3.2代数式(1)-教案
最新2024人教版七年级数学上册3.2 第1课时 实际问题中的代数式求值--教案
3.2 代数式的值
第1课时实际问题中的代数式求值
师生活动:教师鼓励学生独立完成,潜移默化地提高学生观察、分析、解决问题的能力,并在这一过程中将列代数式与求代数式的值融会贯通,提高应用能力,体验克服困难的过程,树立学习数学的信心.
典例精析
例1 根据下列 x ,y 的值,分别求代数式 2x + 3y 的值.
(1)x = 15,y = 12;
(2)x = 1,y = 1
2 ;
例2 根据下列 a ,b 的值, 分别求代数式 的值. (1)a = 4,b = 12;(2)a = -3,b = 2; 三、当堂练习 1.(海南·期中)当 y = -4 时,代数式 -1 + 5y 的值为 ( ) A.-19 B.19 C.21 D.-21
2. (无锡·中考模拟)当 a = 2,b =-3 时,代数式 (a - b )2 + 2ab 的值为 ( ). A.13 B.27 C. -5 D.-7
2b a a
教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.。
苏科版数学七年级上册3.2 代数式教教学设计
苏科版数学七年级上册3.2 代数式教教学设计一. 教材分析苏科版数学七年级上册3.2代数式是学生在掌握了有理数、方程等基础知识后的进一步学习。
本节内容主要是让学生了解代数式的概念,学会用代数式表示数和几何量,并掌握代数式的基本运算。
教材通过丰富的实例,引导学生逐步理解和掌握代数式,从而为后续的方程、不等式等知识的学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数的概念、运算有一定的了解。
但代数式作为一种抽象的表达方式,对学生来说还是一个新的概念。
因此,在教学过程中,教师需要从学生的实际出发,通过生动、直观的实例,让学生感受代数式的实际意义,从而激发学生的学习兴趣,提高学生的学习积极性。
三. 教学目标1.了解代数式的概念,能正确地书写代数式。
2.掌握代数式的基本运算。
3.能运用代数式表示数和几何量,解决实际问题。
4.培养学生的抽象思维能力,提高学生的数学素养。
四. 教学重难点1.代数式的概念及其表示方法。
2.代数式的基本运算。
五. 教学方法1.情境教学法:通过生活实例,让学生感受代数式的实际意义,提高学生的学习兴趣。
2.合作学习法:引导学生分组讨论,共同探究代数式的问题,培养学生的团队协作能力。
3.练习法:通过大量的练习,让学生巩固代数式的知识和运算技能。
六. 教学准备1.教学课件:制作生动、直观的课件,帮助学生理解和掌握代数式。
2.实例素材:准备一些生活、几何等方面的实例,用于引导学生学习代数式。
3.练习题:准备一些代数式的练习题,用于巩固学生的知识和技能。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如“某商店举行打折活动,原价为100元,打8折后的价格是多少?”让学生感受代数式的实际意义,引出本节内容。
2.呈现(10分钟)讲解代数式的概念,让学生了解代数式的定义、表示方法以及基本性质。
通过PPT展示代数式的各种形式,如整式、分式等,让学生对代数式有更直观的认识。
3.操练(10分钟)让学生分组讨论,共同探究代数式的基本运算。
《3.2代数式(1)》教学设计
《3.2代数式(1)》教学设计江苏省汾湖高新技术产业开发区实验初级中学陈林芳 215211一、教材分析数学是关于客观世界数量关系和空间形式的科学,而代数式的引入则标志着学生的数学学习过程进入了一个崭新的阶段。
在初中代数式以前的数学教学中,学生关注的主要是数、数与数之间的运算关系、运算法则、运算过程、运算结果。
思维的模式主要是:一个现成的式子,学生运用相关的运算法则计算出一个正确的结果。
而代数式的引入将改变这个思维模式:弄清事物间的数量关系,并通过列出代数式把这种关系表达出来。
数学教学从此开始进入到一个崭新的阶段:探讨和研究客观世界数量关系。
二、学情分析七年级学生的认知水平正在从感性向理性过渡,思维水平处于由形象向抽象过渡的转折期。
而我认为,从数学思想方法来看,"代数式"又是数学学习的一个转折点。
这个“转折期”和“转折点”的不期而遇,使得看似简单的"列代数式"变得举足轻重。
从学生已有的知识结构与新知识之间的关系来看,学生通过对有理数混合运算的学习,对各种算式、不同算式的运算关系、运算法则已经非常熟悉,通过有理数混合运算的一些应用题,也初步涉及到了关于如何分析数量间的关系,并列式进行计算等方面的知识。
这些已有的知识和经验会在"列代数式"的学习中产生迁移作用而有利于新知识的学习。
三、教法学法1.教法设计:观察法、归纳法、多媒体辅助教学。
2.学法指导:鼓励学生自主探索和合作交流,引导学生自主地从事操作、观察、猜想、归纳与交流等数学活动,使学生形成对数学知识的理解和有效的学习策略。
四、教学目标1.知识与技能目标掌握“代数式”的概念,会运用一些分析事物间数量关系的方法列代数式。
2.过程与方法目标通过分析客观事物间的数量关系并用代数式将这些关系表达出来的学习过程,培养学生分析问题、思考问题和解决问题的能力。
并在这一过程中,实现对学生的逻辑思维的训练,提高学生的认知水平和思维水平。
3.2代数式(教案)
实践活动方面,学生们对实验操作表现出很高的兴趣。通过亲自动手操作,他们加深了对代数式的理解。但同时,我也发现部分学生在操作过程中对细节把握不够准确,这可能影响他们对知识点的掌握。因此,在未来的教学中,我会更加关注学生的操作过程,及时纠正他们的错误,帮助他们更好地掌握操作要领。
4.培养学生的数学应用意识:结合生活实际,让学生学会运用代数式解决现实问题,感受数学在实际生活中的价值,提高数学应用素养。
5.培养学生的合作交流能力:在小组讨论和互动中,鼓励学生积极表达自己的观点,学会倾听他人意见,培养团队协作能力。
本节课将围绕核心素养目标,结合教材内容,注重培养学生的综合能力,提高学生的数学素养。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“代数式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-在运算部分,详细讲解2x+3y与4x-5z的加法运算和(3x-2y)(x+4z)的乘法运算,确保学生掌握运算规则。
-在应用题部分,通过实际例题,如“小明买了一本书和一支笔,书的价格是3x元,笔的价格是2y元,小明一共花了多少钱?”让学生学会建立代数式并解决问题。
七年级数学上册 3.2.1 代数式教案 (新版)北师大版-(新版)北师大版初中七年级上册数学教案
课题:.1代数式教学目标:1.了解代数式的概念,能用代数式表示简单问题中的数量关系;2.在具体情境中,能求出代数式的值,并解释它的实际意义;3.能解释一些简单代数式的实际背景或几何意义,发展符号感.教学重点与难点:重点:理解具体代数式的意义,能用代数式表示简单的数量关系,并能进行简单代数式求值. 难点:准确列出代数式,从不同的角度给代数式赋予实际意义.课前准备:多媒体课件.教学过程:一、创设情境,引入新课活动:复习回顾问题:用字母表示下列数量关系1.用火柴棒拼摆正方形,如下图所示,如果用x 表示所搭正方形的个数,那么搭x 个这样的正方形需要多少根火柴棒?请用不同式子来表示这个数量关系?2.填空:(1)边长为a cm 的正方形的周长是cm,面积是cm 2;(2)钢笔每支2元,铅笔每支0.5元,m 支钢笔和n 支铅笔共____________元;(3)温度由2℃下降t ℃后是℃;(4)小亮用t 秒走了s 米,他的速度是为米/秒.处理方式:让学生独立思考理解题意,学生在黑板上写出数量关系式.其他纠错互评,规X 答案.[1.〔4+3(x-1)〕根;〔x+x+(x+1)〕根;(3x+1)根.2.①4a ,a 2;② (2m +n );③ (t -2);④ts . 问题:仔细观察以上式子,它们有什么共同的特点?处理方式:学生畅所欲言对数量关系式的特点,教师引入课题.(课题:代数式(1)) 设计意图:通过复习上一节知识内容,承接先前的若干实例,回顾具体代数式所表达的含义.在于降低教学难度,激发兴趣,调动了学生学习数学的积极性.二、自主探索,合作交流活动1:认识代数式问题:谈谈你对代数式的认识?处理方式:学生自主学习,畅所欲言,师给予评价,教师从而归纳代数式的意义:用运算符号把数字和字母连接而成的式子称为代数式.教师进而强调:①运算符号包括:加、减、乘、除、乘方; ②单独的一个数或字母也是代数式. ③ 用具体数值代替代数式中的字母,就可以求出代数式的值.设计意图:让学生经历代数式概念产生的过程,使学生在数学活动过程中建构自己的数学知识结构,获得对概念的理解,发展数学能力.巩固练习:1.判断下列各式哪些是代数式31ab ,7,4x -3,2y +7=4,321x y -+,q ,x -2>5,7-3=4,0,2a +3b . 2.用代数式表示:(1)圆的半径为r cm ,它的周长为______cm,它的面积为______cm 2;(2)某种瓜子的单价为16元/千克,则n 千克需_______元;(3)某市出租车收费标准为:起步价10元,3千米后每千米价1.8元,则某人乘坐出租车x(x >3)千米的付费为______元;(4)在一次募捐活动中,七年级每位同学捐款m ,共有n 名学生,则一共捐款_____元.3. 当x =6,y =2时,求代数式2x-5y 的值.处理方式:对学生的解答给予反馈,尤其对于(1)中的2y +7=4,x -2>5,7-3=4很多学生不易判断,教师要特别指出的是:一般的用“=、≠、≥、≤”连接的式子不是代数式;对于(2)、(3)题,注意强调代数式的书写,以及代数式的值的解题要求.设计意图:通过练习,学生及时巩固新知,理解概念,让学生对新知的认识再上一台阶. 活动2:典例讲评例 列代数式,并求值.(1)某公园的门票价格是:成人票每X10元,学生票每X5元.一个旅游团有成人x 人,学生y 人,那么该旅游团应付多少门票费?(2)如果该旅游团有37个成人.15个学生,那么他们应付多少门票费?处理方式:学生理解题意,自主探究,然后小组内讨论、交流;教师同时巡视指导,参与小组讨论.请一名学生给全体同学讲解板演.然后借助多媒体展示解答过程.参考答案;解:(1)该旅游团应付的门票费是(10x+5y)元.(2)把x=37,y=15代入代数式10x+5y,得10×37+5×15 =445.因此,他们应付445元门票费.设计意图:让学生从实际问题中抽象出数学问题,学会列代数式和求代数式的值,体验数学来源于生活,又为现实生活服务;并用多媒体展示解题过程,进一步规X学生的解题格式,让学生体会数学的规X性,严密性.活动3:代数式在现实生活中的意义问题:在例题中,10x+5y表示的是x个成人,y个学生进公园的门票费,那么它还可以表示什么呢?请大家编写能用此式来表达的情景.处理方式:教师举例引导,对于10x+5y,如果用x(m/s)表示小明跑步的速度,用y(m/s)表示小明走路的速度,那么10x+5y表示他跑步10s和走路5s所经过的路程.然后要求学生在独立思考的基础之上,建立自己的情景框架,小组交流,随后全班交流.教师给予鼓励和引导,并作出积极的评价,共同归纳: 10x+5y可以赋于很多的实际的意义,投影展示学生思考的多种结果.设计意图:让学生充分体会代数式在现实背景中的意义,提高学生活学活用知识的能力和习惯,将学生的知识进行深化和升华.活动4:深化新知做一做现代营养学家用身体质量指数衡量人体胖瘦程度,这个指数等于人体体重(㎏)与人体身高(m)平方的商。
北师大版数学七年级上册3.2《代数式》教案
北师大版数学七年级上册3.2《代数式》教案一. 教材分析《北师大版数学七年级上册 3.2《代数式》》一课是在学生已经掌握了有理数、整式等知识的基础上进行学习的。
本节课的主要内容是让学生了解代数式的概念,学会用代数式表示简单的几何图形和物理量,同时让学生掌握代数式的运算方法。
二. 学情分析面对刚从小学升入初中的学生,他们对数学知识的掌握程度参差不齐。
有的学生已经具备了一定的代数基础,但也有部分学生对代数知识比较陌生。
因此,在教学过程中,教师需要关注全体学生,既要照顾到基础较好的学生,也要帮助基础薄弱的学生。
三. 教学目标1.知识与技能目标:让学生了解代数式的概念,学会用代数式表示简单的几何图形和物理量,掌握代数式的运算方法。
2.过程与方法目标:通过自主学习、合作交流等环节,培养学生的数学思维能力和问题解决能力。
3.情感态度与价值观目标:让学生体验数学在实际生活中的运用,提高学生对数学的兴趣和自信心。
四. 教学重难点1.重点:代数式的概念及其表示方法。
2.难点:代数式的运算方法。
五. 教学方法1.情境教学法:通过生活实例引入代数式概念,让学生在实际情境中感受数学的魅力。
2.自主学习法:引导学生独立思考,自主探究,培养学生的学习能力。
3.合作交流法:学生进行小组讨论,分享学习心得,提高学生的团队协作能力。
六. 教学准备1.准备相关的生活实例和图片,用于导入新课。
2.准备代数式的相关练习题,用于巩固和拓展环节。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)利用生活实例和图片,引导学生思考:如何用数学语言表示这些实例中的几何图形和物理量?从而引出代数式的概念。
2.呈现(10分钟)讲解代数式的定义,让学生了解代数式的组成和表示方法。
通过PPT 展示代数式的相关例子,让学生初步感知代数式的运用。
3.操练(10分钟)让学生独立完成一些代数式的基本运算题目,巩固所学的知识。
教师在这个过程中要注意引导学生思考,解答学生的疑问。
华东师大初中数学七年级上册《3.2代数式的值》精品教案 (1)
3.2代数式的值一、学习目标确定的依据1、课程标准结合问题情境理解代数式的值的实际意义,会求代数式的值;知道代数式的值是一种算法。
2、教材分析本节课是初中数学华师大版七年级数学第二部分,是对代数式和有理数的运算相关知识的继续和拓展,是学习化简求值计算的基础,有着承上启下的作用。
3、中招考点河南中考每年都会以计算或解答题的形式考察分式或整式的化简并代入求值,这就要用到代数式的值的相关知识,所以本节内容在中招考试中占有重要地位。
4、学情分析学生在学习代数式和有理数的运算的基础上学习代数式的值较容易接受,但是整体代入求值,往往较为困难。
二、学习目标1、能说出代数式的值的概念,2、会用数字代替数,求出代数式的值四、教学过程 三、评价任务1、向同桌说出代数式的值的概念,能用自己的话说出求代数式的值的方法。
2、能根据实际问题列出代数式并会用数字代替数,求出代数式的值 。
学习 目标教学活动评价要点两类结构学习目标1:能说出代数式的值的概念自学指导一:1、内容:90--91页例12、时间:5分钟。
3、方法:前4钟自学后1分钟小组讨论自学中所遇到的问题。
4、要求:自学后能独立完成下列问题:(1)用_____代替代数式里的字母,按照代数式中的___________________得出的结果,叫做代数式的值。
自学检测一:2.2.1.1.121---=DCBAxx)的值是(,则、若___3,24________251325.21.13.5.23,2222的值是则代数式、已知。
的值是时,代数式、当)值是(的时,代数式、当--=-+-=++==babaxxDCBAbababa5、当x=2,y=-1时,求代数式x(x+y)的值。
全班90%的学生能准确说出代数式的值的概念会求出代数式的值。
两类结构1、一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值。
学习目标2:能正确书写代数式。
自学指导二:1. 内容:课92-93页的例22. 时间:3分钟。
冀教版初中数学七上 3.2.1 代数式 教案
用运算符号连接数和字母组成的式子叫做代数式.
单独一个数或一个字母也是代数式。
若长方形长为a,宽为b,则
1、长比宽多____
2、周长为____
3、面积为____
若圆的半径为r,则面积为____,周长为____.
若等腰三角形底边为a,底边上
的高为h,则三角形的面积为____
展示同学们熟悉的几张校园内的图片,从而提取出学生们熟知的几何图形
题,用字母列式子,引出定义
反思梳理同学们本节课你有哪些收获?
课后作业1、课本习题 A组
B组
2、同步练习册3.2(第一课时)
板书设计
3.2代数式(第一课时)
符号文字
一、定义:用运算符号连接数和字母三、列代数式
组成的式子叫做代数式. 1)单独一个数或一个字母也是代数式。
2)
二、代数式的意义 3)
例:m-n的意义:m与n的差 4)
教学反思。
3.2《代数式第1课时》 北师大版七年级数学上册教案
第三章整式及其加减2 代数式第1课时一、教学目标1.了解代数式的概念,能用代数式表示简单问题中的数量关系.2.能够在具体情境中求出代数式的值,并能结合具体情境解释代数式的意义.3.在代数式求值过程中,初步感受函数的对应思想.4.在具体情境中列代数式,发展学生的符号意识.二、教学重难点重点:了解代数式的概念,能用代数式表示简单问题中的数量关系.难点:能够在具体情境中求出代数式的值,并能结合具体情境解释代数式的意义.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【情境导入】教师活动:通过复习用字母表示数,引导学生思考,初步感受代数式.师:还记得吗?拼摆x个这样的正方形需要多少根火柴棒?预设答案:4+3(x-1)1+3xx+x+x+14x-(x-1)师讲解:这些都是代数式!用字母表示出下列数量关系.学生回忆上节课的知识并回答.通过复习用字母表示数或数量关系的知识,初步让学生感知代数式,为接下来学习代数式的知识奠定基础.(1) a与b的和可以表示为______.(2)苹果每千克a元,买5千克需要_____元.(3) 汽车上有a名乘客,中途下去b名,又上来c名,现在汽车上有_________名乘客.预设答案:a+b5a(a-b+c)师讲解:a+b,5a,(a-b+c)也是代数式.这节课我们一起来研究一下代数式的相关知识吧!学生思考并反馈.环节二探究新知【归纳】4+3(x-1),1+3x,x+x+x+14x-(x-1),a+b,5a,(a-b+c)它们都是用运算符号把数和字母连接而成的. 像这样的式子叫做代数式.注意:①单独一个数或一个字母也是代数式.②代数式不含“=”、“>”、“<”、“≤”、“≥”,“≠”.③代数式中可以含有括号.代数式的书写格式:①数与字母,字母与字母相乘时,可以用“·”来代替,或者省略不写,但是数与数之间不可以省略“×”;②1或-1与字母相乘时,1通常省略不写;③数字要写在字母的前面;④除法通常写成分数的形式,如1÷a通常写成.⑤代数式后面有单位时,和、差形式的代数式要在单位前把代数式括起来.认真听讲.通过归纳代数式的基本概念及其注意事项,加深学生对代数式的认识与理解,为接下来用代数式解决具体问题做铺垫.【做一做】列代数式,并求值.(1)某公园的门票价格是:成人票每张10元,学生票每张5元,一个旅游团有成人x人,学生y 人,那么该旅游团应付多少门票费?预设答案:解:(1)该旅游团应付的门票费是(10x+5y)元.注意:和、差形式的代数式要在单位前把代数式括起来.(2)如果该旅游团有37个成人,15个学生,那么他们应付多少门票费?提示:用具体数值代替代数式中的字母,就可以求出代数式的值.预设答案:解:(2)将x=37,y=15代入代数式10x+5y 中,得:10×37+5×15=445答:他们应付445元门票费.【想一想】师:代数式10x+5y还可以表示什么?预设答案:x表示小明跑步的速度,y表示小明走路的速度,10x+5y表示他跑步10s和走路5s所经过的路程;用x和y分别表示1元硬币和5角硬币的枚数,10x+5y就表示x枚1元硬币和y枚5角硬币共多少钱.提问:你还能举出其他的例子吗?【做一做】学生认真思考,列出代数式并交流反馈.代入数值进行计算.让学生结合具体情境列代数式并求值,体会求值是解决实际问题的需要.通过类比,不仅拓宽学生的思维,锻炼了学生联想、类比的能力,同时进一步帮助学生体会字母可以表示任何数,感受一个代数式在不同的情境中可以表示不同的意义.现代营养学家用身体质量指数衡量人体胖瘦程度,这个指数等于人体体重(kg)与人体身高(m)平方的商.对于成年人来说,身体质量指数在18.5~24之间,体重适中;身体质量指数低于18.5,体重过轻;身体质量指数高于24,体重超重.(1)设一个人的体重为w (kg ),身高为h (m),求他的身体质量指数.(2)张老师的身高是1.75m ,体重是65kg ,他的体重是否适中?(3)你的身体质量指数是多少?预设答案:解:(1)他的身体质量指数是:.(2)将w =65,h =1.75代入,得:他的体重适中.(3)根据自己的身高和体重算一下你自己的身体健康指数吧!学生认真思考并作答,然后交流反馈.让学生从比较贴近生活的例子中经历列代数式并求值的过程,使学生进一步理解列代数式和求值的意义,同时让学生感受数学与生活及其他学科之间的紧密联系.环节三应用新知【典型例题】例1 (1)一个两位数的个位数字是a ,十位数字是b (b ≠0),请用代数式表示这个两位数.(2)如何用代数式表示一个三位数?分析:个位上的数字是a ,表示a 个一,十位上的数字是b (b ≠0)表示b 个十.解:(1)这个两位数是10b +a :(2)个位上的数字用a 表示,十位上的数字通过例题,让学生进一步掌握用b表示,百位上的数字用c (c≠0)表示,这个三位数是100c+10b+a:例2 (1)代数式(1+8%)x可以表示什么?(2)用具体数值代替(1+8%)x中的x,并解释所得代数式值的意义.解:(1)若x表示某件物品的原价,那么(1+8%)x表示价格提高8%后的价格.(2)如果x是100元,将x=100代入代数式(1+8%)x,得:(1+8%)×100=108(元)表示原价为100元的衣服,价格提高8%的价格为108元.追问:这个代数式还可以表示什么?学生认真思考并作答.列代数式并求值的知识,让学生进一步熟悉具体情境中各代数式所表示的意义,加强学生的应用意识.环节四巩固新知【随堂练习】教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.用代数式表示:(1) f 的11倍再加上2可以表示为__________;(2)一个数a的与这个数的和可以表示为________;(3)一个教室有2扇门和4扇窗户,n个这样的教室有______扇门和_______扇窗户;(4)产量由m kg增长15%后,达到________kg.答案:(1)11f+2(2)自主完成练习,再集体交流评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养学生独立完成练习的习惯.(3)2n,4n(4)(1+15%)m2.代数式6a可以表示什么?答案:答案不唯一,合理即可.①如果a表示正六边形的边长,那么代数式6a可以表示正六边形的周长;②如果a表示一本书的价格,那么6a可以表示买6本这种书的价格;③如果1条长凳可以坐6个小朋友,那么6a可以表示a条长凳可以坐6a个小朋友.3.在某地,人们发现在一定温度下某种蟋蟀叫的次数与温度之间有如下的近似关系:用蟋蟀1min叫的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃)(1)用代数式表示该地当时的温度;(2)当蟋蟀1min叫的次数分别是80,100和120时,该地当时的温度约是多少?答案:(1)用x表示蟋蜂1min叫的次数,则该地当时的温度为℃;(2)将x=80,100,120分别代入,求得当地当时的温度大约分别是14℃,17℃和20℃.环节五课堂小结思维导图的形式呈现本节课的主要内容:回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第83页习题3.2第2、3题课后完成练习通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。
冀教版数学七年级上册3.2(教学设计)《代数式,第1课时》
【教学重点】 列代数式;用代数式表示实际问题媒体课件.
新课导入
填空.
1.m的3倍与5的和可以表示为.
2.小华用a元买了b本练习本,每本练习本元.
3.边长为x cm的正方形的周长是cm;面积是cm2.
教师活动:(1)组织学生交流;
(2)引导学生观察所列代数式,给出代数式的概念;
(3)交流所列代数式的意义.
学生活动:(1)独立思考完成填空;
(2)交流结果;
(3)说说代数式在此问题中所代表的实际意义.
自主探究,构建新知
活动1代数式的概念
1.代数式的概念.
思路一
教师活动:(1)组织学生阅读教材第99页;
(2)引导学生举出代数式的例子.
学生活动:(1)阅读课文;
冀,教版,数学,七年级,上册,3.2,教学设计,《,《,《代数式,第1课时》
【知识与能力目标】
1.进一步理解用字母表示数的意义.
2.掌握书写代数式的注意事项并会正确书写代数式.
【过程与方法目标】
1.会把代数式反映的数量关系用文字语言表述出来,会把文字语言表述的数量关系用代数式表示出来.
2.能分析简单问题中的数量关系,并用代数式表示出来.
北师大版七年级数学3.2 代数式(1)教案
例2.用代数式表示:a与b两数的平方和减去它们积的两倍.
a2+b2-ab
五、自我尝试
1.设甲数为x,乙数为y,用代数式表示:
(1)甲、乙两数和的平方;
(2)甲数的2倍与乙数的13的和;
(3)甲、乙两数平方的差;
(4)甲、乙两数平方的和.
2.一个三位数百位数字和十位数字组成的两位数是a,个位数字是b,用代数式表示这个三位数是___________.
3.某出租车收费标准为:起步价为7元,3千米后每千米1.8元,则某人乘坐出租车x(x>3,且为整数)千米应付费____________元.
小彬:可以表示成2个单价为a的铅笔和3个单价为b的橡皮的总价格。
小新:2个质量为a的书本和3个质量为b的文具的总质量。
小雅:分别用速度a行走2个小时和速度b行走3个小时的总路程。
四、典例解析
例1〔1〕1箱苹果重m kg,5箱重____kg;(5m)
〔2〕一个数比a的2倍小5,则这个数为____;(2a-5)
章 整式的加减
3.2 代数式〔1〕
教学设计
所属知识领域
数与代数
授课教师
微视频看点
探究代数式的概念和性质,让学生进一步感受数学与现实生活的联系,增强符号感。
录制工具和方法
设计思路
本微课通过情境引入,引导学生通过合作讨论、自主探究、总结归纳来学习代数式,并能正确地列出代数式以及理解代数式表示的现实含义。
1.的温度是x度,北京的温度比的温度低10度,那么北京的温度是_______度.〔x-10〕
2.老师们搭乘的飞机的速度是v千米/小时,与北京相距s公里,则老师们需要______小时才能抵达北京.〔s/v〕
2024秋七年级数学上册第3章代数式3.2代数式1单项式教学设计(新版)苏科版
解答:
一个单项式,其中包含一个分数作为系数,例如:5/2x^2。在这个单项式中,5/2是系数,x^2是变量部分。
例题4:计算下列单项式的乘积。
(1)3x^2 * 4x
(2)-2y^3 * 5y^2
(3)7a^2b * -3ab^2
解答:
(1)3x^2 * 4x = 12x^3。这里是将系数相乘(3 * 4 = 12),然后将变量的指数相加(x^2 * x = x^3)。
(3)-8a^2b + 8a^2b = 0。同样是两个相同的单项式相加,结果是零。
内容逻辑关系
①单项式的概念及其与代数式的关系:本节课的核心知识点是单项式的概念,包括单项式的系数、变量部分以及它们的乘积。同时,要明确单项式是代数式的一种特殊形式,与多项式等其他代数式之间有密切的联系。
②单项式的运算规则:本节课的重点是让学生掌握单项式与单项式相乘、单项式与常数相乘、同类项合并等基本运算规则。这些运算规则是学生后续学习多项式和其他代数式的基础。
鼓励学生提出自己的观点和疑问,引导学生深入思考,拓展思维。
(四)巩固练习(预计用时:5分钟)
随堂练习:
随堂练习题,让学生在课堂上完成,检查学生对单项式知识的掌握情况。
鼓励学生相互讨论、互相帮助,共同解决随堂练习中的问题。
错题订正:
针对学生在随堂练习中出现的错误,进行及时订正和讲解。
引导学生分析错误原因,避免类似错误再次发生。
典型例题讲解
八、典型例题讲解
例题1:判断下列各项中,哪些是同类项。
(1)3x^2和5x^3
(2)-2xy和4x^2y
(3)7a^3b和2ab^2c
(4)8和-3
3.2代数式(1)
滨海县第一初级中学初一数学导学案课题:3.2代数式(1)主备人:陈碧波备课组审核签名:姓名班级学号日期学习目标:1.了解代数式的概念。
2.能用代数式表示简单问题的数量关系3.能解释一些简单代数式的实际背景或几何意义,发展符号感4.通过具体例子感受”同一个代数式可以表示不同的实际意义”,”理解符号所代表的数量关系”.学习重点难点:对代数式意义的理解,分析问题中的数量关系,列出代数式正确规范书写代数式和叙述代数式的意义学习过程:课前导学问题:1. 小明去买苹果,苹果每千克1.5元,他买了a 千克,一共用去多少钱?2.长方形长为9,宽是b,面积是多少?3.小明以b千米/时走了1小时,c千米/时的速度走了2小时,再2c千米/时的速度走了a小时,他一共走了多少路程?x,的和的5倍小3的数是;4.用代数式表示比y5.一个数增加50%后为m,这个数是。
6.小丽th走了Skm,那么她的平均速度____km/h。
课堂活动一、概念探究观察:课前导学中的式子引入代数式定义:像等式子都是代数式。
单独一个也是代数式。
注意:1.公式、等式和不等式都不是代数式;如:s=ab,x+1=2,3>2等都不是代数式。
代数式不含“=”、“>”、“<”、“≤”、“≥”。
2.代数式书写规范 (1) a×b 通常写作或;(2) 1÷a 通常写作 ;(3) 数字通常写在字母前面; 如:a ×3通常写作 ;(4)带分数一般写成假分数. 如: ×a 通常写作 ; (5)和、差形式的代数式后有单位时,应将代数式 。
如:小明的年龄是m 岁,小王比小明大5岁,则小明 岁。
下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 二试一试:(1)某超市8月份营业额为m 万元,9月份营业额比8月份增加了41,该超市9月份营业额为多少万元?(2)林老师用分期付款的方法购买汽车:首期付款a 元,以后每月付款1500元,直至付清欠款,x 个月后,林老师共付款多少元?(3)直角三角形两条直角边长分别为acm 、bcm,斜边长为5cm ,它的面积是多少?斜边上的高是多少?三、 做一做 列代数式:1)苹果a 元/kg ,橘子b 元/kg ,买5kg 苹果、8kg 橘子应付多少元?2)小明每步走am ,小亮每步走bm ,小明、小亮从小桥的两端相向而行,小明走5步、小亮走8步两人相遇,小桥长多少?3)a 个三棱柱,b 个六棱柱共多少个面?注意:检查列出的代数式是否规范。
3.2 代数式 教案
§3.2 代数式教学目标(一)教学知识点1.理解字母表示数的意义.2.解释一些简单代数式的实际意义或几何背景.3.能求出代数式的值.(二)能力训练要求1.在具体情景中,进一步理解字母表示数的意义.2.能解释一些简单代数式的实际背景或几何意义,发展符号感.3.在具体情景中,能求出代数式的值,并解释它的实际意义.(三)情感与价值观要求通过师生共同探讨用字母表示数,使学生感受到数学与日常生活及其他学科的密切联系,来提高学生的学习兴趣.教学重点1.用字母与代数式表示数量关系.2.能用实际背景或几何意义解释代数式.教学难点:用实际背景或几何意义解释代数式.教学方法:讲练相结合教具准备:多媒体课件教学过程Ⅰ.巧设情景问题,引入课题上节课我们通过用火柴棒拼摆如图所示的正方形(出示课件).找到了拼摆正方形的个数与所用火柴棒的根数之间的数量关系,为了简明地表示这个数量关系,我们引用了字母,即用字母表示数来表达了这个问题的数量关系,同学们想一想:如何用字母表示这个数量关系?搭x个这样的正方形需要火柴棒:[4+3(x-1)]根,或[x+x+(x+1)]根.或(1+3x)根.还有其他表达式吗?搭x个这样的正方形需要火柴棒的根数,除以上表达式外,还可用[4x-(x-1)]来表示.大家写好了吧?!来看黑板上这位同学写的式子,像这些式子及上节课书写的式子都是代数式,我们这节课就来研究第二节:代数式.(algebraic expression)Ⅱ.讲授新课代数式就是用基本的运算符号.............(.运算符号包括加、减、乘、除、乘方及后面要学到的平方.........................).把数、表示数的字母连接而成的式子,单独一个数或一个字母也是代数式..................................接下来,我们来看这位同学书写的代数式,跟你写的一样吗?[生甲]第2题我写的是6×(x +y )米,第3题是2+t ℃.在书写代数式时,需要注意:(1)数字与字母、字母与字母、数字或字母与括号相乘时,乘号通常简写作“·”或者省略不写.如:4×a 可以写作4·a 或4a ,一般把数写在字母前面,数字与数字相乘一般仍用“×”号.(2)在实际问题中含有单位时,如果运算结果是和的形式时,要把整个的代数式括起来再写单位.如:温度由2℃上升t ℃后是(2+t )℃.(3)在代数式中出现除法运算时,一般按照分数的写法来写.如:三角形的底是a ,高是h ,则面积是:2ah 或ah 21. 好!现在我们知道了书写代数式的注意事项后,回头来看刚才的那5个填空题,你写对了吗?这位同学来说一下你的答案:(1)4a a 2 (2)(6x +6y )或6(x +y ) (3)(2+t )℃ (4)ts (5)(166-5n ) 33 表示数的字母有两个特征:(1)字母表示数具有任意性,如:第一节中搭正方形列的代数式的一种是:4+3(x -1),其中x 可以是1,2,3……,这些整数;边长是a cm 的正方形的周长是:4a .其中a 可以是任意正有理数.(2)字母表示数具有确定性.如:上面的例子中,搭200个这样的正方形需要_____根火柴棒,这时x 只能是200这个确定的数,所以根据问题的要求,用分析:(1)因为这个旅游团有成人和学生,所以要求该旅游团应付的门票费时,首先要求出成人需要多少门票费,学生需要多少.成人有x 人,每人10元,所以成人需要10x 元,学生有y 人,每人5元,学生需要5y 元,因此该旅游团应付的门票费是(10x +5y )元.(2)有了旅游团的确定人数,即给定了代数式中x 、y 的值后,只需用具体数值代替代数式(10x +5y )中的x 、y ,即可求出所需门票费.解:(1)该旅游团应付的门票费是(10x +5y )元.(2)把x =37,y =15代入代数式10x +5y 得:10×37+5×15=445,因此,他们应付445元门票费.如果用x (米/秒)表示小明跑步的速度,用y (米/秒)表示小明走路的速度,那么10x +5y 表示他跑步10秒和走路5秒所经过的路程.如果用x 和y 分别表示1元和5角硬币的枚数,那么10x +5y 就表示x 枚1元硬币和y 枚5角硬币共是多少角钱.如果x 元表示花生的单价,用y 表示瓜子的单价,那么10x +5y 就表示买10千克花生和5千克瓜子总共花的钱数.如果用x 和y 分别表示1个篮球和1个足球的质量,那么10x +5y 就表示10个篮球和5个足球总的质量.如果一张桌子卖10元,一张椅子卖5元,那么10x +5y 就表示买x 张桌子和y 张椅子应付的钱数.……[师生共析]本题是人们在日常生活中收集了大量数据,并进行分析的基础上得到的一个经验.在书写代数式时,一定要注意运算顺序,另外,在计算时,注意结果取的是近似值,取整数即可.解:(1)用c 表示蟋蟀1分钟叫的次数,则该地当时的温度为:7c +3 (2)把c =80,100和120分别代入7c +3,得 71013780=+≈14. 712137100=+≈17 714137120=+≈20 因此,当蟋蟀1分钟叫的次数分别是80、100和120时,该地当时的温度大约分别是14℃、17℃和20℃.[师]从做这个题的过程中,我知道大家基本掌握了这节课的内容:列代数式和求代数式的值,并能理解其实际意义.(2)用字母表示数,具有了一般化规律.(3)用字母所取的特定值,来解决实际问题.下面我们继续练习Ⅲ.课堂练习课本P107随堂练习1.代数式6p可以表示什么?答案:可以有如下说法:如果p表示正六边形的边长,那么代数式6p可以表示正六边形的周长.如果p表示一本书的价格,那么6p可以表示同样6本书的价格.如果1条长凳可以坐6个小朋友,那么6p可以表示p条长凳可以坐6p个小朋友.6p也可以表示一张光盘是一本书的价格的6倍.2.(1)一个两位数的个位数字是a,十位数字是b,请用代数式表示这个两位数.(2)如何用代数式表示一个三位数. 答案:(1)10b+a(2)用a、b、c分别表示某个三位数的个位数字、十位数字、百位数字,则这个三位数为:100c+10b+a.注意:这个题有不少学生误写为ba、cba可引导学生弄清:ba是相乘形式,与数35不同,35表示十位数字是3,个位数字是5,所以,35应写为3×10+5.3.(1)代数式(1+8%)x可以表示什么?(2)用具体数值代替(1+8%)x中的x,并解释所得代数式值的意义.答案:(1)用x表示一台电脑的原价,那么代数式(1+8%)x可表示这台电脑涨价8%后的售价,或者说,产量由x千克增长8%,所达到的产量,等等.(2)用8000代替(1+8%)x中的x,得(1+8%)×8000=8640.因此,可以说:一台电脑由8000元,涨价8%后的售价为8640元.也可以说:粮食产量由8000千克增长8%后,就达到8640千克.Ⅳ.课时小结本节课学习了代数式的概念,进一步理解了字母表示数的意义,并且能求出代数式的意义,解释它的实际意义.学习代数式要特别注意:(1)代数式中含有加、减、乘、除、乘方(开方)等运算符号,不含有等号或不等号,单独的一个字母或一个数也是代数式.(2)代数式与公式不同,公式是等式,但不是代数式,代数式是不含“=”号的.(3)代数式的书写要遵照其书写规定:ⅰ)代数式中的“×”,简写为“·”或省略不写,数字与字母相乘时,数字写在字母的前面,如果是带分数,要化成假分数;数字与数字相乘仍用“×”号.ⅱ)在代数式中遇到除法运算时,一般按分数的形式表示.(4)代数式的实际背景或几何意义有多种多样.Ⅴ.课后作业(一)看课本P106~108,看P108的“读一读”(二)课本P108,习题3.2 1、2、3、4(2)预习提纲1.如何利用代数式求值推断代数式所反映的规律.2.解释代数式值的实际意义.Ⅵ.活动与探求1.如下图所示,由一些点组成形如三角形的图形,每条边(包括两个顶点)有n(n>1)个点,每个图形总的点数S是多少?当n=5,7,11时,S是多少?过程:让学生充分观察所给图形,每边有n个点,但每个点要用两次,因此,解题时,要考虑把每条边减去一个顶点,这样就没有重复的点了.结果:S=3(n-1)将n=5,7,11分别代入S=3(n-1)中,得S1=3×(5-1)=12 S2=3×(7-1)=18 S3=3×(11-1)=30因此,当n=5,7,11时,S分别是:12,18,30.。
3.2 代数式(1)教案
3.2 代数式课题 3.2.1代数式课时 1 课型新授教学目标一、知识与技能目标:①在具体情境中,进一步理解字母表示数的意义②能解释一些简单代数式的实际背景或几何意义,发展符号感二、过程与方法目标:在探索现实世界数量关系的过程中,体验用字母表示数的简明性和一般性,在探索规律的过程中感受从具体思维到抽象思维过渡的数学思想方法。
三、情感态度与价值观目标:培养学生的数学意识,渗透归纳猜想、数形结合等数学思想方法。
重点难点分析及突破措施教学重点:列代数式,能为代数式赋予实际意义或几何意义教学难点:用代数式正确表示数量和实际问题的数量关系,为代数式赋予教具准备小黑板、彩色粉笔板书设计代数式3,)(21,,2,),1(4,31ahbaabrbaxxx++--+π教学过程(包括导引新课、依标导学、异步训练、达标测试、作业设计等)上课时间:一、师生互动、探究新知(1) 教师提出上节课曾见过的一类式子3,)(21,,2,),1(4,31a h b a ab r b a x x x ++--+π (2) 师生共同讨论分析以上各式的组成成分:① 数:有理数② 字母:表示数,没有具体的数③ 运算符号:加、减、乘、除、乘方运算符号(3) 教师指出:像这样用运算符号把数或表示数的字母连结起来的式子叫做代数式。
单独的一个数或单独的一个字母也是代数式。
因为它们都可以看作它们自身乘1的结果。
(4) 教师指出书写代数式要注意:① 在代数式中出现的乘号,通常写作“·”或者省略不写,如b a ⨯应写作“b a ⋅”或“ab ” ② 数字与字母相乘时,数字应写在字母的前面,如4⨯x 写作x 4③ 在代数式中出现了除法运算时,一般按分数写法来写,如b a ÷应写作b a 二、 例题解析,巩固新知例1 设字母a 表示甲数,字母b 表示乙数,用代数式表示:(1)甲乙两数和的2倍;(2)甲数的 32与乙数的 41的差; (3)甲乙两数的差的立方;(4)甲乙两数的平方和;分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式解:设甲数为a ,乙数为b ,则(1)2(a+b); (2)32 a-41 b ; (3) (a-b)3; (4)a 2+b 2;(本题应由学生口答,教师板书完成)此时,教师指出:a 与b 的和,以及b 与a 的和都是指(a+b),这是因为加法有交换律 但a 与b 的差指的是(a-b),而b 与a 的差指的是(b-a) 两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序例2用文字语言叙述下列代数式(1)x+y (2)31(x-y)(4)(x+y)2(4)x 3+y 3 学生活动:在教师引导下完成此题,从而体会代数式的意义三、随堂练习课本P84页随堂练习1~3题四、课堂小结学生自主小结1、本节主要学习了代数式的概念,用代数式表示数量和实际问题中的数量关系,以及赋予代数式实际意义或几何意义①字母也是代数式②书写代数式要按规定书写③注意代数式的实际背景或几何意义的解释五、课时作业1、课本P85页习题3.2 1~4教学后记(包括达标情况、教学得失、改进措施等)学生可以掌握本堂内容。
2024秋七年级数学上册第3章代数式3.2代数式1单项式教学设计(新版)苏科版
-听讲并思考:认真听讲,思考老师提出的问题,主动参与课堂讨论。
-参与课堂活动:在小组内讨论单项式的应用,通过角色扮演等活动加深理解。
-提问与讨论:对不懂的问题大胆提问,与小组成员共同探讨。
教学方法/手段/资源:
-讲授法:通过讲解和示例,帮助学生掌握单项式的知识点。
-实践活动法:通过小组活动,让学生在实践中应用单项式。
1.培养学生的数学抽象能力:通过对单项式的学习,使学生能够从具体的事物中抽象出数学概念,理解代数式的本质,从而提高数学抽象思维能力。
2.发展学生的逻辑推理能力:在教学过程中,引导学生掌握单项式的运算规则,学会运用逻辑推理进行数学证明和计算,增强逻辑思维能力。
3.提高学生的数学建模能力:通过解决实际问题时运用单项式进行数学建模,培养学生将现实问题转化为数学问题的能力,从而提高数学建模素养。
其次,在课堂教学中,我发现部分学生对单项式的运算规则掌握不够熟练。针对这一问题,我将在下一节课中,通过更多的实例和练习,帮助学生巩固单项式的运算方法。此外,我还计划增加课堂讨论环节,让学生在讨论中互相学习,共同进步。
再次,在课后作业环节,我发现部分学生对单项式的实际应用能力较弱。为了提高学生的应用能力,我计划在下一节课中,引入更多与生活实际相关的例子,让学生在实际问题中运用单项式。同时,加强对学生作业的批改和反馈,及时发现并纠正学生的错误,帮助他们提高解题能力。
2024秋七年级数学上册第3章代数式3.2代数式1单项式教学设计(新版)苏科版
授课内容
授课时数
授课班级
授课人数
授课地点
授课时间
教学内容分析
本节课的主要教学内容为苏科版2024秋七年级数学上册第3章代数式3.2节中的单项式。内容包括单项式的定义、系数与指数的概念,以及单项式的运算规则。这些内容将使学生掌握代数式的基本构成,理解数的乘方意义,并能够进行简单的单项式运算。
陕西省宝鸡市渭滨区七年级数学上册 3.2 代数式(1)教案 (新版)北师大版-(新版)北师大版初中七
2.代数式(一)一、学生起点分析本节课是教材第三章《整式及其加减》的第二节第1课时,学生从小学开始就已经和字母有了接触,从小学到初中的数的运算实质就是代数式的运算在此之前,并且,学生对有理数及有理数的运算有了一定的基础,在第一节中对于字母表示数已具有一定的认知水平,此时导入代数式和代数式值的内容,对学生来说无疑是一个良好的时机.学生主动参与意识增强,课堂氛围进一步浓烈,分析能力和综合思维能力都有了一定程度的提高,很多同学都已能够将数学知识与生活实际联系起来,这样将有利于学生掌握代数式和代数式值的意义,解决有关代数式的运用问题.二、教学任务分析本课时的教学内容直奔教学主题――代数式的意义,降低了教学的难度,有效地克服了学生的心里障碍,并结合上一节的内容很自然地引入了代数式值的意义,再通过具体的情境来列代数式并求其值,然后通过反问代数式还能表示哪些实际意义,将教学活动引向高潮,激发学生联想、类比,进一步拓展学生的思维,同时也进一步调动了学生学习的积极性,最后教材提供了一个身体质量指数衡量人体胖瘦程度以及是否健康问题,既使学生感悟了数学建模的思想,又使学生在轻松愉快的环境中加深了对代数式和求代数式值的理解.教学中要充分利用实际的背景,争取学生主动参与,通过丰富有趣的活动让学生经历符号化的过程,以及运用它推断代数式所反映规律的过程,同时也可以借助多媒体辅助教学来提供更多的实际背景,从而拓展学生的思维,在进行从语言到代数式、从代数式到语言转化的过程中,要注重培养学生正确运用数学语言进行表达和交流的能力.根据以上分析,确定本节课的教学目标如下:1.了解代数式的概念,能用代数式表示简单问题中的数量关系;2.在具体情境中,能求出代数式的值,并解释它的实际意义;3.能解释一些简单代数式的实际背景或几何意义,发展符号感;教学重点:列代数式。
教学难点:正确列出代数式表示现实问题中的数量关系;从不同的角度给代数式赋予实际意义。
3.2代数式教案1
3.2代数式教学目标:1、了解代数式的概念,并在具体情境中,进一步理解字母表示数的意义。
2、能解释一些简单代数式的实际背景或几何意义,发展符号感。
3、在具体情境中,能求出代数式的值,并解释它的实际意义。
教学重点:1、解释一些简单代数式的实际背景或几何意义,发展符号感。
2、在具体情境中,能求出代数式的值,并解释它的实际意义。
教学难点:解释一些简单代数式的实际背景或几何意义。
教学用具:电教平台。
教学方法:概括、归纳、讨论法活动准备:课件教学过程:一、引题:学生完成课前练习:(1)某种瓜子的单价为16元/千克,则n 千克需 元(2)小刚上学步行速度为5千米/小时,若小刚家到学校的路程为s 千米,则他上学需走 小时。
(3)钢笔每支a 元,铅笔b 元,买2支钢笔和3支铅笔共需 元二、学习代数式的概念师生一起概括练习中出现的问题以及前面出现过的ab 21、a 、b 、b a +、ab 、2a 、2)(b a +、14、467、3)1(+n n 、t s 等式子,都称它为代数式。
(注意:1、代数式是数字与字母用一些运算符号连结而成的。
2、单独一个数或一个字母也是代数式。
)判断下列各式哪是代数式:mn 31、4x+(x -1)、5、2x+1=3、31+-x y 、0、b 、2510=、x -1>4 三、学会列代数式和求出代数式的值,并理解其实际意义。
(一)例1:(1)某公园的门票价格是:成人10 元,学生5元,一个旅游团有成人x 人,学生y 人,那么该旅游团应付多少门票费?(2)如果该旅游团有37个成人,15个学生,那么他们应付多少门票费?注意:理解代数式的实际意义,和书写格式。
例2:在某地,人们发现某种蟋蟀叫的次数与温度之间有如下的 近似关系:用蟋蟀一分钟叫的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃)(1)用代数式表示该地当时的温度;(2)当蟋蟀一分钟叫的次数分别是80、100和120时,该地当时的温度是多少?(可让学生尝试练习后评讲,课件展示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教 学 过 程
改进意见
(一)自
学
检
测
1.像
这样的式子都是代数式。
单独一个数或一个字母也是。
2.代数式可以地描述许多实际问题中的数量关系。
3.(1) 应写成;(2) 应写成;
(3) 应写成;(4) 应写成;
(5) ,应写成。
4.用代数式表示:
(1)苹果每千克a元,买30千克应付元;
例2.指出下列各式哪些是代数式,哪些不是代数式?
(1)0;(2)a+b=3;(3)b;(4)x+2>4;(5);(6)2mn;(7)1+x;(8)x3.
例3.列代数式:
(1)a与b两数的平方和;
(2)a与b两数和的平方;
(3)a与b的平方的和;
(4)a与b两数的倒数和;
(5)a与b两数和的倒数;
(6)m、n两数的平方和与这两个数的积的2倍的差。
宿城区罗圩初中“四步导学”教案
课题
3.2代数式
第1课时
课型
新授
备课时间
20141010
教案设计者
7数学组
教学目标
1.理解代数式的概念;
2.能用代数的实际背景或几何意义,发展符号感。
教学
重点难点
重点:理解代数式的概念,能用代数式表示简单问题的数量关系;
例4.解释代数式40-2n的意义。
(三)巩
固
训
练
1.下列式子: , , ,-5, ,
,其中是代数式的有()
A. 3个B.4个C.5个D.6个
2.代数式读作.
3.用代数式表示:
(1) 、 两数的绝对值和;
(2) 的80%与 的90%的差;
(3)比 的和的5倍小3的数;
(4)a,b两数和的平方与a,b两数平方差的商;
4.设甲数为x,用代数式表示下列各式:
(1)比甲数的平方大2;
(2)甲数的1倍与4的和;
(3)甲数除2的商与1的差.
5.解释代数式 的意义。
6.某市为了加强公民的节水意识,制定了以下用水标准:
每户每月用水未超过8立方米时,每立方米收费1.00元,
并加收0.20元的城市污水处理费;超过8立方米的部分
每立方米收费1.50元,并加收0.40元的城市污水处理费.
(2)长方形长为9,宽是b,周长是,面积是;
(3)小明以b千米/时走了1小时,c千米的速度走了2小时,再以2c千米/时的速度走了a小时,他一共走的路程是;
(二)
师
生
交
流
例1.下列各式中,符合书写要求的有哪些?不符合书写要求的
有哪些?
(1)3m;;(2)4÷(x-y);(3)a×5;(4)xy;(5)t-3℃
某户某月用水量为x立方米,问这个月水费是多少元?
7.探索规律
(1)按图示规律填写下表:
图形编号
(1)
(2)
(3)
(4)
(5)
(6)
棋子个数
(2)按这种方式,摆第n个正方形需要多少棋子?
(四)反
馈
矫
正
1.求图中阴影部分的面积.
板书
设计
教学
后记
备课组长
意见
(签字)
教务处
查阅
(签章)