黑龙江省哈尔滨市平房区届中考数学下学期调研测试试题(一)【含解析】
哈尔滨市平房区重点达标名校2024届初中数学毕业考试模拟冲刺卷含解析
哈尔滨市平房区重点达标名校2024届初中数学毕业考试模拟冲刺卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)1.如图所示的几何体的俯视图是( )A.B.C.D.2.已知a=12(7+1)2,估计a的值在()A.3 和4之间B.4和5之间C.5和6之间D.6和7之间3.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得A.B.C.D.4.|﹣3|的值是()A.3 B.13C.﹣3 D.﹣135.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣36.如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于()A.19°B.38°C.42°D.52°7.下列关于x的方程一定有实数解的是( )A.2x mx10--=B.ax3=C.x64x0-⋅-=D.1x x1x1=--8.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为()A.4.5cm B.5.5cm C.6.5cm D.7cm9.下列各式计算正确的是()A.(b+2a)(2a﹣b)=b2﹣4a2B.2a3+a3=3a6C.a3•a=a4D.(﹣a2b)3=a6b310.已知e→为单位向量,a=-3e→,那么下列结论中错误..的是()A.a∥e→B.3a=C.a与e→方向相同D.a与e→方向相反二、填空题(本大题共6个小题,每小题3分,共18分)11.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间.甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲、乙行驶过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.则当乙车到达A地时,甲车已在C地休息了_____小时.12.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为尺,根据题意列方程为.13.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出_____环的成绩.14.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________ .15.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______.16.将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是_____.三、解答题(共8题,共72分)17.(8分)如图,抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3).(1)求该抛物线的解析式;(2)在抛物线的对称轴上是否存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形?若存在,试求出点Q的坐标;若不存在,请说明理由.18.(8分)如图,在△ABC中,∠C=90°.作∠BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求△ABD 的面积.19.(8分)解方程(1)2430x x --=;(2)()22(1)210x x ---=20.(8分)已知关于x 的一元二次方程x 2﹣(m+3)x+m+2=1.(1)求证:无论实数m 取何值,方程总有两个实数根;(2)若方程有一个根的平方等于4,求m 的值.21.(8分)如图,在△ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE ,DE 交边AC 于点E ,DE 交BA 延长线于点F ,且AD 2=DE•DF .(1)求证:△BFD ∽△CAD ;(2)求证:BF•DE=AB•AD .22.(10分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y 1(万件)与时间t (t 为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y 2(万件)与时间t (t 为整数,单位:天)的关系如图所示.(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y 1与t 的变化规律,写出y 1与t 的函数关系式及自变量t 的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y 2与时间t 所符合的函数关系式,并写出相应自变量t 的取值范围;(3)设国内、外市场的日销售总量为y 万件,写出y 与时间t 的函数关系式,并判断上市第几天国内、外市场的日销售总量y 最大,并求出此时的最大值.23.(12分)某校九年级数学测试后,为了解学生学习情况,随机抽取了九年级部分学生的数学成绩进行统计,得到相关的统计图表如下.成绩/分120﹣111 110﹣101 100﹣91 90以下成绩等级 A B C D请根据以上信息解答下列问题:(1)这次统计共抽取了名学生的数学成绩,补全频数分布直方图;(2)若该校九年级有1000名学生,请据此估计该校九年级此次数学成绩在B等级以上(含B等级)的学生有多少人?(3)根据学习中存在的问题,通过一段时间的针对性复习与训练,若A等级学生数可提高40%,B等级学生数可提高10%,请估计经过训练后九年级数学成绩在B等级以上(含B等级)的学生可达多少人?24.画出二次函数y=(x﹣1)2的图象.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解题分析】试题分析:根据俯视图的作法即可得出结论.从上往下看该几何体的俯视图是D.故选D.考点:简单几何体的三视图.2、D【解题分析】7的范围,进而可得7的范围.【题目详解】解:a=12×(7+1+27)=4+7,∵2<7<3,∴6<4+7<7,∴a的值在6和7之间,故选D.【题目点拨】此题主要考查了估算无理数的大小,用有理数逼近无理数,求无理数的近似值.3、A【解题分析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x千米/小时,故选A.4、A【解题分析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数,3 3.-=故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.5、A【解题分析】根据一元二次方程根与系数的关系和整体代入思想即可得解.【题目详解】∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故选A.【题目点拨】本题主要考查一元二次方程的根与系数的关系(韦达定理),韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=,x1x2=.6、D【解题分析】试题分析:过C作CD∥直线m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a的余角是52°.故选D.考点:平行线的性质;余角和补角.7、A【解题分析】根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得.【题目详解】A.x2-mx-1=0中△=m2+4>0,一定有两个不相等的实数根,符合题意;B.ax=3中当a=0时,方程无解,不符合题意;C.由6040xx-≥⎧⎨-≥⎩可解得不等式组无解,不符合题意;D.111xx x=--有增根x=1,此方程无解,不符合题意;故选A.【题目点拨】本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根.8、A【解题分析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).故选A.考点:轴对称图形的性质9、C【解题分析】各项计算得到结果,即可作出判断.解:A、原式=4a2﹣b2,不符合题意;B、原式=3a3,不符合题意;C、原式=a4,符合题意;D、原式=﹣a6b3,不符合题意,故选C.10、C【解题分析】由向量的方向直接判断即可.【题目详解】,所以a与e方向相反,所以C错误,解:e为单位向量,a=3e故选C.【题目点拨】本题考查了向量的方向,是基础题,较简单.二、填空题(本大题共6个小题,每小题3分,共18分)11、2.1.【解题分析】根据题意和函数图象中的数据可以求得乙车的速度和到达A地时所用的时间,从而可以解答本题.【题目详解】由题意可得,甲车到达C地用时4个小时,乙车的速度为:200÷(3.1﹣1)=80km/h,乙车到达A地用时为:(200+240)÷80+1=6.1(小时),当乙车到达A地时,甲车已在C地休息了:6.1﹣4=2.1(小时),故答案为:2.1.【题目点拨】本题考查了一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12、(x+1);()22251x x +=+.【解题分析】试题分析:设水深为x 尺,则芦苇长用含x 的代数式可表示为(x+1)尺,根据题意列方程为()22251x x +=+. 故答案为(x+1),()22251x x +=+.考点:由实际问题抽象出一元二次方程;勾股定理的应用.13、8【解题分析】为了使第8次的环数最少,可使后面的2次射击都达到最高环数,即10环.设第8次射击环数为x 环,根据题意列出一元一次不等式62+x +2×10>89解之,得x >7x 表示环数,故x 为正整数且x >7,则x 的最小值为8即第8次至少应打8环.点睛:本题考查的是一元一次不等式的应用.解决此类问题的关键是在理解题意的基础上,建立与之相应的解决问题的“数学模型”——不等式,再由不等式的相关知识确定问题的答案.14、40°【解题分析】连接CD,则∠ADC =∠ABC =50°, ∵AD 是⊙O 的直径,∴∠ACD =90°,∴∠CAD +∠ADC =90°,∴∠CAD =90°-∠ADC =90°-50°=40°,故答案为: 40°.15、37【解题分析】根据题意列出一元一次方程即可求解.【题目详解】解:设十位上的数字为a,则个位上的数为(a+4),依题意得:a+a+4=10,解得:a=3,∴这个两位数为:37【题目点拨】本题考查了一元一次方程的实际应用,属于简单题,找到等量关系是解题关键.16、1【解题分析】根据平移规律“左加右减,上加下减”填空.【题目详解】解:将抛物线y=(x+m)1向右平移1个单位后,得到抛物线解析式为y=(x+m-1)1.其对称轴为:x=1-m=0,解得m=1.故答案是:1.【题目点拨】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.三、解答题(共8题,共72分)17、(1) y=﹣x2+2x+3;(2)见解析.【解题分析】(1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;(2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.【题目详解】解:(1)∵抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),∴,得,∴该抛物线的解析式为y=﹣x2+2x+3;(2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,理由:∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,点B(3,0),点C(0,3),∴抛物线的对称轴为直线x=1,∴点A的坐标为(﹣1,0),设点Q的坐标为(1,t),则AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3﹣t)2=t2﹣6t+10,当AC为斜边时,10=4+t2+t2﹣6t+10,解得,t1=1或t2=2,∴点Q的坐标为(1,1)或(1,2),当AQ为斜边时,4+t2=10+t2﹣6t+10,解得,t=,∴点Q的坐标为(1,),当CQ时斜边时,t2﹣6t+10=4+t2+10,解得,t=,∴点Q的坐标为(1,﹣),由上可得,当点Q的坐标是(1,1)、(1,2)、(1,)或(1,﹣)时,使得以A、C、Q为顶点的三角形为直角三角形.【题目点拨】本题考查了待定系数法求函数解析式,二次函数的图像与性质,勾股定理及分类讨论的数学思想,熟练掌握待定系数法是解(1)的关键,分三种情况讨论是解(2)的关键.18、(1)答案见解析;(2)220cm【解题分析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作于DE⊥ABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【题目详解】解:(1)如图所示,AD 即为所求;(2)如图,过D 作DE ⊥AB 于E,∵AD 平分∠BAC,∴DE=CD=4,∴S △ABD =12AB·DE=20cm 2. 【题目点拨】掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.19、(1)127x =,227x =;(2)11x =,23x =-.【解题分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【题目详解】(1)解:∵1a =,4b =-,3c =-,∴224(4)41(3)280b ac ∆=-=--⨯⨯-=>, ∴24(4)2842727b b ac x -±---±±====± ∴127x =227x =;(2)解:原方程化为:2(1)2(1)(1)0x x x --+-=,因式分解得:[](1)(1)2(1)0x x x ---+=,整理得:(1)(3)0x x ---=,∴10x -=或30x --=,∴11x =,23x =-.【题目点拨】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20、(1)证明见解析;(2)m 的值为1或﹣2.【解题分析】(1)计算根的判别式的值可得(m+1)2≥1,由此即可证得结论;(2)根据题意得到 x=±2 是原方程的根,将其代入列出关于m 新方程,通过解新方程求得m 的值即可.【题目详解】(1)证明:∵△=[﹣(m+3)]2﹣2(m+2)=(m+1)2≥1,∴无论实数 m 取何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于 2,∴x=±2 是原方程的根,当 x=2 时,2﹣2(m+3)+m+2=1.解得m=1;当 x=﹣2 时,2+2(m+3)+m+2=1,解得m=﹣2.综上所述,m 的值为 1 或﹣2.【题目点拨】本题考查了根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点.21、见解析【解题分析】试题分析:(1)2AD DE DF =⋅,ADF EDA ∠∠= ,可得ΔADF ∽ΔEDA ,从而得F DAE ∠∠=, 再根据∠BDF=∠CDA 即可证;(2)由ΔBFD ∽ΔCAD ,可得BF DF AC AD =,从而可得BF AD AC DE=,再由ΔBFD ∽ΔCAD ,可得B C ∠∠=从而得AB AC =,继而可得BF AD AB DE= ,得到BF DE AB AD ⋅=⋅. 试题解析:(1)∵2AD DE DF =⋅,∴AD DF DE AD =, ∵ADF EDA ∠=∠ ,∴ADF ∆∽EDA ∆ ,∴F DAE ∠=∠,又∵∠ADB=∠CDE ,∴∠ADB+∠ADF=∠CDE+∠ADF ,即∠BDF =∠CDA ,∴BFD ∆∽CAD ∆;(2)∵BFD ∆∽CAD ∆ ,∴BF DF AC AD =, ∵AD DF DE AD = ,∴BF AD AC DE=, ∵BFD ∆∽CAD ∆,∴B C ∠=∠,∴AB AC =, ∴BF AD AB DE = , ∴BF DE AB AD ⋅=⋅. 【题目点拨】本题考查了相似三角形的性质与判定,能结合图形以及已知条件灵活选择恰当的方法进行证明是关键.22、(1)y 1=﹣15t (t ﹣30)(0≤t≤30);(2)∴y 2=2(020)4120(2030)t t t t ≤<⎧⎨-+≤≤⎩;(3)上市第20天,国内、外市场的日销售总量y 最大,最大值为80万件.【解题分析】(1)根据题意得出y 1与t 之间是二次函数关系,然后利用待定系数法求出函数解析式;(2)利用待定系数法分别求出两个函数解析式,从而得出答案;(3)分0≤t <20、t=20和20≤t≤30三种情况根据y=y 1+y 2求出函数解析式,然后根据二次函数的性质得出最值,从而得出整体的最值.【题目详解】解:(1)由图表数据观察可知y 1与t 之间是二次函数关系,设y 1=a (t ﹣0)(t ﹣30)再代入t=5,y 1=25可得a=﹣15 ∴y 1=﹣15t (t ﹣30)(0≤t≤30) (2)由函数图象可知y 2与t 之间是分段的一次函数由图象可知:0≤t <20时,y 2=2t ,当20≤t≤30时,y 2=﹣4t+120,∴y 2=()2(020)41202030t t t t ≤<⎧⎨-+≤≤⎩, (3)当0≤t <20时,y=y 1+y 2=﹣15t (t ﹣30)+2t=80﹣15(t ﹣20)2 , 可知抛物线开口向下,t 的取值范围在对称轴左侧,y 随t 的增大而增大,所以最大值小于当t=20时的值80, 当20≤t≤30时,y=y 1+y 2=﹣15t (t ﹣30)﹣4t+120=125﹣15(t ﹣5)2 , 可知抛物线开口向下,t 的取值范围在对称轴右侧,y 随t 的增大而减小,所以最大值为当t=20时的值80, 故上市第20天,国内、外市场的日销售总量y 最大,最大值为80万件.23、(1)1人;补图见解析;(2)10人;(3)610名.【解题分析】(1)用总人数乘以A 所占的百分比,即可得到总人数;再用总人数乘以A 等级人数所占比例可得其人数,继而根据各等级人数之和等于总人数可得D 等级人数,据此可补全条形图;(2)用总人数乘以(A 的百分比+B 的百分比),即可解答;(3)先计算出提高后A ,B 所占的百分比,再乘以总人数,即可解答.【题目详解】解:(1)本次调查抽取的总人数为15÷108360=1(人), 则A 等级人数为1×72360=10(人),D 等级人数为1﹣(10+15+5)=20(人), 补全直方图如下:故答案为1.(2)估计该校九年级此次数学成绩在B 等级以上(含B 等级)的学生有1000×101550=10(人); (3)∵A 级学生数可提高40%,B 级学生数可提高10%,∴B 级学生所占的百分比为:30%×(1+10%)=33%,A 级学生所占的百分比为:20%×(1+40%)=28%, ∴1000×(33%+28%)=610(人),∴估计经过训练后九年级数学成绩在B 以上(含B 级)的学生可达610名.【题目点拨】考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、见解析【解题分析】首先可得顶点坐标为(1,0),然后利用对称性列表,再描点,连线,即可作出该函数的图象.【题目详解】列表得: x… ﹣1 0 1 2 3 … y … 4 1 0 1 4 …如图:.【题目点拨】此题考查了二次函数的图象.注意确定此二次函数的顶点坐标是关键.。
黑龙江省哈尔滨市平房区2023年中考数学模拟试题含解析
2023年中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设x1,x2是方程x2-2x-1=0的两个实数根,则2112x xx x+的值是( )A.-6 B.-5 C.-6或-5 D.6或52.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG 与BD相交于点H,下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF,其中正确的结论A.只有①②. B.只有①③. C.只有②③. D.①②③.3.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,这里用到的数学知识是()A.两点之间的所有连线中,线段最短B.经过两点有一条直线,并且只有一条直线C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.经过一点有且只有一条直线与已知直线垂直4.在实数π,0,17,﹣4中,最大的是()A.πB.0 C.17D.﹣45.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为( )A.13124π-B.9π1?24-C.1364π+D.66.如图,正比例函数y=x与反比例函数的图象交于A(2,2)、B(﹣2,﹣2)两点,当y=x的函数值大于的函数值时,x的取值范围是()A.x>2 B.x<﹣2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>27.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.8.如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上,且(3,0)A ,(2,)B b,则正方形ABCD的面积是()A.13B.20C.25D.349.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB 的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A .(3,2) B.(4,1) C.(4,3) D.(4,23)10.有两组数据,A组数据为2、3、4、5、6;B组数据为1、7、3、0、9,这两组数据的()A.中位数相等B.平均数不同C.A组数据方差更大D.B组数据方差更大11.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.1912.下列计算正确的是()A.x4•x4=x16 B.(a+b)2=a2+b2C.=±4 D.(a6)2÷(a4)3=1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简:4= .14.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是_____.15.分解因式:2m2-8=_______________.16.不等式5x﹣3<3x+5的非负整数解是_____.17.如图,D,E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:16,则S△BDE与S△CDE的比是___________.18.分解因式:3a2﹣12=___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:(1)甲选择座位W的概率是多少;(2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.20.(6分)如图,四边形AOBC是正方形,点C的坐标是(20).正方形AOBC的边长为,点A的坐标是.将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).21.(6分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具.某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间.22.(8分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n=;(2)扇形统计图中,D部分扇形所对应的圆心角是;(3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.23.(8分)“食品安全”受到全社会的广泛关注,济南市某中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数;(4)若从对食品安全知识达到“了解”程度的2个女生和2个男生中随机抽取2人参加食品安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.24.(10分)如图1,在等腰△ABC 中,AB=AC,点D,E 分别为BC,AB 的中点,连接AD.在线段AD 上任取一点P,连接PB,PE.若BC=4,AD=6,设PD=x(当点P 与点D 重合时,x 的值为0),PB+PE=y.小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了x 与y 的几组值,如下表:x0123456y 5.2 4.2 4.6 5.97.69.5说明:补全表格时,相关数值保留一位小数.(参考数据:2≈1.414,3≈1.732,5≈2.236)(2)建立平面直角坐标系(图2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数y 的最小值(保留一位小数),此时点P 在图1 中的什么位置.y(升)关于加满油后已行驶的路程x(千25.(10分)一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量米)的函数图象.根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.26.(12分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是______(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数______.(3)请估计全校共征集作品的件数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.27.(12分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方23米处的点C 出发,沿斜面坡度1:3i的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】试题解析:∵x1,x2是方程x2-2x-1=0的两个实数根,∴x1+x2=2,x1∙x2=-1∴2112x xx x+=2221212121212()24261x x x x x xx x x x++-+===--.故选A.2、D【解析】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,则△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S四边形CMGN=1S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四边形CMGN=1S△CMG=1×12×12CG×32CG=CG1.③过点F作FP∥AE于P点.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选D.3、B【解析】本题要根据过平面上的两点有且只有一条直线的性质解答.【详解】根据两点确定一条直线.故选:B.【点睛】本题考查了“两点确定一条直线”的公理,难度适中.4、C【解析】根据实数的大小比较即可得到答案.【详解】解:∵16<17<25,∴417517π>0>-417,故答案选C.【点睛】本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.5、A【解析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.【详解】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-22903902360360ππ⨯⨯⨯⨯-=13124π-,故选A.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.6、D【解析】试题分析:观察函数图象得到当﹣2<x<0或x>2时,正比例函数图象都在反比例函数图象上方,即有y=x的函数值大于的函数值.故选D.考点:1.反比例函数与一次函数的交点问题;2. 数形结合思想的应用.7、C【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12AP•BQ,解y=12•(9﹣3x)•x=29322x x-;故D选项错误.故选C.考点:动点问题的函数图象.8、D【解析】作BE⊥OA于点E.则AE=2-(-3)=5,△AOD≌△BEA(AAS),∴OD=AE=5,22223534AD AO OD∴+=+=,∴正方形ABCD的面积是343434=,故选D.9、D【解析】由已知条件得到AD′=AD=4,AO=12AB=2,根据勾股定理得到22AD OA'-3【详解】解:∵AD′=AD=4,AO=12AB=1,∴OD′=22AD OA'-=23,∵C′D′=4,C′D′∥AB,∴C′(4,23),故选:D.【点睛】本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.10、D【解析】分别求出两组数据的中位数、平均数、方差,比较即可得出答案.【详解】A组数据的中位数是:4,平均数是:(2+3+4+5+6) ÷5=4,方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2] ÷5=2;B组数据的中位数是:3,平均数是:(1+7+3+0+9) ÷5=4,方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2] ÷5=12;∴两组数据的中位数不相等,平均数相等,B组方差更大.故选D.【点睛】本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键.11、A【解析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为4 9,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.12、D【解析】试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算术平方根取正号);.(先算幂的乘方,底数不变,指数相乘;再算同底数幂相除,底数不变,指数相减.).考点:1、幂的运算;2、完全平方公式;3、算术平方根.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2【解析】根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.【详解】∵22=4,∴4=2.【点睛】本题考查求算术平方根,熟记定义是关键.14、25°.【解析】∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.15、2(m+2)(m-2)【解析】先提取公因式2,再对余下的多项式利用平方差公式继续分解因式.【详解】2m2-8,=2(m2-4),=2(m+2)(m-2)【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法,十字相乘等方法分解.16、0,1,2,1【解析】5x﹣1<1x+5,移项得,5x﹣1x<5+1,合并同类项得,2x<8,系数化为1得,x<4所以不等式的非负整数解为0,1,2,1;故答案为0,1,2,1.【点睛】根据不等式的基本性质正确解不等式,求出解集是解答本题的关键. 17、1:3 【解析】根据相似三角形的判定,由DE ∥AC ,可知△DOE ∽△COA ,△BDE ∽△BCA ,然后根据相似三角形的面积比等于相似比的平方,可由:1:16DOE COA S S ∆∆=,求得DE :AC=1:4,即BE :BC=1:4,因此可得BE :EC=1:3,最后根据同高不同底的三角形的面积可知BDES ∆与CDES ∆的比是1:3.故答案为1:3. 18、3(a+2)(a ﹣2) 【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此, 3a2﹣12=3(a2﹣4)=3(a+2)(a ﹣2).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)13;(2)13【解析】(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得. 【详解】 解:(1)由于共有A 、B 、W 三个座位,∴甲选择座位W 的概率为13, 故答案为:13;(2)画树状图如下:由图可知,共有6种等可能结果,其中甲、乙选择相邻的座位有两种,所以P (甲乙相邻)=26=13.【点睛】此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.20、(1)4,()22,22;(2)旋转后的正方形与原正方形的重叠部分的面积为16216-;(3)83t =.【解析】(1)连接AB ,根据△OCA 为等腰三角形可得AD=OD 的长,从而得出点A 的坐标,则得出正方形AOBC 的面积; (2)根据旋转的性质可得OA′的长,从而得出A′C ,A′E ,再求出面积即可;(3)根据P 、Q 点在不同的线段上运动情况,可分为三种列式①当点P 、Q 分别在OA 、OB 时,②当点P 在OA 上,点Q 在BC 上时,③当点P 、Q 在AC 上时,可方程得出t . 【详解】 解:(1)连接AB ,与OC 交于点D , 四边形AOBC 是正方形, ∴△OCA 为等腰Rt △,∴AD=OD=12OC=22,∴点A 的坐标为()22,22.4,(22,22.(2)如图∵ 四边形AOBC 是正方形,∴AOB 90∠=,AOC 45∠=. ∵ 将正方形AOBC 绕点O 顺时针旋转45, ∴ 点A '落在x 轴上. ∴OA OA 4'==. ∴ 点A '的坐标为()4,0.∵OC 42= ∴A C OC OA 424=-=''.∵ 四边形OACB ,OA C B '''是正方形,∴OA C 90∠''=,ACB 90∠=. ∴CA E 90∠'=,OCB 45∠=. ∴A EC OCB 45∠∠=='. ∴A E A C 424=='-'. ∵2ΔOBC AOBC 11 S S 4822==⨯=正方形, ()2ΔA EC 11S A C A E 4242416222'=⋅=-=-'',∴ΔOBC ΔA EC OA EB S S S ''=-=四边形()82416216216--=-.∴旋转后的正方形与原正方形的重叠部分的面积为16216-.(3)设t 秒后两点相遇,3t=16,∴t=163①当点P 、Q 分别在OA 、OB 时, ∵POQ 90∠=,OP=t ,OQ=2t ∴ΔOPQ 不能为等腰三角形②当点P 在OA 上,点Q 在BC 上时如图2,当OQ=QP ,QM 为OP 的垂直平分线, OP=2OM=2BQ ,OP=t ,BQ=2t-4, t=2(2t-4),解得:t=83.③当点P 、Q 在AC 上时,ΔOPQ 不能为等腰三角形综上所述,当8t3=时ΔOPQ是等腰三角形【点睛】此题考查了正方形的性质,等腰三角形的判定以及旋转的性质,是中考压轴题,综合性较强,难度较大.21、骑共享单车从家到单位上班花费的时间是1分钟.【解析】试题分析:设骑共享单车从家到单位上班花费x分钟,找出题目中的等量关系,列出方程,求解即可.试题解析:设骑共享单车从家到单位上班花费x分钟,依题意得:881.5,20 x x⨯=-解得x=1.经检验,x=1是原方程的解,且符合题意.答:骑共享单车从家到单位上班花费的时间是1分钟.22、(1)40;(2)144°;(3)作图见解析;(4)游戏规则不公平.【解析】(1)根据统计图可以求出这次调查的n的值;(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;(4)根据题意可以写出树状图,从而可以解答本题.【详解】解:(1)n%=1﹣10%﹣15%﹣35%=40%,故答案为40;(2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°,故答案为144°;(3)调查的结果为D等级的人数为:400×40%=160,故补全的条形统计图如右图所示,(4)由题意可得,树状图如右图所示,P(奇数)82, 123 ==P(偶数)41, 123 ==故游戏规则不公平.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、(1)60,90°;(2)补图见解析;(3)300;(4)2 3.【解析】分析:(1)根据了解很少的人数除以了解很少的人数所占的百分百求出抽查的总人数,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去“基本了解”“了解很少”和“基本了解”的人数,求出了解的人数,从而补全统计图;(3)用总人数乘以“了解”和“基本了解”程度的人数所占的比例,即可求出达到“了解”和“基本了解”程度的总人数;(4)根据题意列出表格,再根据概率公式即可得出答案.详解:(1)60;90°.(2)补全的条形统计图如图所示.(3)对食品安全知识达到“了解”和“基本了解”的学生所占比例为1551603+=,由样本估计总体,该中学学生中对食品安全知识达到“了解”和“基本了解”程度的总人数为1 9003003⨯=.(4)列表法如表所示,男生男生女生女生男生男生男生男生女生男生女生男生男生男生男生女生男生女生女生男生女生男生女生女生女生女生男生女生男生女生女生女生所有等可能的情况一共12种,其中选中1个男生和1个女生的情况有8种,所以恰好选中1个男生和1个女生的概率是82123 P==.点睛:本题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,根据题意求出总人数是解题的关键;注意运用概率公式:概率=所求情况数与总情况数之比.24、(1)4.5(2)根据数据画图见解析;(3)函数y 的最小值为4.2,线段AD上靠近D点三等分点处.【解析】(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点P 在图1 中的位置为.线段AD 上靠近D 点三等分点处.【详解】(1)根据题意,作图得,y=4.5故答案为:4.5(2)根据数据画图得(3)根据图象,函数y 的最小值为4.2,此时点P 在图 1 中的位置为.线段AD 上靠近D 点三等分点处.【点睛】本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.25、(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【解析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量;()2用待定系数法求出一次函数解析式,再代入进行运算即可.【详解】(1)汽车行驶400千米,剩余油量30升,304000.170.+⨯=即加满油时,油量为70升.(2)设()0y kx b k=+≠,把点()0,70,()400,30坐标分别代入得70b=,0.1k=-,∴0.170y x=-+,当5y=时,650x=,即已行驶的路程为650千米.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.26、(1)抽样调查(2)150°(3)180件(4)25【解析】 分析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷90360=24(件),C 班作品的件数为:24-4-6-4=10(件);继而可补全条形统计图;(3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案. 详解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查. 故答案为抽样调查.(2)所调查的4个班征集到的作品数为:6÷90360=24件,C 班有24﹣(4+6+4)=10件, 补全条形图如图所示,扇形统计图中C 班作品数量所对应的圆心角度数360°×1024=150°;故答案为150°;(3)∵平均每个班244=6件,∴估计全校共征集作品6×30=180件. (4)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好选取的两名学生性别相同的概率为82=205. 点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时古典概型求法:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=mn ,求出P(A)..27、33+3.5【解析】延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=23、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=43•tan37°可得答案.【详解】如图,延长ED交BC延长线于点F,则∠CFD=90°,∵tan∠DCF=i=333,∴∠DCF=30°,∵CD=4,∴DF=12CD=2,CF=CDcos∠DCF=4×323∴333过点E作EG⊥AB于点G,则3,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠3,则33+3.5,故旗杆AB的高度为(3+3.5)米.考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题。
2024年黑龙江省哈尔滨市中考模拟检测数学试题(一)
2024年黑龙江省哈尔滨市中考模拟检测数学试题(一)一、单选题1.-5的相反数是( ) A .15-B .15C .5D .-52.下列运算正确的是( ) A .2232a a -=B .23a a a +=C .()3328a a -=-D .623a a a ÷=3.下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.五个大小相同的正方体搭成的几何体如图所示,其主视图是( )A .B .C .D .5.如图,AB 是O e 的直径,C 、D 是O e 上两点,CD AB ⊥,若70DAB ∠=︒,则BOC ∠=( )A .70︒B .130︒C .140︒D .160︒6.分式方程12x x 3=+的解是【 】 A .x=﹣2 B .x=1 C .x=2 D .x=37.如图,在ABC V 中,70CAB ∠=︒,将ABC V 绕点A 旋转到AB C ''△的位置,点B 和点B '是对应顶点,点C 和点C '是对应顶点,若CC AB '∥,则BAB ∠'的度数为( )A .30︒B .35︒C .40︒D .50︒8.一个不透明的袋子中装有5个小球,其中3个红球,2个白球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是( ) A .16B .15C .25D .359.如图,已知AB CD EF ∥∥,:3:5AD AF =,12BE =,那么CE 的长等于( )A .365B .245C .152 D .9210.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为20km .他们前进的路程为s (km),甲出发后的时间为t (h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是【 】A .甲的速度是4km/hB .乙的速度是10km/hC .乙比甲晚出发1hD .甲比乙晚到B 地3h二、填空题11.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米,数据2 500 000用科学记数法表示为.12.如图,在小孔成像问题中,小孔 O 到物体AB 的距离是60 cm ,小孔O 到像CD 的距离是30 cm ,若物体AB 的长为16 cm ,则像 CD 的长是 cm.13. 14.把多项式22ma mb -分解因式的结果是. 15.函数294y x =-的顶点坐标是. 16.不等式组2841+2x x x ⎧⎨-⎩<>的解集是.17.如图,随机闭合开关123S S S ,,中的两个,能够让灯泡发亮的概率是.18.正方形ABCD 的边长为8,E 为BC 边上一点,BE =6,M 为AE 上一点,射线BM 交正方形一边于点F ,且BF =AE ,则BM 的长为.19.半径为4 cm ,圆心角为60°的扇形的面积为cm 2.20.如图,在ABC V 中,D 为ABC V 内的一点,且=90BDC ∠︒,且A B D C D E ∠=∠,若点E 为AC 的中点,3,8DE AB ==,则BC 的长.三、解答题21.先化简,再求代数式()211x x x x -⎛⎫-÷- ⎪⎝⎭的值,其中2cos451x ︒=+22.如图,在由边长为1个单位长度的小正方形组成的网格中,点,,,A B C D 均为格点(网格线的交点).(1)画出线段AB 关于直线CD 对称的线段11A B ;(2)将线段AB 向左平移2个单位长度,再向上平移1个单位长度,得到线段22A B ,画出线段22A B ;(3)描出线段AB 上的点M 及直线CD 上的点N ,使得直线MN 垂直平分AB .23.近年,“青少年视力健康”受到社会的广泛关注.某校综合实践小组为了解该校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力调查.根据调查结果和视力有关标准,绘制了两幅不完整的统计图.请根据图中信息解答下列问题:(1)所抽取的学生人数为__________;(2)补全条形统计图,并求出扇形统计图中“轻度近视”对应的扇形的圆心角的度数; (3)该校共有学生3000人,请估计该校学生中近视程度为“轻度近视”的人数.24.为了加强视力保护意识,欢欢想在书房里挂一张测试距离为5m 的视力表,但两面墙的距离只有3m .在一次课题学习课上,欢欢向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙两位同学设计方案新颖,构思巧妙. 图例(1)甲生的方案中如果大视力表中“E ”的高是3.5cm ,那么小视力表中相应“E ”的高是多少? (2)乙生的方案中如果视力表的全长为0.8m ,请计算出镜长至少为多少米.25.习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然正气.”某校为提高学生的阅读品味,现决定购买获得矛盾文学奖的甲、乙两种书共100本,已知购买2本甲种书和1本乙种书共需100元,购买3本甲种书和2本乙种书共需165元. (1)求甲,乙两种书的单价分别为多少元:(2)若学校决定购买以上两种书的总费用不超过3200元,那么该校最多可以购买甲种书多少本?26.已知四边形ABCD 内接于O e ,AB 是O e 的直径»»CDBC ,连接OC .(1)如图1,求证AD OC ∥;(2)如图2,连接BD ,过点C 作CH AB ⊥,垂足为H ,CH 交BD 于点E ,求证:CE BE =; (3)如图3,在(2)的条件下,连接AC ,过O 作OF BC ∥,交AC 于点F ,连接DF 并延长交O e 于点G ,若45ADG ∠=︒,FG EH 的长.27.如图,在平面直角坐标系中,点O 为坐标原点,抛物线235y ax ax =--与x 轴交于点A ,点B ,与y 轴交于点C ,点A 坐标为()2,0-(1)求抛物线解析式;(2)点P 为抛物线上一点,连接PA 交y 轴于点D ,设P 的横坐标为,t CD 的长为d ,求d 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)当7d =时,过点A 作AG PA ⊥交抛物线于点G ,连接PG ,点E F 、分别是PAG △的边AP GP 、上的动点,且PE GF =,连接AF GE 、,设AF GE m +=,求m 的最小值,并直接写出当m 有最小值时EGP ∠的正切值.。
哈尔滨市平房区中考三模数学试卷及答案
中考三模数学试卷一、 选择题(每小题3分,共30分)1.若火箭发射点火前10秒记为-10秒,那么火箭发射点火后5秒应记为( )A.-5秒B.-10秒C.+5秒D.+10秒2.下列计算正确的是( )A.39=B.20=0C.3-1=-3D.532=+3.下列图形中,中心对称图形有( )A.1个B.2个C.3个D.4个4.已知反比例函数xky =(k ≠0),在每个象限内y 随着x 的增大而增大,点P (a-1,2)在这个反比例函数上,a 的值可以是( )A.0B.1C.2D.35.菱形两条对角线的长分别为6和8,则这个菱形的周长为( )A.16B.20C.12D.106.如图所示几何体的左视图是( )7.在猜商品价格的游戏中,主持人要求嘉宾从右图中的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数.若商品的价格是360元,那么他一次就能猜中的概率是( ) A.43 B.21 C.41D.318.两圆的半径分别为4和3,圆心距为5,则两圆的位置关系为( )A .外离B .外切C .相交D .内切9.如右图,AB 是⊙O 的直径,CD 是⊙O 的弦.若∠BAD=21°,则∠ACD 的大小为( )A .2l °B .59°C .69°D .79°10.如图,针孔成像问题,AB ∥A ′B ′,根据图中尺寸,物像长y 与物长x 之间函数关系的图象大致是( )二、填空题(每题3分,共30分)11.2011年两会心系全国人民,在3月8日这天,共有144927人关心两会“微愿景”,请把144927用科学记数法表示:_____________.(保留2个有效数字) l2.分解因式:-9x2+y2=_____________.13.在函数y=6x中自变量x的取值范围是_____________.214.若关于x的一元二次方程x2-3x+m=0有实数根,则m的取值范围是_____________.15.如图,在ABCD中,点E在边BC上,BE∶EC=l∶2,连接AE交BD于点F,则△BFE的面积与△DFA的面积之比为_____________.16.某商场有两件进价不同上衣均卖了80元,一件盈利60%,另一件亏本20%,这次买卖中商家(盈利或亏本) _____________元.17.下图是用火柴棍摆放的1个、2个、3个……六边形,那么摆100个六边形,需要火柴棍_____________根.l 8.已知:如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把该套三角板放置在平面直角坐标系AB=3,若把含30°的直角三角板绕点O按顺时针方向旋转后,斜边OA'恰好与x轴重叠,点A 落在点A ′,则图中阴影部分面积等于_____________ (结果保留π).19.CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CD=10,AB=8,则tan ∠DAE=_____________.20.在Rt △ABC 中∠BAC=90°,AB=3,M 为BC 上的点,连结AM 如果将△ABM 沿直线AM 翻折后B 恰好落在边AC 中点处,那么点M 到AC 距离是_____________.三、解答题(2 1~24题各6分,2 5~26题各8分,27、28题各1 O 分,共60分)21.(本题6分)先化简,再求值:212444222-÷⎥⎦⎤⎢⎣⎡--+--a a a a a a a 的值,其中a=tan60°-2sin30°. 22.(本题6分)如图,方格纸中有三个点A ,B ,C ,要求作一个四边形,使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形; (2)在图乙中作出的四边形是轴对称图形但不是中心对称图形; (3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.23.(本题6分)如图,已知点M 、N 分别是ABCD 的边AB 、DC 的中点,求证:∠DAN=∠BCM .24.(本题6分)如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏)设矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.(1)若所用铁栅栏的长为40米,求y与x的函数关系式,并直接写出自变量x的取值范围:(2)在(1)的条件下,求S与x的函数关系式,并求出怎样围才能使矩形场地的面积为192平方米?25.(本题8分)今年云南地震后,哈市某中学开展了“我为灾区献爱心”活动,活动结束后,初四年级一班的团支部书记将全班50名同学捐款进行了统计,并绘制成下面的统计图.(1)写出这50名同学捐款的众数和中位数.(2)求这50名同学捐款的平均数.(3)该校共有学生1600人,请你根据该班的捐款情况,估计这个中学的捐款总数.26.(本题8分)哈市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设2 50米所用的天数相同.(1)甲、乙工程队每天各能铺设多少米?(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.4x+4与x轴交于点A,与y轴交27.(本题10分)如图一,直线y=-3于点c,在第一象限内将线段CA沿另一直线CG向上翻折得到线段CD,点D与点A对应且CD∥x轴,过点D作DE⊥x轴于E点,与GC交于F点.①求点F坐标;②点P、Q分别从E、A均以每秒1个单位的速度沿线段E0、AC运动,当一点到达终点时,另一点也随之停止运动,设△APQ的面积为S,运动时间为t(秒),求S与t的函数关系式,并直接写出自变量t的取值范围.③在②的条件下,如图二,连接AF,是否存在某一时刻t值,使直1∠AFE,若存在,判断此时以P为圆心,线PQ与AC所夹的锐角等于24为半径的圆与直线AC的位置关系,若不存在说明理由.328.(本题10分)等腰梯形ABCD中,AD∥BC,∠B=60°,BC=2AB,P 是BC的中点,∠MPN=60°,PM与直线AB交于点M,与直线AD交于点N。
哈尔滨市平房区2024届中考三模数学试题含解析
哈尔滨市平房区2024年中考三模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.二次函数y =3(x ﹣1)2+2,下列说法正确的是( ) A .图象的开口向下B .图象的顶点坐标是(1,2)C .当x >1时,y 随x 的增大而减小D .图象与y 轴的交点坐标为(0,2)2.如图,AB ∥CD ,直线EF 与AB 、CD 分别相交于E 、F ,AM ⊥EF 于点M ,若∠EAM=10°,那么∠CFE 等于( )A .80°B .85°C .100°D .170°3.将二次函数2yx 的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )A .2(1)2y x =++B .2(1)2y x =+-C .2(1)2y x =--D .2(1)2y x =-+4.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( ) A .8B .9C .10D .115.在下列四个标志中,既是中心对称又是轴对称图形的是( )A .B .C .D .6.计算﹣8+3的结果是( ) A .﹣11B .﹣5C .5D .117.计算(-18)÷9的值是( ) A .-9B .-27C .-2D .28.4的平方根是( )A.4 B.±4 C.±2 D.29.如图,A,C,E,G四点在同一直线上,分别以线段AC,CE,EG为边在AG同侧作等边三角形△ABC,△CDE,△EFG,连接AF,分别交BC,DC,DE于点H,I,J,若AC=1,CE=2,EG=3,则△DIJ的面积是()A.38B.34C.12D.3210.下列说法正确的是( )A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形11.下列运算正确的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3 D.a2•a4=a612.点P(﹣2,5)关于y轴对称的点的坐标为()A.(2,﹣5)B.(5,﹣2)C.(﹣2,﹣5)D.(2,5)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为____.14.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.15.反比例函数kyx=的图象经过点()1,6和(),3m-,则m=______ .16.ABC ∆内接于圆O ,设A x ∠=,圆O 的半径为r ,则OBC ∠所对的劣弧长为_____(用含x r ,的代数式表示). 17.在计算器上,按照下面如图的程序进行操作:如表中的x 与y 分别是输入的6个数及相应的计算结果:上面操作程序中所按的第三个键和第四个键分别是_____、_____.x ﹣3 ﹣2 ﹣1 0 1 2 y ﹣5﹣3﹣113518.阅读理解:引入新数i ,新数i 满足分配律、结合律、交换律,已知i 2=﹣1,那么(1+i )•(1﹣i )的平方根是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,在Rt △ABO 中,∠B =90°,∠OAB =10°,OA =1.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN =60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题: (发现)(1)MN 的长度为多少;(2)当t =2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积. (探究)当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.(拓展)当MN 与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.20.(6分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n (n >10,且n 为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)21.(6分)如图,在Rt △ABC 中,∠C=90°,AC=12AB .求证:∠B=30°. 请填空完成下列证明.证明:如图,作Rt △ABC 的斜边上的中线CD ,则 CD=12AB=AD ( ). ∵AC=12AB ,∴AC=CD=AD 即△ACD 是等边三角形. ∴∠A= °. ∴∠B=90°﹣∠A=30°.22.(8分)如图,在平行四边形ABCD 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接AF ,BE.(1)求证:△AGE ≌△BGF ;(2)试判断四边形AFBE 的形状,并说明理由.23.(8分)如图所示,一次函数y=kx+b 与反比例函数y=mx的图象交于A (2,4),B (﹣4,n )两点.分别求出一次函数与反比例函数的表达式;过点B 作BC ⊥x 轴,垂足为点C ,连接AC ,求△ACB 的面积.24.(10分)已知.化简;如果、是方程的两个根,求的值.25.(10分)如图,已知抛物线213(0)22y x x n n =-->与x 轴交于,A B 两点(A 点在B 点的左边),与y 轴交于点C . (1)如图1,若△ABC 为直角三角形,求n 的值;(2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B、C、P、Q 为顶点的四边形是平行四边形,求P点的坐标;(3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交y轴于点E,若AE﹕ED=1﹕1.求n的值.26.(12分)如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O是△EFG斜边上的中点.如图②,若整个△EFG从图①的位置出发,以1cm/s的速度沿射线AB方向平移,在△EFG平移的同时,点P从△EFG 的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).(1)当x为何值时,OP∥AC;(2)求y与x之间的函数关系式,并确定自变量x的取值范围;(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由.(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)27.(12分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:(1)这次知识竞赛共有多少名学生?(2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.【题目详解】解:A、因为a=3>0,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x>1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B.【题目点拨】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).2、C【解题分析】根据题意,求出∠AEM,再根据AB∥CD,得出∠AEM与∠CFE互补,求出∠CFE.【题目详解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故选C.【题目点拨】本题考查三角形内角和与两条直线平行内错角相等.3、B【解题分析】抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.【题目详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h)1+k,代入得:y=(x+1)1-1.∴所得图象的解析式为:y=(x+1)1-1;故选:B.【题目点拨】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.4、A【解题分析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:110°•(n-2)=3×360°解得n=1.故选A.点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.5、C【解题分析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.【题目详解】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选C.【题目点拨】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、B【解题分析】绝对值不等的异号加法,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得1.依此即可求解.【题目详解】解:−8+3=−2.故选B.【题目点拨】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有1.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.7、C【解题分析】直接利用有理数的除法运算法则计算得出答案.【题目详解】解:(-18)÷9=-1.故选:C.【题目点拨】此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键.8、C【解题分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x1=a,则x就是a的平方根,由此即可解决问题.【题目详解】∵(±1)1=4,∴4的平方根是±1.故选D.【题目点拨】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.9、A【解题分析】根据等边三角形的性质得到FG=EG=3,∠AGF=∠FEG=60°,根据三角形的内角和得到∠AFG=90°,根据相似三角形的性质得到AEAG=EJGF=36,ACAE=CIEF=13,根据三角形的面积公式即可得到结论.【题目详解】∵AC=1,CE=2,EG=3,∴AG=6,∵△EFG是等边三角形,∴FG=EG=3,∠AGF=∠FEG=60°,∵AE=EF=3,∴∠FAG=∠AFE=30°,∴∠AFG=90°,∵△CDE是等边三角形,∴∠DEC=60°,∴∠AJE=90°,JE∥FG,∴△AJE∽△AFG,∴AEAG=EJGF=36,∴EJ=13,∵∠BCA=∠DCE=∠FEG=60°,∴∠BCD=∠DEF=60°,∴∠ACI=∠AEF=120°,∵∠IAC=∠FAE,∴△ACI∽△AEF,∴ACAE=CIEF=13,∴CI=1,DI=1,DJ=12,∴IJ∴DIJ S=12•DI•IJ =12×12 故选:A . 【题目点拨】本题考查了等边三角形的性质,相似三角形的判定和性质,三角形的面积的计算,熟练掌握相似三角形的性质和判定是解题的关键. 10、D 【解题分析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答. 详解:A 、对角线互相平分且垂直的四边形是菱形,故错误; B 、四条边相等的四边形是菱形,故错误;C 、对角线相互平分的四边形是平行四边形,故错误;D 、对角线相等且相互平分的四边形是矩形,正确; 故选D .点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理. 11、D 【解题分析】根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(a ±b )2=a 2±2ab +b 2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可. 【题目详解】A 、(a 2)5=a 10,故原题计算错误;B 、(x ﹣1)2=x 2﹣2x +1,故原题计算错误;C 、3a 2b 和3ab 2不是同类项,不能合并,故原题计算错误;D 、a 2•a 4=a 6,故原题计算正确; 故选:D . 【题目点拨】此题主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算法则. 12、D 【解题分析】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【题目详解】点(25)P ,关于y 轴对称的点的坐标为(25),, 故选:D .【题目点拨】本题主要考查了平面直角坐标系中点的对称,熟练掌握点的对称特点是解决本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、3【解题分析】试题分析:因为等腰△ABC 的周长为33,底边BC=5,所以AB=AC=8,又DE 垂直平分AB ,所以AE=BE,所以△BEC 的周长为=BE+CE+BC=AE+CE+BC=AC+BC=8+5=3.考点:3.等腰三角形的性质;3.垂直平分线的性质.14、5【解题分析】根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.【题目详解】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,所以根据相似三角形的性质可设从顶点到这个正方形的线段为x , 则=,解得x=3,所以另一段长为18-3=15,因为15÷3=5,所以是第5张. 故答案为:5.【题目点拨】本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答. 15、-1【解题分析】先把点(1,6)代入反比例函数y=k x ,求出k 的值,进而可得出反比例函数的解析式,再把点(m ,-3)代入即可得出m 的值.【题目详解】解:∵反比例函数y=k x的图象经过点(1,6),∴6=1k ,解得k=6, ∴反比例函数的解析式为y=6x . ∵点(m ,-3)在此函数图象上上,∴-3=6m,解得m=-1. 故答案为-1.【题目点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.16、9090x r π-或9090x r π- 【解题分析】分0°<x°≤90°、90°<x°≤180°两种情况,根据圆周角定理求出∠DOC ,根据弧长公式计算即可.【题目详解】解:当0°<x°≤90°时,如图所示:连接OC ,由圆周角定理得,∠BOC=2∠A=2x°,∴∠DOC=180°-2x°,∴∠OBC 所对的劣弧长=(1802)(90)18090x r x ππ--=, 当90°<x°≤180°时,同理可得,∠OBC 所对的劣弧长=(2180)(90)18090x x ππ--= . 故答案为:9090x r π-或9090x r π-. 【题目点拨】本题考查了三角形的外接圆与外心、弧长的计算,掌握弧长公式、圆周角定理是解题的关键.17、+, 1【解题分析】根据表格中数据求出x 、y 之间的关系,即可得出答案.【题目详解】解:根据表格中数据分析可得:x 、y 之间的关系为:y=2x+1,则按的第三个键和第四个键应是“+”“1”.故答案为+,1.【题目点拨】此题考查了有理数的运算,要求同学们能熟练应用计算器,会用科学记算器进行计算.18、2【解题分析】根据平方根的定义进行计算即可.【题目详解】.解:∵i 2=﹣1,∴(1+i )•(1﹣i )=1﹣i 2=2,∴(1+i )•(1﹣i )的平方根是,故答案为.【题目点拨】本题考查平方根以及实数的运算,解题关键掌握平方根的定义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、【发现】(3)MN 的长度为π3;(2)【探究】:点P 的坐标为10(,);或0)或 0();【拓展】t 的取值范围是23t ≤<或45t ≤<,理由见解析.【解题分析】发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;(2)先求出PA =3,进而求出PQ ,即可用面积公式得出结论;探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;拓展:先找出MN 和直角三角形的两边有两个交点时的分界点,即可得出结论.【题目详解】[发现](3)∵P (2,0),∴OP =2.∵OA =3,∴AP =3,∴MN 的长度为6011803ππ⨯=. 故答案为3π; (2)设⊙P 半径为r ,则有r =2﹣3=3,当t =2时,如图3,点N 与点A 重合,∴PA =r =3,设MP 与AB 相交于点Q .在Rt △ABO 中,∵∠OAB =30°,∠MPN =60°.∵∠PQA =90°,∴PQ 12=PA 12=,∴AQ =AP ×cos30°32=,∴S 重叠部分=S △APQ 12=PQ ×AQ 38=. 即重叠部分的面积为38. [探究] ①如图2,当⊙P 与直线AB 相切于点C 时,连接PC ,则有PC ⊥AB ,PC =r =3.∵∠OAB =30°,∴AP =2,∴OP =OA ﹣AP =3﹣2=3;∴点P 的坐标为(3,0);②如图3,当⊙P 与直线OB 相切于点D 时,连接PD ,则有PD ⊥OB ,PD =r =3,∴PD ∥AB ,∴∠OPD =∠OAB =30°,∴cos ∠OPD PD OP =,∴OP 123303cos ==︒,∴点P 的坐标为(233,0); ③如图2,当⊙P 与直线OB 相切于点E 时,连接PE ,则有PE ⊥OB ,同②可得:OP 233=; ∴点P 的坐标为(233-,0);[拓展]t 的取值范围是2<t ≤3,2≤t <4,理由:如图4,当点N运动到与点A重合时,MN与Rt△ABO的边有一个公共点,此时t=2;当t>2,直到⊙P运动到与AB相切时,由探究①得:OP=3,∴t411-==3,MN与Rt△ABO的边有两个公共点,∴2<t≤3.如图6,当⊙P运动到PM与OB重合时,MN与Rt△ABO的边有两个公共点,此时t=2;直到⊙P运动到点N与点O重合时,MN与Rt△ABO的边有一个公共点,此时t=4;∴2≤t<4,即:t的取值范围是2<t≤3,2≤t<4.【题目点拨】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.20、(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.【解题分析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【题目详解】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n﹣5×2)×8=120+8n则∵n>10,且n为整数,∴160+6.4n﹣(120+8n)=40﹣1.6n讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,∴选择乙商场购买更合算.当n>25时,40﹣1.6n<0,即160+0.64n<120+8n,∴选择甲商场购买更合算.【题目点拨】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.21、直角三角形斜边上的中线等于斜边的一半;1.【解题分析】根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可.【题目详解】证明:如图,作Rt△ABC的斜边上的中线CD,则CD=12AB=AD(直角三角形斜边上的中线等于斜边的一半),∵AC=12 AB,∴AC=CD=AD 即△ACD是等边三角形,∴∠A=1°,∴∠B=90°﹣∠A=30°.【题目点拨】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练.22、(1)证明见解析(2)四边形AFBE是菱形【解题分析】试题分析:(1)由平行四边形的性质得出AD∥BC,得出∠AEG=∠BFG,由AAS证明△AGE≌△BGF即可;(2)由全等三角形的性质得出AE=BF,由AD∥BC,证出四边形AFBE是平行四边形,再根据EF⊥AB,即可得出结论.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠BFG,∵EF垂直平分AB,∴AG=BG,在△AGEH和△BGF中,∵∠AEG=∠BFG,∠AGE=∠BGF,AG=BG,∴△AGE≌△BGF(AAS);(2)解:四边形AFBE是菱形,理由如下:∵△AGE≌△BGF,∴AE=BF,∵AD∥BC,∴四边形AFBE是平行四边形,又∵EF⊥AB,∴四边形AFBE是菱形.考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.23、(1)反比例函数解析式为y=8x,一次函数解析式为y=x+2;(2)△ACB的面积为1.【解题分析】(1)将点A坐标代入y=mx可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;(2)根据点B 坐标可得底边BC =2,由A 、B 两点的横坐标可得BC 边上的高,据此可得.【题目详解】解:(1)将点A (2,4)代入y =m x ,得:m =8,则反比例函数解析式为y =8x , 当x =﹣4时,y =﹣2,则点B (﹣4,﹣2),将点A (2,4)、B (﹣4,﹣2)代入y =kx +b ,得:2442k b k b +=⎧⎨-+=-⎩, 解得:12k b =⎧⎨=⎩,则一次函数解析式为y =x +2; (2)由题意知BC =2,则△ACB 的面积=12×2×1=1. 【题目点拨】本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.24、 (1) ;(2)-4.【解题分析】(1)先通分,再进行同分母的减法运算,然后约分得到原式(2)利用根与系数的关系得到然后利用整体代入的方法计算. 【题目详解】解:(1).(2)∵、是方程, ∴, ∴【题目点拨】本题考查了根与系数的关系:若x 1,x 2是一元二次方程的两根时,, 也考查了分式的加减法.25、 (1) 2n =;(2) 1139(,)28和(539,)28;(3) 278n = 【解题分析】(1)设1(,0)A x ,2(,0)B x ,再根据根与系数的关系得到122x x n =-,根据勾股定理得到:2221AC x n =+、2222BC x n =+,根据222AC BC AB +=列出方程,解方程即可;(2)求出A 、B 坐标,设出点Q 坐标,利用平行四边形的性质,分类讨论点P 坐标,利用全等的性质得出P 点的横坐标后,分别代入抛物线解析式,求出P 点坐标;(3)过点D 作DH ⊥x 轴于点H ,由AE :1ED =:4,可得AO :1OH =:4.设(0)OA a a =>,可得 A 点坐标为(,0)a -,可得4,5OH a AH a ==.设D 点坐标为2(4,86)a a a n --.可证△DAH ∽△CBO ,利用相似性质列出方程整理可得到 2111220a a n --=①,将(,0)A a -代入抛物线上,可得21322n a a =+②,联立①②解方程组,即可解答. 【题目详解】解:(1)设1(,0)A x ,2(,0)B x ,则12,x x 是方程213022x x n --=的两根, ∴122x x n =-. ∵已知抛物线213(0)22y x x n n =-->与y 轴交于点C . ∴(0,-)C n 在Rt △AOC 中:2221AC x n =+,在Rt △BOC 中:2222BC x n =+,∵△ABC 为直角三角形,由题意可知∠90ACB =°,∴222AC BC AB +=,即222221221()x n x n x x +++=-,∴212n x x =-,∴22n n =,解得:120,2n n ==,又0n >,∴2n =.(2)由(1)可知:213222y x x =--,令0,y =则2132022x x --=, ∴11,x =-24x =, ∴(1,0),(4,0)A B -.①以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是四边形CBPQ 时,设抛物线的对称轴为32l = ,l 与BC 交于点G ,过点P 作PF ⊥l ,垂足为点F ,即∠90PFQ =°=∠COB . ∵四边形CBPQ 为平行四边形,∴,PQ BC PQ =∥BC ,又l ∥y 轴,∴∠FQP =∠QGB =∠OCB ,∴△PFQ ≌△BOC , ∴4PF BO ==,∴P 点的横坐标为311+4=22, ∴211131139()2,22228y =⨯-⨯-= 即P 点坐标为1139(,)28. ②当以BC 为边,以点B 、C 、P 、Q 为顶点的四边形是四边形CBQP 时,设抛物线的对称轴为32l = ,l 与BC 交于点G ,过点1P 作11P F ⊥l ,垂足为点1F , 即∠1190=PF Q °=∠COB .∵四边形11CBQ P 为平行四边形,∴1111,=PQ BC PQ ∥BC ,又l ∥y 轴, ∴∠111=F Q P ∠1Q GB =∠OCB ,∴△111PF Q ≌△BOC ,∴114==PF BO ,∴1P 点的横坐标为35-4=-22, ∴2515339()2,22228⎛⎫ ⎪=⨯--⨯-=⎝⎭y 即1P 点坐标为39(-,25)8∴符合条件的P 点坐标为1139(,)28和39(-,25)8. (3)过点D 作DH ⊥x 轴于点H ,∵AE :1ED =:4,∴AO :1OH =:4.设(0)OA a a =>,则A 点坐标为(,0)a -,∴4,5OH a AH a ==.∵D 点在抛物线213(0)22y x x n n =-->上, ∴D 点坐标为2(4,86)a a a n --,由(1)知122x x n =-,∴2n OB a=, ∵AD ∥BC , ∴△DAH ∽△CBO ,∴AH DH BO CO=, ∴25862a a a n n na--=, 即2111220a a n --=①, 又(,0)A a -在抛物线上,∴21322n a a =+②, 将②代入①得:221311122()022a a a a --+=, 解得10a =(舍去),232a = 把32a =代入②得:278n =. 【题目点拨】本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.26、(1)1.5s ;(2)S=625x 2+175x+3(0<x <3);(3)当x=52(s )时,四边形OAHP 面积与△ABC 面积的比为13:1.【解题分析】(1)由于O是EF中点,因此当P为FG中点时,OP∥EG∥AC,据此可求出x的值.(2)由于四边形AHPO形状不规则,可根据三角形AFH和三角形OPF的面积差来得出四边形AHPO的面积.三角形AHF中,AH的长可用AF的长和∠FAH的余弦值求出,同理可求出FH的表达式(也可用相似三角形来得出AH、FH的长).三角形OFP中,可过O作OD⊥FP于D,PF的长易知,而OD的长,可根据OF的长和∠FOD的余弦值得出.由此可求得y、x的函数关系式.(3)先求出三角形ABC和四边形OAHP的面积,然后将其代入(2)的函数式中即可得出x的值.【题目详解】解:(1)∵Rt△EFG∽Rt△ABC∴EG FGAC BC=,即486FG=,∴FG=468⨯=3cm∵当P为FG的中点时,OP∥EG,EG∥AC ∴OP∥AC∴x=121FG=12×3=1.5(s)∴当x为1.5s时,OP∥AC.(2)在Rt△EFG中,由勾股定理得EF=5cm ∵EG∥AH∴△EFG∽△AFH∴EG EF FG AH AF FH==,∴AH=45(x+5),FH=35(x+5)过点O作OD⊥FP,垂足为D ∵点O为EF中点∴OD=12EG=2cm∵FP=3﹣x∴S四边形OAHP=S△AFH﹣S△OFP=12•AH•FH﹣12•OD•FP=12•45(x+5)•35(x+5)﹣12×2×(3﹣x)=625x2+175x+3(0<x<3).(3)假设存在某一时刻x,使得四边形OAHP面积与△ABC面积的比为13:1则S四边形OAHP=1324×S△ABC∴625x2+175x+3=1324×12×6×8∴6x2+85x﹣250=0解得x1=52,x2=﹣503(舍去)∵0<x<3∴当x=52(s)时,四边形OAHP面积与△ABC面积的比为13:1.【题目点拨】本题是比较常规的动态几何压轴题,第1小题运用相似形的知识容易解决,第2小题同样是用相似三角形建立起函数解析式,要说的是本题中说明了要写出自变量x的取值范围,而很多试题往往不写,要记住自变量x的取值范围是函数解析式不可分离的一部分,无论命题者是否交待了都必须写,第3小题只要根据函数解析式列个方程就能解决.27、(1)200;(2)72°,作图见解析;(3)3 10.【解题分析】(1)用一等奖的人数除以所占的百分比求出总人数;(2)用总人数乘以二等奖的人数所占的百分比求出二等奖的人数,补全统计图,再用360°乘以二等奖的人数所占的百分比即可求出“二等奖”对应的扇形圆心角度数;(3)用获得一等奖和二等奖的人数除以总人数即可得出答案.【题目详解】解:(1)这次知识竞赛共有学生2010%=200(名);(2)二等奖的人数是:200×(1﹣10%﹣24%﹣46%)=40(人),补图如下:“二等奖”对应的扇形圆心角度数是:360°×40200=72°;(3)小华获得“一等奖或二等奖”的概率是:2040200=310.【题目点拨】本题主要考查了条形统计图以及扇形统计图,利用统计图获取信息是解本题的关键.。
黑龙江省哈尔滨市平房区九年级中考调研测试(一)数学试卷(内含答案详析)
数 学 试 卷(考试时间共100分钟,满分120分)准考证号:__________ 姓名:________ 座位号:___________{请同学们保持良好的心态,认真审真,认真答题,切不可马虎应付}一、选择题(每小题3分,共30分)1.如果冰箱冷藏室的温度是5℃,冷冻室的温度是-3℃,则冷藏室比冷冻室高( )A.8℃ B.-8℃ C.-2℃ D.2℃2.下列图形中,不是轴对称图形的是( )3.下列运算中,正确的是( )A.2a 6a 2a 3=• B.()532a a = C.426a a -a =D.ab 8b 5a 3=+ 4.如图,是由几个相同的小正方体搭成的一个几何体,它的左视图是( )A B C D5.反比例函数x k -y 2=(k 为常数,k ≠0)的图象位于( )A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限6.如图,飞机在空中B 处探测到它的正下方地面上目标C,此时飞行高度BC=1200米,从飞机上看地面指挥台A 的俯角α的正切值为43则飞机与指挥台之间AB 的距离为( )米A.1200B.1600C.1800D.2000 7.将抛物线y=x 2向左平移2个单位,再向下平移3个单位,得到的抛物线解析式是( )A.()3-2-x y 2=B.()32-x y 2+=C.()3-2x y 2+=D.()32x y 2++=8.如图,在菱形ABCB 中,点E 在AD 边上,EF ∥CD,交对角线BD 于点F,则下列结论中错误的是( )第8题 第9题 第10题A.BF DF AE DE = B.DB DF AD EF = C.BF DF AD EF = D.DB DF CD EF =9.如图,△ABC 为等边三角形,将△ABC 绕点A 逆时针旋转75°,得到△AED,过点E 作EF ⊥AC,垂足为点F,若AC=8,则AF 的长为( )A.4 B.3C.64D.2410.在一次越野赛中,甲选手匀速跑完全程,乙选手1.5小时后速度为每小时10千米,两选手的行程y(千米)随时间x(小时)变化的图像(全程)如图所示,则乙比甲晚到( )小时。
黑龙江省哈尔滨市平房区2024届中考一模数学试题含解析
黑龙江省哈尔滨市平房区2024年中考一模数学试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1.在平面直角坐标系xOy 中,函数31y x 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限2.下列计算正确的是( ) A .(a 2)3=a 6B .a 2•a 3=a 6C .a 3+a 4=a 7D .(ab )3=ab 33.下列计算正确的是( )A .2224()39b b c c =B .0.00002=2×105C .2933x x x -=--D .3242·323x y y x x = 4.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是( ) A .极差是3.5B .众数是1.5C .中位数是3D .平均数是35.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .196.下列运算正确的是( ) A .32()x =x 5B .55()x x -=-C .3x ·2x =6xD .32x +2 35x 5x =7.下列运算错误的是( )A .(m 2)3=m 6B .a 10÷a 9=a C .x 3•x 5=x 8 D .a 4+a 3=a 7 8.如图是二次函数y =ax 2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b 2–4ac<0,其中正确的有( )A .1个B .2个C .3个D .49.数轴上有A ,B ,C ,D 四个点,其中绝对值大于2的点是( )A .点AB .点BC .点CD .点D10.计算1+2+22+23+…+22010的结果是( ) A .22011–1 B .22011+1C .()20111212- D .()201112+12二、填空题(共7小题,每小题3分,满分21分) 11.如图,点A ,B 在反比例函数ky x=(k >0)的图象上,AC ⊥x 轴,BD ⊥x 轴,垂足C ,D 分别在x 轴的正、负半轴上,CD=k ,已知AB=2AC ,E 是AB 的中点,且△BCE 的面积是△ADE 的面积的2倍,则k 的值是______.12.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.13.-3的倒数是___________14.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出_____环的成绩.15.在平面直角坐标系中,将点A (﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A ′的坐标是_____.16.如图,在正方形ABCD 中,AD=5,点E ,F 是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF 的长为__________.17.如图,Rt△ABC的直角边BC在x轴负半轴上,斜边AC上的中线BD的反向延长线交y轴正半轴于点E,双曲线y=kx(x<0)的图象经过点A,S△BEC=8,则k=_____.三、解答题(共7小题,满分69分)18.(10分)计算:(1-n)03|+(-13)-1+4cos30°.19.(5分)某新建小区要修一条1050米长的路,甲、乙两个工程队想承建这项工程.经了解得到以下信息(如表):工程队每天修路的长度(米)单独完成所需天数(天)每天所需费用(元)甲队30 n 600乙队m n﹣14 1160(1)甲队单独完成这项工程所需天数n=,乙队每天修路的长度m=(米);(2)甲队先修了x米之后,甲、乙两队一起修路,又用了y天完成这项工程(其中x,y为正整数).①当x=90时,求出乙队修路的天数;②求y与x之间的函数关系式(不用写出x的取值范围);③若总费用不超过22800元,求甲队至少先修了多少米.20.(8分)已知:在⊙O中,弦AB=AC,AD是⊙O的直径.求证:BD=CD.21.(10分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.22.(10分)(1)计算:(﹣2)2﹣8+(2+1)2﹣4cos60°;(2)化简:2321x xx x-+-÷(1﹣1x)23.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.(1)求证:直线FG是⊙O的切线;(2)若AC=10,cosA=,求CG的长.24.(14分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】【分析】一次函数y=kx+b的图象经过第几象限,取决于k和b.当k>0,b>O时,图象过一、二、三象限,据此作答即可.【题目详解】∵一次函数y=3x+1的k=3>0,b=1>0,∴图象过第一、二、三象限,故选A.【题目点拨】一次函数y=kx+b的图象经过第几象限,取决于x的系数和常数项.2、A【解题分析】分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案.详解:A 、幂的乘方法则,底数不变,指数相乘,原式计算正确;B 、同底数幂的乘法,底数不变,指数相加,原式=5a ,故错误;C 、不是同类项,无法进行加法计算;D 、积的乘方等于乘方的积,原式=33a b ,计算错误;故选A . 点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型.理解各种计算法则是解题的关键. 3、D 【解题分析】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去. 【题目详解】解:A 、原式=2249b c;故本选项错误;B 、原式=2×10-5;故本选项错误;C 、原式=()()3333x x x x +-=+- ;故本选项错误;D 、原式=223x;故本选项正确; 故选:D . 【题目点拨】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒. 4、C 【解题分析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可. 【题目详解】A.极差为5﹣1.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为12×(2.5+3)=2.75,此选项错误; D.平均数为:18×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确. 故选C.【题目点拨】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解. 5、D 【解题分析】 试题分析:列表如下由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是19.故答案选D . 考点:用列表法求概率. 6、B 【解题分析】根据幂的运算法则及整式的加减运算即可判断. 【题目详解】 A. ()23x =x 6,故错误;B. ()55x x -=-,正确; C. 3x ·2x =5x ,故错误; D. 32x +2 3x 不能合并,故错误, 故选B. 【题目点拨】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.7、D 【解题分析】【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得. 【题目详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误, 故选D .【题目点拨】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键. 8、B 【解题分析】由抛物线的开口方向判断a 与1的关系,由抛物线与y 轴的交点判断c 与1的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【题目详解】①抛物线与y 轴交于负半轴,则c <1,故①正确; ②对称轴x 2ba=-=1,则2a +b =1.故②正确; ③由图可知:当x =1时,y =a +b +c <1.故③错误;④由图可知:抛物线与x 轴有两个不同的交点,则b 2﹣4ac >1.故④错误. 综上所述:正确的结论有2个. 故选B . 【题目点拨】本题考查了图象与二次函数系数之间的关系,会利用对称轴的值求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用. 9、A 【解题分析】根据绝对值的含义和求法,判断出绝对值等于2的数是﹣2和2,据此判断出绝对值等于2的点是哪个点即可. 【题目详解】解:∵绝对值等于2的数是﹣2和2, ∴绝对值等于2的点是点A .故选A.【题目点拨】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.10、A【解题分析】可设其和为S,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.【题目详解】设S=1+2+22+23+ (22010)则2S=2+22+23+…+22010+22011②②-①得S=22011-1.故选A.【题目点拨】本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、【解题分析】试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,∴AC=2BD,∴OD=2OC.∵CD=k,∴点A 的坐标为(3k ,3),点B 的坐标为(-23k ,-32), ∴AC =3,BD =32, ∴AB =2AC =6,AF =AC +BD =92,∴CD =k ==. 【题目点拨】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k 值是解题的关键. 12、54 【解题分析】试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行; 第一层有7个正方体,第二层有2个正方体,第三层有1个正方体, 共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体, ∴搭成的大正方体的共有4×4×4=64个小正方体, ∴至少还需要64-10=54个小正方体.【题目点拨】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体. 13、13- 【解题分析】乘积为1的两数互为相反数,即a 的倒数即为1a,符号一致 【题目详解】 ∵-3的倒数是13- ∴答案是13- 14、8 【解题分析】为了使第8次的环数最少,可使后面的2次射击都达到最高环数,即10环.设第8次射击环数为x环,根据题意列出一元一次不等式62+x+2×10>89解之,得x>7x表示环数,故x为正整数且x>7,则x的最小值为8即第8次至少应打8环.点睛:本题考查的是一元一次不等式的应用.解决此类问题的关键是在理解题意的基础上,建立与之相应的解决问题的“数学模型”——不等式,再由不等式的相关知识确定问题的答案.15、(0,0)【解题分析】根据坐标的平移规律解答即可.【题目详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),故答案为(0,0).【题目点拨】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.16【解题分析】分析:延长AE交DF于G,再根据全等三角形的判定得出△AGD与△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF的长.详解:延长AE交DF于G,如图,∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE.在△AGD和△BAE中,∵EAB GDAAD ABABE DAG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=22112+=.故答案为2.点睛:本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.17、1【解题分析】∵BD是Rt△ABC斜边上的中线,∴BD=CD=AD,∴∠DBC=∠ACB,又∠DBC=∠OBE,∠BOE=∠ABC=90°,∴△ABC∽△EOB,∴AB BC OE OB=∴AB•OB=BC•OE,∵S△BEC=12×BC•OE=8,∴AB•OB=1,∴k=xy=AB•OB=1.三、解答题(共7小题,满分69分)18、1【解题分析】根据实数的混合计算,先把各数化简再进行合并. 【题目详解】原式33=1【题目点拨】此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.19、(1)35,50;(2)①12;②y=﹣180x+1058;③150米.【解题分析】(1)用总长度÷每天修路的长度可得n的值,继而可得乙队单独完成时间,再用总长度÷乙单独完成所需时间可得乙队每天修路的长度m;(2)①根据:甲队先修建的长度+(甲队每天修建长度+乙队每天修建长度)×两队合作时间=总长度,列式计算可得;②由①中的相等关系可得y与x之间的函数关系式;③根据:甲队先修x米的费用+甲、乙两队每天费用×合作时间≤22800,列不等式求解可得.【题目详解】解:(1)甲队单独完成这项工程所需天数n=1050÷30=35(天),则乙单独完成所需天数为21天,∴乙队每天修路的长度m=1050÷21=50(米),故答案为35,50;(2)①乙队修路的天数为=12(天);②由题意,得:x+(30+50)y=1050,∴y与x之间的函数关系式为:y=﹣x+;③由题意,得:600×+(600+1160)(﹣x+)≤22800,解得:x≥150,答:若总费用不超过22800元,甲队至少先修了150米.【题目点拨】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.20、证明见解析【解题分析】根据AB=AC,得到AB AC=,于是得到∠ADB=∠ADC,根据AD是⊙O的直径,得到∠B=∠C=90°,根据三角形的内角和定理得到∠BAD=∠DAC,于是得到结论.【题目详解】证明:∵AB=AC,∴AB AC=,∴∠ADB=∠ADC,∵AD是⊙O的直径,∴∠B=∠C=90°,∴∠BAD=∠DAC,∴BD CD,∴BD=CD.【题目点拨】本题考查了圆周角定理,熟记圆周角定理是解题的关键.21、(1)证明见解析;(2)证明见解析;(3)CP=16.9cm.【解题分析】【分析】(1)先判断出∠BAC=2∠BAD,进而判断出∠BOD=∠BAC=90°,得出PD⊥OD即可得出结论;(2)先判断出∠ADB=∠P,再判断出∠DCP=∠ABD,即可得出结论;,最后用△ABD∽△DCP得出比例式求解即(3)先求出BC,再判断出BD=CD,利用勾股定理求出BC=BD=2可得出结论.【题目详解】(1)如图,连接OD,∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半径,∴PD是⊙O的切线;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP;(3)∵BC是⊙O的直径,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC=22AB AC+=13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BD=CD=22BC=1322,∵△ABD∽△DCP,∴AB BD CD CP=,∴132 52 1322CP=,∴CP=16.9cm.【题目点拨】本题考查了切线的判定、相似三角形的判定与性质等,熟练掌握切线的判定方法、相似三角形的判定与性质定理是解题的关键.22、(1)5(2)11 x+【解题分析】(1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算. 【题目详解】解:(1)原式=4﹣2+2+2+1﹣4×=7﹣2=5;(2)原式=÷=•=.【题目点拨】本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.23、(3)证明见试题解析;(3)3.【解题分析】试题分析:(3)先得出OD∥AC,有∠ODG=∠DGC,再由DG⊥AC,得到∠DGC=90°,∠ODG=90°,得出OD⊥FG,即可得出直线FG是⊙O的切线.(3)先得出△ODF∽△AGF,再由cosA=,得出cos∠DOF=;然后求出OF、AF的值,即可求出AG、CG的值.试题解析:(3)如图3,连接OD,∵AB=AC,∴∠C=∠ABC,∵OD=OB,∴∠ABC=∠ODB,∴∠ODB=∠C,∴OD∥AC,∴∠ODG=∠DGC,∵DG⊥AC,∴∠DGC=90°,∴∠ODG=90°,∴OD⊥FG,∵OD是⊙O的半径,∴直线FG是⊙O的切线;(3)如图3,∵AB=AC=30,AB是⊙O的直径,∴OA=OD=30÷3=5,由(3),可得:OD⊥FG,OD∥AC,∴∠ODF=90°,∠DOF=∠A,在△ODF和△AGF中,∵∠DOF=∠A,∠F=∠F,∴△ODF∽△AGF,∴,∵cosA=,∴cos∠DOF=,∴OF===,∴AF=AO+OF==,∴,解得AG=7,∴CG=AC﹣AG=30﹣7=3,即CG的长是3.考点:3.切线的判定;3.相似三角形的判定与性质;3.综合题.24、(1)100;(2)作图见解析;(3)1.【解题分析】试题分析:(1)根据百分比=所占人数总人数计算即可;(2)求出“打球”和“其他”的人数,画出条形图即可;(3)用样本估计总体的思想解决问题即可.试题解析:(1)本次抽样调查中的样本容量=30÷30%=100,故答案为100;(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:(3)估计该校课余兴趣爱好为“打球”的学生人数为2000×40%=1人.。
2020届中考复习哈尔滨市平房区中考调研测试数学试题(一)(有配套答案)
黑龙江省哈尔滨市平房区九年级中考调研测试数学试卷(一)一、单选题1.如果冰箱冷藏室的温度是5℃,冷冻室的温度是-3℃,则冷藏室比冷冻室高()A.8℃B.-8℃C.-2℃D.2℃【答案】A【考点】有理数的减法【解析】【解答】解:5﹣(﹣3)=5+3=8.故答案为:A.【分析】求冷藏室比冷冻室温度高多少,就用冰箱冷藏室的温度减去冷冻室的温度,根据有理数的减法即可得出答案。
2.下列图形中,不是轴对称图形的是( )A. B. C. D.【答案】D【考点】轴对称图形【解析】【解答】解:A.是轴对称图形,故不符合题意;B.是轴对称图形,故不符合题意;C.是轴对称图形,故不符合题意;D.不是轴对称图形,故符合题意.故答案为:D.【分析】把一个图形沿着某条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;根据定义一一判断即可。
3.下列运算中,正确的是()A.x·x2= x2B.(xy)2=xy2C.D.x2+x2=2x4【答案】C【考点】同底数幂的乘法,幂的乘方与积的乘方,合并同类项法则及应用【解析】【解答】A.x·x2=x3 ,故不符合题意;B.(xy)2=x2y2,故不符合题意;C. 符合题意;D.x2+x2=2x2,故不符合题意;故答案为:C.【分析】根据同底数幂的乘法,底数不变指数相加;积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;合并同类项法则,只把系数相加减,字母和字母的指数都不变;幂的乘方,底数不变,指数相乘;根据法则一一判断即可。
4.如左图是由几个相同的小正方体搭成的一个几何体,它的左视图是()A. B. C. D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:从左向右看第一列是两个正方体,第二列式一个正方体,故答案为:B.【分析】求简单几何体的左视图,就是从左向右看得到的正投影,从左向右看第一列是两个正方体,第二列式一个正方体从而得出答案。
5.反比例函数(k为常数,k≠0)的图象位于( )A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【答案】C【考点】反比例函数的图象【解析】【解答】解:∵k≠0,∴k2>0,∴﹣k2<0,∴反比例函数(k为常数,k≠0)的图象位于第二、四象限.故答案为:C.【分析】根据偶次方的非负性及已知条件可知:k2>0,故﹣k2<0,根据双曲线的比例系数小于0,则图像位于第二、四象限.即可得出答案。
2024年黑龙江省哈尔滨市平房区中考三模数学试卷
2024年黑龙江省哈尔滨市平房区中考三模数学试卷一、单选题(★) 1. 的倒数是()A.3B.C.D.(★★★) 2. 下列运算中,结果正确的是()A.B.C.D.(★) 3. 下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.(★★★) 4. 若反比例函数的图像经过点,则的值为()A.B.C.D.(★★) 5. 下面两幅图是由5个小正方体搭成的几何体的主视图与俯视图,则搭成这个几何体的左视图为()A.B.C.D.(★★) 6. 分式方程的解为()A.B.C.D.(★★) 7. 如图,飞机在空中B处探测到它的正下方地面上目标C,此时飞行高度米,从飞机上看地面指挥台A的俯角α的正切值为,则飞机与指挥台之间的距离为( )米A.1200B.1600C.1800D.2000(★★★) 8. 如图,为的直径,为弦,,点在上,若,则的度数为()A.B.C.D.(★) 9. 已知二次函数向左平移h个单位,再向下平移k个单位,得到二次函数,则h和k的值分别为()A.,3B.,C.2,D.2,3(★★) 10. 在一次越野赛中,甲选手匀速跑完全程,乙选手小时后速度为每小时10千米,两选手的行程y(千米)随时间x(小时)变化的图像(全程)如图所示,则乙比甲晚到()小时.A.B.C.D.二、填空题(★) 11. 把数字用科学记数法表示为 ______ .(★★) 12. 计算的结果是 _____ .(★★★) 13. 函数中,自变量的取值范围是 __________ .(★★) 14. 把多项式b3﹣6 b2+9 b分解因式的结果是 ________ .(★★★) 15. 不等式组的解集为 __________ .(★★★) 16. 一个扇形的面积为,弧长为,则此扇形的圆心角度数为__________ .(★★) 17. 为了准备学校艺术节展示活动,需要从3名男生和2名女生中随机抽取2名学生做主持人,抽取的学生恰好是一名男生和一名女生的概率为__________ .(★★★) 18. 为了配合新型冠状病毒的防控工作,某药店将某药品经连续两次降价后,售价变为原来的81%.若两次降价的百分率相同,则该药品每次降价的百分率为 _____ .(★★★) 19. 在正方形中,,交于点O,点E在射线上,过点O作,交射线于点F,连接.若,则的长为__________ .(★★★) 20. 如图,在中,,平分,F为边上一点,连接交于点E.若,,,则长为 __________ .三、解答题(★★★) 21. 先化简,再求代数式的值,其中.(★★★) 22. 如图,方格纸中每个小正方形的边长均为1,为对角线,线段的端点A、B在小正方形的顶点上.(1)在图中的同侧画一个以为腰的等腰直角三角形,点E在小正方形的顶点上;(2)点P在图中线段上,连接,当的值最小时,画出点P,并求出的最小值.(保留作图痕迹)(★★★) 23. 某班学生以跨学科主题学习为载体,综合运用体育,数学,生物学等知识,研究体育课的运动负荷,在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x(次/分钟)分为如下五组:A组:,B组:,C组:,D组:,E组:.其中,A组数据为73,65,74,68,74,70,66,56.根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:(1) A组数据的中位数是_______,众数是_______;在统计图中B组所对应的扇形圆心角是_______度;(2)补全学生心率频数分布直方图;(3)一般运动的适宜行为为(次/分钟),学校共有2300名学生,请你依据此次跨学科项目研究结果,估计大约有多少名学生达到适宜心率?(★★★★) 24. 如图1,在中,,点M、N分别为边的中点,连接.初步尝试:(1)与的数量关系是__________,与的位置关系是__________.特例研讨:(2)如图2,若,先将绕点B顺时针旋转(为锐角),得到,当点A、E、F在同一直线上时,与相交于点D,连接①求时度数;②求的长.(★★★) 25. 振华书店准备购进甲、乙两种图书进行销售,若购进本甲种图书和本乙种图书共需元,若购进本甲种图书和本乙种图书共需元.求甲、乙两种图书每本进价各多少元;该书店购进甲、乙两种图书共本进行销售,且每本甲种图书的售价为元,每本乙种图书的售价为元,如果使本次购进图书全部售出后所得利润不低于元,那么该书店至少需要购进乙种图书多少本?(★★★★) 26. 已知:内接于,,连接并延长交于点D,交于点E,于点F,交于点G.(1)如图1,求证:;(2)如图2,延长交于点H,连接,求证:;(3)如图3,在(2)的条件下,点R为弧上一点,连接、,交于点P,若,,,求的长.(★★★★) 27. 已知在平面直角坐标系中,抛物线分别交x轴于点A、C两点,与经过点A的直线相交于另一点B,直线交y轴于点E.(1)如图1,求该抛物线的解析式;(2)如图2,点P为第三象限抛物线上一点,连接、,设点P的横坐标为t,三角形的面积为S,请求出S与t的函数关系式;(不要求写出自变量的取值范围)(3)如图3,在(2)的条件下,将线段沿过点P且平行于y轴的直线翻折交线段与点D,过点D作分别交、y轴、x轴于点G、H、F.连接,若,求线段的长.。
黑龙江省哈尔滨市平房区2016届中考数学下学期调研测试试题(一)
黑龙江省哈尔滨市平房区2016届九年级数学下学期中考调研测试(一)试题考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的“姓名”、“考场”、“座位号”在答题卡上填写清楚,将“条形码” 准确粘贴在条形码区域内。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸上、试题纸上答题无效。
4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、字迹清楚。
5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀。
第Ⅰ卷 选择题(共30分)(涂卡) 一、选择题(每小题3分,共30分) 1.-2的相反数是( ) A.-21 B.–2 C.21D.22.下列运算中,正确的是( )A.532x x x =⋅B.523)(x x =C.3322=-x x D.222)(2x x =3.下列图形中,既是轴对称图形又是中心对称图形的有( )个A.1B.2C.3D.4 4.函数xy 6-=的图象经过点A ),(11y x ,B ),(22y x 若021<<x x ,则1y 、2y 、0三者的大小关系是( )A. 021<<y yB. 012<<y yC. 021>>y yD. 012>>y y5.如图所示的几何体是由五个大小相同的正方体搭建而成的,它的左视图是( )6.如图,要焊接一个等腰三角形钢架,钢架的底角为35°,高CD 长为3米,则斜梁AC 的长 为( )米.A. 35cos 3B. 35tan 3C.35sin 3 D.35sin 3 7.如图,在△ABC 中,D 为AB 上的一点,过点D 作DE ∥BC 交AC 于点E,过点D 作DF ∥AC 交BC 于点F,则下列结论错误的是( )A.BF DE DB AD =B.ACAE BC DE = C.CF BF CE AE = D.BC BF AC CE =8.某班科技兴趣小组的学生,将自己的作品向本组其他成员各赠送一件,全组共相互赠送作品56件,若全组有x 名同学,则根据题意列出方程是( )A.()2561⨯=-x xB.()5612=+x xC.()561=+x xD.()561=-x x9.如图,折叠矩形纸片ABCD 的一边AD,使点D 落在BC 边上的点F 处,若AB=8,BC=10,则 △CEF 的周长为( )A.12B.16C.18D.2410.小红从劳动基地出发,步行返回学校,小军骑车从学校出发去劳动基地,在基地停留10分钟后,沿原路以原速返回,结果比小红早7分钟回到学校.若两人都是沿着同一路线行进,且两人与学校的距离s(米)和小红从劳动基地出发所用时间t(分)之间的函数关系如图所示,则下列说法中正确的结论有( )个①学校到劳动基地距离是2400米; ②小军出发53分钟后回到学校; ③小红的速度是40米/分;④两人第一次相遇时距离学校1610米.A .1 B.2 C.3 D.4 二、填空题(每小题3分,共30分)11.2310000用科学计数法表示为 . 12.在函数xx y --=21中,自变量x 的取值范围是 . 13.计算:48313- = . 14.把多项式9m 6mn -mn 2+分解因式的结果是 . 15.一个扇形的圆心角为120°,它所对的弧长为6πcm,则这个扇形的面积为 cm 2(结果保留π) 16.不等式组⎩⎨⎧>-+03132-x x 的解集是 .17.一个不透明的袋子内装有2个红球、2个黄球(这些球除颜色外完全相同),从中同时摸出两个球,都是红球的概率是___________. 18.分式方程xx 332=-的解是=x . ≥519.矩形ABCD 中,AD=5,CD=3,在直线BC 上取一点E,使△ADE 是以DE 为底的等腰三角形,过点D 作直线AE 的垂线,垂足为点F,则EF=_____________.20.已知等边△ABC,点E 是AB 上一点,AE=3,点D 在AC 的延长线上,∠ABD+∠BCE=120°,tan ∠D=23,则CD=______________.三、解答题 (其中21 、22题各7分,23、24题各8分,25~27题各10分,共60分) 21.(本题7分) 先化简,再求代数式⎪⎭⎫ ⎝⎛--+÷-+a a a a 23221的值,其中602sin tan45+=a22.(本题7分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB 和线段CD,点A 、B 、C 、D 均在小正方形的顶点上.(1)在方格纸中画以AB 为一边的菱形ABEF,点E 、F 在小正方形的顶点上,且菱形ABEF 的面积为3; (2)在方格纸中画以CD 为一边的等腰△CDG,点G 在小正方形的顶点上,连接EG,使∠BEG=90°,并直接写出线段EG 的长.23.(本题8分)某校对九年级的部分同学做一次内容为“最适合自己的考前减压方式”的抽样调查活动,学校将减压方式分为五类,每人必选且只选其中一类.学校收集整理数据后,绘制了如下的统计图.请你结合图中所提供的信息,解答下列问题:(1)一共抽查了多少名学生?(2)请把条形统计图补充完整;(3)若该校九年级共有350名学生,请估计该年级学生选择“听音乐”来缓解压力的人数.24.(本题8分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF∥BE交DE的延长线于F,连接CD.(1)求证:四边形BCFE是菱形;(2)在不添加任何辅助线和字母的情况下,请直接写出图中与△BEC面积相等的所有三角形(不包括△BEC).25.(本题10分)某班同学组织春游活动,到超市选购A、B两种饮料,若购买6瓶A种饮料和4瓶B 种饮料需花费39元,购买20瓶A种饮料和30瓶B种饮料需花费180元.(1)购买A、B两种饮料每瓶各多少元?(2)实际购买时,恰好超市进行促销活动,如果一次性购买A种饮料的数量超过20瓶,则超出部分的价格享受八折优惠,B种饮料价格保持不变.若购买B种饮料的数量是A种饮料数量的2倍还多10瓶,且总费用不超过320元,则最多可购买A种饮料多少瓶?26.(本题10分)已知:AB为⊙O的直径,弦C D⊥AB于点E,F为⊙O上一点,且FB=FD.(1)如图1,点F在弧AC上时,求证:∠BDC=∠DFB;(2)如图2,点F在弧BC上时,过点F作FH∥CD分别交AB、BD于点G、H,求证:BD=2FG;(3)如图3,在(2)的条件下,连接AD、AF,DH:HG=3:5,OG=5,求△ADF的面积.27.(本题10分) 已知直线m 21y +=x 与x 轴交于点A,与y 轴交于点C,抛物线3b 21y 2++-=x x 过A 、C 两点,交x 轴另一点B.(1)如图1,求抛物线的解析式;(2)如图2,P 、Q 两点在第二象限的抛物线上,且关于对称轴对称,点F 为线段AP 上一点,2∠PQF+∠PFQ=90°,射线QF 与过点A 且垂直x 轴的直线交于点E,AP=QE,求PQ 长;(3)如图3,在(2)的条件下,点D 在QP 的延长线上,DP:DQ=1:4,点K 为射线AE 上一点连接QK,过点D 作DM ⊥QK 垂足为M,延长DM 交AB 于点N,连接AM,当∠AMN=45°时,过点A 作AR ⊥DN 交抛物线于点R,求R 点坐标.2016年平房区中考调研测试(一) 数学答案一、选择题:1—5 DABDC 6---10 DCDAB 二、填空题11. 61031.2⨯ 12. 13. 33- 14.15.27π16.3<x ≤4 17. 61 18. 9 19.1或9 20.29 三、解答题21.解:原式=a -2a -12-a 1a 2÷+=1)-1)(a (a 2-a 2-a 1a +⋅+=1-a 1………………….3分 将602sin tan45a +==312321+=⨯+…………2分 代入原式=331-311=+…………2分 22.每图3分, EG= 1分23.(1)40(2分)(2)8人(2分)补图(1分)(3)105(3分)24.(1)证BC=2DE(1分) 证平行四边形(2分) 证邻边相等(1分)(2) △FEC, △AEB,△ADC,△BDC (4分)25.(1)解:设购进A 种饮料每瓶元,购进B 种饮料每瓶元.⎩⎨⎧=+=+18030203946y x y x …………………………3分 解得:⎩⎨⎧==35.4y x ………………………………1分答:购进A 种饮料每瓶元,购进B 种饮料每瓶元. …………………………….1分(2)解:设购进A 种饮料a 瓶,购进B 种饮料瓶)102(380%20-5.44.520++⨯+⨯a a )(≤320 ………… 3分A解得: a ≤3128…………………………….1分 ∵a 取正整数,∴a 最大为28答:最多可购进A 种饮料28瓶. …………………………….1分 26、证明: (1)∵AB 为⊙O 的直径,AB ⊥CD ∴BC⌒ =BD ⌒ ……………………… 1分 ∴∠CDB=∠DFB ………………………1分 (2)连接OF 并延长交BD 于M,连接OD 在△FOD 和△FOB 中 BF=DF,FO=FO,OD=OB ∴△FOD ≌△FOB(SSS)∴∠DFO=∠B FO………………………1分 ∵FD=FB ∴FM ⊥BD∴BM=DM=21BD ………………………1分∵OF=OB ∴∠OFB=∠OBF∵FH ∥CD ∴∠CEG=∠FGB=90°在△FGB 和△FBM 中∠FMB=∠BGF, ∠KFB=∠GBF,FB=FB △FGB ≌△FBM(AAS)∴FG=BM∴BD=2FG ………………………1分 (3)∵DH:HG=3:5∴设DH=3m ,GH=5m ∵△FGB ≌△FBM ∴FM=BG在△FHM 和△BHG 中 ∠FHB=∠BHG ,∠BGH=∠FMH,FM=BG △FHM ≌△BHG(AAS)∴HM=GH=5m ,DM=8m,BD=16m,BH=13m …………1分 在Rt △BGH 中,HB=13m ,GH=5m根据勾股定理得:GB=12m 在Rt △FGO 中, FG=8m,OG=5,OF=OB=12m-5 根据勾股定理得:()()22258512m +=-m …………1分解得:01=m (舍),232=m ………………1分 DB=24,DM=12,OF=OB=12m-5=13,AB=26∵AB 为⊙O 的直径,∠ADB=90°在Rt △ADB 中, 由勾股定理得:AD=10……………1分 ∴60DM AD 21=⨯⨯=∆ADF S ……………1分 27、解:∵ 当x =0时,3b 21-y2++=x x y=3 ∴C(0,3) 将点C 代入m 21y +=x 得m=3,AB当y=0时,x =-6 ∴点A (-6,0)……1分∴将点A (-6,0)代入3b 21-y 2++=x x 可得b=25- ∴抛物线的解析式为325-21-y2+=x x ……………1分(2)延长QP 、AE 交于点H ∵点P 、Q 关于对称轴对称∴QP ∥x 轴AE ⊥x 轴 ∴∠H=90° ∵ 2∠PQF+∠PFQ=90° ∴∠PQF+∠PFQ=90°-∠PQF=∠HEQ =∠HAP+∠EFA ∴∠PQF=∠HAP ……………1分∵QE=AP ∴△HAP ≌△QEH ∴QH=AH 过点Q 作QK ⊥AB 于点G ∴四边形AGQH 是正方形 设点Q 3)t 25-t 21(t,-2+∴QH=t+6 QG=3t 25-t 21-2+t+6=3t 25-t 21-2+解得舍)-6(t -1,t 21== ∴点Q (-1,5)……………1分 ∵点P 、Q 关于x =25-对称∴点P (-4,5) ∴PQ=3…1分 (3) ∵DP:DQ=1:4, ∴DP=1,点D (-5,5)………………1分 HD=1∵DN ⊥QK ∠AMN=45°过点A 作AG ⊥AM 交DN 延长线于点G ,∴AM=AG ∵∠KMN+∠KAN=180° ∴∠MKA+∠MNA=180° ∠ANG+∠MNA=180° ∴∠MKA=∠ANG ∵∠KAN=∠MAG= 90° ∴∠MAK=∠NAG ∴△AKM ≌△ANG ∴AK=AN ………………1分过点D 作DL ⊥AB 于点L ,四边形HALD 是矩形 ∴ HD=AL=1, AH=DL=QH ∠HKQ=∠DNL ∴△HKQ ≌△LND ∴HK=LN 设HK=LN =m则AN=AK=m+1 ∴AH=m+1+m=5 m=2………………1分 ∵∠HQK=∠OAR ∴tan ∠HQK= tan ∠OAR= 52HQHK =………1分设R 3)m 25-m 21(m,-2+ 过点R 作RS ⊥AB 于点S ∴526m 3m 25-m 21-2=++ -6m ,51m 21==(舍)∴R ),(256251………………1分(此处还可写成(0.2,2.48))。
哈尔滨市平房区2019年中考调研测试数学试题(一)
哈尔滨市平房区2019年中考调研测试数学试题(一)一、选择题1.如果水位升高0.9米时水位变化记作+0.9米.那么水位下降0.7米时水位变化记作()A.0米B.0.7米C.﹣0.7米D.﹣0.8米2.用科学记数法表示525 000正确的是()A.5.25×106B.5.25×105C.5.25×104D.525×1033.下列运算中,正确的是()A.4m﹣m=3 B.﹣(m﹣n)=m+n C.(m2)3=m6 D.m2÷m2=m4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.反比例函数y=的图象,当x>0时,y随x的增大而增大,则m的取值范围是()A.m<3 B.m≤3C.m>3 D.m≥36.如图所示的两个几何体是由六个大小相同的小正方体组合而成的,则它们三视图中完全一致的是()A.主视图B.俯视图C.左视图D.三视图7.如图,在△ABC中,∠CAB=70°,将△ABC绕点A按逆时针方向旋转一个锐角α到△AB′C′的位置,连接CC′,若CC′∥AB,则旋转角α的度数为()A.40°B.50°C.30°D.35°8.把抛物线y=(x﹣4)2先向左平移3个单位,再向下平移4个单位,所得到的抛物线是()A.y=(x﹣4)2﹣4 B.y=x2C.y=(x﹣7)2﹣4 D.y=(x﹣1)2﹣49.如图,△ABC是一张顶角为120°的三角形纸片,AB=AC,BC=12,现将△ABC折叠,使点B与点A 重合,折痕为DE,则DE的长为()A.1 B.2 C.2D.310.甲、乙两车沿相同路线以各自的速度从A地去往B地,如图表示其行驶过程中路程y(千米)随时间t(小时)的变化图象,下列说法:①乙车比甲车先出发2小时;②乙车速度为40千米/时;③A、B两地相距200千米;④甲车出发80分钟追上乙车.其中正确的个数为()A.1个B.2个C.3个D.4个二、填空题11.化简:=.12.函数的自变量x的取值范围为.13.因式分解:4ax2﹣16axy+16ay2=.14.不等式组的解集是.15.如图,AB是⊙O的一条弦,OD⊥AB于点C,交⊙O于点D,点E在⊙O上,∠AED=30°,OB=10,则弦AB=.16.某商场把进价为40元的衬衫加价25%后进行出售,在3•15消费者权益日,商场推出购物优惠策略,全场商品一律9折销售,那么在此优惠期间,商家出售衬衫每件元.17.在一个不透明的袋子中有红、绿各两个小球,它们只有颜色上的区别.从袋子中随机摸出一个小球记下颜色后不放回.再随机摸一个.则两次都摸到红球概率为.18.在△ABC中,tanB=,AB=10,AC=3,则线段BC的长为.19.如图,在矩形ABCD中,BC=2BA=8,将矩形ABCD沿AC所在直线翻折使△ABC 与△AEC重合,连接BE,BE交AD于点F,则线段EF的长为.20.如图,△ABC为等腰三角形,AB=AC,BD为△ABC的高,E点在AB上,G点在BC上,且满足∠DEG=45°,∠DBC=∠BEG.若=,则的值为.三、解答题:(21题、22题每题7分,23、24题每题8分,25-27题每题10分,共60分)21.先化简,再求值:(1﹣)÷,其中x=3tan30°+2cos60°.22.如图,正方形网格中每个小正方形的边长均为1,△ABC的三个顶点都在格点上,现将△ABC绕着格点O顺时针旋转90°(1)画出△ABC旋转后的△A′B′C′;(2)求点C旋转过程中所经过的路径长.23.为了了解某校九年级男生的体能情况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2尚不完整的统计图.(1)本次抽测的男生有多少人,抽测成绩的众数是多少;请你将图1的统计图补充完整;(2)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中,估计有多少人体能达标?24.如图,在某建筑物AC上挂着宣传条幅BC,小明站在点F处,看条幅顶端B,测得仰角为30°,再往条幅方向前行40米到达点E处,看到条幅顶端B,测得仰角为60°.(1)求宣传条幅BC的长(小明的身高不计,结果保留根号);(2)若小明从点F到点E用了80秒钟,按照这个速度,小明从点F到点C所用的时间为多少秒?25.某市对一段全长2000米的道路进行改造,为了尽量减少施工对城市交通所造成的影响,实际施工时,若每天修路比原来计划提高效率25%,就可以提前5天完成修路任务(1)求修这段路计划用多少天?(2)有甲、乙两个工程队参与修路施工,其中甲队每天可修路120米,乙队每天可修路80米,若每天只安排一个工程队施工,在保证至少提前5天完成修路任务的前提下,甲工程队至少要修路多少天?26.如图,BC为⊙O的直径,点A为⊙O上的点,以BC、AB为边作▱ABCD,⊙O 交于AD与点E,连接BE,点P是过点B的⊙O的切线上的一点.连结PE,且满足∠PEA=∠ABE.(1)求证:PB=PE;(2)若sin∠P=,DE=,求AB的值.27.在平面直角坐标系内,点O为坐标原点,抛物线y=ax2+bx(a≠0)的顶点在直线y=﹣x﹣1上,且该抛物线经过点A(4,0),设抛物线的顶点为D,抛物线对称轴交x 轴于点H.(1)求该抛物线的解析式;(2)设点B(1,3)点C在抛物线的对称轴上,当|AC﹣BC|的值最大,直接写出点C 的坐标;(3)在(2)的条件下,点D关于x轴对称点为E,是否在对称轴右侧抛物线上存在一点F,使∠FEC﹣∠BCD=135°?若存在,求出点F的横坐标;若不存在,请说明理由.哈尔滨市平房区2019年中考调研测试数学试题(一)参考答案与试题解析一、选择题1.如果水位升高0.9米时水位变化记作+0.9米.那么水位下降0.7米时水位变化记作()A.0米B.0.7米C.﹣0.7米D.﹣0.8米【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:根据题意可得:水位上升为“+”,水位下降为,故水位下降0.7米,应记作﹣0.7米.故选:C.【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.用科学记数法表示525 000正确的是()A.5.25×106B.5.25×105C.5.25×104D.525×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将525000用科学记数法表示为:5.25×105.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列运算中,正确的是()A.4m﹣m=3 B.﹣(m﹣n)=m+n C.(m2)3=m6 D.m2÷m2=m【考点】整式的混合运算.【分析】根据合并同类项的法则,只把系数相加减,字母与字母的次数不变;去括号法则,括号前面是负号,去掉括号和负号,括号里的各项都变号;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、应为4m﹣m=3m,故本选项错误;B、应为﹣(m﹣n)=﹣m+n,故本选项错误;C、应为(m2)3=m2×3=m6,正确;D、m2÷m2=1,故本选项错误.故选C.【点评】本题综合考查了合并同类项的法则,去括号法则,幂的乘方的性质,同底数幂的除法的性质,熟练掌握运算性质和法则是解题的关键.4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既是轴对称图形,也是中心对称图形,符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意.故选:A.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.反比例函数y=的图象,当x>0时,y随x的增大而增大,则m的取值范围是()A.m<3 B.m≤3C.m>3 D.m≥3【考点】反比例函数的性质.【分析】根据反比例函数的性质可得m﹣3<0,再解不等式即可.【解答】解:∵当x>0时,y随x的增大而增大,∴m﹣3<0,解得m<3,故选:A.【点评】此题主要考查了反比例函数的性质,关键是掌握对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限,在每一象限内y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一象限内y随x的增大而增大.6.如图所示的两个几何体是由六个大小相同的小正方体组合而成的,则它们三视图中完全一致的是()A.主视图B.俯视图C.左视图D.三视图【考点】简单组合体的三视图.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断即可.【解答】解:从正面可看到甲从左往右三列小正方形的个数为:1,2,1,乙从左往右2列小正方形的个数为:2,1,1,不符合题意;从左面可看到甲从左往右2列小正方形的个数为:1,2,1,乙从左往右2列小正方形的个数为:1,2,1,符合题意;从上面可看到甲从左往右三列小正方形的个数为:2,1,2,乙从左往右2列小正方形的个数为:2,2,1,不符合题意;故选C.【点评】本题考查了几何体的三种视图,掌握定义,分别找到两个几何体的三视图进行比较是关键.7.如图,在△ABC中,∠CAB=70°,将△ABC绕点A按逆时针方向旋转一个锐角α到△AB′C′的位置,连接CC′,若CC′∥AB,则旋转角α的度数为()A.40°B.50°C.30°D.35°【考点】旋转的性质.【专题】计算题.【分析】先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转得性质得AC=AC′,∠CAC′等于旋转角,然后利用等腰三角形的性质和三角形内角和计算出∠CAC′的度数即可.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=70°,∵△ABC绕点A按逆时针方向旋转一个锐角α到△AB′C′的位置,∴AC=AC′,∠CAC′等于旋转角,∴∠AC′C=∠ACC′=70°,∴∠CAC′=180°﹣70°﹣70°=40°,∴旋转角α的度数为40°.故选A.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8.把抛物线y=(x﹣4)2先向左平移3个单位,再向下平移4个单位,所得到的抛物线是()A.y=(x﹣4)2﹣4 B.y=x2C.y=(x﹣7)2﹣4 D.y=(x﹣1)2﹣4【考点】二次函数图象与几何变换.【分析】抛物线的平移,实际上就是顶点的平移,先求出原抛物线的顶点坐标,再根据平移规律,推出新抛物线的顶点坐标,根据顶点式可求新抛物线的解析式.【解答】解:原抛物线的顶点为(4,0),向左平移3个单位,再向下平移4个单位,那么新抛物线的顶点为(1,﹣4);可设新抛物线的解析式为y=(x﹣h)2+k代入得:y=(x﹣1)2﹣4.故选:D.【点评】考查了二次函数图象与几何变换,抛物线平移不改变二次项的系数的值,解决本题的关键是得到新抛物线的顶点坐标.9.如图,△ABC是一张顶角为120°的三角形纸片,AB=AC,BC=12,现将△ABC折叠,使点B与点A 重合,折痕为DE,则DE的长为()A.1 B.2 C.2D.3【考点】翻折变换(折叠问题).【分析】根据折叠的性质,AE=BE,∠DAE=∠B=30°,又∠BAC=120°,可知∠EAC=90°,根据30°所对的直角边等于斜边的一半,可知AE=4,DE=2.【解答】解:∵∠BAC=120°,∴∠B=∠C=30°,根据折叠的性质,AE=BE,∠DAE=∠B=30°,∴∠EAC=90°,∴AE=EC,∵BC=12,∴AE=4,∵∠ADE=90°,∠DAE=30°,∴DE=2.故选:B.【点评】本题主要考查了折叠的性质、等腰三角形的性质以及30°所对的直角边等于斜边的一半,熟悉折叠的性质是解决问题的关键.10.甲、乙两车沿相同路线以各自的速度从A地去往B地,如图表示其行驶过程中路程y(千米)随时间t(小时)的变化图象,下列说法:①乙车比甲车先出发2小时;②乙车速度为40千米/时;③A、B两地相距200千米;④甲车出发80分钟追上乙车.其中正确的个数为()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象,该函数图象表示的是路程与时间之间的函数关系,可知乙出发2小时后甲再出发,根据路程除以时间等于速度进行分析.【解答】解:①乙车比甲车先出发2小时,正确;②乙车速度为80÷2=40千米/时,正确;③A、B两地相距40×5=200千米,正确;④甲的速度为200÷2=100千米/小时,设甲车出发x小时追上乙车,可得:100x=40(x+2)解得:x=,小时=80小时,故正确,故选D【点评】本题考查学生观察图象的能力,关键是根据s﹣t图象可得出路程除以时间等于速度.二、填空题11.化简:=.【考点】二次根式的加减法.【专题】计算题.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.12.函数的自变量x的取值范围为x≠1.【考点】函数自变量的取值范围;分式有意义的条件.【专题】计算题.【分析】根据分式的意义,分母不能为0,据此求解.【解答】解:根据题意,得x﹣1≠0,解得x≠1.故答案为:x≠1.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.因式分解:4ax2﹣16axy+16ay2=4a(x﹣2y)2.【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取4a,再利用完全平方公式分解即可.【解答】解:原式=4a(x2﹣4xy+4y2)=4a(x﹣2y)2,故答案为:4a(x﹣2y)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.不等式组的解集是<x≤4.【考点】解一元一次不等式组.【分析】先求出每一个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x>,解不等式②得:x≤4,∴不等式组的解集为<x≤4,故答案为:<x≤4.【点评】本题考查了解一元一次不等式组的应用,能根据不等式的解集找出不等式组的解集是解此题的关键,难度适中.15.如图,AB是⊙O的一条弦,OD⊥AB于点C,交⊙O于点D,点E在⊙O上,∠AED=30°,OB=10,则弦AB=10.【考点】垂径定理;勾股定理;圆周角定理.【分析】由垂径定理可证AC=BC,=,由30°的圆周角可求得圆心角∠BOD=60°,在RT△OBC中,解正弦函数求得BC,进而求得AB的长度.【解答】解:∵OD⊥AB,∴AC=BC,=,∵∠AED=30°,∴∠BOD=2∠AED=60°,在RT△OBC中,sin∠COB=,∴OB=10,∴=,∴AB=2BC=10.故答案为10.【点评】本题考查了:①圆周角与圆心角:同弧或等弧所对的圆周角等于圆心角的一半;②垂径定理:垂直于弦的直径平分线并且平分弦所在的弧,③解直角三角形.16.某商场把进价为40元的衬衫加价25%后进行出售,在3•15消费者权益日,商场推出购物优惠策略,全场商品一律9折销售,那么在此优惠期间,商家出售衬衫每件45元.【考点】有理数的混合运算.【专题】应用题.【分析】先计算出加价25%后的价格,再乘以90%就可以求出每件衬衫的售价.从而求出答案.【解答】解:由题意,得40×(1+25%)×90%=50×90%=45元.故答案为:45.【点评】本题是一道关于销售问题的运用题,考查了加价销售和打折销售在实际生活中的运用.解答本题的关键是理清进价、售价和利润之间的关系.17.在一个不透明的袋子中有红、绿各两个小球,它们只有颜色上的区别.从袋子中随机摸出一个小球记下颜色后不放回.再随机摸一个.则两次都摸到红球概率为.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有12种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式计算.【解答】解:画树状图为:共有12种等可能的结果数,其中两次都摸到红球的结果数为2,所以两次都摸到红球概率==.故答案为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B 的概率.18.在△ABC中,tanB=,AB=10,AC=3,则线段BC的长为5或11.【考点】解直角三角形.【分析】此题分两种情况:如图1,过A作AD⊥BC于D,在R t△ABD中,由已知条件tanB=,设AD=3x,BD=4x,根据勾股定理得到AB==5x=10,求得AD=6,BD=8,在R t△ADC中,CD==3,于是得到结果;如图2,过A作AD⊥BC 交BC的延长线于D,同理可得结果.【解答】解:如图1,过A作AD⊥BC于D,在R t△ABD中,∵tanB=,∴设AD=3x,BD=4x,∴AB==5x=10,∴x=2,∴AD=6,BD=8,在R t△ADC中,CD==3,∴BC=BD+CD=11;如图2,过A作AD⊥BC交BC的延长线于D,在R t△ABD中,∵tanB=,∴设AD=3x,BD=4x,∴AB==5x=10,∴x=2,∴AD=6,BD=8,在R t△ADC中,CD==3,∴BC=BD﹣CD=5;故答案为:5或11.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.19.如图,在矩形ABCD中,BC=2BA=8,将矩形ABCD沿AC所在直线翻折使△ABC 与△AEC重合,连接BE,BE交AD于点F,则线段EF的长为.【考点】翻折变换(折叠问题).【分析】首先由勾股定理求得AC的长度,然后证明△ABF∽△BCA,求得AF=2,接下来证明△ABC∽△BOC,可求得OE=,最后△AOF∽△ADC,可求得OF=,从而可求得EF的长.【解答】解:如图所示:在Rt△ABC中,AC===4.由翻折的性质可知:AC⊥BE,OB=OE,∴∠OBC+∠BCA=90°又∵∠ABF+∠FBC=90°,∴∠ABF=∠ACB.又∵∠BAF=∠CBA=90°,∴△ABF∽△BCA.∴,即.∴AF=2.∵∠ABF=∠ACB,∠BOC=∠ABC=90°,∴△ABC∽△BOC.∴.,即.∴OB=.∴OE=.∵∠OAF=∠DAC,∠AOF=∠ADC=90°,∴△AOF∽△ADC.∴,.∴OF=.EF=OE﹣OF==.故答案为:.【点评】本题主要考查的是相似三角形的性质和判定、翻折变换,证得△ABF∽△BCA、△ABC∽△BOC、△AOF∽△ADC是解题的关键.20.如图,△ABC为等腰三角形,AB=AC,BD为△ABC的高,E点在AB上,G点在BC上,且满足∠DEG=45°,∠DBC=∠BEG.若=,则的值为.【考点】相似三角形的判定与性质.【分析】若求的值可作AH⊥BC,将的值转化到求,根据=设FG=a、BC=5a,作DM⊥EG、DN⊥BC,证△BEG≌△DBN得BG=DN,可推得△BFG≌△DCN可知CN=FG=a、EG=BN=4a,再证△GBF∽△GEB得BG=2a,进而表示出GH=a,最后根据AH∥EG可得.【解答】解:如图,过点D作DM⊥EG,DN⊥BC垂足为M、N,过点A作AH⊥BC,垂足为BC,∵BD⊥AC,∴∠DBC+∠C=90°,∵AB=AC,∴∠ABC=∠C,又∵∠DBC=∠BEG,∴∠BEG+∠ABC=90°,∴∠EGB=90°,即BC⊥EG,∵DM⊥EG,∴DM∥BC,∴∠FBG=∠FDM,∴∠FDM=∠BEG,∵∠DEM=∠EDM=45°,∴∠DEM+∠BEG=∠EDM+∠FDM,即∠BED=∠BDE,∴BE=BD,在△BEG和△DBN中,,∴△BEG≌△DBN(AAS),∴BG=DN,又∵∠BFG+∠FBG=90°,∠FBG+∠C=90°,∴∠BFG=∠C,在△BFG和△DCN中,,∴△BFG≌△DCN(AAS),∴FG=CN,∵=,设FG=a,则BC=5a,∴CN=a,BN=BC﹣CN=4a,EG=BN=4a,∵∠EGB=∠BGF=90°,∠BEG=∠FBG,∴△GBF∽△GEB,∴,即,解得:BG=2a,∵AB=AC,AH⊥BC,∴BH=BC=a,∴GH=BH﹣BG=a,∵AH∥EG,∴.故答案为:.【点评】本题主要考查相似三角形的判定和性质及全等三角形的判定和性质、等腰三角形的性质等,通过作平行线将待求比值转化求另一组线段的比是此题的出发点,能根据构建全等、相似等表示出线段的长度是关键.三、解答题:(21题、22题每题7分,23、24题每题8分,25-27题每题10分,共60分)21.先化简,再求值:(1﹣)÷,其中x=3tan30°+2cos60°.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【解答】解:原式=•=,∵x=3×+2×=+1,∴原式===.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.22.如图,正方形网格中每个小正方形的边长均为1,△ABC的三个顶点都在格点上,现将△ABC绕着格点O顺时针旋转90°(1)画出△ABC旋转后的△A′B′C′;(2)求点C旋转过程中所经过的路径长.【考点】作图-旋转变换;弧长的计算.【分析】(1)根据将△ABC绕着格点O顺时针旋转90°,得出对应点位置得出图象即可;(2)利用勾股定理得出CO的长,进而利用弧长公式求出即可.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)∵CO==,∴点C旋转过程中所经过的路径长为:=π.【点评】此题主要考查了图形的旋转以及弧长公式的应用,正确得出图象旋转后对应点位置是解题关键.23.为了了解某校九年级男生的体能情况,体育老师随即抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2尚不完整的统计图.(1)本次抽测的男生有多少人,抽测成绩的众数是多少;请你将图1的统计图补充完整;(2)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中,估计有多少人体能达标?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据抽测7次的人数除以7次的人数所占的比例,可得抽测的人数;根据有理数的减法,可得5次成绩的人数,根据众数的定义,可得答案;(2)根据总人数乘以达标人数所占的百分比,可得答案.【解答】解:(1)本次抽测的男生有6÷12%=50(人),抽测成绩的众数是5,5次的是16人,5次的所占的百分比16÷50=32%,6次的所占的百分比14÷50=28%,补充如图:(2)350×(32%+28%+12%)=252人.答:该校350名九年级男生中,有252人体能达标.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.24.如图,在某建筑物AC上挂着宣传条幅BC,小明站在点F处,看条幅顶端B,测得仰角为30°,再往条幅方向前行40米到达点E处,看到条幅顶端B,测得仰角为60°.(1)求宣传条幅BC的长(小明的身高不计,结果保留根号);(2)若小明从点F到点E用了80秒钟,按照这个速度,小明从点F到点C所用的时间为多少秒?【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)设CE=x,根据勾股定理及直角三角形的性质表示出BC、BE长,利用等角对等边易得BE=FE,那么就求得了CE长,进而求得BC长.(2)根据(1)的结果可求得CF=60,根据已知求得小明的速度,然后根据速度、时间、路程的关系即可求得.【解答】解:设CE=x在Rt△BCE中,∠BCE=90°,∠BEC=60°∴∠EBC=30°.由勾股定理得:BE=2x,BC=x,∵∠BEC=60°,∠F=30°∴∠FBE=30°,∴∠FBE=30°,∴∠FBE=∠F,∴BE=EF=2x,∴EF=40,∴2x=40,∴x=20,∴BC=20.答:建筑物BC的长为34.6m.(2)∵CE=20,EF=40,∴CF=60,小明的速度为40÷80=0.5(米/秒),小明从点F到点C所用的时间为60÷0.5=120秒答:小明从点F到点C所用的时间为120秒.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,熟知锐角三角函数的定义是解答此题的关键.25.某市对一段全长2000米的道路进行改造,为了尽量减少施工对城市交通所造成的影响,实际施工时,若每天修路比原来计划提高效率25%,就可以提前5天完成修路任务(1)求修这段路计划用多少天?(2)有甲、乙两个工程队参与修路施工,其中甲队每天可修路120米,乙队每天可修路80米,若每天只安排一个工程队施工,在保证至少提前5天完成修路任务的前提下,甲工程队至少要修路多少天?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设原计划每天修x米,根据原计划的工作时间﹣实际的工作时间=5,然后列出方程可求出结果,进一步代入得出答案即可;(2)设甲工程队至少要修路a天,则乙工程队要修路20﹣a天,根据工作总量的和不小于2000列出不等式解决问题即可.【解答】解:(1)设原计划每天修x米,由题意得﹣=5解得x=80,经检验x=80是原方程的解,则=25天答:修这段路计划用20天,.(2)设甲工程队至少要修路a天,则乙工程队要修路20﹣a天,根据题意得120a+80(20﹣a)≥2000解得a≥10所以a最小等于10.答:甲工程队至少要修路10天.【点评】此题考查分式方程的应用,一元一次不等式的运用,找出题目蕴含的数量关系是解决问题的关键.26.如图,BC为⊙O的直径,点A为⊙O上的点,以BC、AB为边作▱ABCD,⊙O 交于AD与点E,连接BE,点P是过点B的⊙O的切线上的一点.连结PE,且满足∠PEA=∠ABE.(1)求证:PB=PE;(2)若sin∠P=,DE=,求AB的值.【考点】切线的性质;平行四边形的性质.【分析】(1)根据切线的性质求得∠ABP=∠AEB,根据已知条件即可求得∠PBE=∠PEB,根据等角对等边即可证明结论;(2)连接EC,延长DA交PB于F,根据平行弦的性质得出=,进而求得AB=CE=CD,得出三角形CED是等腰三角形,在等腰三角形PBE中根据勾股定理求得BE的长,进而求得=,由于∠AEB=∠EBC,∠ABP=∠AEB,得出∠ABP=∠EBC,从而得出∠PBE=∠ABC=∠D,求得△CDE∽△PBE,得出==,由AB=CD可求出结果.【解答】(1)证明:∵PB是⊙O的切线,∴∠ABP=∠AEB,∵∠PEA=∠ABE.∴∠PBE=∠PEB,∴PB=PE;(2)解:连接EC,延长DA交PB于F,∵PB是⊙O的切线,∴BC⊥PB,∵四边形ABCD是平行四边形,∴AD∥BC,∴EF⊥PB,∵sin∠P=,设PE=5a,EF=3a,则PF=4a,∵PB=PE=5a,∴BF=a,∴BE==a,∴=,∵AD∥BC,∴=,∴AB=CE,∵AB=CD,∴CE=CD,∴∠D=∠CED,∵AD∥BC,∴∠AEB=∠EBC,∵∠ABP=∠AEB,∴∠ABP=∠EBC,∴∠PBE=∠ABC,∴∠PBE=∠D,∵∠PBE=∠PEB,∴△CDE∽△PBE,∴==,∵DE=,∴AB=CD=5.【点评】本题考查了平行四边形的性质,等腰三角形的性质,圆的切线的性质,平行弦的性质,三角形相似的判定和性质,勾股定理的应用等,本题的关键是求得三角形相似.27.在平面直角坐标系内,点O为坐标原点,抛物线y=ax2+bx(a≠0)的顶点在直线y=﹣x﹣1上,且该抛物线经过点A(4,0),设抛物线的顶点为D,抛物线对称轴交x 轴于点H.(1)求该抛物线的解析式;(2)设点B(1,3)点C在抛物线的对称轴上,当|AC﹣BC|的值最大,直接写出点C 的坐标;(3)在(2)的条件下,点D关于x轴对称点为E,是否在对称轴右侧抛物线上存在一点F,使∠FEC﹣∠BCD=135°?若存在,求出点F的横坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据抛物线的对称性求出点D的横坐标,再代入直线y=﹣x﹣1,再将A,D两点代入解析式y=ax2+bx(a≠0),据此即可求出抛物线的解析式;(2)先画出图,并求出点B的对称点B′的坐标,根据两边之差小于第三边,以及抛物线的对称性可知当点C在直线AB′上,据此进行解答即可得解;(3)根据抛物线的对称性,以及解三角形的知识进行解答,据此即可得解.【解答】解:(1)如图1,∵A(4,0),∴OA=4由抛物线对称性可知OH=HA=2∴D点横坐标为2,∵点D在直线上∴,∴D(2,﹣2),∵y=ax2+bx过点A(4,0),D(2,﹣2),∴,∴∴;(2)如图2点B关于抛物线的对称轴的对称点B′的坐标是(3,3),设直线AB′的解析式为:y=kx+b,将点A(4,0)和点B′(3,3)代入可得:,解得:,∴直线AB′的解析式为:y=﹣3x+12,与对称轴的交点坐标是:C(2,6),此时|AC﹣BC|的值最大,∴C(2,6);。
哈尔滨市平房区2019届中考调研数学试题(一)
哈尔滨市平房区2019届中考调研数学试题(一)一、选择题:每小题3分,共计30分。
1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃B.20℃C.﹣16℃D.﹣20℃2.月球离地球平均距离是384 400 000米,数据384 400 000用科学记数法表示为()A.3.844×108B.3.844×107C.3.844×106D.38.44×1063.下列运算中,正确的是()A.x+x2=x3 B.2x3÷x2=x C.()3=D.(a+4)(a+3)=a2+124.如图中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而增大,则m的取值范围是()A.m<﹣2 B.m<0 C.m>﹣2 D.m>06.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()A.B.C.D.7.如图,A、B两点在河的两岸,要测量这两点之间的距离,测量者在与A同侧的河岸边选定一点C,测出AC=a米,∠A=90°,∠C=40°,则AB等于()米.A.asin40°B.acos40°C.atan40°D.8.如图,已知AB∥CD∥EF,直线AF与直线BE相交于点O,下列结论错误的是()A.B.C.D.9.在Rt△ABC中,∠C=90°,∠A=15°,AB的垂直平分线和AC相交于点M,则CM:MA等于()A.1:B.C.2:D.10.从A到B地的一条公路,先是一段平路,然后是一段上坡路,小明骑自行车从A 地出发,到达B地后立即按原路返回A地,返回途中休息了一段时间,假设小明骑车在平路、上坡路、下坡路时分别保持匀速前进.已知小明骑自行车在上坡路的速度比平路上的速度每小时少5千米.下坡路的速度比在平路上的速度每小时多5千米,小明在去B地和返回A地两次经过C地的时间间隔为0.15小时,小明离A地的路程S(单位:千米)和出发的时间t(单位:小时)之间的函数关系式如图所示.下列说法中正确的个数为()①小明骑自行车在上坡路的速度为10千米/时;②小明从A地到B地共用了0.4小时;③小明在返回途中休息了0.1小时;④C地与B地的距离为1千米.A.1个B.2个C.3个D.4个二、填空题:每小题3分,共计30分。
2021哈尔滨市平房区九年级(下)综合试卷(一模)+答案
2021年平房区中考调研测试(一)综合试卷考生须知:1.本试卷满分为140分,考试时间为120分钟。
2.答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题纸上答题无效。
4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字迹工整、笔迹清楚。
5.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。
可能用到的相对原子质量:H -1C -12N -14O -16Na -23Mg -24S -32Ba -137一、选择题(1—27题,每题2分,共54分,每题只有一个正确选项)1.哈尔滨市第二十四中学新校区近日于平房区破土动工,下列有关叙述错误的是()A .新校区的硬件设施将全面满足选课走班的要求,提升区域教育实力B .施工使用的挖掘机铲斗是由主要成分为铁、锰、碳的锰钢制成C .新建教学楼使用的钢筋混凝土属于金属材料D .新建化学实验室的下水管道使用了具有密度小、耐腐蚀等性能的PVC2.下列实验操作正确的是……………………………………………………………()A .向试管中加入锌粒B .稀释浓硫酸C .测定溶液pH D .过滤3.下列过程中只发生物理变化的是…………………………………………………()A .食物为人体提供能量B .用铁矿石炼铁C .塑料餐盒降解D .不锈钢制成餐具4.下列物质的用途错误的是…………………………………………………………()锌粒镊子A .纯碱用于蒸馒头B .氮气用于霓虹灯C .NaOH 用于制肥皂D .CO 2用于光合作用5.下列生活中的做法正确的是………………………………………………………()A .用喷漆的方法防止自行车车架生锈B .酒精着火,使用水基型灭火器降低酒精的着火点,将火扑灭C .化学农药对农业的高产丰收有重要作用,大量使用不会带来对环境的污染D .燃气灶火焰呈现黄色或橙色,可以调小进风口6.下列实验现象描述正确的是………………………………………………………()A .白色固体燃烧,放热,产生白烟B .银白色液体变为红色固体C .溶液由紫色变为红色D .产生蓝紫色火焰,放热7.下列应用、相应的原理(用化学方程式表示)及基本反应类型均正确的是………()A .工业制二氧化碳CaCO 3高温CO 2↑+CaO 分解反应B .用稀硫酸洗去附着在试管壁上的铜Cu +H 2SO 4CuSO 4+H 2↑置换反应C .用氢氧化钠溶液吸收二氧化硫2NaOH +SO 2Na 2SO 4+H 2O 复分解反应D .铁丝在氧气中燃烧4Fe+3O 2点燃2Fe 2O 3化合反应8.下列有关健康的说法正确的是……………………………………………………()A .幼儿缺碘会影响生长发育,引起食欲不振B .老年人缺少钙元素会患佝偻病,容易骨折,可服用大量补钙药品C .纤维素属于糖类,但不能被人体消化,所以无需摄入D .香烟的烟气中含有尼古丁、焦油等有害物质,青少年一定不要吸烟9.有机玻璃是由甲基丙烯酸甲酯(C 5H 8O 2)聚合而成的,下列关于甲基丙烯酸甲酯的说法正确的是……………………………………………………………………………()A .甲基丙烯酸甲酯是有机高分子化合物B .甲基丙烯酸甲酯分子中碳、氢原子个数比为5:8C .甲基丙烯酸甲酯是由碳、氢、氧三个元素组成的D .甲基丙烯酸甲酯分子中氢元素的质量分数最小10.下列有关资源和能源的叙述正确的是……………………………………………()甲基丙烯酸甲酯分子结构模型拉瓦锡研究空气组成实验加热通入二氧化碳的石蕊溶液甲烷燃烧A .空气是一种宝贵的资源,其中氮气和氧气约占空气体积的99%B .地球上的淡水资源有限,可利用的淡水约占全球水储量的30.4%C .废旧金属的回收利用,是保护金属资源的唯一途径D .汽油、柴油、煤焦油等是石油加热炼制得到的产品制成的11.对下列事实的微观解释错误的是…………………………………………………()选项事实解释A 香水要密封保存分子在不断运动B 金刚石、石墨性质存在明显的差异碳原子的排列方式不同C 碳酸钠溶液是混合物由不同种分子构成D 白醋、盐酸能使紫色石蕊溶液变红溶液中都含有氢离子12.在实验室区分下列各组物质所用的两种方法都可行的是……………………()两种固体物质(不含结晶水)的溶解度曲线如右图,下列叙述正确的是……()A .t 1℃时,a 的溶解度大于b 的溶解度B .t 2℃时,a 的溶液降温到t 1℃,一定能得到a 的饱和溶液C .t 2℃时,a 、b 饱和溶液的溶质质量分数一定相等D .b 中含少量a ,可用冷却热饱和溶液的方法提纯b 14.除去下列物质中的少量杂质,所选用的试剂和操作方法均正确的是…………()15.向一定质量的氢氧化钠和硝酸钠组成的样品中加入100g 稀硫酸,恰好完全反应,得到116g 溶液,再向所得溶液中加入200g 某质量分数的硝酸钡溶液,恰好完全反应,过滤,将滤液蒸干得到25g 晶体,则该样品中氢氧化钠的含量为………………………()A .12.5%B .25%C .50%D .75%16.对常见物理量估计错误的是……………………………………………………()A .人感觉最舒适的气温是40℃B .成年人正常步行的速度约为1.2m/s C .教室课桌的高度约为80cm D .一个鸡蛋的质量约为50g方案二通过灼热的氧化铜,观察现象放在石棉网上灼烧,观察触摸,比较手感溶解,滴加无色酚酞溶液,观察选项物质少量杂质所用试剂和操作方法A氨气水蒸气通过足量浓硫酸,干燥B氯化钙碳酸钙适量的稀盐酸,过滤、洗涤、干燥C 水植物油适量的洗涤剂,振荡D硫酸钠氢氧化钠加水溶解,加适量的硫酸铜溶液,过滤、蒸发结晶a b17.下列关于物态变化的知识说法错误的是…………………………………………()A .冰雪消融是熔化现象B .冰熔化时吸热,温度升高C .露珠是水蒸气液化形成的D .雾凇是水蒸气凝华形成的18.关于光现象的说法正确的是……………………………………………………()A .甲图是光的漫反射现象,因反射光线射向各个方向,故漫反射不遵循光的反射定律B .乙图中人通过镜子能看到视力表的像,利用了光沿直线传播的知识C .丙图中小聪和小猫通过平面镜可以互相看到对方,说明在反射时光路是可逆的D .丁图中小猫没有叉到鱼,是因为光从空气射入水中发生了折射的缘故19.下列有关声音的说法正确的是…………………………………………………()A .敲击鼓面,鼓面振动产生的声音可以像电磁波一样在真空中传播B .在交通道路上设置的噪声强度显示仪可以减弱噪声C .直尺伸出桌面的长度越短,拨动时发出的声音音调越高,说明音调由振幅决定D .扬声器发声使烛焰晃动,说明声音可以传递能量20.能源是能量的来源,为人类提供多种形式的能量。
2019年哈尔滨平房区中考调研(一)测试附答案
2019年平房区中考调研测试(一)第I卷一、单项选择(本题共20分,每小题1分)选择最佳答案。
( )1. Keep calm and be confident. I’m sure you’ll get excellent results.A. anB. aC. /( )2. --David, how long have you been in the singing club?--the end of last week, after Labour Day.A. AtB. ByC. Since( )3. --How many potatoes arc there in the fridge?--. I’ll go to the supermarket to buy some.A.NothingB. No oneC. None( )4. --Look! There is an exercise book on the desk. Is it Tom’s?--It be his. It’s mine.A.can’tB. mustn’tC. may( )5. The Hong Kong - Zhuhai - Macao Bridge one of seven wonders (奇迹) of the modem world. It is good for the development of this area.A.is famous asB. is in charge ofC. is born with( )6. --Amazing China is a Chinese film that shows China’s achievements in science, technology and industry in the past few years.--We should be proud of our country.A.documentaryB. actionC. comedy( )7. --unusual physics teacher Mr. Wang is!--We will miss him the most after junior high school.A.What aB. What anC. How( )8. --The film Capital Marvel《惊奇队长》is well worth .--Why not watch it together this afternoon?A.being seenB. seeingC. to see( )9. --do you watch the videos on Douyin a week?--Twice a week! It’ a good way to get relaxed.A.How oftenB. How longC. How many times( )10. --Linda. I called you at eight but you didn’t pick up.--I was tired, and I at that time.A.sleptB. was sleepingC. have slept( )11. There’s no easy way to success. you make, you’ll achieve your dream.A.The more efforts, the easierB.The more efforts, the more easilyC.The fewer efforts, the more easily( )12. Brazil is the only country has won the World Cup for 5 times.A.thatB. whichC. what( )13. --Could you tell me ?--Sure, you’d better watch some English movies.A.how I can improve my EnglishB.how can I improve my EnglishC.how I could improve my English( )14. --Will you go to Sam’s housewarming party next Sunday?--Unless I , I won’t go.A.am invitedB. invitedC. will be invited( )15. is a capital city which has different seasons from ours. We can have a green Christmas there.A.BerlinB. CanberraC. London( )16. Being a student in Grade 9 isn’t easy. Every one of us may meet some difficulties when studying. But ifwe , things will turn better.① copy our classmates’ homework① listen to the teacher carefully① find out our weak subjects and solve the problems① make a schedule and review our lessons① only memorize the answers instead of knowing the reasonsA. ①①①B. ①①①C. ①①①( )17. All work and no play makes Jack a dull boy. Hobbies can make lift colorful. There are so students in Class 4, Grade 9. According to the table, there are students doing sports as a hobby.A.15B. 20C. 5( )18. Which pair of the words with the underlined letters has the same sound?A.smooth breathB. lively comicC. down tower( )19. In the following words, which underlined letter has a different sound from the others?A.packB. napkinC. nation( )20 Which word of the following doesn’t have the same stress as the others?A. Burial.B. Balloon.C. Bandage.二、完形填空(本题共10分,每小题1分)Lots of people want to be happy, but 21 know how Io find happiness. Aristotle, a Greek thinker, said. “Happiness 22 ourselves.” In other words, we make our own happiness. Here are 23 suggestions to help you be happier.First, don’t 24 ourselves with others, especially the one we think is happier than us -- a relative or even someone we hardly ever know. It brings us nothing but sadness. The second secret of happiness is to enjoy the simple things in life. Too often, we spend 25 time thinking about the future, like getting into college or getting a good job, that we fail to enjoy the 26 . Another secret of living a happy life is to be 27 , and have hobbies where you forget your problems and time. Many people experience this by dancing or playing a sport such swimming. You can forget about your problems, and only think about the activity. Finally, many peoplefind happiness in helping others. Studies show that people feel good when they spend their time helping others. If you want to feel happier, do good things for 28 . You can help a friend with his or her study, care tor the old, or simply 29 around the house by doing the dishes. If you try to help others, you will produce nothing but good. The one you are trying to help 30 your kindness. Also, he will share his kindness with others.根据短文内容选择最佳答案( )21. A. few B. a few C. a little( )22. A. gets on with B. depends on C. shows up( )23. A. three B. four C. five( )24, A. complete B. compare C. complete( )25. A. loo much B. so much C. too many( )26. A. present B. past C. future( )27. A. active B. embarrassed C. disappointed( )28. A. anyone B. everyone C. someone( )29. A. try out B. leave out C. help out( )30. A. knows B. to know C. knowing三、阅读理解(本题共20分,每小题1分)(A)Peter was born in a poor family. He studied hard to live a comfortable life in the future. In fact, he did it well. After graduation, he worked in a big factory and was paid much. Two years later, he married Mary, a beautiful girl, who worked in the same factory with him. His wife was an able woman and did all the housework. When Peter came back, she took good care of him and he never did anything at home. So he had enough time when he had a holiday. But Peter didn’t know himself in the happy sea. Gradually, he felt a little bored with the peaceful life. A few friends of his liked betting(赌) on horses and Peter learned it as well. So he was interested in it and almost forgot anything except betting on horses. Soon he lost all his money and his job. Besides, Peter enjoyed making all kinds of friends and always stayed with them. He often thought of some reasons to cheat his wife. His wife got the blues and quarreled (吵架) with him. Even if the things didn’t change a lot, Marry took good care of Peter and their family as usual.On Saturday morning, Peter was reading his papers when his wife walked up behind him and hit him on the back of the head with a scoop.He asked, “What was that for?” She said, “I found a piece of paper in your pocket with ‘Betty Sue’ written on it. Who is Betty Sue? How long have you known the girl?”He said, “Honey, ‘Betty Sue’ was the name of the horse I bet on.” Mary shrugged (耸肩) and walked away.The next day, Peter was reading his papers when his wife walked up behind him and hit him on the back of the head again with the scoop. He asked, “What was that for?”She answered, “ ”根据短文内容选择最佳答案()31 .The underlined words “got the blues” most probably mean .A. felt sadB. felt excitedC. felt scared()32. Peter and Mary often quarreled because .A.Peter liked reading newspapersB.Mary did all the housework while Peter didn’t do itC.Peter was interested in betting on horses and didn't care about the family()33. When Mary found a piece of paper in Peter’s pocket with “Betty Sue” written on it, .A.she thought it was a girl’s nameB.she thought Peter’s horse lost the game againC.she thought it was the name of a horse()34. Which of the following is NOT TRUE according to the passage?A.By studying hard, Peter could enter a big factory to work after graduation.B.After Peter explained the name on the piece of paper, Mary thought it was a misunderstanding.C.Though Peter was poor because of betting on horses, his friends often helped him.()35, “ ” can be the missing sentence in the passage.A.How do you deal with the piece of paper?B.You should help me do some housework.C.Your horse called and asked if you were at home.(B)Four Famous Emperors in ChinaWord Box: BC公元前AD公元后unify统一economy经济dynasty王朝,朝代civilian平民的female女性的根据表格所提供的信息选择最佳答案()36. Liu Bang was born in Province.A. HebeiB. JiangsuC. Anhui()37. According to the table above, who was the only female emperor in Chinese history?A. Zhu YuanzhangB. Wu ZetianC. Liu Bang()38. Who controlled the country twice as long as Wu Zetian?A. Ying ZhengB. Liu BangC. Zhu Yuanzhang ()39. According to the table, unified the country including Ying Zheng.A.Wu Zetian and Liu BangB.Zhu Yuanzhang and Wu ZetianC.Liu Bang and Zhu Yuanzhang()40. Which of the following is TRUE according to the information above?A.At the age of 91,Wu Zctian died.B.Zhu Yuanzhang was the first civilian emperor in Chinese history,C.Ying Zheng was the first emperor in China and built the Great Wall.(C)On a sunny afternoon, I was walking along a busy road when I noticed a young man standing near the crossing selling toys. Usually I would hurry past such sellers. But I found this young man was blind, so I stood for some time without crossing the street. I wanted to see how he sold his things.Soon, a young mother with a little girl came by and the child set her eyes on one of the teddy bears, The mother asked the price and it was only one dollar. She took 10 dollars out of her handbag and told the young man that she was giving him 10 dollars and wanted the change hack. I was wondering how he was going to do it. He told the young mother to put the money in the bag hanging around his neck and take out her change.I realized that this young man believed people not to cheat him. There was no way for him to know if someone would take out more than they should have. I was so touched. I bought a model car from him that I did not need. As I walked down the street, I gave the model car to a boy walking with his father.I kept thinking that the world would be a better place if we could all learn lo trust others more, like the young blind street seller.根据短文内容判断正、误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省哈尔滨市平房区2016届九年级数学下学期中考调研测试(一)试题考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的“姓名”、“考场”、“座位号”在答题卡上填写清楚,将“条形码” 准确粘贴在条形码区域内。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸上、试题纸上答题无效。
4.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、字迹清楚。
5.保持卡面整洁,不要折叠、不要弄脏、弄皱,不准使用涂改液、刮纸刀。
第Ⅰ卷 选择题(共30分)(涂卡) 一、选择题(每小题3分,共30分) 1.-2的相反数是( ) A.-21 B.–2 C.21D.22.下列运算中,正确的是( ) A.532x x x =⋅ B.523)(x x = C.3322=-x x D.222)(2x x = 3.下列图形中,既是轴对称图形又是中心对称图形的有( )个A.1B.2C.3D.4 4.函数xy 6-=的图象经过点A ),(11y x ,B ),(22y x 若021<<x x ,则1y 、2y 、0三者的大小关系是( )A. 021<<y yB. 012<<y yC. 021>>y yD. 012>>y y5.如图所示的几何体是由五个大小相同的正方体搭建而成的,它的左视图是( )6.如图,要焊接一个等腰三角形钢架,钢架的底角为35°,高CD 长为3米,则斜梁AC 的长 为( )米.A. 35cos 3B.35tan 3C. 35sin 3D. 35sin 3 7.如图,在△ABC 中,D 为AB 上的一点,过点D 作DE ∥BC 交AC 于点E,过点D 作DF ∥AC 交BC 于点F,则下列结论错误的是( )A.BF DE DB AD =B.ACAE BC DE = C.CF BF CE AE = D.BC BF AC CE =8.某班科技兴趣小组的学生,将自己的作品向本组其他成员各赠送一件,全组共相互赠送作品56件,若全组有x 名同学,则根据题意列出方程是( )A.()2561⨯=-x xB.()5612=+x xC.()561=+x xD.()561=-x x9.如图,折叠矩形纸片ABCD 的一边AD,使点D 落在BC 边上的点F 处,若AB=8,BC=10,则 △CEF 的周长为( )A.12B.16C.18D.2410.小红从劳动基地出发,步行返回学校,小军骑车从学校出发去劳动基地,在基地停留10分钟后,沿原路以原速返回,结果比小红早7分钟回到学校.若两人都是沿着同一路线行进,且两人与学校的距离s(米)和小红从劳动基地出发所用时间t(分)之间的函数关系如图所示,则下列说法中正确的结论有( )个①学校到劳动基地距离是2400米; ②小军出发53分钟后回到学校; ③小红的速度是40米/分;④两人第一次相遇时距离学校1610米.A .1 B.2 C.3 D.4 二、填空题(每小题3分,共30分)11.2310000用科学计数法表示为 . 12.在函数xx y --=21中,自变量x 的取值范围是 . 13.计算:48313- = . 14.把多项式9m 6mn -mn 2+分解因式的结果是 . 15.一个扇形的圆心角为120°,它所对的弧长为6πcm,则这个扇形的面积为 cm 2(结果保留π) 16.不等式组⎩⎨⎧>-+03132-x x 的解集是 .17.一个不透明的袋子内装有2个红球、2个黄球(这些球除颜色外完全相同),从中同时摸出两个球,都是红球的概率是___________. 18.分式方程xx 332=-的解是=x . ≥519.矩形ABCD 中,AD=5,CD=3,在直线BC 上取一点E,使△ADE 是以DE 为底的等腰三角形,过点D 作直线AE 的垂线,垂足为点F,则EF=_____________.20.已知等边△ABC,点E 是AB 上一点,AE=3,点D 在AC 的延长线上,∠ABD+∠BCE=120°,tan ∠D=23,则CD=______________.三、解答题 (其中21 、22题各7分,23、24题各8分,25~27题各10分,共60分) 21.(本题7分) 先化简,再求代数式⎪⎭⎫ ⎝⎛--+÷-+a a a a 23221的值,其中602sin tan45+=a22.(本题7分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB 和线段CD,点A 、B 、C 、D 均在小正方形的顶点上.(1)在方格纸中画以AB 为一边的菱形ABEF,点E 、F 在小正方形的顶点上,且菱形ABEF 的面积为3; (2)在方格纸中画以CD 为一边的等腰△CDG,点G 在小正方形的顶点上,连接EG,使∠BEG=90°,并直接写出线段EG 的长.23.(本题8分)某校对九年级的部分同学做一次内容为“最适合自己的考前减压方式”的抽样调查活动,学校将减压方式分为五类,每人必选且只选其中一类.学校收集整理数据后,绘制了如下的统计图.请你结合图中所提供的信息,解答下列问题:(1)一共抽查了多少名学生?(2)请把条形统计图补充完整;(3)若该校九年级共有350名学生,请估计该年级学生选择“听音乐”来缓解压力的人数.24.(本题8分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,过点C作CF∥BE交DE的延长线于F,连接CD.(1)求证:四边形BCFE是菱形;(2)在不添加任何辅助线和字母的情况下,请直接写出图中与△BEC面积相等的所有三角形(不包括△BEC).25.(本题10分)某班同学组织春游活动,到超市选购A、B两种饮料,若购买6瓶A种饮料和4瓶B 种饮料需花费39元,购买20瓶A种饮料和30瓶B种饮料需花费180元.(1)购买A、B两种饮料每瓶各多少元?(2)实际购买时,恰好超市进行促销活动,如果一次性购买A种饮料的数量超过20瓶,则超出部分的价格享受八折优惠,B种饮料价格保持不变.若购买B种饮料的数量是A种饮料数量的2倍还多10瓶,且总费用不超过320元,则最多可购买A种饮料多少瓶?26.(本题10分)已知:AB为⊙O的直径,弦C D⊥AB于点E,F为⊙O上一点,且FB=FD.(1)如图1,点F在弧AC上时,求证:∠BDC=∠DFB;(2)如图2,点F在弧BC上时,过点F作FH∥CD分别交AB、BD于点G、H,求证:BD=2FG;(3)如图3,在(2)的条件下,连接AD、AF,DH:HG=3:5,OG=5,求△ADF的面积.27.(本题10分) 已知直线m 21y +=x 与x 轴交于点A,与y 轴交于点C,抛物线3b 21y 2++-=x x 过A 、C 两点,交x 轴另一点B.(1)如图1,求抛物线的解析式;(2)如图2,P 、Q 两点在第二象限的抛物线上,且关于对称轴对称,点F 为线段AP 上一点,2∠PQF+∠PFQ=90°,射线QF 与过点A 且垂直x 轴的直线交于点E,AP=QE,求PQ 长;(3)如图3,在(2)的条件下,点D 在QP 的延长线上,DP:DQ=1:4,点K 为射线AE 上一点连接QK,过点D 作DM ⊥QK 垂足为M,延长DM 交AB 于点N,连接AM,当∠AMN=45°时,过点A 作AR ⊥DN 交抛物线于点R,求R 点坐标.2016年平房区中考调研测试(一) 数学答案一、选择题:1—5 DABDC 6---10 DCDAB 二、填空题11. 61031.2⨯ 12. 13. 33- 14.15.27π16.3<x ≤4 17. 61 18. 9 19.1或9 20.29 三、解答题21.解:原式=a -2a -12-a 1a 2÷+=1)-1)(a (a 2-a 2-a 1a +⋅+=1-a 1………………….3分将602sin tan45a +==312321+=⨯+…………2分 代入原式=331-311=+…………2分 22.每图3分, EG= 1分23.(1)40(2分)(2)8人(2分)补图(1分)(3)105(3分)24.(1)证BC=2DE(1分) 证平行四边形(2分) 证邻边相等(1分)(2) △FEC, △AEB,△ADC,△BDC (4分)25.(1)解:设购进A 种饮料每瓶元,购进B 种饮料每瓶元.⎩⎨⎧=+=+18030203946y x y x …………………………3分 解得:⎩⎨⎧==35.4y x ………………………………1分答:购进A 种饮料每瓶元,购进B 种饮料每瓶元. …………………………….1分(2)解:设购进A 种饮料a 瓶,购进B 种饮料瓶)102(380%20-5.44.520++⨯+⨯a a )(≤320 ………… 3分A解得: a ≤3128 …………………………….1分 ∵a 取正整数,∴a 最大为28答:最多可购进A 种饮料28瓶. …………………………….1分 26、证明: (1)∵AB 为⊙O 的直径,AB ⊥CD ∴BC⌒ =BD ⌒ ……………………… 1分 ∴∠CDB=∠DFB ………………………1分 (2)连接OF 并延长交BD 于M,连接OD 在△FOD 和△FOB 中 BF=DF,FO=FO,OD=OB ∴△FOD ≌△FOB(SSS)∴∠DFO=∠B FO………………………1分 ∵FD=FB ∴FM ⊥BD∴BM=DM=21BD ………………………1分∵OF=OB ∴∠OFB=∠OBF∵FH ∥CD ∴∠CEG=∠FGB=90°在△FGB 和△FBM 中∠FMB=∠BGF, ∠KFB=∠GBF,FB=FB △FGB ≌△FBM(AAS)∴FG=BM∴BD=2FG ………………………1分 (3)∵DH:HG=3:5∴设DH=3m ,GH=5m ∵△FGB ≌△FBM ∴FM=BG在△FHM 和△BHG 中 ∠FHB=∠BHG ,∠BGH=∠FMH,FM=BG △FHM ≌△BHG(AAS)∴HM=GH=5m ,DM=8m,BD=16m,BH=13m …………1分 在Rt △BGH 中,HB=13m ,GH=5m根据勾股定理得:GB=12m 在Rt △FGO 中, FG=8m,OG=5,OF=OB=12m-5根据勾股定理得:()()22258512m +=-m …………1分解得:01=m (舍),232=m ………………1分 DB=24,DM=12,OF=OB=12m-5=13,AB=26∵AB 为⊙O 的直径,∠ADB=90°在Rt △ADB 中, 由勾股定理得:AD=10……………1分 ∴60DM AD 21=⨯⨯=∆ADF S ……………1分 27、解:∵ 当x =0时,3b 21-y 2++=x x y=3 ∴C(0,3) 将点C 代入m 21y +=x 得m=3,AB当y=0时,x =-6 ∴点A (-6,0)……1分∴将点A (-6,0)代入3b 21-y 2++=x x 可得b=25- ∴抛物线的解析式为325-21-y 2+=x x ……………1分 (2)延长QP 、AE 交于点H ∵点P 、Q 关于对称轴对称∴QP ∥x 轴AE ⊥x 轴 ∴∠H=90° ∵ 2∠PQF+∠PFQ=90° ∴∠PQF+∠PFQ=90°-∠PQF=∠HEQ =∠HAP+∠EFA ∴∠PQF=∠HAP ……………1分∵QE=AP ∴△HAP ≌△QEH ∴QH=AH 过点Q 作QK ⊥AB 于点G ∴四边形AGQH 是正方形 设点Q 3)t 25-t 21(t,-2+∴QH=t+6 QG=3t 25-t 21-2+t+6=3t 25-t 21-2+解得舍)-6(t -1,t 21== ∴点Q (-1,5)……………1分 ∵点P 、Q 关于x =25-对称∴点P (-4,5) ∴PQ=3…1分 (3) ∵DP:DQ=1:4, ∴DP=1,点D (-5,5)………………1分 HD=1∵DN ⊥QK ∠AMN=45°过点A 作AG ⊥AM 交DN 延长线于点G ,∴AM=AG ∵∠KMN+∠KAN=180° ∴∠MKA+∠MNA=180° ∠ANG+∠MNA=180° ∴∠MKA=∠ANG ∵∠KAN=∠MAG= 90° ∴∠MAK=∠NAG ∴△AKM ≌△ANG ∴AK=AN ………………1分过点D 作DL ⊥AB 于点L ,四边形HALD 是矩形 ∴ HD=AL=1, AH=DL=QH ∠HKQ=∠DNL ∴△HKQ ≌△LND ∴HK=LN 设HK=LN =m则AN=AK=m+1 ∴AH=m+1+m=5 m=2………………1分 ∵∠HQK=∠OAR ∴tan ∠HQK= tan ∠OAR= 52HQHK =………1分设R 3)m 25-m 21(m,-2+ 过点R 作RS ⊥AB 于点S∴526m 3m 25-m 21-2=++ -6m ,51m 21==(舍) ∴R ),(256251………………1分(此处还可写成(0.2,2.48))。