2014年武汉市中考数学试题(完美答案解析版)

合集下载

2014年湖北省武汉市中考数学试卷(教师版) 电子版

2014年湖北省武汉市中考数学试卷(教师版)  电子版

1+1×3+2×3+3×3+…+3n 个点.
【解答】方法一:
解:第 1 个图中共有 1+1×3=4 个点,
第 2 个图中共有 1+1×3+2×3=10 个点,
第 3 个图中共有 1+1×3+2×3+3×3=19 个点,

第 n 个图有 1+1×3+2×3+3×3+…+3n 个点.
所以第 5 个图中共有点的个数是 1+1×3+2×3+3×3+4×3+5×3=46.
中 1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.
第 1 页(共 30 页)
4.(3 分)在一次中学生田径运动会上,参加跳高的 15 名运动员的成绩如表:
成绩(m) 1.50
1.60
1.65
1.70
1.75
1.80
人数
1
2
4
3
3
2
那么这些运动员跳高成绩的众数是( )
故选:A.
【点评】本题考查了实数比较大小,正数大于 0,0 大于负数是解题关键.




2.(3 分)若
在实数范围内有意义,则
x
的取值范围是( ) 3-5月 在 般 一 试
















A.x>0
B.x>3
C.x≥3
按 , 一 统 不 市
D.x≤3

【真题】武汉市中考数学试卷含答案解析

【真题】武汉市中考数学试卷含答案解析

湖北省武汉市中考数学试卷(解析版)一、选择题(共10小题,每小题3分,共30分)1.(3分)温度由﹣4℃上升7℃是()A.3℃ B.﹣3℃C.11℃D.﹣11℃【分析】根据题意列出算式,再利用加法法则计算可得.【解答】解:温度由﹣4℃上升7℃是﹣4+7=3℃,故选:A.【点评】本题主要考查有理数的加法,解题的关键是熟练掌握有理数的加法法则.2.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2 B.x<﹣2 C.x=﹣2 D.x≠﹣2【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.(3分)计算3x2﹣x2的结果是()A.2 B.2x2C.2x D.4x2【分析】根据合并同类项解答即可.【解答】解:3x2﹣x2=2x2,故选:B.【点评】此题考查合并同类项,关键是根据合并同类项的法则解答.4.(3分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、40【分析】根据众数和中位数的定义求解.【解答】解:这组数据的众数和中位数分别42,38.故选:B.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.5.(3分)计算(a﹣2)(a+3)的结果是()A.a2﹣6 B.a2+a﹣6 C.a2+6 D.a2﹣a+6【分析】根据多项式的乘法解答即可.【解答】解:(a﹣2)(a+3)=a2+a﹣6,故选:B.【点评】此题考查多项式的乘法,关键是根据多项式乘法的法则解答.6.(3分)点A(2,﹣5)关于x轴对称的点的坐标是()A.(2,5)B.(﹣2,5)C.(﹣2,﹣5)D.(﹣5,2)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点A(2,﹣5)关于x轴的对称点B的坐标为(2,5).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是()A.3 B.4 C.5 D.6【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边上层最多有2个,左边下层最多有2个,右边只有一层,且只有1个.所以图中的小正方体最多5块.故选:C.【点评】此题主要考查了由三视图判断几何体,考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.8.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.B.C.D.【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率==.故选:C.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.9.(3分)将正整数1至按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是()A.B.C.D.【分析】设中间数为x,则另外两个数分别为x﹣1、x+1,进而可得出三个数之和为3x,令其分别等于四个选项中数,解之即可得出x的值,由x为整数、x 不能为第一列及第八列数,即可确定x值,此题得解.【解答】解:设中间数为x,则另外两个数分别为x﹣1、x+1,∴三个数之和为(x﹣1)+x+(x+1)=3x.根据题意得:3x=、3x=、3x=、3x=,解得:x=673,x=672(舍去),x=672,x=671.∵673=84×8+1,∴不合题意,舍去;∵672=84×8,∴不合题意,舍去;∵671=83×7+7,∴三个数之和为.故选:D.【点评】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.10.(3分)如图,在⊙O中,点C在优弧上,将弧沿BC折叠后刚好经过AB的中点D.若⊙O的半径为,AB=4,则BC的长是()A.B.C.D.【分析】连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,利用垂径定理得到OD⊥AB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到=,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3.【解答】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算的结果是【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=+﹣=故答案为:【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.12.(3分)下表记录了某种幼树在一定条件下移植成活情况移植总数n40015003500700090001400成活数m325133632036335807312628成活的频率(精确到0.01)0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是0.9(精确到0.1)【分析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率∴这种幼树移植成活率的概率约为0.9.故答案为:0.9.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.(3分)计算﹣的结果是.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=+=故答案为:【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.14.(3分)以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是30°或150°.【分析】分等边△ADE在正方形的内部和外部两种情况分别求解可得.【解答】解:如图1,∵四边形ABCD为正方形,△ADE为等边三角形,∴AB=BC=CD=AD=AE=DE,∠BAD=∠ABC=∠BCD=∠ADC=90°,∠AED=∠ADE=∠DAE=60°,∴∠BAE=∠CDE=150°,又AB=AE,DC=DE,∴∠AEB=∠CED=15°,则∠BEC=∠AED﹣∠AEB﹣∠CED=30°.如图2,∵△ADE是等边三角形,∴AD=DE,∵四边形ABCD是正方形,∴AD=DC,∴DE=DC,∴∠CED=∠ECD,∴∠CDE=∠ADC﹣∠ADE=90°﹣60°=30°,∴∠CED=∠ECD=(180°﹣30°)=75°,∴∠BEC=360°﹣75°×2﹣60°=150°.故答案为:30°或150°.【点评】本题考查了正方形的性质,等边三角形的性质,等腰三角形的判定与性质,熟记各性质并准确识图是解题的关键.15.(3分)飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是216m.【分析】求出t=4时的函数值即可;【解答】解:根据对称性可知,开始4秒和最后4秒的滑行的距离相等,t=4时,y=60×4﹣×42=240﹣24=216m,故答案为216.【点评】本题考查二次函数的应用,解题的关键是理解题意,属于中考基础题.16.(3分)如图.在△ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分△ABC的周长,则DE的长是.【分析】延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,根据题意得到ME=EB,根据三角形中位线定理得到DE=AM,根据等腰三角形的性质求出∠ACN,根据正弦的概念求出AN,计算即可.【解答】解:延长BC至M,使CM=CA,连接AM,作CN⊥AM于N,∵DE平分△ABC的周长,∴ME=EB,又AD=DB,∴DE=AM,DE∥AM,∵∠ACB=60°,∴∠ACM=120°,∵CM=CA,∴∠ACN=60°,AN=MN,∴AN=AC•sin∠ACN=,∴AM=,∴DE=,故答案为:.【点评】本题考查的是三角形中位线定理、等腰三角形的性质、解直角三角形,掌握三角形中位线定理、正确作出辅助性是解题的关键.三、解答题(共8题,共72分)17.(8分)解方程组:【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:x=6,把x=6代入①得:y=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(8分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE 交于点G,求证:GE=GF.【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【解答】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点评】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.19.(8分)某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?【分析】(1)根据题意和统计图中的数据可以求得m、a、b的值;(2)根据统计图中的数据可以求得该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本.【解答】解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.【点评】本题考查扇形统计图、用样本估计总体、统计表,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(8分)用1块A型钢板可制成2块C型钢板和1块D型钢板;用1块B型钢板可制成1块C型钢板和3块D型钢板.现准备购买A、B型钢板共100块,并全部加工成C、D型钢板.要求C型钢板不少于120块,D型钢板不少于250块,设购买A型钢板x块(x为整数)(1)求A、B型钢板的购买方案共有多少种?(2)出售C型钢板每块利润为100元,D型钢板每块利润为120元.若童威将C、D型钢板全部出售,请你设计获利最大的购买方案.【分析】(1)根据“C型钢板不少于120块,D型钢板不少于250块”建立不等式组,即可得出结论;(2)先建立总利润和x的关系,即可得出结论.【解答】解:设购买A型钢板x块,则购买B型钢板(100﹣x)块,根据题意得,,解得,20≤x≤25,∵x为整数,∴x=20,21,22,23,24,25共6种方案,即:A、B型钢板的购买方案共有6种;(2)设总利润为w,根据题意得,w=100(2x+100﹣x)+120(x+300﹣3x)=100x+10000﹣240x+36000=﹣14x+46000,∵﹣14<0,∴当x=20时,w max=﹣14×20+46000=45740元,即:购买A型钢板20块,B型钢板80块时,获得的利润最大.【点评】此题主要考查了二元一次不等式组的应用,一次函数的性质,根据题意得出正确的等量关系是解题关键.21.(8分)如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.【分析】(1)想办法证明△PAO≌△PBO.可得∠PAO=∠PBO=90°;(2)首先证明BC=2OK,设OK=a,则BC=2a,再证明BC=PB=PA=2a,由△PAK∽△POA,可得PA2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a (负根已经舍弃),推出PK=a,由PK∥BC,可得==;【解答】(1)证明:连接OP、OB.∵PA是⊙O的切线,∴PA⊥OA,∴∠PAO=90°,∵PA=PB,PO=PO,OA=OB,∴△PAO≌△PBO.∴∠PAO=∠PBO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)设OP交AB于K.∵AB是直径,∴∠ABC=90°,∴AB⊥BC,∵PA、PB都是切线,∴PA=PB,∠APO=∠BPO,∵OA=OB,∴OP垂直平分线段AB,∴OK∥BC,∵AO=OC,∴AK=BK,∴BC=2OK,设OK=a,则BC=2a,∵∠APC=3∠BPC,∠APO=∠OPB,∴∠OPC=∠BPC=∠PCB,∴BC=PB=PA=2a,∵△PAK∽△POA,∴PA2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a(负根已经舍弃),∴PK=a,∵PK∥BC,∴==.【点评】本题考查相似三角形的判定和性质、圆周角定理、切线的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.22.(10分)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x <0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D (d,n)处,求m和n的数量关系.【分析】(1)①如图1﹣1中,求出PB、PC的长即可解决问题;②图1﹣2中,由题意C(t,t+2),理由待定系数法,把问题转化为方程解决即可;(2)分两种情形①当点A与点D关于x轴对称时,A(a,m),D(d,n),可得m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,推出OB=OH,AB=D′H,由A(a,m),推出D′(m,﹣a),即D′(m,n),由D′在y=﹣上,可得mn=﹣8;【解答】解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4 或2,(2)如图2中,①当点A与点D关于x轴对称时,A(a,m),D(d,n),∴m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,∴OB=OH,AB=D′H,∵A(a,m),∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,综上所述,满足条件的m、n的关系是m+n=0或mn=﹣8.【点评】本题考查反比例函数综合题、旋转变换、待定系数法、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加辅助线,构造全等三角形解决问题,属于中考压轴题.23.(10分)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.【分析】(1)利用同角的余角相等判断出∠BAM=∠CBN,即可得出结论;(2)先判断出△ABP∽△PQF,得出=,再判断出△ABP∽△CQF,得出CQ=2a,进而建立方程用b表示出a,即可得出结论;(3)先判断出=,再同(2)的方法,即可得出结论.【解答】解:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;(2)如图2,过点P作PF⊥AP交AC于F,在Rt△AFP中,tan∠PAC===,同(1)的方法得,△ABP∽△PQF,∴=,设AB=a,PQ=2a,BP=b,FQ=2b(a>0,b>0),∵∠BAP=∠C,∠B=∠CQF=90°,∴△ABP∽△CQF,∴,∴CQ==2a,∵BC=BP+PQ+CQ=b+2a+2a=4a+b∵∠BAP=∠C,∠B=∠B=90°,∴△ABP∽△CBA,∴=,∴BC===,∴4a+b=,a=b,∴BC=4×b+b=b,AB=a=b,在Rt△ABC中,tanC==;(3)在Rt△ABC中,sin∠BAC==,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴=同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC==.【点评】此题是相似形综合题,主要考查了同角的余角相等,相似三角形的判定和性质,锐角三角函数,平行线分线段成比例定理,构造图1是解本题的关键.24.(12分)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN 的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)求解可得;(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BG•x N﹣BG•x M=1得出x N﹣x M=1,联立直线和抛物线解析式求得x=,根据x N﹣x M=1列出关于k的方程,解之可得;(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.【解答】解:(1)由题意知,解得:b=2、c=1,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG•x N﹣BG•x M=1,∴x N﹣x M=1,由得x2+(k﹣2)x﹣k+3=0,解得:x==,则x N=、x M=,由x N﹣x M=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),①当△PCD∽△FOP时,=,∴=,∴t2﹣(1+m)t+2=0;②当△PCD∽△POF时,=,∴=,∴t=(m+1);(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程①有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).【点评】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、利用割补法求三角形的面积建立关于k的方程及相似三角形的判定与性质等知识点.。

2014年3月武汉市部分学校数学试卷和答案

2014年3月武汉市部分学校数学试卷和答案

-1 -1 1 -1 12013~2014学年度蔡甸区部分学校九年级三月月考数学试卷一、选择题(共10小题,每小题3分,共30分)1.在0,3,-1,-3这四个数中,最小的数是( )A.0.B.3.C.-1.D.-3.2x的取值范围是( )A.x>3. B.x≥3. C.x<3. D.x≤3.3.不等式组10x+⎧⎨⎩x-1≤>的解集在数轴上表示为( )A.B.C.D.4.下列事件是必然事件的是( )A.某运动员射击一次击中靶心.B.抛一枚硬币,正面朝上.C.3个人分成两组,一定有2个人分在一组.D.明天一定是晴天.5.若x1,x2是一元二次方程x2-5x-6=0的两个根,则x1·x2的值是( ) A.-5.B.5.C.-6.D.6.6.2012年武汉市约有71000个初中毕业生,其中71000这个数用科学计数法表示为( ) A.71×103.B.7.1×105.C.7.1×104.D.0.71×105.7.如图,AD是△ABC的中线,∠ADC=60°,把△ADC沿直线AD翻折,点C落在点C1的位置,如果DC=2,那么BC1=( )AB.2.C.D.4.8.已知⊙O1的半径为3cm,⊙O2的半径为4cm,圆心距O1O2=5 cm.则⊙O1与⊙O2的位置关系为( )A、外离B、外切C、内切D、相交9.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( ) A.第3天.B.第4天.C.第5天.D.第6天.10.如图,有一形如△ABC 的钢板,已知AB=20m , BC=7m , AC=15m, 现将该纸片裁剪成一个圆形的材料,则该圆的最大面积为( )m 2。

武汉2014中考数学试题及答案

武汉2014中考数学试题及答案

武汉2014中考数学试题及答案
中考频道第一时间为大家发布2014武汉数学中考真题及中考答案。

中考网温馨提示,各位考生在经过了初始的洗礼后,可以进行适当的放松。

2014年武汉中考数学试题及答案发布入口
中考网提醒:考试用品要带齐
中考期间,考生要带齐以下物品:准考证、蓝(黑)色墨水钢笔、圆珠笔、水笔、铅笔(作图用)、圆规、直尺、三角尺、橡皮等。

思想政治考试开卷,可携带教材及相关资料。

另外,书包、书籍、簿本、纸张、可擦拭的水笔和计算器等不准带入考场。

严禁携带寻呼机、手机等各种无线通讯工具、电子存储记忆录放设备以及涂改液、修正带等物品进入考场。

英语听力收听设备由考点准备,考生不得携带、使用收音设备。

2013、2014武汉中考数学试卷分析

2013、2014武汉中考数学试卷分析

2013武汉中考数学试卷分析熊明军一、试卷考点分析项目题类试卷2013年武汉中考试卷考点难度★识记理解★★基础运用★★★综合运用题号考查内容涉及考点选择题1 有理数比较大小★2 二次根式有意义条件★3 不等式组解不等式组★4 概率概念★5 一元二次方程根与系数关系★6 角度计算等腰三角形★7 三视图三视图★8 找规律图形规律★9 统计条形统计图、扇形统计图★★10 圆圆的内容★★填空题11 三角函数值特殊值记忆★12 统计众数★13 有理数科学记数法★14 一次函数应用一次函数与行程问题★15 函数与几何综合反比例函数与平行四边形★★16 四边形三角形全等、最值★★★解答题17 分式解分式方程★18 一次函数及其不等式解析式与解不等式★19 全等全等证明★20 概率求概率的方法★+★21 作图操作变换、最短路径★+★★22 圆证明与计算★+★★★23 二次函数应用★+★★+★★24 几何证明相似★+★★+★★25 二次函数综合运用★+★★★+★★★二、试卷分析:2013年武汉中考数学试题考点完全按照考纲要求,没有出现超出考试范围的题目。

本套试卷整体难度偏大,计算要求偏高,体现在16题,22题第二问和25题第二问,对学生知识的综合运用能力要求很高。

1-9题和四调、五调考点和顺序完全一致,难度也没有任何变化,主要考察学生相应知识点的识记与简单应用。

第10题和四调、五调考察的几何最值问题有所不同,改为用字母表示弧长的题目。

而将最值问题移到填空题第16题,取代了之前调考中的多解几何题。

对于字母运算与表示结果与高中要求接轨,是今后数学学习的一个方向。

填空题11-15题也和调考中的考察顺序一致,11-13考察学生对特殊三角函数值的识记,12题考察数据的收集与整理中众数的概念,13题考察比较基础的科学记数法。

14题考察学生对于一次函数的理解与应用,看懂题目加以分析,对大部分学生来讲都不是难题。

15题依旧考察反比例函数与四边形的综合题目,利用设未知点坐标来求解是这道题目的关键。

2014年中考数学试卷分析-1

2014年中考数学试卷分析-1

2014武汉中考数学试卷分析2014武汉中考数学科目的考试已结束,武汉中高考数学研究中心对武汉市中考数学试卷进行分析,希望能对考生、家长有所帮助,也希望对2015中考考生提供借鉴。

一、试卷整体分析2014年中考是数学实验课标和实验教材实施评价的最后一年,明年就是新课标及新教材的评价了。

因此,今年的中考题中规中矩,难度平缓,没有很大的变化和调整。

试卷的命制遵循着基础性原则、现实性原则、有效性原则,保持着源于课本,而有高于课本的特点,公正、客观、全面、准确地评价学生通过初中教育阶段的数学学习所获得的发展状况。

试题包括选择题、填空题和解答题三种题型。

从数与代数、空间与图形、统计与概率、实践与综合应用四个领域进行了考察。

在试卷中所占的比重与它们在数学中所占课时的百分比大致相同。

数与代数约占45%、空间与图形约占40%、统计与概率约占15%,实践与综合应用渗透在其它三个领域之中。

(数与代数:(12章,约占43.2%)空间与图形:(13章,约占42.8%)统计与概率:(4章,约占14%))试题按其难易程度分为容易题、中等题和难题,全卷容易题∶中等题∶难题约为7∶2∶1,试卷难度系数约为0.65左右。

二、试卷考点分析整张试卷的考点分布保持稳定,变化不大,具体分析如下:三、典型试题分析:选择题1-9题,填空题11-13题,解答题17-21题这17道题目考点、顺序与之前调考基本保持一致(选择题第三题和填空题第二题所考知识点对调),难度也没有任何变化,主要考察学生相应知识点的识记与简单应用。

第10题和四调、五调考察的几何最值问题有所不同,考察的是圆与三角函数综合的一道计算题,这和考试说明中的样题基本一致只是缺乏实际背景。

该题是图形是常见的基本图形,题目的命制结合了2014四月调考的22题(2),如果考生在考前好好地研究了四月考试那么这题可以轻松拿下。

15题考察了反比例和几何的小综合,难度不大,只要学生用好等边三角形的性质和反比例K值得意义,建立方程可以轻松解答16题实际考察的是勾股定理和旋转的综合,八下的常见题型,由于是个陈题,笔者不做评价(P.S.2011年北京市海淀区中考数学二模)解答题22题,笔者认为是到质量不错的题目,难度不大,入口多,坡度缓,综合的考察学生对条件的处理能力,学生需要具备从条件出发,看可知,推向未的能力,第一问的原型为九上课本P81的例题,运用勾股和垂径定理建立方程轻松解决。

【精校】2014年湖北省武汉市中考真题数学

【精校】2014年湖北省武汉市中考真题数学

2014年湖北省武汉市中考真题数学一、单项选择题(共10小题,每小题3分,共30分)1.(3分)在实数-2,0,2,3中,最小的实数是( )A. -2B. 0C. 2D. 3解析:-2<0<2<3,最小的实数是-2,答案:A.2.(3分)若在实数范围内有意义,则x的取值范围是( )A. x>0B. x>3C. x≥3D. x≤3解析:∵使在实数范围内有意义,∴x-3≥0,解得x≥3.答案:C.3.(3分)光速约为300 000千米/秒,将数字300000用科学记数法表示为( )A. 3×104B. 3×105C. 3×106D. 30×104解析:将300 000用科学记数法表示为:3×105.答案:B.4.(3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:那么这些运动员跳高成绩的众数是( )A. 4B. 1.75C. 1.70D. 1.65解析:∵1.65出现了4次,出现的次数最多,∴这些运动员跳高成绩的众数是1.65;答案:D.5.(3分)下列代数运算正确的是( )A. (x3)2=x5B. (2x)2=2x2C. x3·x2=x5D. (x+1)2=x2+1解析:A、(x3)2=x6,原式计算错误,故A选项错误;B、(2x)2=4x2,原式计算错误,故B选项错误;C、x3·x2=x5,原式计算正确,故C选项正确;D、(x+1)2=x2+2x+1,原式计算错误,故D选项错误;答案:C.6.(3分)如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为( )A. (3,3)B. (4,3)C. (3,1)D. (4,1)解析:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和总左边都变为A点的一半,∴端点C的坐标为:(3,3).答案:A.7.(3分)如图是由4个大小相同的正方体搭成的几何体,其俯视图是( )A.B.C.D.解析:从上面看可得到一行正方形的个数为3,答案:C.8.(3分)为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为( )A. 9B. 10C. 12D. 15解析:由图可知,10天中在同一时段通过该路口的汽车数量超过200辆的有4天,频率为:=0.4,所以估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为30×0.4=12(天).答案:C.9.(3分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是( )A. 31B. 46C. 51D. 66解析:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.答案:B.10.(3分)如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O 的半径为r,△PCD的周长等于3r,则tan∠APB的值是( )A.B.C.D.解析:连接OA、OB、OP,延长BO交PA的延长线于点F.∵PA,PB切⊙O于A、B两点,CD切⊙O于点E∴∠OAF=∠PBF=90°,CA=CE,DB=DE,PA=PB,∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,∴PA=PB=.在Rt△PBF和Rt△OAF中,,∴Rt△PBF∽Rt△OAF(HL).∴===,∴AF=FB,在Rt△FBP中,∵PF2-PB2=FB2∴(PA+AF)2-PB2=FB2∴(r+BF)2-()2=BF2,解得BF= r,∴tan∠APB===,答案:B.二、填空题(共6小题,每小题3分,满分18分)11.(3分)计算:-2+(-3)= .解析:(-2)+(-3)=-5,答案:-5.12.(3分)分解因式:a3-a= .解析:a3-a=a(a2-1)=a(a+1)(a-1).答案:a(a+1)(a-1).13.(3分)如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.解析:∵一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,∴指针指向红色的概率为:.答案:.14.(3分)一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.解析:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得,∴这次越野跑的全程为:1600+300×2=2200米.答案:2200.15.(3分)如图,若双曲线y=与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为.解析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=3x,则BD=x,在Rt△OCE中,∠COE=60°,则OE=x,CE=x,则点C坐标为(x,x),在Rt△BDF中,BD=x,∠DBF=60°,则BF=x,DF=x,则点D的坐标为(5-x,x),将点C的坐标代入反比例函数解析式可得:k=x2,将点D的坐标代入反比例函数解析式可得:k=x-x2,则x2=x-x2,解得:x1=1,x2=0(舍去),故k=×12=.答案:.16.(3分)如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.解析:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,答案:.三、解答题(共9小题,满分72分,应写出文字说明、证明过程或演算步骤)17.(6分)解方程:=.解析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.答案:去分母得:2x=3x-6,解得:x=6,经检验x=6是分式方程的解.18.(6分)已知直线y=2x-b经过点(1,-1),求关于x的不等式2x-b≥0的解集.解析:把点(1,-1)代入直线y=2x-b得到b的值,再解不等式.答案:把点(1,-1)代入直线y=2x-b得,-1=2-b,解得,b=3.函数解析式为y=2x-3.解2x-3≥0得x≥.19.(6分)如图,AC和BD相交于点O,OA=OC,OB=OD.求证:DC∥AB.解析:根据边角边定理求证△ODC≌△OBA,可得∠C=∠A(或者∠D=∠B),即可证明DC∥AB.答案:∵在△ODC和△OBA中,∵,∴△ODC≌△OBA(SAS),∴∠C=∠A(或者∠D=∠B)(全等三角形对应角相等),∴DC∥AB(内错角相等,两直线平行).20.(7分)如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.解析:(1)①根据关于y轴对称的点的横坐标互为相反数确定出点B的位置,然后连接AB即可;②根据轴对称的性质找出点A关于直线x=3的对称点,即为所求的点D;(2)根据平行四边形的性质,平分四边形面积的直线经过中心,然后求出AC的中点,代入直线计算即可求出k值.答案:(1)①如图所示;②直线CD如图所示;(2)∵A(0,4),C(3,0),∴平行四边形ABCD的中心坐标为(,2),代入直线得,k=2,解得k=.21.(7分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.解析:(1)①首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第一次摸到绿球,第二次摸到红球的情况,再利用概率公式即可求得答案;②首先由①求得两次摸到的球中有1个绿球和1个红球的情况,再利用概率公式即可求得答案;(2)由先从袋中摸出1个球后不放回,再摸出1个球,共有等可能的结果为:4×3=12(种),且两次摸到的球中有1个绿球和1个红球的有8种情况,直接利用概率公式求解即可求得答案.答案:(1)①画树状图得:∵共有16种等可能的结果,第一次摸到绿球,第二次摸到红球的有4种情况,∴第一次摸到绿球,第二次摸到红球的概率为:=;②∵两次摸到的球中有1个绿球和1个红球的有8种情况,∴两次摸到的球中有1个绿球和1个红球的为:=;(2)∵先从袋中摸出1个球后不放回,再摸出1个球,共有等可能的结果为:4×3=12(种),且两次摸到的球中有1个绿球和1个红球的有8种情况,∴两次摸到的球中有1个绿球和1个红球的概率是:=.22.(8分)如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA的长.解析:(1)根据圆周角的定理,∠APB=90°,p是弧AB的中点,所以三角形APB是等腰三角形,利用勾股定理即可求得.(2)根据垂径定理得出OP垂直平分BC,得出OP∥AC,从而得出△ACB∽△0NP,根据对应边成比例求得ON、AN的长,利用勾股定理求得NP的长,进而求得PA.答案:(1)如图(1)所示,连接PB,∵AB是⊙O的直径且P是的中点,∴∠PAB=∠PBA=45°,∠APB=90°,又∵在等腰三角形△ABC中有AB=13,∴PA===.(2)如图(2)所示:连接BC.OP相交于M点,作PN⊥AB于点N,∵P点为弧BC的中点,∴OP⊥BC,∠OMB=90°,又因为AB为直径∴∠ACB=90°,∴∠ACB=∠OMB,∴OP∥AC,∴∠CAB=∠POB,又因为∠ACB=∠ONP=90°,∴△ACB∽△0NP∴=,又∵AB=13 AC=5 OP=,代入得 ON=,∴AN=OA+ON=9∴在RT△OPN中,有NP2=0P2-ON2=36在RT△ANP中有PA===3∴PA=3.23.(10分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果. 解析:(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.答案:(1)当1≤x<50时,y=(200-2x)(x+40-30)=-2x2+180x+2000,当50≤x≤90时,y=(200-2x)(90-30)=-120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口下,二次函数对称轴为x=45,当x=45时,y最大=-2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=-2x2+180x+2000≥4800,解得20≤x<70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=-120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.24.(10分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.解析:(1)分两种情况讨论:①当△BPQ∽△BAC时,=,当△BPQ∽△BCA时,=,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8-4t,根据△ACQ∽△CMP,得出=,代入计算即可;(3)作PE⊥AC于点E,DF⊥AC于点F,先得出DF=,再把QC=4t,PE=8-BM=8-4t代入求出DF,过BC的中点R作直线平行于AC,得出RC=DF,D在过R的中位线上,从而证出PQ的中点在△ABC的一条中位线上.答案:(1)①当△BPQ∽△BAC时,∵=,BP=5t,QC=4t,AB=10cm,BC=8cm,∴=,∴t=1;②当△BPQ∽△BCA时,∵=,∴=,∴t=,∴t=1或时,△BPQ与△ABC相似;(2)如图所示,过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=PBsinB=3t,BM=4t,MC=8-4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°,∴△ACQ∽△CMP,∴=,∴=,解得:t=;(3)如图,仍有PM⊥BC于点M,PQ的中点设为D点,再作PE⊥AC于点E,DF⊥AC于点F,∵∠ACB=90°,∴DF为梯形PECQ的中位线,∴DF=,∵QC=4t,PE=8-BM=8-4t,∴DF==4,∵BC=8,过BC的中点R作直线平行于AC,∴RC=DF=4成立,∴D在过R的中位线上,∴PQ的中点在△ABC的一条中位线上.25.(12分)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点.(1)直线AB总经过一个定点C,请直接出点C坐标;(2)当k=-时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.解析:(1)要求定点的坐标,只需寻找一个合适x,使得y的值与k无关即可.(2)只需联立两函数的解析式,就可求出点A、B的坐标.设出点P的横坐标为a,运用割补法用a的代数式表示△APB的面积,然后根据条件建立关于a的方程,从而求出a的值,进而求出点P的坐标.(3)设点A、B、D的横坐标分别为m、n、t,从条件∠ADB=90°出发,可构造k型相似,从而得到m、n、t的等量关系,然后利用根与系数的关系就可以求出t,从而求出点D 的坐标.由于直线AB上有一个定点C,容易得到DC长就是点D到AB的最大距离,只需构建直角三角形,利用勾股定理即可解决问题.答案:(1)∵当x=-2时,y=(-2)k+2k+4=4.∴直线AB:y=kx+2k+4必经过定点(-2,4).∴点C的坐标为(-2,4).(2)∵k=-,∴直线的解析式为y=-x+3.联立,解得:或.∴点A的坐标为(-3,),点B的坐标为(2,2). 过点P作PQ∥y轴,交AB于点Q,过点A作AM⊥PQ,垂足为M,过点B作BN⊥PQ,垂足为N,如图1所示.设点P的横坐标为a,则点Q的横坐标为a.∴y P=a2,y Q=-a+3.∵点P在直线AB下方,∴PQ=y Q-y P=-a+3-a2∵AM+NB=a-(-3)+2-a=5.∴S△APB=S△APQ+S△BPQ=PQ•AM+PQ•BN=PQ•(AM+BN)=(-a+3-a2)•5=5.整理得:a2+a-2=0.解得:a1=-2,a2=1.当a=-2时,y P=×(-2)2=2.此时点P的坐标为(-2,2).当a=1时,y P=×12=.此时点P的坐标为(1,).∴符合要求的点P的坐标为(-2,2)或(1,).(3)过点D作x轴的平行线EF,作AE⊥EF,垂足为E,作BF⊥EF,垂足为F,如图2.∵AE⊥EF,BF⊥EF,∴∠AED=∠BFD=90°.∵∠ADB=90°,∴∠ADE=90°-∠BDF=∠DBF.∵∠AED=∠BFD,∠ADE=∠DBF,∴△AED∽△DFB.∴.设点A、B、D的横坐标分别为m、n、t,则点A、B、D的纵坐标分别为m2、n2、t2. AE=y A-y E=m2-t2.BF=y B-y F=n2-t2.ED=x D-x E=t-m,DF=x F-x D=n-t.∵,∴=.化简得:mn+(m+n)t+t2+4=0.∵点A、B是直线AB:y=kx+2k+4与抛物线y=x2交点,∴m、n是方程kx+2k+4=x2即x2-2kx-4k-8=0两根.∴m+n=2k,mn=-4k-8.∴-4k-8+2kt+t2+4=0,即t2+2kt-4k-4=0.即(t-2)(t+2k+2)=0.∴t1=2,t2=-2k-2(舍).∴定点D的坐标为(2,2).过点D作x轴的平行线DG,过点C作CG⊥DG,垂足为G,如图3所示.∵点C(-2,4),点D(2,2),∴CG=4-2=2,DG=2-(-2)=4.∵CG⊥DG,∴DC====2.过点D作DH⊥AB,垂足为H,如图3所示,∴DH≤DC.∴DH≤2.∴当DH与DC重合即DC⊥AB时,点D到直线AB的距离最大,最大值为2.∴点D到直线AB的最大距离为2.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

2014年湖北省武汉市中考数学试卷

2014年湖北省武汉市中考数学试卷

2014年湖北省武汉市中考数学试卷一、单项选择题(共10小题,每小题3分,共30分)1.(3分)在实数﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.32.(3分)若在实数范围内有意义,则x的取值范围是()A.x>0 B.x>3 C.x≥3 D.x≤33.(3分)光速约为300 000千米/秒,将数字300000用科学记数法表示为()A.3×104B.3×105C.3×106D.30×1044.(3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:那么这些运动员跳高成绩的众数是()A.4 B.1.75 C.1.70 D.1.655.(3分)下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+16.(3分)如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)7.(3分)如图是由4个大小相同的正方体搭成的几何体,其俯视图是()A. B.C.D.8.(3分)为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为()A.9 B.10 C.12 D.159.(3分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A.31 B.46 C.51 D.6610.(3分)如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)计算:﹣2+(﹣3)=.12.(3分)分解因式:a3﹣a=.13.(3分)如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.14.(3分)一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为米.15.(3分)如图,若双曲线y=与边长为5的等边△AOB的边OA、AB分别相交于C、D两点,且OC=2BD.则实数k的值为.16.(3分)如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.三、解答题(共9小题,满分72分,应写出文字说明、证明过程或演算步骤)17.(6分)解方程:=.18.(6分)已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.19.(6分)如图,AC和BD相交于点O,OA=OC,OB=OD.求证:DC∥AB.20.(7分)如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.21.(7分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.22.(8分)如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA的长.23.(10分)某商店经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?24.(10分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.25.(12分)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点.(1)直线AB总经过一个定点C,请直接出点C坐标;(2)当k=﹣时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.2014年湖北省武汉市中考数学试卷南通数学名师团解析一、单项选择题(共10小题,每小题3分,共30分)1.(3分)在实数﹣2,0,2,3中,最小的实数是()A.﹣2 B.0 C.2 D.3【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣2<0<2<3,最小的实数是﹣2,故选:A.【点评】本题考查了实数比较大小,正数大于0,0大于负数是解题关键.2.(3分)若在实数范围内有意义,则x的取值范围是()A.x>0 B.x>3 C.x≥3 D.x≤3【分析】先根据二次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.【解答】解:∵使在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选:C.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.3.(3分)光速约为300 000千米/秒,将数字300000用科学记数法表示为()A.3×104B.3×105C.3×106D.30×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将300 000用科学记数法表示为:3×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:那么这些运动员跳高成绩的众数是()A.4 B.1.75 C.1.70 D.1.65【分析】根据众数的定义找出出现次数最多的数即可.【解答】解:∵1.65出现了4次,出现的次数最多,∴这些运动员跳高成绩的众数是1.65;故选:D.【点评】此题考查了众数,用到的知识点是众数的定义,众数是一组数据中出现次数最多的数.5.(3分)下列代数运算正确的是()A.(x3)2=x5B.(2x)2=2x2C.x3•x2=x5D.(x+1)2=x2+1【分析】根据幂的乘方与积的乘方、同底数幂的乘法法则及完全平方公式,分别进行各选项的判断即可.【解答】解:A、(x3)2=x6,原式计算错误,故A选项错误;B、(2x)2=4x2,原式计算错误,故B选项错误;C、x3•x2=x5,原式计算正确,故C选项正确;D、(x+1)2=x2+2x+1,原式计算错误,故D选项错误;故选:C.【点评】本题考查了幂的乘方与积的乘方、同底数幂的运算,掌握各部分的运算法则是关键.6.(3分)如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3) C.(3,1) D.(4,1)【分析】利用位似图形的性质结合两图形的位似比进而得出C点坐标.【解答】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O 为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故选:A.【点评】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.7.(3分)如图是由4个大小相同的正方体搭成的几何体,其俯视图是()A. B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得到一行正方形的个数为3,故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.8.(3分)为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为()A.9 B.10 C.12 D.15【分析】先由折线统计图得出10天中在同一时段通过该路口的汽车数量超过200辆的天数,求出其频率,再利用样本估计总体的思想即可求解.【解答】解:由图可知,10天中在同一时段通过该路口的汽车数量超过200辆的有4天,频率为:=0.4,所以估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为:30×0.4=12(天).故选:C.【点评】本题考查了折线统计图及用样本估计总体的思想,读懂统计图,从统计图中得到必要的信息是解决问题的关键.9.(3分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中共有点的个数是()A.31 B.46 C.51 D.66【分析】由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…由此规律得出第n个图有1+1×3+2×3+3×3+…+3n个点.【解答】方法一:解:第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…第n个图有1+1×3+2×3+3×3+…+3n个点.所以第5个图中共有点的个数是1+1×3+2×3+3×3+4×3+5×3=46.故选:B.方法二:n=1,s=4;n=2,s=10;n=3,s=19,设s=an2+bn+c,∴,∴a=,b=,c=1,∴s=n2+n+1,把n=5代入,s=46.方法三:,,,,∴a5=19+12+15=46.【点评】此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题.10.(3分)如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是()A.B.C.D.【分析】(1)连接OA、OB、OP,延长BO交PA的延长线于点F.利用切线求得CA=CE,DB=DE,PA=PB再得出PA=PB=.利用Rt△BFP∽RT△OAF得出AF=FB,在RT△FBP中,利用勾股定理求出BF,再求tan∠APB的值即可.【解答】解:连接OA、OB、OP,延长BO交PA的延长线于点F.∵PA,PB切⊙O于A、B两点,CD切⊙O于点E∴∠OAF=∠PBF=90°,CA=CE,DB=DE,PA=PB,∵△PCD的周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r,∴PA=PB=.在Rt△PBF和Rt△OAF中,,∴Rt△PBF∽Rt△OAF.∴===,∴AF=FB,在Rt△FBP中,∵PF2﹣PB2=FB2∴(PA+AF)2﹣PB2=FB2∴(r+BF)2﹣()2=BF2,解得BF=r,∴tan∠APB===,故选:B.【点评】本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是切线与相似三角形相结合,找准线段及角的关系.二、填空题(共6小题,每小题3分,满分18分)11.(3分)计算:﹣2+(﹣3)=﹣5.【分析】根据有理数的加法法则求出即可.【解答】解:(﹣2)+(﹣3)=﹣5,故答案为:﹣5.【点评】本题考查了有理数加法的应用,注意:同号两数相加,取原来的符号,并把绝对值相加.12.(3分)分解因式:a3﹣a=a(a+1)(a﹣1).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.13.(3分)如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.【分析】由一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,直接利用概率公式求解即可求得答案.【解答】解:∵一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,红色的有3个扇形,∴指针指向红色的概率为:.故答案为:.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14.(3分)一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次越野跑的全程为2200米.【分析】设小明的速度为a米/秒,小刚的速度为b米/秒,由行程问题的数量关系建立方程组求出其解即可.【解答】解:设小明的速度为a米/秒,小刚的速度为b米/秒,由题意,得,解得:,∴这次越野跑的全程为:1600+300×2=2200米.故答案为:2200.【点评】本题考查了行程问题的数量关系的运用,二元一次方程组的解法的运用,解答时由函数图象的数量关系建立方程组是关键.15.(3分)如图,若双曲线y=与边长为5的等边△AOB的边OA、AB分别相交于C、D两点,且OC=2BD.则实数k的值为4.【分析】过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=2x,则BD=x,分别表示出点C、点D的坐标,代入函数解析式求出k,继而可建立方程,解出x的值后即可得出k的值.【解答】解:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,设OC=2x,则BD=x,在Rt△OCE中,∠COE=60°,则OE=x,CE=x,则点C坐标为(x,x),在Rt△BDF中,BD=x,∠DBF=60°,则BF=x,DF=x,则点D的坐标为(5﹣x,x),将点C的坐标代入反比例函数解析式可得:k=x2,将点D的坐标代入反比例函数解析式可得:k=x﹣x2,则x2=x﹣x2,解得:x1=2,x2=0(舍去),故k=x2=×4=4.故答案为:4.【点评】本题考查了反比例函数图象上点的坐标特征,解答本题关键是利用k的值相同建立方程,有一定难度.16.(3分)如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【分析】根据等式的性质,可得∠BAD与∠CAD′的关系,根据SAS,可得△BAD 与△CAD′的关系,根据全等三角形的性质,可得BD与CD′的关系,根据勾股定理,可得答案.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=,∴BD=CD′=,故答案为:.【点评】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,作出全等图形是解题关键.三、解答题(共9小题,满分72分,应写出文字说明、证明过程或演算步骤)17.(6分)解方程:=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣6,解得:x=6,经检验x=6是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(6分)已知直线y=2x﹣b经过点(1,﹣1),求关于x的不等式2x﹣b≥0的解集.【分析】把点(1,﹣1)代入直线y=2x﹣b得到b的值,再解不等式.【解答】解:把点(1,﹣1)代入直线y=2x﹣b得,﹣1=2﹣b,解得,b=3.函数解析式为y=2x﹣3解2x﹣3≥0得x≥.【点评】本题考查了一次函数与一元一次不等式,要知道,点的坐标符合函数解析式.19.(6分)如图,AC和BD相交于点O,OA=OC,OB=OD.求证:DC∥AB.【分析】根据边角边定理求证△ODC≌△OBA,可得∠C=∠A(或者∠D=∠B),即可证明DC∥AB.【解答】证明:∵在△ODC和△OBA中,∵,∴△ODC≌△OBA(SAS),∴∠C=∠A(或者∠D=∠B)(全等三角形对应角相等),∴DC∥AB(内错角相等,两直线平行).【点评】此题主要考查学生对全等三角形的判定与性质和平行线的判定的理解和掌握,解答此题的关键是利用边角边定理求证△ODC≌△OBA.20.(7分)如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.【分析】(1)①根据关于y轴对称的点的横坐标互为相反数确定出点B的位置,然后连接AB即可;②根据轴对称的性质找出点A关于直线x=3的对称点,即为所求的点D;(2)根据平行四边形的性质,平分四边形面积的直线经过中心,然后求出AC 的中点,代入直线计算即可求出k值.【解答】解:(1)①如图所示;②直线CD如图所示;(2)∵由图可知,AD=BC,AD∥BC,∴四边形ABCD是平行四边形.∵A(0,4),C(3,0),∴平行四边形ABCD的中心坐标为(,2),代入直线得,k=2,解得k=.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,还考查了平行四边形的判定与性质,是基础题,要注意平分四边形面积的直线经过中心的应用.21.(7分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.【分析】(1)①首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第一次摸到绿球,第二次摸到红球的情况,再利用概率公式即可求得答案;②首先由①求得两次摸到的球中有1个绿球和1个红球的情况,再利用概率公式即可求得答案;(2)由先从袋中摸出1个球后不放回,再摸出1个球,共有等可能的结果为:4×3=12(种),且两次摸到的球中有1个绿球和1个红球的有8种情况,直接利用概率公式求解即可求得答案.【解答】解:(1)①画树状图得:∵共有16种等可能的结果,第一次摸到绿球,第二次摸到红球的有4种情况,∴第一次摸到绿球,第二次摸到红球的概率为:=;②∵两次摸到的球中有1个绿球和1个红球的有8种情况,∴两次摸到的球中有1个绿球和1个红球的为:=;(2)∵先从袋中摸出1个球后不放回,再摸出1个球,共有等可能的结果为:4×3=12(种),且两次摸到的球中有1个绿球和1个红球的有8种情况,∴两次摸到的球中有1个绿球和1个红球的概率是:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(8分)如图,AB是⊙O的直径,C,P是上两点,AB=13,AC=5.(1)如图(1),若点P是的中点,求PA的长;(2)如图(2),若点P是的中点,求PA的长.【分析】(1)根据圆周角的定理,∠APB=90°,P是弧AB的中点,所以三角形APB是等腰三角形,利用勾股定理即可求得.(2)根据垂径定理得出OP垂直平分BC,得出OP∥AC,从而得出△ACB∽△ONP,根据对应边成比例求得ON、AN的长,利用勾股定理求得NP的长,进而求得PA.【解答】解:(1)如图(1)所示,连接PB,∵AB是⊙O的直径且P是的中点,∴∠PAB=∠PBA=45°,∠APB=90°,又∵在等腰三角形△APB中有AB=13,∴PA===.(2)如图(2)所示:连接BC.OP相交于M点,作PN⊥AB于点N,∵P点为弧BC的中点,∴OP⊥BC,∠OMB=90°,又因为AB为直径∴∠ACB=90°,∴∠ACB=∠OMB,∴OP∥AC,∴∠CAB=∠POB,又因为∠ACB=∠ONP=90°,∴△ACB∽△ONP∴=,又∵AB=13 AC=5 OP=,代入得ON=,∴AN=OA+ON=9∴在Rt△OPN中,有NP2=OP2﹣ON2=36在Rt△ANP中有PA===3∴PA=3.【点评】本题考查了圆周角的定理,垂径定理,勾股定理,等腰三角形判定和性质,相似三角形的判定和性质,作出辅助线是本题的关键.23.(10分)某商店经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?【分析】(1)分成1≤x<50和50≤x≤90两种情况进行讨论,利用:利润=每件的利润×销售的件数,即可求得函数的解析式;(2)结合(1)得到的两个解析式,结合二次函数与一次函数的性质分别求得最值,然后两种情况下取最大的即可.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口下,二次函数对称轴为x=45,=﹣2×452+180×45+2000=6050,当x=45时,y最大当50≤x≤90时,y随x的增大而减小,当x=50时,y=6000,最大综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;【点评】本题考查了二次函数的应用,理解利润的计算方法,理解利润=每件的利润×销售的件数,是关键.24.(10分)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B 出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.【分析】(1)分两种情况讨论:①当△BPQ∽△BAC时,=,当△BPQ∽△BCA时,=,再根据BP=5t,QC=4t,AB=10cm,BC=8cm,代入计算即可;(2)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出=,代入计算即可;(3)作PE⊥AC于点E,DF⊥AC于点F,先得出DF=,再把QC=4t,PE=8﹣CM=8﹣4t代入求出DF,过BC的中点R作直线平行于AC,得出RC=DF,D在过R的中位线上,从而证出PQ的中点在△ABC的一条中位线上.【解答】解:(1)∵AC=6cm,BC=8cm,∴AB==10cm,①当△BPQ∽△BAC时,∵=,BP=5t,QC=4t,AB=10cm,BC=8cm,∴=,∴t=1;②当△BPQ∽△BCA时,∵=,∴=,∴t=,∴t=1或时,△BPQ与△ABC相似;(2)如图所示,过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=PBsinB=3t,BM=4t,MC=8﹣4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM且∠ACQ=∠PMC=90°,∴△ACQ∽△CMP,∴=,∴=,解得:t=;(3)如图,作PM⊥BC于点M,PQ的中点设为D点,再作PE⊥AC于点E,DF ⊥AC于点F,∵∠ACB=90°,∴DF为梯形PECQ的中位线,∴DF=,∵QC=4t,PE=8﹣BM=8﹣4t,∴DF==4,∵BC=8,过BC的中点R作直线平行于AC,∴RC=DF=4成立,∴D在过R的中位线上,∴PQ的中点在△ABC的一条中位线上.【点评】此题考查了相似形综合,用到的知识点是相似三角形的判定与性质、中位线的性质等,关键是画出图形作出辅助线构造相似三角形,注意分两种情况讨论.25.(12分)如图,已知直线AB:y=kx+2k+4与抛物线y=x2交于A,B两点.(1)直线AB总经过一个定点C,请直接出点C坐标;(2)当k=﹣时,在直线AB下方的抛物线上求点P,使△ABP的面积等于5;(3)若在抛物线上存在定点D使∠ADB=90°,求点D到直线AB的最大距离.【分析】方法一:(1)要求定点的坐标,只需寻找一个合适x,使得y的值与k无关即可.(2)只需联立两函数的解析式,就可求出点A、B的坐标.设出点P的横坐标为a,运用割补法用a的代数式表示△APB的面积,然后根据条件建立关于a的方程,从而求出a的值,进而求出点P的坐标.(3)设点A、B、D的横坐标分别为m、n、t,从条件∠ADB=90°出发,可构造k 型相似,从而得到m、n、t的等量关系,然后利用根与系数的关系就可以求出t,从而求出点D的坐标.由于直线AB上有一个定点C,容易得到DC长就是点D 到AB的最大距离,只需构建直角三角形,利用勾股定理即可解决问题.方法二:(1)因为直线AB:y=kx+2k+4,y=k(x+2)+4,所以x=﹣2时,与k无关.(2)利用三角形面积公式水平底与铅垂高乘积的一半可求解.(3)列出A,B,D三点参数坐标,结合两根之和,两根之积得出关于m的一元二次方程,求出与k无关的m的值,并求出D点坐标,当直线CD与直线AB垂直时距离最大.【解答】方法一:解:(1)∵当x=﹣2时,y=(﹣2)k+2k+4=4.∴直线AB:y=kx+2k+4必经过定点(﹣2,4).∴点C的坐标为(﹣2,4).(2)∵k=﹣,∴直线的解析式为y=﹣x+3.联立,解得:或.∴点A的坐标为(﹣3,),点B的坐标为(2,2).过点P作PQ∥y轴,交AB于点Q,过点A作AM⊥PQ,垂足为M,过点B作BN⊥PQ,垂足为N,如图1所示.设点P的横坐标为a,则点Q的横坐标为a.∴y P=a2,y Q=﹣a+3.∵点P在直线AB下方,∴PQ=y Q﹣y P=﹣a+3﹣a2∵AM+NB=a﹣(﹣3)+2﹣a=5.∴S=S△APQ+S△BPQ△APB=PQ•AM+PQ•BN=PQ•(AM+BN)=(﹣a+3﹣a2)•5=5.整理得:a2+a﹣2=0.解得:a1=﹣2,a2=1.当a=﹣2时,y P=×(﹣2)2=2.此时点P的坐标为(﹣2,2).当a=1时,y P=×12=.此时点P的坐标为(1,).∴符合要求的点P的坐标为(﹣2,2)或(1,).(3)过点D作x轴的平行线EF,作AE⊥EF,垂足为E,作BF⊥EF,垂足为F,如图2.∵AE⊥EF,BF⊥EF,∴∠AED=∠BFD=90°.∵∠ADB=90°,∴∠ADE=90°﹣∠BDF=∠DBF.∵∠AED=∠BFD,∠ADE=∠DBF,∴△AED∽△DFB.∴.设点A、B、D的横坐标分别为m、n、t,则点A、B、D的纵坐标分别为m2、n2、t2.AE=y A﹣y E=m2﹣t2.BF=y B﹣y F=n2﹣t2.ED=x D﹣x E=t﹣m,DF=x F﹣x D=n﹣t.∵,∴=.∴=.∵t≠m,t≠n,∴=去分母并整理得:mn+(m+n)t+t2+4=0.∵点A、B是直线AB:y=kx+2k+4与抛物线y=x2交点,∴m、n是方程kx+2k+4=x2即x2﹣2kx﹣4k﹣8=0两根.∴m+n=2k,mn=﹣4k﹣8.∴﹣4k﹣8+2kt+t2+4=0,即t2+2kt﹣4k﹣4=0.即(t﹣2)(t+2k+2)=0.∴t1=2,t2=﹣2k﹣2(舍).∴定点D的坐标为(2,2).过点D作x轴的平行线DG,过点C作CG⊥DG,垂足为G,如图3所示.∵点C(﹣2,4),点D(2,2),∴CG=4﹣2=2,DG=2﹣(﹣2)=4.∵CG⊥DG,∴DC====2.过点D作DH⊥AB,垂足为H,如图3所示,∴DH≤DC.∴DH≤2.∴当DH与DC重合即DC⊥AB时,点D到直线AB的距离最大,最大值为2.∴点D到直线AB的最大距离为2.方法二:(1)略.(2)当k=﹣时,直线AB:y=﹣x+3,又y=x2,∴x1=﹣3,x2=2,∴A(﹣3,),B(2,2),过点P作x轴垂线,交直线AB于Q,设P(t,),∴Q(t,﹣t+3),S△ABP=(Q Y﹣P Y)(B X﹣A X)=(﹣t+3﹣t2)(3+2)=5,∴t2+t﹣2=0,∴t1=﹣2,t2=1,∴P1(﹣2,2),P2(1,).(3)∵D为抛物线上一点,∴设D(m,m2),A(x1,),B(x2,),∵∠ADB=90°,∴AD⊥BD,∴K AD×K BD=﹣1,×=﹣1,∴m2+(x1+x2)m+x1x2=﹣4,∵y=kx+2k+4,y=x2,∴x2﹣2kx﹣4k﹣8=0,∴x1+x2=2k,x1x2=﹣4k﹣8,∴m2+2km﹣4k﹣8=﹣4,∴m2+2km﹣4k﹣4=0,∴当m=2时,此式与k无关,∴D(2,2)∵y=kx+2k+4经过定点C(﹣2,4),∴当CD⊥AB时,距离最大,∴CD=.【点评】本题考查了解方程组、解一元二次方程、一元二次方程根与系数的关系、勾股定理、相似三角形的性质与判定等知识,考查了通过解方程组求两函数交点坐标、用割补法表示三角形的面积等方法,综合性比较强.构造K型相似以及运用根与系数的关系是求出点D的坐标的关键,点C是定点又是求点D到直线AB 的最大距离的突破口.。

2014年武汉市中考数学试题(样卷)(word版含答案).

2014年武汉市中考数学试题(样卷)(word版含答案).

2014年武汉市初中毕业生学业考试数学试卷(样卷第Ⅰ卷(选择题,共30分一、选择题(共10小题,每小题3分,共30分下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑. 1.在0,1,-1,-2这四个数中,最小的一个数是( A .2.5 B .-2.5 C .0 D .3 2.函数12+=x y 中自变量x 的取值范围是(A .x ≥21 B .x ≥21- C .x <21 D .x <21- 3.如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0,则E 点的坐标为( A .(2,0 B .(23,23C .(2,2D .(2,2 4则这20户家庭该月用电量的众数和中位数分别是(A .180,160B .160,180C .160,160D .180,180 5.下列计算正确的是( A .(((5322a a a -=-+- B .(((632a a a -=-⋅-C .(623a a-=- D .(((336a a a -=-÷-6.下列计算错误的是(A .102515=+-B .228=C .13334=-D .1165-=--7.如图,由四个棱长为1的立方块组成的几何体的左视图是(A .B .C .D .8.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级.将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是(A .2.25B .2.5C .2.95D .342.5%3分2分1分30%4分成绩频数扇形统计图成绩频数条形统计图分数9.如下左图,矩形ABCD 的面积为20cm 2,对角线交于点O ,以AB 、AO 为邻边作平行四边形AOC 1B ,对角线交于O 1;以AB 、AO 1为邻边作平行四边形AO 1C 2B ;…依此类推,则平行四边形AO 4C 5B 的面积为( A .2645cm B .285cm C .2165cm D .2325cm10.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为(A .12秒.B .16秒.C .20秒.D .24秒.第Ⅱ卷(非选择题,共90分二、填空题(共6小题,每小题3分,共18分11.分解因式:m mn mn 962++= .12.过度包装既浪费资源又污染环境.据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨.把数3120000用科学记数法表示为 .13.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是 .14.如图,一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升与时间x (单位:分钟之间的函数关系如图所示.关停进水管后,经过分钟, 容器中的水恰好放完.15.如图,半径为5的⊙P 与轴交于点M (0,-4,N (0,-10,函数(0ky x x=<的图像过点P , 则k = . 16.如图在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以CD 、CB 为边作□CDEB ,当AD = 时,□CDEB 为菱形.三、解答题(共9小题,共72分下列各题需要在答题卷指定位置写出文字说明、证明过程、演算步骤或画出图形. 17.解方程:xx 332=-.18.直线b x y +=2经过点(3,5,求关于x 的不等式b x +2≥0的解集.第16题图 BA 第13题图/分19.如图,AC 和BD 相交于点E ,AB ∥CD ,BE =DE .求证:AB =CD .20.在平面直角坐标系中,△ABC 的顶点坐标是A (-7,1,B (1,1,C (1,7.线段DE 的端点坐标是D (7,-1,E (-1,-7.(1试说明如何平移线段AC ,使其与线段ED 重合; (2将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标; (3画出(2中的△DEF ,并和△ABC 同时绕坐标原点O 逆时针旋转90°,画出旋转后的图形.21.高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图.(1该校近四年保送生人数的极差是 . 请将拆线统计图补充完整.(2该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进入高中阶段的学习情况.请用列表法或画树形图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.22.(本题满分8分如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中点,连接P A ,PB ,PC . (1如图①,若∠BPC =60°,求证:AP AC 3=;(2如图②,若2524sin =∠BPC ,求PAB ∠tanA B CDE 第22题图①第22题图②23.某市政府大力扶持大学生创业。

湖北武汉中考数学试卷及答案#

湖北武汉中考数学试卷及答案#

2014年武汉市初中毕业生学业考试数学试卷一、选择题(共10小题,每小题3分,满分30分)下列各题中均有四个备选答案中,其中有且只有一个是正确的1.在实数-2、0、2、3中,最小的实数是()A.-2 B.0 C.2 D.32.若代数式3x在实数范围内有意义,则x的取值范围是()A.x≥-3 B.x>3 C.x≥3 D.x≤33.光速约为300 000千米/秒,将数字300 000用科学记数法表示为()A.3×104 B.3×105 C.3×106 D.30×1044.在一次中学生田径运动会上,参加调高的15名运动员的成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2A.4 B.1.75 C.1.70 D.1.655.下列代数运算正确的是()A.(x3)2=x5 B.(2x)2=2x2 C.x3·x2=x5 D.(x+1)2=x2+16.如图,线段AB两个端点的坐标分别为A(6,6)、B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,3) B.(4,3)C.(3,1) D.(4,1)7.如图,由4个大小相同的正方体组合而成的几何体,其俯视图是()8.为了解某一路口某一时刻的汽车流量,小明同学10天中在同一时段统计该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为( ) A .9 B .10 C .12 D .159.观察下列一组图形中的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,……,按此规律第5个图中共有点的个数是( )A .31 B .46 C .51 D .6610.如图,PA 、PB 切⊙O 于A 、B 两点,CD 切⊙O 于点E 交PA 、PB 于C 、D ,若⊙O 的半径为r ,PCD 的周长等于3r ,则tan ∠APB 的值是( )A .13125B .512C .1353D .1332二、填空题(共6小题,每小题3分,满分18分) 11.计算:-2+(-3)=_______12.分解因式:a 3-a =_______________13.如图,一个转盘被分成7个相同的扇形,颜色分别为红黄绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为_______14.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y (米)与时间t (秒)之间的函数关系如图所示,则这次越野跑的全程为______米15.如图,若双曲线xky =与边长为5的等边△AOB 的边OA 、AB 分别相交于C 、D 两点,且OC =3BD ,则实数k 的值为______16.如图,在四边形ABCD 中,AD =4,CD =3,∠ABC =∠ACB =∠ADC =45°,则BD 的长为______三、解答题(共9小题,共72分) 17.解方程:xx 322=-18.已知直线y=2x-b经过点(1,-1),求关于x的不等式2x-b≥0的解集19.如图,AC和BD相交于点O,OA=OC,OB=OD,求证:AB∥CD20.如图,在直角坐标系中,A(0,4)、C(3,0)(1) ①画出线段AC关于y轴对称线段AB②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD(2) 若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值21.袋中装有大小相同的2个红球和2个绿球(1) 先从袋中摸出1个球后放回,混合均匀后再摸出1个球①求第一次摸到绿球,第二次摸到红球的概率②求两次摸到的球中有1个绿球和1个红球的概率(2) 先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果22.如图,AB是⊙O的直径,C、P是弧AB上两点,AB=13,AC=5(1) 如图(1),若点P是弧AB的中点,求PA的长(2) 如图(2),若点P是弧BC的中点,求PA得长23.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:万晔極价剀壳觇錛钒澱飢狲鲐愾悯轔铎點邺。

2014年武汉市中考四调数学真题

2014年武汉市中考四调数学真题

10.如图,P为⊙O内一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点,若⊙O的半径为3,OP=√3,则弦BC的最大值为()A.2√3B.3C.√6D.3√214.一个有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的若干分钟内又进水又出水,之后只出水不进水,每分的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)的函数关系如图所示,则a=15.如图所示,反比例函数y=k/x的图像上的三个点A、B、C的横坐标依次为1,2,3,若AB=2BC,则k=16.如图,在等边三角形ABC中,射线AD四等分∠BAC交BC于点D,且∠BAD>∠DAC,则CD/BD=22. 已知P为⊙O外一点,PA、PB分别切⊙O于A、B两点,点C为⊙O上一点①如图1,若AC为直径,求证:OP∥BC②如图2,若sin∠P=12/13,求tan∠C的值.23.某工厂生产一种矩形材料板,其长宽之比为3:2,每张材料板的成本c(单位:元)与它的面积(单位:cm2)成正比例,每张材料板的销售价格y(单位:元)与其宽x之间满足我们学习过的三种函数关系式中的一种.下表记录了该工厂生产、销售该材料板的一些数据:⑴求一张材料板的销售价格y与其宽x之间的函数关系式,不要求写出自变量的取值范围;⑵若一张材料板的利润w为销售价格y与成本c的差,①请直接写出一张材料板的利润w与其宽x之间的函数关系式,不要求写出自变量的取值范围;②当材料板的宽为多少时,一张材料板的利润最大?最大利润是多少/24.如图1,在△ABC中,点D从A出发,在AB边上以每秒一个单位速度向点B运动,同时点F从B出发,在BC边上以相同的速度向点C运动,过点D作DE∥BC交AC于E,运动时间为t秒.⑴若AB=5,BC=6,当t为何值时,四边形DFCE为平行四边形;⑵如图2,连接AF、CD,若BD=DE,求证:∠BAF=∠BCD;⑶如图3,AF交DE于点M,在DC上取点N,使MN∥AC,连接FN.①求证:BF/CF=DN/CN;②若AB=5,BC=6,AC=4,当MN=FN时,请直接写出t的值.25.在平面直角坐标系xoy中,抛物线c1:y=ax2-4a+4(a<0)经过第一象限内的定点P.①直接写出点P的坐标;②直线y=2x+b与抛物线c1相交于A、B两点,如图1所示,直线PA、PB与x轴分别交于D、C两点,当PD=PC时,求a的值;③若a=-1,点M的坐标为(2,0)是x轴上的点,N为抛物线c1上的点,Q为线段MN 的中点.设点N在抛物线c1上运动时,Q的运动轨迹为抛物线c2.求抛物线c2的解析式.。

湖北省武汉市新洲区2014届中考数学训练题及答案

湖北省武汉市新洲区2014届中考数学训练题及答案

新洲2014届九年级数学训练题武汉开发区第四中学 王为成供一、选择题(共10题,每小题3分,共30分) 1.在-2,0,-1,2这四个数中,最小的数是 A .-2 B .0 C .-1 D .2 2.式子x -2在实数范围内有意义,则x 的取值范围是 A.x <2 B.x ≤2 C.x <-2 D.x ≤-2 3.下列计算正确的是A.(-6)+(+4)=-10B. 0-3=3C.523=+ D.12=324.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是( ) A .25,25 B .24.5,25 C .25,24.5 D .24.5,24.5 5.下列运算正确的是A .3332a a a =⋅B .6332a a a =+C .()63282a a -=- D . 236a a a =÷6.如图是由大小相同的正方体摆成的立体图形,它的左视图...是A B C D 7.如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,S 正方形ODEF =2S 正方形OABC ,点A 的坐标为(1,0),则E 点的坐标为A.(2,0)B.(2,2)C.(23,23) D.(2,2)8.某校八年级所有学生参加2014年生物结业考试,现从中随机抽取了部分学生的考试 成绩进行统计后分为A 、B 、C 、D 四个等级,并将统计结果绘制成如下的统计图.说明:A 级:100分~90分;B 级:89分~80分;C 级:79分~60分;D 级:60分以下 若该校八年级共有850名学生,则估计该年级及格(≥60分)的学生人数大约有A.500人B.561人C. 765人D.800人9.如图,已知121=A A , 9021=∠A OA ,3021=∠OA A ,以斜边2OA 为直角边作直角三角形,使得 3032=∠OA A ,依次以前一个直角三角形的斜边为直角边一直作含o30角的直角三角形,则20112010OA A Rt ∆的最小边长为 A .20092 B.20102C.2009)32(D.2010)32(10.如图,AB 是⊙O 的直径,点C 在⊙O 上,且tan ∠ABC =21,D 是⊙O 上的一个动点(C ,D 两点位于直径AB 的两侧),连接CD ,过点C 作CE ⊥CD 交DB 的延长线于点E .若⊙O 的半径是5,则线段CE 长度的最大值是 A.25 B.55 C.5516 D.45二、填空题(共6小题,每小题3分,共18分)11. 分解因式:=+-n mn n m 22.12.2014年2月14日从北京航天飞行控制中心获悉,嫦娥二号卫星再次刷新我国深空探测最远距离记录,达到7 000万公里,这是我国航天器迄今为止飞行距离最远的一次“太空长征” .将7 000万公里用科学记数法表示应为 公里.13.小明的试卷夹里放了大小相同的12张试卷,其中语文5张、数学4张、英语3张,他随机地从试卷夹中抽出1张,抽出的试卷恰好是数学试卷的概率是.46%20%DC BA14.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车 到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y (千米)与货车行驶时间x (小时)之间的函数图象如图所示,则快递车从乙地返回时的速度为 千米/时.14题图 15题图 16题图 15.如图,双曲线y = kx经过Rt △OMN 斜边上的点A ,与直角边MN 相交于点B ,已知OA=2AN ,△OAB 的面积为5,则k= .16.如图,在Rt △ABC 中,∠ACB =90°,AC=BC=6cm ,动点P 从点A 出发,沿AB 方向以每cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P '.设Q 点运动的时间为t 秒,若四边形QP CP '为菱形,则t 的值为 .三、解答题(共9小题,共72分) 17.(本题满分6分)解方程:13932=-+-x xx18.(本题满分6分)直线2+=kx y 经过点A(1,6),求关于x 的不等式02≤+kx 的解集.19.(本题满分6分)如图,点B 、F 、C 、E 在一条直线上, FB=CE ,AB ∥ED ,AC ∥FD. 求证:AC=DF .B P21.(本题满分7分)我区某中学为备战市运会,在校运动队的学生中进行了全能选手的选拔,并将参加选拔学生的综合成绩(得分为整数,满分为100分)分成四组,绘成了如下尚不完整的统计图表.根据图表信息,回答下列问题:(1)参加活动选拔的学生共有 人;表中m = ,n = ;(2)若将各组的组中值视为该组的平均值,请你估算参加选拔学生的平均成绩;(3)将第一组中的4名学生记为A 、B 、C 、D ,由于这4名学生的体育综合水平相差不大,现决定随机挑选其中两名学生代表学校参赛,试通过画树形图或列表的方法求恰好选中A 和B 的概率. 22.(本题满分8分)如图,以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点E . (1) 求证:DE⊥AC;(2) 连结OC 交DE 于点F ,若3sin 4∠=ABC ,求OF FC20.(本题满分7分)如图,在边长为1的正方形组成的网格中,△ABC 的顶点均在格点上,点A 、B 、C 的坐标分别是A (-2,3)、B (-1,2)、C (-3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1. (1)在正方形网格中作出△A 1B 1C 1;(2)求点A 经过的路径弧AA 1的长度;(结果保留π)(3)在y 轴上找一点D ,使DB+DB 1的值最小,并求出D 点坐标.21 第一组8%第四组42%第二组 ?第三组30%23.(本题满分10分)某校学生参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y (个)与销售单价x (元/个)之间的对应关系如表所示: (1)试判断y 与x 之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w (元)与销售单价x (元/个)之间的函数关系式;(3)在(2)的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.24.(本题满分10分)如图,在△ABC 中,AB =AC =10cm ,BC =16cm ,DE =4cm .动线段DE(端点D 从点B 开始)沿BC 边以1cm/s 的速度向点C 运动,当端点E 到达点C 时运动停止.过点E 作EF ∥AC 交AB 于点F(当点E 与点C 重合时,EF 与CA 重合),连接DF ,设运动的时间为t 秒(t ≥0).(1) 求出线段EF 的长(用含t 的代数式表示);(2) 在这个运动过程中,△DEF 能否为等腰三角形?若能,请求出t 的值;若不能,请说明理由;(3) 设M 、N 分别是DF 、EF 的中点,求整个运动过程中,MN 所扫过的面积.BCDEAB (D )CEF25.(本题满分12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+4经过A(-3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC.动点P 从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时动点Q从点C出发,沿线段CA以某一速度向点A移动.(1)求该抛物线的解析式;(2)若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值;(3)该抛物线的对称轴上是否存在一点M,使MQ+MA的值最小?若存在,求出点M的坐标;若不存在,请说明理由.数学参考答案二、11.2)1(-m n 12.7107⨯ 13.3114.90 15.12 16.2 三、17. 4-=x 18. x ≤﹣2119.证明略 20.解:(1)如图所示: (2)在旋转过程中,点A 经过的路径弧AA 1的长度为:;(3)∵B 、B 1在y 轴两旁,连接BB 1交y轴于点D ,设D′为y 轴上异于D 的点,显然D′B+D′B 1>DB+DB 1, ∴此时DB+DB 1最小,设直线BB 1解析式为出:y=kx+b ,依据题意得解得:k= -31,b =35 ∴y =3531+-x ∴D(0,35)21.解:(1)∵第一组有4人,所占百分比为8%, ∴学生总数为:4÷8%=50; ∴n=50×30%=15,⎩⎨⎧=+=+-122b k b km=50﹣4﹣15﹣21=10. 故答案为50,10,15; (2)==74.4;(3)将第一组中的4名学生记为A 、B 、C 、D ,现随机挑选其中两名学生代表学校参赛,由上表可知,总共有12种结果,且每种结果出现的可能性相等.恰好选中A 和B 的结果有2种,其概率为==.22.(1)证明:连接OD .∵DE 是⊙O 的切线∴DE ⊥OD ,即∠ODE=90° ∵AB 是⊙O 的直径 ∴O 是AB 的中点 又∵D 是BC 的中点 ∴OD ∥AC∴∠DEC=∠ODE= 90° ∴DE ⊥AC .(2)连接AD . ∵OD ∥AC∴ECOD FC OF ∵AB 为⊙O 的直径 ∴∠ADB= ∠ADC =90° 又∵D 为BC 的中点, ∴AB=AC∵sin ∠ABC= AD AB =34故设AD=3x , 则AB=AC=4x , OD=2x . ∵DE ⊥AC∴∠ADC= ∠AED= 90° ∵∠DAC= ∠EAD ∴△ADC ∽△AED∴=AD ACAE AD∴AC AE AD ⋅=2∴94=AE x∴74=EC x∴87==OF OD FC EC .23.24.解:(1) 易求BE =(t +4)cm , EF =58(t +4)cm .(2) 分三种情况讨论: ① 当DF =EF 时,有∠ED F =∠DEF =∠B, ∴ 点B 与点D 重合, ∴ t =0. ② 当DE =EF 时, ∴4=58(t +4),解得:t =125.③ 当DE =DF 时,有∠D FE =∠DEF =∠B=∠C , ∴△DEF∽△AB C . ∴DE AB =EF BC ,即410=58(t +4)16, 解得:t =15625.综上所述,当t =0、125或15625秒时,△DEF 为等腰三角形.(3) 设P 是AC 的中点,连接BP , ∵ EF ∥AC ,∴ △FBE ∽△ABC . ∴ EF AC =BE BC , ∴ EN CP =BE BC.又∠BEN =∠C , ∴ △NBE ∽△PBC , ∴ ∠NBE =∠PB C .∴ 点N 沿直线BP 运动,MN 也随之平移.如图,设MN 从ST 位置运动到PQ 位置,则四边形PQST 是平行四边形.∵ M 、N 分别是DF 、EF 的中点,∴ MN ∥DE,且ST =MN =12DE =2.分别过点T 、P 作TK⊥BC ,垂足为K ,PL⊥BC,垂足为L ,延长ST 交PL 于点R ,则四边形TKLR 是矩形,ABCDE FABCD EFAB CD E MPF N当t =0时,EF =58(0+4)=52,TK =12EF·sin∠DE F =12×52×3=3;当t =12时,EF =AC =10,PL =12AC·sinC =12×10×35=3∴P R =PL -RL =PL -TK =3-34=94.∴S □PQST =ST ·PR=2×94=92.∴整个运动过程中,MN 所扫过的面积为92cm 2.25.解:(1)∵抛物线y =ax2+bx +4经过A (-3,0)、B (4,0)两点∴⎩⎪⎨⎪⎧9a -3b +4=016a +4b +4=0 解得a =-1 3 ,b =1 3∴所求抛物线的解析式为y =-13x2+13x +4 (2)连接DQ ,依题意知AP =t ∵抛物线y =-13x2+13x +4与y 轴交于点C ∴C (0,4)又A (-3,0),B (4,0)可得AC =5,BC =42,AB =7∵BD =BC ,∴AD =AB -BD =7-42∵CD 垂直平分PQ ,∴QD =DP ,∠CDQ =∠CDP ∵BD =BC ,∴∠DCB =∠CDB ∴∠CDQ =∠DCB ,∴DQ ∥BC ∴△ADQ ∽△ABC ,∴ADAB=DQBC∴ADAB=DPBC,∴7-427=DP42解得DP =42-32 7 ,∴AP =AD +DP =177∴线段PQ 被CD 垂直平分时,t 的值为177(3)设抛物线y =-13x2+13x +4的对称轴x =12与x 由于点A 、B 关于对称轴x =12对称,连接BQ 交对称轴于点M 则MQ +MA =MQ +MB ,即MQ +MA =BQBLK当BQ⊥AC时,BQ最小,此时∠EBM=∠ACO∴tan∠EBM=tan∠ACO=3 4∴MEBE=34,即ME4-12=34,解得ME=218∴M(12,218)∴在抛物线的对称轴上存在一点M(12,218),使得MQ+MA的值最小.。

2014年武汉市中考真题

2014年武汉市中考真题

2014年武汉市初中毕业生学业考试英语试卷第Ⅰ卷(选择题,共85分)第一部分听力部分一、听力测试(共三节)第一节(共5小题,每小题1分,满分5分)听下面5个问题。

每个问题后有三个答语,从题中所给的A、B、C三个选项中选出最佳选项。

听完每个问题后,你都有5秒钟的时间来作答和阅读下一小题。

每个问题仅读一遍。

1. A. My classmate. B. Friendly. C. Sixteen years old2. A. Very dirty B. A note. C. It‘s brown3. A. It‘s fast. B. At 8:00 am. C. It‘s crowded.4. A. It‘s heavy B. Too big. C. The one on the bed.5. A. I‘m nodding. B. A lot of hair C. Better, thanks.第二节(共7小题,每小题1分,满分7分)听下面7段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

6. What is Kate‘s mother?A. A doctor.B. A nurse.C. A patient.7. Where is the man?A. In the cinema.B. On the farm.C. At a store.8. What does the man want to do?A. To buy stamps.B. To move to the next door.C. To wait in line.9. What are the two people talking about?A. Scientists.B. Dreams.C. Hobbies.10. How much did the lady pay for her skirt?A. $24.B. $12.C. $6.11. What happened to the man?A. He went to the wrong meeting.B. He lost his way to the meeting.C. He forgot his meeting.12. When did the man‘s tooth begin to hurt again?A. Last autumn.B. Last Sunday.C. Last Saturday.第三节(共13小题,每小题1分,满分13分)听下面4段对话或独白。

2014年武汉市中考数学试题(完美答案解析版)

2014年武汉市中考数学试题(完美答案解析版)

2014年武汉市初中毕业生学业考试数学试卷一、选择题(共10小题,每小题3分,满分30分)下列各题中均有四个备选答案中,其中有且只有一个是正确的1 •在实数—8 •为了解某一路口某一时刻的汽车流量,小明同学位:辆),将统计结果绘制成如下折线统计图:10天中在同一时段统计该路口的汽车数量(单D. 159 •观察下列一组图形中的个数,其中第个图中共有19个点,……,按此规律第A.—2B. 0C. 22•若代数式x —3在实数范围内有意义,则x的取值范围是(A. x> —3 •光速约为3 B. x> 3300 000千米/秒,将数字4 5A. 3X 10B. 3X 10C. x> 3300 000用科学记数法表示为(6 4C. 3X 10D. 30 X 1015名运动员的成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数124332那么这些运动员跳高成绩的众数是()4 .在一次中学生田径运动会上,参加调高的A. 4B. 1.755•下列代数运算正确的是()3 2 5 2A. (x)= xB. (2x)=C. 1.70D. 1.652x2^325C. x • X = xB(8,2),以原点6 •如图,线段AB两个端点的坐标分别为A(6, 6)、内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为(2 2D . (x + 1)= x + 1O为位似中心,在第一象限)A. (3,3)B. (4,3)C. (3,1)7 •如图,由4个大小相同的正方体组合而成的几何体,D. (4, 1)其俯视图是(2、0、2、3中,最小的实数是(A. 31B. 46C. 51D. 66C. 12A. 9B. 10计算:—2+ (— 3) = _____3分解因式: a — a = ________________如图,一个转盘被分成 7个相同的扇形,颜色分别为红黄绿三种,指针的位置固定,转动转 盘后任其自由停止, 其中的某个扇形会恰好停在指针所指的位置 (指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为 ____________一次越野跑中,当小明跑了1600米时,小刚跑了 1400米,小明、小刚在此后所跑的路程y(米)与时间t (秒)之间的函数关系如图所示,则这次越野跑的全程为_____ 米k如图,若双曲线 与边长为5的等边△ AOB 的边OA 、AB 分别相交于C 、D 两点,且xOC = 3BD ,则实数k 的值为________ 如图,在四边形 ABCD 中,AD = 4, CD = 3, / ABC =Z ACB =Z ADC = 45 ° 贝U BD 的长为 ________ 解答题(共 9小题,共72 分)已知直线y = 2x — b 经过点(1,— 1),求关于x 的不等式2x — b > 0的解集 如图,AC 和BD 相交于点 O , OA = OC, OB = OD ,求证:AB // CD如图,在直角坐标系中, A (0, 4)、C (3, 0) (1)①画岀线段AC 关于y 轴对称线段 AB10.、11. 12. 13. 14.15. 16.三、 17.18. 19.20.如图,PA 、PB 切O O 于A 、B 两点,CD 切O O 于点E 交PA 、PB 于C 、D ,若O O 的半径为r , △ PCD 的周长等于 3r ,贝U tan / APB 的值是( )A .51312 C . 3 .13 5B. 12 5D .“133 填空题(共 6小题,每小题 3分,满分18分)解方程: 2 = 3x—2 x②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD/ x轴,请画岀线段CD(2)若直线y= kx平分(1)中四边形ABCD的面积,请直接写岀实数k的值23.九(1)班数学兴趣小组经过市场调查,整理岀某种商品在第x ( K x < 90)天的售价与销售量的相关信息如下表:时间X (天)1 < x v 5050 < x < 90售价(元/ 件) x + 4090每天销量(件)200 — 2x已知该商品的进价为每件 30元,设销售该商品的每天利润为y 元(1) 求岀y 与x 的函数关系式(2) 问销售该商品第几天时,当天销售利润最大,最大利润是多少? (3) 该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写岀结果24. 如图,Rt A ABC 中,/ ACB= 90 ° AC = 6 cm ,BC = 8 cm ,动点P 从点B 岀发,在 BA 边上以 每秒5 cm的速度向点A 匀速运动,同时动点 Q 从点C 岀发,在CB 边上以每秒4 cm 的速度 向点B 匀速运动,运动时间为 t 秒(0v t v 2),连接PQ (1) 若厶BPQ ” ABC 相似,求t 的值 (2) 连接AQ 、CP,若AQ 丄CP,求t 的值(3) 试证明:PQ 的中点在△ ABC 的一条中位线上21 •袋中装有大小相同的 2个红球和2个绿球 (1)先从袋中摸岀1个球后放回,混合均匀后再摸岀1个球① 求第一次摸到绿球,第二次摸到红球的概率(2) 先从袋中摸岀1个球后不放回,再摸岀1个球,则两次摸到的球中有球的概率是多少?请直接写出结果 22 .如图,AB 是O O 的直径,C 、P 是弧(1) 如图⑴,若点P 是弧AB 的中点, AB 上两点,AB =13,1个绿球和1个红1 225.如图,已知直线AB: y= kx+2k+ 4与抛物线y= x交于A、B两点2(1) 直线AB总经过一个定点C,请直接写岀点C坐标1(2) 当k=-丄时,在直线AB下方的抛物线上求点P,使△ ABP的面积等于52(3) 若在抛物线上存在定点D使/ ADB= 90 °求点D到直线AB的最大距离2014年武汉市中考数学试卷答案解析版1、考点:实数大小比较•分析:根据正数大于0, 0大于负数,可得答案.解答:解:-2 v 0v 2V 3,最小的实数是-2 ,故选:A.点评:本题考查了实数比较大小,正数大于0, 0大于负数是解题关键.2、考点:二次根式有意义的条件.分析:先根据二次根式有意义的条件得出关于x的不等式,求出x的取值范围即可.解答:解:•••使X-3在实数范围内有意义,X- 3》0,解得X>3.故选C.点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.3、考点:科学记数法一表示较大的数 .分析:科学记数法的表示形式为a x I0n的形式,其中1w|a| v 10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.解答:解:将300 000用科学记数法表示为:3X 10 5.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a x 10n的形式,其中K |a| v 10,n为整数,表示时关键要正确确定a的值以及n的值.4、考点:众数.分析:根据众数的定义找出出现次数最多的数即可.解答:解:••• 1.65出现了4次,出现的次数最多,•••这些运动员跳高成绩的众数是 1.65 ;故选D.点评:此题考查了众数,用到的知识点是众数的定义,众数是一组数据中出现次数最多的数.5、考点:幕的乘方与积的乘方;同底数幕的乘法;完全平方公式.分析:根据幕的乘方与积的乘方、同底数幕的乘法法则及完全平方公式,分别进行各选项的判断即可.解答:解:A、(x3)2=x6,原式计算错误,故本选项错误;B、(2x)2=4x2,原式计算错误,故本选项错误;C x3?x2=x5,原式计算正确,故本选项正确;D(x+1)2=X2+2X+1,原式计算错误,故本选项错误;故选C.点评:本题考查了幕的乘方与积的乘方、同底数幕的运算,掌握运算法则是关键.6、考点:位似变换;坐标与图形性质.分析:利用位似图形的性质结合两图形的位似比进而得出C点坐标.解答:解:•••线段AB的两个端点坐标分别为 A (6,6),B (8,2),以原点O为位似1中心,在第一象限内将线段AB缩小为原来的-后得到线段CD•端点C的坐标为:(3, 3).故选:A.点评:此题主要考查了位似图形的性质,禾U用两图形的位似比得出对应点横纵坐标关系是解题关键.7、考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面看可得到一行正方形的个数为3,故选D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.&考点:折线统计图;用样本估计总体.分析:先由折线统计图得出10天中在同一时段通过该路口的汽车数量超过 200辆的天数,求出其频率,再利用样本估计总体的思想即可求解.解答:解:由图可知,10天中在同一时段通过该路口的汽车数量超过 200辆的有4天,4频率为:乔=0.4 ,•••估计一个月(30天)该时段通过该路口的汽车数量超过 200辆的天数为:30X 0.4=12 (天).故选C.点评:本题考查了折线统计图及用样本估计总体的思想,读懂统计图,从统计图中得到 必要的信息是解决问题的关键.9、 考点:规律型:图形的变化类分析:由图可知:其中第1个图中共有1 + 1X 3=4个点,第2个图中共有1+1X 3+2X 3=10 个点,第3个图中共有1+1 X 3+2X 3+3 X 3=19个点,…由此规律得出第 n 个图有 1+1 X 3+2 X 3+3 X 3+…+3n 个点. 解答:解:第1个图中共有1 + 1 X 3=4个点,第2个图中共有1 + 1X 3+2X 3=10个点, 第3个图中共有 1+1X 3+2X 3+3 X 3=19个点,… 第n 个图有1+1 X 3+2X 3+3X 3+…+3n 个点. 所以第5个图中共有点的个数是 1 + 1X 3+2 X 3+3 X 3+4X 3+5 X 3=46. 故选:B . 点评:此题考查图形的变化规律,找出图形之间的数字运算规律,利用规律解决问题. 10、 考点:切线的性质;相似三角形的判定与性质;锐角三角函数的定义.分析:(1)连接OA OB OP 延长BO 交PA 的延长线于点F .利用切线求得 CA=CE32DB=DE PA=PB 再得出 PA=PB= r .利用 Rt △ BF3 RT A OAF 得出 AF=3 FB ,在 RT A FBP 中,禾U 用勾股定理求出 BF,再求tan / APB 的值即可.解答:解:连接 OA OB OP,延长BO 交PA 的延长线于点 F .••• PA, PB 切O O 于A 、B 两点,CD 切O O 于点E •••/ OAP=z OBP=90 , CA=CE DB=DE PA=PB•/△ PCD 勺周长=PC+CE+DE+PD=PC+AC+PD+DB=PA+PB=3r3• PA=PB= | .在 Rt △ BFP 和 Rt △ OAF 中,rZFA0=ZFBP L Z0AF=ZPFB ,• Rt △ BFP^ RT ^ OAF•'—=: …丽BP 3 3,2r2• AF 士 FB,3在 Rt △ FBP 中, •/ PF 2- P B"=FB•••( PA+AF 2- P$=FB•( f 「+三州 2—(,0 2 = BF ,BF= r ,518/ APB===='',PB 35,2r故选:B .解得 二 tanD点评:本题主要考查了切线的性质,相似三角形及三角函数的定义,解决本题的关键是 切线与相似三角形相结合,找准线段及角的关系. 11、 考点:有理数的加法分析:根据有理数的加法法则求出即可.解答:解:(-2) + (-3) =- 5, 故答案为:-5.点评:本题考查了有理数加法的应用,注意:同号两数相加,取原来的符号,并把绝对 值相加. 12、 考点:提公因式法与公式法的综合运用分析:先提取公因式 a ,再对余下的多项式利用平方差公式继续分解.解答:解:a 3 - a=a (a 2 - 1) =a ( a+1)( a - 1). 故答案为:a (a+1)( a - 1).点评:本题考查了提公因式法, 公式法分解因式,提取公因式后利用平方差公式进行二 次分解,注意要分解彻底.13、 考点:概率公式分析:由一个转盘被分成 7个相同的扇形,颜色分为红、黄、绿三种,红色的有 3个扇形,直接利用概率公式求解即可求得答案.解答:解:•一个转盘被分成 7个相同的扇形,颜色分为红、黄、绿三种,红色的有 3个扇形,.••指针指向红色的概率为:;.故答案为:'.7点评:此题考查了概率公式的应用•注意用到的知识点为:概率 =所求情况数与总情况数之比.14、考点:一次函数的应用分析:设小明的速度为a 米/秒,小刚的速度为b 米/秒,由行程问题的数量关系建立方 程组求出其解即可.解答:解:设小明的速度为 a 米/秒,小刚的速度为 b 米/秒,由题意,得L b=4•••这次越野跑的全程为: 1600+300 X 2=2200米.故答案为:2200.点评:本题考查了行程问题的数量关系的运用, 二元一次方程组的解法的运用, 解答时由函数图象的数量关系建立方程组是关键.15、考点:反比例函数图象上点的坐标特征;等边三角形的性质分析:过点 C 作CEL x 轴于点E ,过点D 作DF 丄x 轴于点F ,设OC=3x 贝U BD=x 分别 表示出点C 点D 的坐标,代入函数解析式求出 k ,继而可建立方程,解出 x 的 值后即可得出k 的值.解答:解:过点 C 作CE! x 轴于点E ,过点D 作DF L x 轴于点F ,设 OC=3x,贝U BD=x, 在 Rt A OCE 中,/ COE=60 ,则 OE=^x , CE 旦l x ,\ 1在 Rt A BDF 中,BD=x,ZDBF=60 ,2 2 _则点C 坐标为(:x ,二一x ),■w£E FB则BF= x, DF= ;x,2 2则点D的坐标为(5 - x,丄_x),2 2将点C的坐标代入反比例函数解析式可得:k- -x2,4将点D的坐标代入反比例函数解析式可得:k=: x- x2,2 4则三/=〔I- \2,4 24解得:x i = 1 , x2=0 (舍去),故k」fZ "=空4 4故答案为:';•4点评:本题考查了反比例函数图象上点的坐标特征,解答本题关键是利用k的值相同建立方程,有一定难度.16、考点:全等三角形的判定与性质;勾股定理;等腰直角三角形分析:根据等式的性质,可得/ BAD与/ CAD的关系,根据SAS可得△ BAD与△ CAD 由勾股定理得DD'=二「一"—忙,「| | " I-:Z D' DA+Z ADC=90由勾股定理得CD'=丨,|,• BD=CD =「如故答案为:-.点评:本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,作出全等图形是解题关键.17、考点:解分式方程分析: 分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答: 解:去分母得:2x=3x - 6,解得:x=6,的关系,根据全等三角形的性质,可得答案.解答:解:作AD'丄AD, AD' =AD,连接•••/ BAC+Z CAD=Z DAD' +/ CAD, 即/BAD=Z CAD',在厶BAD与厶CAD'中,r BA=CAZBAD=ZCAD Z,L AD=A D'•••△BAD^A CAD'( SAS ,••• BD=CD . Z DAD' =90°BD与CD的关系,根据勾股定理,可得CD', DD',如图:,经检验x=6是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解•解分式方程一定注意要验根.18、考点:一次函数与一元一次不等式分析:把点(1,- 1 )代入直线y=2x - b得到b的值,再解不等式.解答:解:把点(1,- 1)代入直线y=2x - b得,-1=2 - b,解得,b=3.函数解析式为y=2x - 3.解2x - 3>0 得,x> ;.2点评:本题考查了一次函数与一元一次不等式,要知道,点的坐标符合函数解析式.19、考点:全等三角形的判定与性质;平行线的判定分析:根据边角边定理求证△OD QA OBA可得/ C=Z A (或者/ D=Z B),即可证明DC// AB.解答:证明:•••在△ ODC和厶OBA中,r OD=OB••• * ZDOC必0A,L OC=OA•••△ODC^^ OBA (SAS ,•••/ C=Z A (或者/ D=Z B)(全等三角形对应角相等),• DC/ AB (内错角相等,两直线平行).点评:此题主要考查学生对全等三角形的判定与性质和平行线的判定的理解和掌握,解答此题的关键是利用边角边定理求证厶ODW A OBA.20、考点:作图-旋转变换;作图-轴对称变换分析:(1)①根据关于y轴对称的点的横坐标互为相反数确定出点B的位置,然后连接AB即可;②根据轴对称的性质找出点A关于直线x=3的对称点,即为所求的点D;(2)根据平行四边形的性质,平分四边形面积的直线经过中心,然后求出AC 的中点,代入直线计算即可求出k值.解答:解:(1)①如图所示;②直线CD如图所示;(2)v A (0, 4), C (3, 0),•平行四边形ABCD的中心坐标为(,2),2代入直线得,;k=2,解得k=‘ .2 3点评:本题考查了利用旋转变换作图,利用轴对称变换作图,还考查了平行四边形的判定与性质,是基础题,要注意平分四边形面积的直线经过中心的应用.21、考点:列表法与树状图法分析:(1)①首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第一次摸到绿球,第二次摸到红球的情况,再利用概率公式即可求得答案;②首先由①求得两次摸到的球中有1个绿球和1个红球的情况,再利用概率公式即可求得答案;(2)由先从袋中摸出1个球后不放回,再摸出1个球,共有等可能的结果为:4 X 3=12(种),且两次摸到的球中有 1个绿球和1个红球的有8种情况, 直接利用概率公式求解即可求得答案.解答:解:(1 [①画树状图得:红红耀緑红红绿绿 红红绿绿 红红隸绿•••共有16种等可能的结果,第一次摸到绿球,第二次摸到红球的有 4种情况,•••第一次摸到绿球,第二次摸到红球的概率为: 一=「;16 4②•••两次摸到的球中有 1个绿球和1个红球的有8种情况, •两次摸到的球中有 1个绿球和1个红球的为:—=「;16 2(2)v 先从袋中摸出1个球后不放回,再摸出 1个球,共有等可能的结果为:4X 3=12(种),且两次摸到的球中有 1个绿球和1个红球的有8种情况, •两次摸到的球中有 1个绿球和1个红球的概率是:__=12 3点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果, 列表法适合于两步完成的事件, 树状图法适合两步或两步以上完成的事件•用到的知识点为:概率=所求情况数与总情况数之比.22、考点:相似三角形的判定与性质; 勾股定理;等腰直角三角形;圆心角、弧、弦的关系; 圆周角定理分析:(1)根据圆周角的定理,/ APB=90, p 是弧AB 的中点,所以三角形 APB 是等 腰三角形,利用勾股定理即可求得.(2)根据垂径定理得出 0P 垂直平分BC,得出OP// AC,从而得出厶ONP , 根据对应边成比例求得 ON 、AN 的长,利用勾股定理求得 NP 的长,进而求 得PA .解答:解:(1)如图(1)所示,连接PB ,• / PAB=Z PBA=45 , / APB=90 , 又•••在等腰三角形厶_ABC 中有AB=13,(2)如图(2)所示:连接 BC. 0P 相交于M 点,作PN 丄AB 于点N , ••• P 点为弧BC的中点,• 0P 丄 BC,Z OMB=9° ,又因为AB 为直径• / ACB=90 , • / ACB=Z OMB , • OP / AC , •/ CAB=Z POB,又因为/ ACB=Z ONP=90 ,• △ ACB^A 0NPI 'J;OP ON ?又••• AB=13 AC=5 OP='',2•/ AB 是O 0的直径且P 是"•的中点,幵蛤红红 富 绿代入得ON=',2.AN=OA+ON=9•••在RT A OPN 中,有NP2=OP2-ON2=36在RT A ANP 中有PA= ;二二=〒=3 .丁• PA=^3.点评:本题考查了圆周角的定理,垂径定理,勾股定理,等腰三角形判定和性质,相似三角形的判定和性质,作出辅助线是本题的关键.23、考点:二次函数的应用分析:(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800, —次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.2解答:解:(1 )当1<x50 时,y(200- 2x)( x+40- 30) =-2X2+180X+200, 当50W x w 9时,y= (200 - 2x)( 90 - 30) =- 120x+12000 , 综上所述:y=J 一h2+l呂职+戈000(1<x<50);[- 120x+12000 ( 50<x<90)(2)当1WX50时,二次函数开口下,二次函数对称轴为x=45,当x=45 时,y 最大=-2X45+180 X 45+2000=6050当50w x< 9时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当20w x< 6时,每天销售利润不低于4800元.利用了函数的性点评:本题考查了二次函数的应用,利用单价乘以数量求函数解析式,质求最值.24、考点:相似形综合题分析:(1)分两种情况讨论:①当厶BPg A BAC时,:'•=",当厶BPQ sA BCA时,BA BC二=二,再根据BP=5t, QC=4t, AB=10cm, BC=8cm,代入计算即可;(2)过P作PM丄BC于点M , AQ, CP交于点N,则有PB=5t, PM=3t,MC=8 - 4t,根据△ AC2A CMP,得出:巴:,代入计算即可;CM Mr(3)作PE丄AC于点E, DF丄AC于点F,先得出DF=:」,再把QC=4t,La>PE=8- BM=8 - 4t代入求出DF,过BC的中点R作直线平行于AC,得RC=DF D在过R的中位线上,从而证PQ的中点在厶ABC一条中位线上.解答:解:(1)①当△ BPg A BAC时,•.•二=■■', BP=5t , QC=4t , AB=10cm , BC=8cm,BA BC.=- .. ---------- ,10 8••• t=i ;②当△ BP2A BCA 时,• 5 t _8-4t "= , • t=:, 41• t=l 或…时, △ BPQ 与厶ABC 相似;41(2)如图所示,过P 作PM 丄BC 于点M , AQ , CP 交于点N ,则有PB=5t , PM=3t ,MC=8 - 4t ,三•••/ NAC+Z NCA=90,/ PCM+Z NCA=90 , •••/ NAC=Z PCM 且Z ACQ=Z PMC=9° , • △ AC2A CMP ,•「= :! …厂川,-「-•一- •一- ■, 解得:t=;8(3)如图,仍有 PM 丄BC 于点M , PQ 的中点设为 D 点,再作PE 丄AC 于点E ,DF 丄AC 于点F ,• Z ACB=90 ,• DF 为梯形PECQ 的中位线, • DF=二」,2■/ QC=4t, PE=8- BM=8 - 4t ,••• BC=8过BC 的中点R 作直线平行于 AC , • RC=DF=4成 立,• D 在过R 的中位线上,• PQ 的中点在厶ABC 的一条中位线上.此题考查了相似形综合, 用到的知识点是相似三角形的判定与性质、中位线的性质等,关键是画出图形作出辅助线构造相似三角形,注意分两种情况讨论.二次函数综合题;解一元二次方程 -因式分解法;根与系数的关系;勾股定理;相似三角形的判定与性质(1)要求定点的坐标,只需寻找一个合适x ,使得y 的值与k 无关即可.DF =愛2=4,点评:(2)只需联立两函数的解析式,就可求出点A、B的坐标.设出点P的横坐标为a,运用割补法用a的代数式表示△ APB的面积,然后根据条件建立关于a的方程,从而求出a的值,进而求出点P的坐标.(3)设点A、B、D的横坐标分别为m、n、t,从条件/ ADB=90出发,可构造k型相似,从而得到m、n、t的等量关系,然后利用根与系数的关系就可以求出t,从而求出点D的坐标.由于直线AB上有一个定点C,容易得到DC长就是点D到AB的最大距离,只需构建直角三角形,利用勾股定理即可解决问题.解答:解:(1 )•.•当x=-2 时,y= (- 2) k+2k+4=4.•••直线AB: y=kx+2k+4 必经过定点(-2, 4).•••点C的坐标为(-2, 4).•••直线的解析式为y=-二 x+3.2联立,解得:*y=-号 x+31 2 ,g 或*y2x=2A 的坐标为(-3, —),点B 的坐标为(2, 2).2 P 作PQ// y 轴,交AB 于点Q ,A 作AM 丄PQ,垂足为B 作BN 丄PQ,垂足为 P 的横坐标为a ,则点 1 21 o••过点 过点 M ,N ,如图1所示.Q 的横坐标为a .…y P =—a , y Q = — a+3.2 2.•点P 在直线AB 下方, - -2二 PQ=y Q - y p =— = a+3 - — a2 2■/ AM+NB=a -(- 3) +2 - a=5. •- S A APB =S A APC +S A BPQ=PQ?AM+ PQ?BN£ -M=PQ? (AM+BN )2 =2 (_2 a+3 -占 a 2) ?5=5.2 2 2 整理得:a 2+a - 2=0.解得:a i = - 2, a 2=1. 当 a=- 2 时,x (- 2) 2=2 .1oo• m 、n 是方程 kx+2k+4=-x 即 x - 2kx - 4k - 8=0 两根.2• m+n=2k , mn= - 4k - 8.2•• — 4k — 8+2kt+t +4=0 ,2即 t +2kt - 4k - 4=0 .即(t - 2)( t+2k+2) =0.•- t i =2 , t 2= - 2k - 2 (舍).•定点D 的坐标为(2 , 2).此时点P 的坐标为(-2, 2). 当 a=1 时,y p = x 2=.2 2此时点P 的坐标为(1, _).2•••符合要求的点P 的坐标为(-(3)过点D 作x 轴的平行线EF,作AE 丄EF,作BF 丄EF, ••• AE 丄 EF, 垂足为E , 垂足为F ,如图2. BF 丄 EF,• / •/ • / •/ AED=Z BFD=90 .ADB=90 ,ADE=90 -Z BDF=Z DBF. AED=Z BFD,Z ADE=Z DBF , • △ AER A DFB.设点A 、 m 、则点A 、B 、D 的横坐标分别为 B 、D 的纵坐标分别为一2 2 n 、t ,-2 —n 、2t 2y 1 2 1t 2y E =-m - -1 .2 22 2BF=y B -y F = n -二t .2 SAE=y A _ED=X D - X E =t - m , DF=X F - X D =n - t .• •一孔 •,壬化简得:2mn+ (m+n ) t+t +4=0.y= X 交点,过点D作x轴的平行线DG ,过点C作CG± DG,垂足为G,如图3所示.•/点C (- 2, 4),点D (2, 2), ••• CG=4-2=2, DG=2-( - 2) =4. ••• CG丄DG,• DC= I I :=I" J==2 :.过点D作DH丄AB,垂足为H,如图3所示,•DHC DC•DHC2 :.•••当DH与DC重合即DC丄AB时,点D到直线AB的距离最大,最大值为2_、.•••点D到直线AB的最大距离为2貞点评:本题考查了解方程组、解一元二次方程、一元二次方程根与系数的关系、勾股定理、相似三角形的性质与判定等知识,考查了通过解方程组求两函数交点坐标、用割补法表示三角形的面积等方法,综合性比较强.构造K型相似以及运用根与系数的关系是求出点D的坐标的关键,点C是定点又是求点D到直线AB的最大距离的突破口.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档