块与载体图像块的相似度,sij 值越小,表示图像块Si 与Ti越相似。

对于每个子秘密图像中的块Si(i=1,2,…,根据式(1)和式(2),将其与相对应载体图像中的所有块进行相似度计算,选择与其像素最相近的载体图像块Tj 并替换该载体图像块,即得到含有秘密图像的马赛克图像,记录载体图像块的位置信息i→j。

为减少位置信息量,子秘密图像块的位置按照i=1,2,…,l 的顺序进行扫描,在载体图像块中选择与
秘密图像块Si 最相似的块Tji,只需记录载体图像块的位置信息j1,j2,…,jl。

对产生的位置信息进行加密,然后利用信息隐藏的方法将其隐藏到马赛克图像中即得到影子图像。

本文采用移动残差图像直方图的方法进行可逆的信息隐藏。

1.2 可逆的秘密信息隐藏
本文基于残差图像直方图移位的算法对秘密信息进行隐藏
式(3)中,Po(i,j)表示载体图像块中第i 行j 列的像素;Po(n1,n2)表示选择出的载体图像块中第行列的定值像素;Pr(i,j)表示图像块中的残差像素。

将秘密图像共享
过程中产生的马赛克图像作为载体图像进行秘密信息的隐藏,将一幅大小为m×n 的载体图像分割成大小为a×b 的块,选择块中的一个像素Po(n1,n2),根据式(3)产生残差像素块,对整幅图像中的每个块都做同样的处理,即可得到残差图像,如图3 所示。

图3 残差图像产生过程
对残差图像的所有像素进行扫描,将直方图中位于峰值点和零点之间的值向左或右移动一个像素值,如(4)式所示,即
式(4)中,Pm(i,j)是残差直方图移动后的像素;式(5)中Ph(i,j)是隐藏信息后产生
的像素;data 是待隐藏的信息;式(6)中P'o(i,j)为含有隐藏信息的载体图像像素值。

在隐藏信息之后,需要将残差图像进行恢复,根据式(6)对残差图像的像素进行补偿。

1.3 信息提取与秘密图像恢复
对于含有隐藏信息的载体图像,同样将其分割成大小为a×b 的块,根据式(3)得到含有隐藏信息的残差图像。

对残差图像的直方图进行分析,根据式(7)提取出隐藏
的信息并将直方图右移一个像素值。

式(8)中,P'r(i,j)表示含有位置信息的残差图像中的像素;P'm(i,j)表示恢复残差直方图移动后图像中的像素。

根据式(7)对残差图像进行扫描,当像素是峰值Peak 时,提取出隐藏的信息“0”,当像素是Peak-1 时,提取出隐藏的信息“1”。

将隐藏的位置信息完全提取后,根据式(8)恢复残差图像的直方图。

依据式(6)消除
图像中的残差,得到无损的载体图像,即马赛克图像。

将恢复出的n 个无损的马赛克图像分割成大小为k1×k2 的块。

根据提取出的位置信息data 将马赛克图像块进行重新排列,即Tj1 →S1,Tj2 →S2,…,恢复出子
秘密图像。

然后将子秘密图像进行拼接,即可得到原始秘密图像。

2 实验结果
选择大小为128×128 的秘密图像S 和4 幅大小为256×256 的载体图像T1、T2、T3、T4。

实验结果如图4和图5 所示。

图4 秘密图像S 和影子图像Y
图5 重建的无损秘密图像
表1 影子图像与载体图像之间PSNR 值影子图像本文算法PSNR 值/dB
Y132.474 6 Y2 28.906 6 Y3 33.131 0 Y434.420 2
图6 中,图6(a)和图6(k)为原始秘密图像;图6(b)和图6(l)为重建秘密图像;图
6(e)~图6(f)和图6(m)~图6(n)为载体图像;图6(g)~图6(j)和图6(q)~图6(t)为
影子图像。

从表1 中影子图像的PSNR 值可看出,本算法产生影子图像的质量较好,能用于
秘密图像的传输。

对于文字信息图像、医学图像,本文提出的算法同样适用,如图6 和表2 所示。

图6 文字信息和医学图像共享
表2 影子图像与载体图像之间的PSNR 值影子图像 PSNR 值/dB(g)30.03(h)
31.25(i) 28.92(j) 30.69(q) 34.52(r) 34.27(s) 33.26(t)34.32
3 结束语
通过本文中提出的算法得到有意义的影子图像和无损的秘密图像,这不仅提高了影子图像在存储和传递过程中的安全系数,且能满足多种类型秘密图像的共享要求,如医学图像、军事图像、文字信息图像等。

所以,该算法的实现是秘密图像共享领域中的一大进步。

参考文献
[1] Ma K,Zhang W,Zhao X,et al.Reversible data hiding in encrypted images by reserving room before encryption[J].IEEE Transactions on Information Forensics and Security,2013,8(3):553-562.
[2] Qian Z X,Zhang X P,Wang S Z.Reversible data hiding in encrypted JPEG bitstream[J].IEEE Transactions on Multimedia,2014,16(5):1486-1491.
[3] Wu H T,Dugelay J L,Shi Y Q.Reversible image data hiding with contrast enhancement[J].IEEE Signal Processing Letters,2015,22(1):81-85.
[4] Li X L,Zhang W M,Gui X L,et al.A novel reversible data hiding scheme based on two-dimensional difference-histogram modification [J].IEEE Transactions on Information Forensics and Security,2013,
8(7):1091-1100.
[5] Lai I J,Tsai W H.Secret-fragment-visible mosaic imagea new computer art and its application to information hiding[J].IEEE Transactions on Information Forensics and Security,2011,6(3):936-945. [6] Lee Y L,Tsai W H.A new(k,n)secure image transmission technique
via secret-fragment-visible mosaic images by nearly reversible color transformations[J].IEEE Transactions on Circuits and Systems for Video Technology,2014,24(4):695-703.
[7] Bhattacharjee T,Singh J P,Bhattacharya S.2012,A(n,n)secret image sharing scheme based on array scrambling[C].Kolkata:2012 Third International Conference on Emerging Applications of Information Technology,2012.
[8] Yang C N,Chang W J,Cai S,et al.2014,Secret image sharing without keeping permutation key[C].Nanjing,China:International Conference on Information and Communications Technologies,2014. [9] Nag A,Biswas S,Sarkar D,et al.A new verifiable secret image sharing scheme[J].Egyptian Informatics Journal,2014,15(3):201-209. [10]Li P,Yang C N,Wu C C,et al.Essential secret image sharing scheme with different importance of shadows[J].Journal of Visual Communication and Image Representation,2013,24(7):1106-1114. [11]Guo C,Chang C C,Qin C.A hierarchical threshold secret image sharing[J].Pattern Recongnition Letters,2012,33(1):83-91.
[12]Zhai S Y,Li F,Chang C C,et al.A meaningful scheme for sharing secret images using mosaic images[J].International Journal of Network Security,2015,17(5):643-649.
[13]Lo C C,Hu Y C.A novel reversible image authentication scheme for digital images[J].Signal Processing,2014,98(2):174-185.。

相关文档
最新文档