2018高考(江苏专版)大一轮(文)复习检测:第47课 基本不等式及其应用

合集下载

高考数学一轮复习 专题7_4 基本不等式及应用(组)与简单的线性规划问题(讲)

高考数学一轮复习 专题7_4 基本不等式及应用(组)与简单的线性规划问题(讲)

第04节 基本不等式及其应用【考纲解读】【知识清单】基本不等式1、 如果,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”)推论:22ab 2a b +≤(,R a b ∈)2、 如果0a >,0b >,则a b +≥,(当且仅当a b =时取等号“=”).推论:2ab ()2a b +≤(0a >,0b >);222()22a b a b ++≥ 3、20,0)112a b a b a b+≤≤>>+ 对点练习【2018重庆铜梁县联考】函数y=log a (x+2)﹣1(a >0,a≠1)的图象恒过定点A ,若点A 在直线mx+ny+1=0上,其中m >0,n >0,则 + 的最小值为( ) A. 3+2B. 3+2C. 7D. 11【答案】A【考点深度剖析】基本不等式是不等式中的重要内容,它的应用范围几乎涉及高中数学的所有章节,它在高考中往往是大小判断、求取值范围以及最值等几方面的应用. 【重点难点突破】考点1利用基本不等式证明不等式【1-1】不已知a 、b 、c 都是正数,求证:()()()8a b b c c a abc +++≥ 【解析】∵a 、b 、c 都是正数∴0a b +≥> (当且仅当a b =时,取等号)0b c +≥> (当且仅当b c =时,取等号)0c a +≥ (当且仅当c a =时,取等号)∴()()()8a b b c c a abc +++≥=(当且仅当a b c ==时,取等号) 即()()()8a b b c c a abc +++≥.【1-2】已知a >0,b >0,a +b =1,求证:11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭. 【解析】∵0a >,0b >,1a b +=, ∴11+=1+=2+a b b a a a +.同理,11+=2+a b b .∴111122b a a b a b ⎛⎫⎛⎫⎛⎫⎛⎫++=++ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭=5+25+4=9b a a b ⎛⎫+≥ ⎪⎝⎭,当且仅当b a a b =,即1a=b=2时取“=”.∴11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭,当且仅当12a b ==时等号成立. 【领悟技法】利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等. 【触类旁通】 【变式一】求证:47(3)3a a a +≥>-考点2 利用基本不等式求最值【2-1】【2017天津,理12】若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.【答案】4【解析】44224141144a b a b ab ab ab ab +++≥=+≥= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当22a b ==时取等号). 【2-2】【2018河北大名第一中学模拟】已知关于x 的不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2))【答案】D【解析】:不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2), 根据韦达定理,可得: 2123x x a =,x 1+x 2=4a , 那么:a∵a <0,∴-(4a4a故选:D .【2-3】【2018有两个不等的实根1x 和2x ,则12x x +的取值范围是( ) A. ()1,+∞ B. C. ()2,+∞ D. ()0,1【答案】C【领悟技法】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.注意:形如y =x +ax(a >0)的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解. 【触类旁通】【变式一】【2017届浙江杭州高三二模】设函数()()2,f x x ax b a b R =++∈的两个零点为1x , 2x ,若122x x +≤,则( )A. 1a ≥B. 1b ≤C. 22a b +≥D. 22a b +≤ 【答案】B【解析】12x x +≥=,所以2≤ ,则1b ≤ ,故选择B.【变式二】【2018河南师范大学附属中模拟】对于使()f x M ≤成立的所有常数M 中,我们把M 的最小值叫做()f x 的上确界,若正数,a b R ∈且1a b +=,则为( )【答案】A考点3 基本不等式的实际应用【3-1】【2017江苏,10】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储之和最小,则x 的值是 . 【答案】30【解析】总费用600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.【3-2】如图,有一块等腰直角三角形ABC 的空地,要在这块空地上开辟一个内接矩形EFGH 的绿地,已知AB AC ⊥,4AB =,绿地面积最大值为( )A.6B.4 D.【答案】C【解析】设EH x =,EF y =,由条件可知EBH ∆和EFA ∆为等直角三角形,所以EB =,AE y =.AB EB AE =+y ≥,即≤4,所以4xy ≤,所以绿地面积最大值为4,故选C .【3-3】 (2015·大理模拟)某小区想利用一矩形空地ABCD 建市民健身广场,设计时决定保留空地边上的一水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中AD =60 m ,AB =40 m ,且△EFG 中,∠EGF =90°,经测量得到AE =10 m ,EF =20 m ,为保证安全同时考虑美观,健身广场周围准备加设一个保护栏,设计时经过点G 作一直线分别交AB ,DF 于M ,N ,从而得到五边形MBCDN 的市民健身广场,设DN =x (m).(1)将五边形MBCDN 的面积y 表示为x 的函数;(2)当x 为何值时,市民健身广场的面积最大?并求出最大面积.【领悟技法】用均值不等式解决此类问题时,应按如下步骤进行:(1)理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案. 【触类旁通】【变式】运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.【解析】(1)设所用时间为t =130x(h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100]. (或y =2 340x +1318x ,x ∈[50,100]).y =130×18x +2×130360x ≥2610, 当且仅当130×18x =2×130360x ,即x =1810,等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元.【易错试题常警惕】易错典例:已知两正数x ,y 满足x +y =1,则z =(x +1x )(y +1y)的最小值为________.[错解] 错解一:因为对a >0,恒有a +1a≥2,从而z =(x +1x )(y +1y)≥4,所以z 的最小值是4. 错解二:z =2+x 2y 2-2xyxy=(2xy +xy )-2≥22xy·xy -2=2(2-1),所以z 的最小值是2(2-1).易错分析:错解的错误原因是等号成立的条件不具备.温馨提示:1.在利用均值定理求最值时,要紧扣“一正、二定、三相等”的条件.“一正”是说每个项都必须为正值,“二定”是说各个项的和(或积)必须为定值.“三相等”是说各项的值相等时,等号成立.2.多次使用均值不等式解决同一问题时,要保持每次等号成立条件的一致性和不等号方向的一致性.。

【精选】江苏专版版高考数学一轮复习第七章不等式7.3基本不等式及其应用课件

【精选】江苏专版版高考数学一轮复习第七章不等式7.3基本不等式及其应用课件
(2)已知x,y∈R+,若xy=S(定值),当且仅当x=y时,和x+y取得最小值2 . 2.利用基本不等式求最值应满足的三个条件: (1)各项或各因式均为正; (2)和或积为定值; (3)各项或各因式能取到使等号成立的值. 简记:一正、二定、三相等.
如果解题过程中不满足上述条件,可以进行必要、合理的拆分或配凑因
1, 1
2
.
∵a>0,b>0, 1 + 1 =1,
2a b b 1
∴ 1 + 1 =1,即 1 + 1 =1.
2(t 2b) b b 1
2t 3b b 1
∴ 1 =1- 1 = b .
2t 3b b 1 b 1
从而2t-3b= b 1=1+ 1 ,即2t=3b+ 1 +1≥2 3b 1 +1=2 3 +1
u
u 52 2 52
u
= 5 1,故a≥ 5 1 ,即amin= 5 1.
2
2
2
答案 5 1 2
编后语
听课对同学们的学习有着非常重要的作用。课听得好好,直接关系到大家最终的学习成绩。如何听好课,同学们可以参考如下建议:
一、听要点。
一般来说,一节课的要点就是老师们在备课中准备的讲课大纲。许多老师在讲课正式开始之前会告诉大家,同学们对此要格外注意。例如在学习物理 课“力的三要素”这一节时,老师会先列出力的三要素——大小、方向、作用点。这就是一堂课的要点。把这三点认真听好了,这节课就基本掌握了。
a
2
b
2

,∴
a
2
b
2

≥a+b+3,即 (a+b)2-1(a+b)-3≥0,解得a+b≥6(a+b≤-2舍去).

2018年高考数学总复习 7.2 基本不等式及其应用

2018年高考数学总复习 7.2 基本不等式及其应用

解析:由 32x-(k+1)·3x+2>0,解得 k+1<3x+32������.
∵3x>0,∴3x+32������≥2 2(当且仅当 3x=32������,
即 x=lo 2.
又当 x∈R 时,32x-(k+1)3x+2>0 恒成立,
小值为 6
.
解析: (1)∵x,y 都是非负实数,且 x+y=2,∴x+2+y+4=8.
∴8≥2 (������ + 2)(������ + 4),
∴1
(������+2)(������+4)

116,当且仅当
x=2,y=0
时等号成立.
则8
(������+2)(������+4)

8 16
=
12.其最小值为12.故选
考点一
考点二
考点三
-11-
对点训练
1 已知
a>0,b>0,a+b=1,求证:
1
+
1 ������
1
+
1 ������
≥9.
证明 (方法一)∵a>0,b>0,a+b=1,
∴1+1������=1+������+������ ������=2+������������.
同理,1+1������=2+������������.
B.
-16-
考点一
考点二
考点三
(2)(方法一)由已知得 x=91-+3������������.

基本不等式及其应用(优秀经典专题及答案详解)

基本不等式及其应用(优秀经典专题及答案详解)

(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b .知识点二几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R);(5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0).知识点三算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四利用基本不等式求最值问题已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 考点一利用基本不等式求最值【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5的最大值为_______ 【答案】1【解析】因为x <54,所以5-4x >0, 则f (x )=4x -2+14x -5=-⎝⎛⎭⎫5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+14x -5的最大值为1. 【方法技巧】【方法技巧】1.通过拼凑法利用基本不等式求最值的实质及关键点通过拼凑法利用基本不等式求最值的实质及关键点拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键.2.通过常数代换法利用基本不等式求解最值的基本步骤通过常数代换法利用基本不等式求解最值的基本步骤(1)根据已知条件或其变形确定定值(常数);(2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;(4)利用基本不等式求解最值.利用基本不等式求解最值.【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【答案】6【解析】由已知得x +3y =9-xy ,因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝⎛⎭⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6,即x +3y 的最小值为6.【方法技巧】通过消元法利用基本不等式求最值的策略【方法技巧】通过消元法利用基本不等式求最值的策略当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.,最后利用基本不等式求最值.考点二 利用基本不等式解决实际问题【典例2】【2019年高考北京卷理数】年高考北京卷理数】李明自主创业,李明自主创业,李明自主创业,在网上经营一家水果店,在网上经营一家水果店,在网上经营一家水果店,销售的水果中有草莓、销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】①130 ;②15.【解析】(1)x=10,顾客一次购买草莓和西瓜各一盒,需要支付60+80-10=130元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8yy x y x -≥≤,即min 158y x ⎛⎫≤= ⎪⎝⎭元,所以x 的最大值为15。

2018年高考数学(文)(江苏专用)总复习教师用书第七章不等式第3讲基本不等式及其应用Word版含答案

2018年高考数学(文)(江苏专用)总复习教师用书第七章不等式第3讲基本不等式及其应用Word版含答案

第3讲 基本不等式及其应用考试要求 1.基本不等式的证明过程,A 级要求;2.利用基本不等式解决简单的最大(小)值问题,C 级要求.知 识 梳 理1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. (3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号.(3)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +a b≥2(a ,b 同号),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)当a ≥0,b ≥0时,a +b2≥ab .( )(2)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( )(3)函数y =x +1x的最小值是2.( )(4)函数f (x )=sin x +4sin x 的最小值为2.( )(5)x >0且y >0是x y +y x≥2的充要条件.( )解析 (2)不等式a 2+b 2≥2ab 成立的条件是a ,b ∈R ; 不等式a +b2≥ab 成立的条件是a ≥0,b ≥0.(3)函数y =x +1x值域是(-∞,-2]∪[2,+∞),没有最小值.(4)函数f (x )=sin x +4sin x 的最小值为-5.(5)x >0且y >0是x y +y x≥2的充分条件. 答案 (1)√ (2)× (3)× (4)× (5)×2.设x >0,y >0,且x +y =18,则xy 的最大值为________. 解析 xy ≤⎝ ⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时等号成立.答案 813.(必修5P106习题16改编)设a >0,b >0.若a +b =1,则1a +1b的最小值是________.解析 由题意1a +1b =a +b a +a +b b =2+b a +ab≥2+2b a ×a b =4,当且仅当b a =a b ,即a =b =12时,取等号,所以最小值为4. 答案 44.(2017·宿迁期末)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________. 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2x -1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,即a =3. 答案 35.一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,则这个矩形的长为______m ,宽为________m 时菜园面积最大.解析 设矩形的长为x m ,宽为y m .则x +2y =30,所以S =xy =12x ·(2y )≤12⎝ ⎛⎭⎪⎫x +2y 22=2252,当且仅当x =2y ,即x =15,y =152时取等号.答案 15152考点一 配凑法求最值【例1】 (1)已知x <54,求f (x )=4x -2+14x -5的最大值;(2)求函数y =x -1x +3+x -1的最大值.解 (1)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤ -2-4x15-4x+3=-2+3=1. 当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.(2)令t =x -1≥0,则x =t 2+1, 所以y =tt 2+1+3+t =tt 2+t +4.当t =0,即x =1时,y =0; 当t >0,即x >1时,y =1t +4t+1, 因为t +4t≥24=4(当且仅当t =2时取等号),所以y =1t +4t+1≤15, 即y 的最大值为15(当t =2,即x =5时y 取得最大值).规律方法 (1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.【训练1】 (1)(2017·湖北重点中学一联)若对∀x ≥1,不等式x +1x +1-1≥a 恒成立,则实数a 的取值范围是________.(2)函数y =x 2+2x -1(x >1)的最小值为________.解析 (1)因为函数f (x )=x +1x -1在[1,+∞)上单调递增,所以函数g (x )=x +1+1x +1-2在[0,+∞)上单调递增,所以函数g (x )在[1,+∞)的最小值为g (1)=12,因此对∀x ≥1不等式x +1x +1-1≥a 恒成立,所以a ≤g (x )最小值=12,故实数a 的取值范围是⎝⎛⎦⎥⎤-∞,12. (2)y =x 2+2x -1=x 2-2x ++x -+3x -1=x -2+x -+3x -1=(x -1)+3x -1+2≥23+2. 当且仅当x -1=3x -1,即x =3+1时,等号成立. 答案 (1)⎝⎛⎦⎥⎤-∞,12 (2)23+2 考点二 常数代换或消元法求最值(易错警示)【例2】 (1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值为________.(2)(2017·南京模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. (1)解析 法一 由x +3y =5xy 可得15y +35x =1,∴3x +4y =(3x +4y )⎝⎛⎭⎪⎫15y +35x=95+45+3x 5y +12y 5x ≥135+125=5(当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立), ∴3x +4y 的最小值是5.法二 由x +3y =5xy ,得x =3y 5y -1,∵x >0,y >0,∴y >15,∴3x +4y =9y 5y -1+4y =13⎝ ⎛⎭⎪⎫y -15+95+45-4y5⎝ ⎛⎭⎪⎫y -15+4y =135+95·15y -15+4⎝ ⎛⎭⎪⎫y -15≥135+23625=5, 当且仅当y =12时等号成立,∴(3x +4y )min =5.(2)由已知得x =9-3y1+y .法一 (消元法)因为x >0,y >0,所以0<y <3, 所以x +3y =9-3y1+y +3y=121+y+3(y +1)-6≥2121+yy +-6=6,当且仅当121+y =3(y +1),即y =1,x =3时,(x +3y )min =6. 法二 ∵x >0,y >0,9-(x +3y )=xy =13x ·(3y )≤13·⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y 时等号成立.设x +3y =t >0,则t 2+12t -108≥0, ∴(t -6)(t +18)≥0,又∵t >0,∴t ≥6.故当x =3,y =1时,(x +3y )min =6. 答案 (1)5 (2)6规律方法 条件最值的求解通常有三种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值;三是对条件使用基本不等式,建立所求目标函数的不等式求解.易错警示 (1)利用基本不等式求最值,一定要注意应用条件;(2)尽量避免多次使用基本不等式,若必须多次使用,一定要保证等号成立的条件一致.【训练2】 (1)已知x >0,y >0且x +y =1,则8x +2y的最小值为________.(2)(2017·盐城模拟)已知正数x ,y 满足x +2y -xy =0,则x +2y 的最小值为________. 解析 (1)(常数代换法) 因为x >0,y >0,且x +y =1, 所以8x +2y =⎝ ⎛⎭⎪⎫8x +2y (x +y )=10+8y x+2xy≥10+28y x ·2xy=18,当且仅当8y x =2xy,即x =2y 时等号成立,所以当x =23,y =13时,8x +2y 有最小值18.(2)由x +2y -xy =0,得2x +1y=1,且x >0,y >0.∴x +2y =(x +2y )×⎝ ⎛⎭⎪⎫2x +1y =4y x+xy+4≥4+4=8.答案 (1)18 (2)8考点三 基本不等式在实际问题中的应用【例3】 (2017·苏、锡、常、镇四市调研)运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 解 (1)设所用时间为t =130x(h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100](或y =2 340x +1318x ,x ∈[50,100]).(2)y =130×18x +2×130360x ≥2610,当且仅当130×18x =2×130360x ,即x =1810时等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元. 规律方法 (1)设变量时一般要把求最大值或最小值的变量定义为函数. (2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)求解. 【训练3】 某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒),平均车长l (单位:米)的值有关,其公式为F =76 000vv 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为______辆/时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/时.解析 (1)当l =6.05时,F =76 000vv 2+18v +20×6.05,∴F =76 000v v 2+18v +121=76 000v +121v+18≤76 0002v ·121v+18=1 900,当且仅当v =121v,即v =11时取“=”.∴最大车流量F 为1 900辆/时. (2)当l =5时,F =76 000v v 2+18v +20×5=76 000v +100v+18,∴F ≤76 0002v ·100v+18=2 000,当且仅当v =100v,即v =10时取“=”.∴最大车流量比(1)中的最大车流量增加2 000-1 900=100辆/时. 答案 (1)1 900 (2)100[思想方法]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.2.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,ab ≤a +b 2≤a 2+b 22(a >0,b >0)等,同时还要注意不等式成立的条件和等号成立的条件.3.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +mx(m >0)的单调性. [易错防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可. 2.连续使用基本不等式求最值要求每次等号成立的条件一致.基础巩固题组(建议用时:40分钟)一、填空题 1.下列不等式:①lg ⎝⎛⎭⎪⎫x 2+14>lg x (x >0);②sin x +1sin x ≥2(x ≠k π,k ∈Z );③x 2+1≥2|x |(x ∈R ); ④1x 2+1<1(x ∈R ). 其中一定成立的是________(填序号).解析 当x >0时,x 2+14≥2·x ·12=x ,所以lg ⎝ ⎛⎭⎪⎫x 2+14≥lg x (x >0),①不正确;运用基本不等式时需保证“一正”“二定”“三相等”,而当x ≠k π,k ∈Z 时,sin x 的正负不定,②不正确;由基本不等式可知,③正确;当x =0时,有1x 2+1=1,故④不正确. 答案 ③2.若2x+2y=1,则x +y 的取值范围是________. 解析 22x +y ≤2x +2y =1,所以2x +y≤14,即2x +y ≤2-2,所以x +y ≤-2. 答案 (-∞,-2]3.(2017·镇江期末)若a ,b 都是正数,则⎝ ⎛⎭⎪⎫1+b a ·⎝ ⎛⎭⎪⎫1+4a b 的最小值为________. 解析 ∵a ,b 都是正数,∴⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b=5+b a +4a b≥5+2b a ·4ab=9,当且仅当b =2a >0时取等号. 答案 94.(2015·湖南卷改编)若实数a ,b 满足1a +2b=ab ,则ab 的最小值为________.解析 依题意知a >0,b >0,则1a +2b ≥22ab=22ab,当且仅当1a =2b,即b =2a 时,“=”成立.因为1a +2b=ab ,所以ab ≥22ab,即ab ≥22,所以ab 的最小值为2 2.答案 2 25.(2017·苏、锡、常、镇四市调研)若实数x ,y 满足xy >0,则xx +y +2yx +2y的最大值为________.解析 xx +y +2y x +2y=x x +2y +2y x +y x +y x +2y =x 2+4xy +2y 2x 2+3xy +2y 2=1+xyx 2+3xy +2y 2=1+1x y +3+2y x≤1+13+22=4-22,当且仅当x y =2y x ,即x 2=2y 2时取等号.答案 4-2 26.若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是________.解析 由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2. 答案 27.(2017·苏州调研)已知实数m ,n 满足m ·n >0,m +n =-1,则1m +1n的最大值为________.解析 ∵m ·n >0,m +n =-1,∴m <0,n <0, ∴1m +1n =-(m +n )⎝ ⎛⎭⎪⎫1m +1n =-⎝ ⎛⎭⎪⎫2+n m +m n ≤-2-2n m ·m n =-4,当且仅当m =n =-12时,1m+1n取得最大值-4. 答案 -48.若对于任意x >0,xx 2+3x +1≤a 恒成立,则实数a 的取值范围是________.解析xx 2+3x +1=13+x +1x,因为x >0,所以x +1x≥2(当且仅当x =1时取等号),则13+x +1x≤13+2=15, 即x x 2+3x +1的最大值为15,故a ≥15.答案 ⎣⎢⎡⎭⎪⎫15,+∞二、解答题9.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y的最小值.解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,即xy ≤10,当且仅当2x =5y 时等号成立.因此有⎩⎪⎨⎪⎧2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25y x·2x y =7+21020, 当且仅当5y x =2xy时等号成立.由⎩⎪⎨⎪⎧2x +5y =20,5y x =2xy,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020. 10.(2017·苏北四市联考)如图,墙上有一壁画,最高点A 离地面4米,最低点B 离地面2米,观察者从距离墙x (x >1)米,离地面高a (1≤a ≤2)米的C 处观赏该壁画,设观赏视角∠ACB =θ.(1)若a =1.5,问:观察者离墙多远时,视角θ最大? (2)若tan θ=12,当a 变化时,求x 的取值范围.解 (1)当a =1.5时,过点C 作AB 的垂线,垂足为点D ,则BD =0.5,且θ=∠ACD -∠BCD , 由已知知观察者离墙x 米,且x >1, 则tan ∠BCD =0.5x ,tan ∠ACD =2.5x,所以tan θ=tan(∠ACD -∠BCD )=2.5x-0.5x1+2.5×0.5x 2=2x 1+1.25x 2=2x +1.25x ≤2254=255,当且仅当x =52>1时,等号成立. 又因为tan θ在⎝⎛⎭⎪⎫0,π2上单调递增,所以当观察者离墙52米时,视角θ最大. (2)由题意得tan ∠BCD =2-a x ,tan ∠ACD =4-ax,又tan θ=12,所以tan θ=tan(∠ACD -∠BCD )=2xx 2+a -a -=12, 所以a 2-6a +8=-x 2+4x ,当1≤a ≤2时,0≤a 2-6a +8≤3,所以0≤-x 2+4x ≤3,即⎩⎪⎨⎪⎧x 2-4x ≤0,x 2-4x +3≥0,解得0≤x ≤1或3≤x ≤4,又因为x >1,所以3≤x ≤4, 所以x 的取值范围为[3,4].能力提升题组 (建议用时:20分钟)11.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z取得最大值时,2x +1y -2z的最大值为________.解析 由已知得z =x 2-3xy +4y 2,(*) 则xy z =xy x 2-3xy +4y 2=1x y +4yx-3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,所以2x +1y -2z =1y +1y -1y2=-⎝ ⎛⎭⎪⎫1y -12+1≤1.答案 112.(2017·衡水中学调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax+2by (a >0,b >0)的最大值为1,则1a 2+14b2的最小值为________.解析 不等式组所表示的平面区域是以(0,0),⎝ ⎛⎭⎪⎫23,0,(1,1)为顶点的三角形区域(包括边界),观察可知,当直线z =ax +2by 过点(1,1)时,z 有最大值,故a +2b =1,故1≥22ab ,故ab ≤18,故1a 2+14b 2≥1ab ≥8,当且仅当a =2b =12时等号成立,故1a 2+14b 2的最小值为8.答案 813.(2017·盐城中学月考)a 是1+2b 与1-2b 的等比中项,则2ab|a |+2|b |的最大值为________.解析 依题意,a 2=1-4b 2,故a 2+4b 2=1≥4ab ,故ab ≤14,2ab |a |+2|b |≤2ab 22ab ≤24,当且仅当⎩⎪⎨⎪⎧a =22,b =24或⎩⎪⎨⎪⎧a =-22,b =-24时,等号成立.答案2414.(2017·南京模拟)一位创业青年租用了如图所示的一块边长为1百米的正方形田地ABCD 来养蜂、产蜜与售蜜,他在正方形的边BC ,CD 上分别取点E ,F (不与正方形的顶点重合),连接AE ,EF ,FA ,使得∠EAF =45°.现拟将图中阴影部分规划为蜂源植物生长区,△AEF 部分规划为蜂巢区,△CEF 部分规划为蜂蜜交易区.若蜂源植物生长区的投入约为2×105元/百米2,蜂巢区与蜂蜜交易区的投入约为105元/百米2,则这三个区域的总投入最少需要多少元?解 设阴影部分面积为S ,三个区域的总投入为T .则T =2×105·S +105·(1-S )=105·(S +1),所以只要求S 的最小值即可得T 的最小值. 设∠EAB =α(0°<α<45°),在△ABE 中,因为AB =1,∠B =90°,所以BE =tan α, 则S △ABE =12AB ·BE =12tan α.又∠DAF =45°-α,所以S △ADF =12tan(45°-α).所以S =12[tan α+tan(45°-α)]=12⎝ ⎛⎭⎪⎫tan α+1-tan α1+tan α.令x =tan α∈(0,1),则S =12⎝ ⎛⎭⎪⎫x +1-x 1+x =12⎝ ⎛⎭⎪⎫x -x -1x +1=12⎝ ⎛⎭⎪⎫x +2x +1-1=12⎣⎢⎡⎦⎥⎤x ++2x +1-2≥12(22-2)=2-1. 当且仅当x +1=2x +1,即x =2-1时取等号. 此时T =2×105,所以三个区域的总投入T 的最小值约为2×105元.。

2018高考(江苏专版)大一轮数学(文)复习检测:第48课 不等式的综合应用含答案

2018高考(江苏专版)大一轮数学(文)复习检测:第48课 不等式的综合应用含答案

第48课不等式的综合应用A 应知应会1。

已知p:x2—4x—5〉0,q:x2-2x+1—m2〉0(m〉0)。

若p是q的充分不必要条件,则m的最大值为。

2.已知x为实数,那么y=+的最大值为。

3.已知函数f(x)=x|x+1|,那么f<f的解集为。

4.(2015·安阳一中模拟)若对任意x〉0,≤a恒成立,则实数a的取值范围是.5。

已知函数f(x)=x|x—2|,求不等式f(—x)≤f(1)的解集.6.如图,某小区拟在空地上建一个占地面积为2 400 m2的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间的道路(图中阴影部分)的宽度均为2 m。

问:怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.(第6题)B 巩固提升1.(2015·四川卷)已知函数f(x)=(m-2)x2+(n—8)x+1(m≥0,n≥0)在区间上单调递减,那么mn的最大值为.2。

(2015·南京、盐城、徐州二模)已知α,β均为锐角,且cos(α+β)=,那么tan α的最大值是.3。

若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为.4。

(2015·浙江卷)已知实数x,y满足x2+y2≤1,那么|2x+y—4|+|6-x-3y|的最大值是.5.已知函数f(x)=x3-x2+x,y=f'(x)为f(x)的导函数,设h(x)=ln f’(x),若对于任意的x∈[0,1],不等式h(x+1—t)〈h(2x+2)恒成立,求实数t的取值范围.6.(2016·镇江期末)如图,某工业园区是半径为10 km的圆形区域,距离园区中心O点5 km处有一中转站P,现准备在园区内修建一条笔直的公路AB,公路AB经过该中转站,并把园区分成两个区域.(1) 设中心O对公路AB的视角为α,求α的最小值,并求较小区域面积的最小值;(2)为方便交通,准备过中转站P在园区内再修建一条与AB垂直的笔直公路CD,求两条公路长度和的最小值.(第6题)学必求其心得,业必贵于专精第48课不等式的综合应用A 应知应会1. 2【解析】由题意知p:x>5或x〈-1,设f(x)=x2-2x+1-m2,则所以0〈m≤2,所以m的最大值为2。

推荐高考数学一轮复习讲练测江苏专题4 基本不等式及其应用讲 含解析

推荐高考数学一轮复习讲练测江苏专题4 基本不等式及其应用讲 含解析

【最新考纲解读】内 容要 求备注A B C集合一元二次不等式√对知识的考查要求依次分为了解、理解、掌握三个层次(在表中分别用A 、B 、C 表示).了解:要求对所列知识的含义有最基本的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题. 掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题. 线性规划√基本不等式√【考点深度剖析】江苏新高考对不等式知识的考查要求较高,整个高中共有8个C 能级知识点,本章就占了两个,高考中以填空题和解答题的形式进行考查,涉及到数形结合、分类讨论和等价转化的思想,着重考查学生基本概念及基本运算能力.经常与其它章节知识结合考查,如与函数、方程、数列、平面解析几何知识结合考查.基本不等式及其应用在高考中是一个必考的知识点,在处理最值时是一种非常行之有效的工具,在使用时一定多观察所给代数式的形式,和基本不等式成立的条件. 【课前检测训练】 【判一判】判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数y =x +1x的最小值是2.( )(2)函数f (x )=cos x +4cos x ,x ∈(0,π2)的最小值等于4.( )(3)“x >0且y >0”是“x y +y x≥2”的充要条件.( ) (4)若a >0,则a 3+1a2的最小值为2a .( )(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.( )1. ×2. ×3. ×4. ×5. × 【练一练】1.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82答案 C解析 ∵x >0,y >0,∴x +y2≥xy ,即xy ≤(x +y2)2=81,当且仅当x =y =9时,(xy )max =81.2.若a >0,b >0,且a +b =4,则下列不等式恒成立的是( ) A.1ab ≤14 B.1a +1b≤1C.ab ≥2 D .a 2+b 2≥8答案 D3.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+ 2 B .1+ 3 C .3 D .4答案 C解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,选C. 4.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________.答案 25 m 25.已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________. 答案116解析 1=x +4y ≥24xy =4xy , ∴xy ≤(14)2=116,当且仅当x =4y =12,即⎩⎪⎨⎪⎧x =12y =18时,(xy )max =116.【题根精选精析】考点1利用基本不等式证明不等式【1-1】不已知a 、b 、c 都是正数,求证:()()()8a b b c c a abc +++≥ 【解析】∵a 、b 、c 都是正数∴20a b ab +≥> (当且仅当a b =时,取等号)20b c bc +≥> (当且仅当b c =时,取等号) 20c a ca +≥> (当且仅当c a =时,取等号)∴()()()2228a b b c c a ab bc ca abc +++≥=(当且仅当a b c ==时,取等号) 即()()()8a b b c c a abc +++≥. 【1-2】已知a >0,b >0,c >0,求证:bc ca ab a b c a b c++≥++. 【答案】 ∵a >0,b >0,c >0,∴222bc ac abc c a b ab +≥=, 222ac ab a bc a b c bc +≥=, 222bc ab ab c b a c ac+≥=. ∴bc ca aba b c a b c++≥++. 【1-3】已知a >0,b >0,a +b =1,求证:11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.【基础知识】如果,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”) 如果0a >,0b >,则2a b ab +≥,(当且仅当a b =时取等号“=”). 【思想方法】利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等. 【温馨提醒】1. 在运用ab ba ≥+2时,注意条件a 、b 均为正数,结合不等式的性质,进行变形. 2. 三个式子必须都为非负且能同时取得等号时,三个式子才能相乘,最后答案才能取得等号.3. 在利用基本不等式证明的过程中,常常要把数、式合理的拆成两项或多项或恒等地变形配凑成适当的数、式,以便于利用基本不等式.考点2 利用基本不等式求最值【2-1】若log 2x +1og 2y =1,则x +2y 的最小值是________. 【答案】4【解析】因为log 2x +log 2y =1,即log 2xy =1,所以xy =2且x >0,y >0,于是x +2y ≥2x ·2y =4,当且仅当x =2y ,即x =2,y =1时取等号,所以x +2y 的最小值为4. 【2-2】设01x <<,函数411y x x=+-的最小值为 . 【答案】 9 【解析】41414(1)4(1)[(1)]()55291111x x x x y x x x x x x x x x x--=+=+-⋅+=++≥+⋅=----, 当且仅当xx x x )1(41-=-,32=x 时,等号成立,∴y 的最小值是9. 【2-3】已知0,0,lg 2lg8lg 2xyx y >>+=,则113x y+的最小值是 . 【答案】4【2-4】若a>0,b>0,且a +b =2,则ab +1ab的最小值为 . 【答案】2【解析】由2=a ab 0<ab≤1,令t =ab ,t ∈(0,1],则y =t +1t在(0,1]上为减函数,故当t =1时,y min =2,故选A.【2-5】设x>0,y>0,且x +4y =40,则lgx +lgy 的最大值是 . 【答案】2【解析】∵x +4y =40,且x>0,y>0,∴x 4x y ⋅xy 当且仅当x =4y 时取“=”) ∴xy∴xy≤100.∴lgx +lgy =lg(xy)≤lg100=2. ∴lgx +lgy 的最大值为2. 【基础知识】 常见结论:1、 如果,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”)推论:22ab 2a b +≤(,R a b ∈)2、 如果0a >,0b >,则a b +≥,(当且仅当a b =时取等号“=”).推论:2ab ()2a b +≤(0a >,0b >);222()22a b a b ++≥ 3、20,0)112a b a b a b+≤≤>>+【思想方法】基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.注意:形如y =x +a x(a >0)的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解. 【温馨提醒】在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等. ① 一正:函数的解析式中,各项均为正数;② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③ 三取等:函数的解析式中,含变数的各项均相等,取得最值.若使用基本不等式时,等号取不到,可以通过“对勾函数”,利用单调性求最值.考点3 基本不等式的实际应用【3-1】要制作一个容器为43m ,高为m 1的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元). 【答案】88【解析】假设底面长方形的长宽分别为x ,4x. 则该容器的最低总造价是808020160y x x=++≥.当且仅当2x =的时区到最小值. 【3-2】如图,在三棱锥P ­ABC 中,PA ,PB ,PC 两两垂直,且PA =3,PB =2,PC =1.设M 是底面ABC 内一点,定义f (M )=(m ,n ,p ),其中m ,n ,p 分别是三棱锥M ­PAB ,三棱锥M ­PBC ,三棱锥M ­PCA 的体积.若f (M )=⎝ ⎛⎭⎪⎫12,x ,y ,且1x +a y ≥8恒成立,则正实数a 的最小值为________.【答案】1【3-3】如图,有一块等腰直角三角形ABC 的空地,要在这块空地上开辟一个内接矩形EFGH 的绿地,已知AB AC ⊥,4AB =,绿地面积最大值为 .【答案】4【解析】设EH x =,EF y =,由条件可知EBH ∆和EFA ∆为等直角三角形,所以2EB x =,2AE y =.AB EB AE =+=22x y +≥2222x y ⋅=2xy ,即2xy ≤4,所以4xy ≤,所以绿地面积最大值为4.【3-4】某汽车运输公司,购买了一批豪华大巴投入客运,据市场分析,每辆客车营运的总利润y (万元)与营运年数)(*N x x ∈满足25122-+-=x x y ,则每辆客车营运多少年使其营运年平均利润最大? 【答案】5年【基础知识】利用基本不等式求解实际应用题的方法(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解. 【思想方法】用均值不等式解决此类问题时,应按如下步骤进行:(1)理解题意,设变量,设变量时一般把要求最大值或最小值的变量定为函数; (2)建立相应的函数关系式,把实际问题抽象为函数的最大值或最小值问题; (3)在定义域内,求出函数的最大值或最小值; (4)正确写出答案. 【温馨提醒】对于应用题要通过阅读、理解所给定的材料寻找量与量之间的内在联系建立起数学模型,然后利用不等式的知识解决题目所提出的问题. 【易错问题大揭秘】 忽视最值取得的条件致误典例 (1)已知x >0,y >0,且1x +2y=1,则x +y 的最小值是________.(2)函数y =1-2x -3x(x <0)的最小值为________.易错分析 (1)多次使用基本不等式,忽略等号成立的条件.如:1=1x +2y ≥22xy,∴xy ≥22,∴x +y ≥2xy ≥42,得(x +y )min =4 2.(2)没有注意到x <0这个条件误用基本不等式得2x +3x≥2 6.答案 (1)3+2 2 (2)1+2 6温馨提醒 (1)利用基本不等式求最值,一定要注意应用条件;(2)尽量避免多次使用基本不等式,若必须多次使用,一定要保证等号成立的条件一致.1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可. 2.连续使用基本不等式求最值要求每次等号成立的条件一致.。

(江苏版)2018年高考数学一轮复习专题7.4基本不等式及其应用(讲)

(江苏版)2018年高考数学一轮复习专题7.4基本不等式及其应用(讲)

4 x+x
≥ 480+ 320×2
x·4= 480+ 320×2 x
4= 1760, 当 且 仅 当
x= 4, 即 x
x= 2 时 , ymin=
1760.
故当池底长为 2 m 时,这个水池的造价最低,最低造价为 1760元.
题组二 常错题
5.若 x>-1,则 x+x+4 1的最小值为________.
2.一段长为 40 m 的篱笆围成一个矩形菜园,则菜园的最大面积是________. 【解析】设矩形菜园的长为 x m,宽为 y m,则 2(x+y)=40,即 x+y=20,∴ 矩形的面积 S=xy≤
( ) x+y 2 2 =100,当且仅当 x=y=10时,等号成立,此时菜园的面积最大,最大的面积是 100 m2 3.将一根铁丝切割成三段做一个面积为 2 m 2、形状为直角三角形的框架,选用最合理(够.用且浪费
基本不等式及其应用在高考中是一个必考的知识点,在处理最值时是一种非常行之有效的工具,在 使用时一定多观察所给代数式的形式,和基本不等式成立的条件.
考点 1 利用基本不等式证明不等式
【重点难点突破】
【1-1】不已知 a 、 b 、 c 都是正数,求证: (a b)(b c)(c a) 8abc
考点 3 基本不等式的实际应用 利用基本不等式求解实际应用题的方法
(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较 长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.
(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求 解,此时可根据变量的范围用对应函数的单调性求解.
2
2
推论: ab a2 b2 ( a,b R ) 2

(江苏专用)2018年高考数学总复习 专题7.1 不等式关系与不等式解法_基本不等式及应用试题(含解析)

(江苏专用)2018年高考数学总复习 专题7.1 不等式关系与不等式解法_基本不等式及应用试题(含解析)

专题7.1 不等式关系与不等式解法、基本不等式及应用【三年高考】1.【201.7高考江苏】某公司一年购买某种货物600吨,每次购买吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则的值是 ▲ . 【答案】30【解析】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.【考点】基本不等式求最值【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误. 2.【2015高考江苏,7】不等式224x x-<的解集为________.【答案】(1,2).-【解析】由题意得:2212x x x -<⇒-<<,解集为(1,2).-3.【2013江苏,理11】已知f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集用区间表示为__________. 【答案】(-5,0)∪(5,+∞).【解析】∵函数f(x)为奇函数,且x >0时,f (x )=x 2-4x ,则f (x )=224,0,0,0,4,0,x x x x x x x ⎧->⎪=⎨⎪--<⎩∴原不等式等价于20,4,x x x x >⎧⎨->⎩或20,4,x x x x <⎧⎨-->⎩ 由此可解得x >5或-5<x <0. 故应填(-5,0)∪(5,+∞)..4. 【2017山东,理7】若0a b >>,且1ab =,则下列不等式成立的是 (A )()21log 2a b a a b b +<<+ (B )()21log 2a b a b a b <+<+ (C )()21log 2a ba ab b +<+< (D )()21log 2a b a b a b +<+<【答案】B【考点】1.指数函数与对数函数的性质.2.基本不等式.【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数单调性进行比较,若底数不同,可考虑利用中间量进行比较.本题虽小,但考查的知识点较多,需灵活利用指数函数、对数函数的性质及基本不等式作出判断.5.【2017天津,理8】已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是 (A )47[,2]16-(B )4739[,]1616-(C)[- (D)39[]16-【答案】A222x x +≥=(当2x =时取等号),所以2a -≤≤, 综上47216a -≤≤.故选A . 【考点】不等式、恒成立问题 【名师点睛】首先满足()2x f x a ≥+转化为()()22x xf x a f x --≤≤-去解决,由于涉及分段函数问题要遵循分段处理原则,分别对的两种不同情况进行讨论,针对每种情况根据的范围,利用极端原理,求出对应的的范围.6.【2017天津,理12】若,a b ∈R , 0ab >,则4441a b ab++的最小值为___________.【答案】【解析】44224141144a b a b ab ab ab ab +++≥=+≥= ,(前一个等号成立条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时取得,则当且仅当22,24a b ==时取等号). 【考点】均值不等式【名师点睛】利用均指不等式求最值要灵活运用两个公式,(1)22,,2a b R a b ab ∈+≥ ,当且仅当a b =时取等号;(2),a b R +∈ ,a b +≥ ,当且仅当a b =时取等号;首先要注意公式的使用范围,其次还要注意等号成立的条件;另外有时也考查利用“等转不等”“作乘法”“1的妙用”求最值.7.【2016高考浙江理数改编】已知a ,b ,c 是实数,则下列命题①“若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100”;②“若|a 2+b +c |+|a 2+b –c |≤1,则a 2+b 2+c 2<100”;③“若|a +b +c 2|+|a +b –c 2|≤1,则a 2+b 2+c 2<100”;④“若|a 2+b +c |+|a +b 2–c |≤1,则a 2+b 2+c 2<100”中正确的是 .【答案】④考点:不等式的性质.【方法点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时能够对四个选项逐个利用赋值的方式进行排除,确认成立的不等式.8.【2016高考上海理数】设x R ∈,则不等式13<-x 的解集为__________. 【答案】(2,4) 【解析】 试题分析:由题意得:131x -<-<,即24x <<,故解集为(2,4). 考点:绝对值不等式的基本解法.【名师点睛】解绝对值不等式,关键是去掉绝对值符号,进一步求解,本题也可利用两边平方的方法.本题较为容易.9.【2015高考陕西,理9】设()ln ,0f x x a b =<<,若p f =,()2a bq f +=,1(()())2r f a f b =+,则,,p q r 的大小关系是_____________.【答案】p r q =<10.【2015高考湖北,理10】设x ∈R ,[]x 表示不超过x 的最大整数. 若存在实数,使得[]1t =,2[]2t =,…,[]n t n = 同时成立....,则正整数的最大值是_________. 【答案】4【解析】因为[]x 表示不超过x 的最大整数.由1][=t 得21<≤t ,由2][2=t 得322<≤t ,由3][4=t 得544<≤t ,所以522<≤t ,所以522<≤t ,由3][3=t 得433<≤t ,所以5465<≤t ,由5][5=t 得655<≤t ,与5465<≤t 矛盾,故正整数的最大值是4.11.【2015高考四川,理9】如果函数()()()()21281002f x m x n x m n =-+-+≥≥,在区间122⎡⎤⎢⎥⎣⎦,上单调递减,则mn 的最大值为__________. 【答案】1812.【2015高考天津,文12】已知0,0,8,a b ab >>= 则当a 的值为 时()22log log 2a b ⋅取得最大值.【答案】4【2018年高考命题预测】纵观2017各地高考试题,对不等式关系与不等式解法、基本不等式及应用的考查,主要考查不等式性质、不等关系、二次不等式解法、基本不等式及其应用,高考中一般会以小题形式形式考查,个别省市在大题中考查不等式的应用.对不等式性质的考查,要注意不等式性质运用的条件,以及与函数交汇考查单调性,一般是选填题,属于容易题.对不等关系的考查,要培养将实际问题抽象为不等关系的能力,从而利用数学的方法解决,一般是选填题,部分省市在大题中出现,属于容易题或中档题.对不等式解法的考查,主要是二次不等式的解法,往往与集合知识交汇考查,注意含参数的二次不等式的解法.对基本不等式及其应用的考查,会涉及求函数的最值问题,或者将实际问题抽象出数学最优化问题,利用基本不等式求解. 不等式几乎能与所有数学知识建立广泛的联系,通常以不等式与函数、三角、向量、数列、解析几何、数列的综合问题的形式出现,尤其是以导数或向量为背景的导数(或向量)、不等式、函数的综合题和有关不等式的证明或性质的代数逻辑推理题.问题多属于中档题甚至是难题,对不等式的知识,方法与技巧要求较高.预测2018年可能有一道选择或者填空出现,考查不等式的解法,或不等式的性质,或基本不等式,也可能与导数结合出一道解答题.【2018年高考考点定位】高考对不等式关系与不等式解法、基本不等式及应用的考查有以下几种主要形式:一是考查不等式的性质;二是不等式关系;三是不等式解法;四是基本不等式及应用,其中经常与函数、方程等知识的相联系. 【考点1】不等式性质 【备考知识梳理】1.不等式的基本性质:(1)a b b a >⇔< (2),a b b c a c >>⇒> (3)a b c a c b +<⇔<-, a b a c b c >⇔+>+ (4)000c ac bca b c ac bc c ac bc >⇒>⎧⎪>=⇒=⎨⎪<⇒<⎩2.不等式的运算性质:(1)加法法则:,a b c d a c b d >>⇒+>+ (2)减法法则:,a b c d a d b c >>⇒->-,(3)乘法法则:0,00a b c d ac bd >>>>⇒>>(4)除法法则:0,00a ba b c d d c>>>>⇒>>,(5)乘方法则:00(,2)n n a b a b n N n >>⇒>>∈≥(6)开方法则:00(,2)a b n N n >>⇒>>∈≥【规律方法技巧】1.判断一个关于不等式的命题的真假时,先把要判断的命题与不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题的真假,当然判断的同时可能还要用到其他知识,比如对数函数、指数函数的性质.2.特殊值法是判断命题真假时常用到的一个方法,在命题真假未定时,先用特殊值试试,可以得到一些对命题的感性认识,如正好找到一组特殊值使命题不成立,则该命题为假命题. 【考点针对训练】1.如果0a b <<,那么下列不等式①11a b <②2ab b <③2ab a -<-④11a b-<-成立的是 . 【答案】④【解析】因0a b <<,故110b a a b ab --=>11a b⇒>,①错,④正确,22()b ab b b a b ab -=-⇒<,②错;222()0a ab a a b a ab a ab -=->⇒>⇒-<-,③错.2. 设10<<<b a ,则下列不等式①33a b >②11a b<③1b a >④()lg 0b a -<成立的是 . 【答案】④ 【解析】取11,42a b ==,代入可知①②③错,又∵10<<<b a ,∴()01lg 0b a b a <-<∴-<,故选④.【考点2】不等关系 【备考知识梳理】在日常生产生活中,不等关系更为普遍,利润的优化、方案的设计等方面都蕴含着不等关系,再比如几何中的两点之间线段最短,三角形两边之和大于第三边,两边之差小于第三边等等,用数学中的不等式表示这些不等关系,建立数学模型,利用数学知识解决现实生活的不等关系.【规律方法技巧】区分不等关系与不等式的异同,不等关系强调的是关系,可用符号,><≠≥≤,,,表示,而不等式则是表现两者的不等关系,可用,a a b b b b b ><≠≥≤,a ,a ,a 等式子表示,不等关系是通过不等式表现. 【考点针对训练】1.若a ,b ,c 为实数,且0a b <<,则下列不等式①22ac bc <②11<a b ③>b aa b④22a ab b >>正确的是 . 【答案】④【解析】试题分析:因为0a b <<,所以11>,1,1,b a a b a b <>即11<a b ,>b aa b均不成立;当20c =时,22ac bc <不成立;故填④.2.已知定义域为R 的奇函数()y f x =的导函数为()y f x '=,当0x ≠时,()()0f x f x x '+>,若()1111,22,lnln 2222a f b f c f ⎛⎫⎛⎫⎛⎫==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 的大小关系正确的是______________. 【答案】a c b <<【考点3】一元二次不等式解法 【备考知识梳理】对于一元二次方程20(0)ax bx c a ++=>的两根为12x x 、且12x x ≤,设ac b 42-=∆,它的解按照0>∆,0=∆,0<∆可分三种情况,相应地,二次函数2y ax bx c =++(0)a >的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20ax bx c ++>(0)a >或20ax bx c ++<(0)a >的解集.【规律方法技巧】1.解一元二次不等式首先要看二次项系数a 是否为正;若为负,则将其变为正数; 2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法;3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨论; 4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系;5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数. 【考点针对训练】1.已知关于x 的不等式2320ax x -+>的解集为{}1x x x b<>或.(1)求,a b 的值;(2)当c ∈R 时,解关于x 的不等式2()0ax ac b x bc -++<(用表示).的解集为{}2x x c <<,当2c <时,所求不等式的解集为{}2x c x <<,当2c =时,所求不等式的解集为∅.2.若不等式2222()y x c x xy -≥-对任意满足0x y >>的实数,x y 恒成立,则实数的最大值为 . 【答案】422-【考点4】基本不等式及应用 【备考知识梳理】1、 如果,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”)推论:22ab 2a b +≤(,R a b ∈)2、 如果0a >,0b >,则a b +≥,(当且仅当a b =时取等号“=”).推论:2ab ()2a b +≤(0a >,0b >);222()22a b a b ++≥ 3、20,0)112a b a b a b+≤≤>>+ 【规律方法技巧】1.利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项,并项,也可乘上一个数或加上一个数,“1”的代换法等.2. 在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等. ① 一正:函数的解析式中,各项均为正数;② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③ 三取等:函数的解析式中,含变数的各项均相等,取得最值.若使用基本不等式时,等号取不到,可以通过“对勾函数”,利用单调性求最值. 【考点针对训练】1.已知正数a ,b ,c 满足3a -b +2c =0的最大值为 .【答案】12≤=,当且仅当322b ac ==的最大值为122.设实数,x y 满足2214x y -=,则232x xy -的最小值是 .【答案】6+【解析】令2x y t +=,则12x y t -=,所以()1112t t x t t y -⎧=+⎪⎨⎪=⎩,,,则222432626x xy t t -=+++≥【两年模拟详解析】1.【苏北三市(连云港、徐州、宿迁)2017届高三年级第三次调研考试】已知对于任意的,都有,则实数的取值范围是__________.【答案】(或)【解析】整理不等式可得: .问题等价于在区间上,过点斜率为的直线恒在抛物线的上方,注意到点三点共线,据此可得实数a 的取值范围是,即12.【2016-2017学年度苏锡常镇四市高三教学情况调研(二)】已知a ,b 均为正数,且20ab a b --=,则22214a b a b-+-的最小值为 .【答案】7 【解析】,所以(当且仅当时取等号)而 (当且仅当 时取等号),因此(当且仅当 时取等号),即的最小值为7.3.【南京市、盐城市2017届高三年级第一次模拟】在ABC ∆中,,,A B C 所对的边分别为,,a b c ,若22228a b c ++=,则ABC ∆面积的最大值为 ▲ .【答案】5【解析】11sin 22ABCS ab C ∆====,而222228242ab a b c ab c ≤+=-⇒≤-,所以22ABCS ∆≤=≤=,当且仅当28,5a b c ==时取等号 4. 【镇江市2017届高三年级第一次模拟】已知函数)(x f 是定义在R 上的奇函数,当0>x 时,x x x f 42-=)(,则不等式x x f >)(的解集为 .【答案】()()5,05,-+∞【解析】当0< x 时,]4[)()(2x x x f x f +-=--=,所以⎩⎨⎧>->x x x x402或⎩⎨⎧>+-<x x x x )4(02,解得5>x 或05<<-x ,解集为),5()0,5(+∞-U5. 【镇江市2017届高三年级第一次模拟】不等式42<-x x a ln log (0>a 且1≠a )对任意),(1001∈x 恒成立,则实数的取值范围为 . 【答案】()140,1e ,⎛⎫+∞ ⎪⎝⎭【解析】)100ln ,0(ln )100,1(∈⇒∈x x ,所以x xa x x a ln ln 4ln 14ln log 2+<⇒<-,又 4ln ln 42ln ln 4=⨯≥+x xx x ,当且仅当)100ln ,0(2ln ∈=x 时取等号,因此 104ln 1<<⇒<a a或41e a > 6. 【镇江市2017届高三年级第一次模拟】已知不等式222≥+-+-)ln ()(λn m n m 对任意R ∈m ,),(+∞∈0n 恒成立,则实数λ的取值范围为 .【答案】1λ…【解析】不等式恒成立等价于直线λ+=x y 上任一点到曲线x y ln =上任一点距离最小值不小于2,易得直线1-=x y 与曲线x y ln =相切,所以11,22|1|≥⇒->≥+λλλ 7. 【2017年第二次全国大联考江苏卷】对任意的π(0,)2θ∈,不等式2214|21|sin cos x θθ+≥-恒成立,则实数x 的取值范围是____________. 【答案】[4,5]-8. 【2017年第二次全国大联考江苏卷】实数,x y 满足01xy x y ≥⎧⎨+≤⎩,使z ax y =+取得最大值的最优解有两个,则z ax y =+的最小值为_______. 【答案】1-【解析】如下图所示,画出不等式组所表示的区域,∵z ax y =+取得最大值的最优解有两个,∴11a a -=⇒=-,∴当1x =,0y =或0x =,1y =-时,z ax y x y =+=-+有最小值1-.9. 【2017年第二次全国大联考江苏卷】在锐角三角形ABC 中,若tan ,tan ,tan A B C 依次成等差数列,则tan tan tan A B C 的取值范围为 .【答案】)+∞ 【解析】由题意得tan tan 2tan tan tan 2tan()tan tan 2tan tan 1tan tan A CB AC A C A C A C A C+=+⇒-+=+⇒-=+-因为锐角三角形ABC ,所以tan 0,tan 0A C >>,因此tan tan 3A C =,2tan tan B B ≥⇒≥(当且仅当tan tan A C =时取等号),从而tan tan tan A B C ≥10. 【2017年第二次全国大联考江苏卷】已知,x y ∈R 且22231x xy y +-=,则22z x y =+的最小值为_______.【解析】由22231x xy y +-=得(3)()1x y x y +-=,可设13,,(0)x y t x y t t+=-=≠,因此222231521,,4484t t t t t t x y z x y +-++===+=≥=,当且仅当2t =取等号,即22z x y =+的最小值为14. 11. 【2017年第三次全国大联考江苏卷】已知21,,26x y x y x y+∈+++=R ,则2x y +的最大值为_____________. 【答案】4【解析】令2(0)x y m m +=>,则216m x y +=-,因为2121214()(4)x y y x x y x y m m x y++=+=++18(4m m≥+=,当且仅当2x y =时取等号,所以286,680,24m m m m m-≥-+≤≤≤,即2x y +的最大值为4(当且仅当22x y ==时取等号).12.【2017年高考原创押题预测卷01(江苏卷)】若,y 满足不等式2,6,20,x x y x y ≥⎧⎪+≤⎨⎪-≤⎩则yx 的最大值是 . 【答案】 2【解析】在直角坐标系内作出不等式组2620x x y x y ≥⎧⎪+≤⎨⎪-≤⎩,所表示的可行域如图阴影部分(含边界),其中yx表示可行域内点(,)x y 与原点O 连线的斜率,由图可知,OC 斜率最大,422OC k ==,所以yx最大值为2.13.【2017年高考原创押题预测卷02(江苏卷)】已知,,,a b c d ∈R 且满足123ln 3=-=+cd b a a ,则22)()(d b c a -+-的最小值为 . 【答案】e9ln 59 【解析】由题设可得点Q P ,分别在曲线c d a a b 23,ln 3=-+=上.设点),(),,(d c Q b a P ,则问题转化为求曲线a a b ln 3+=上的动点P 与直线32+=c d 上的动点Q 之间的距离的最小值的平方问题.设点)ln 3,(t t t M +是曲线a a b ln 3+=的切点,因ab 31/+=,故在点M 处的切线的斜率t k 31+=,由题意231=+t,即3=t 时,也即当切线与已知直线32+=c d 平行时,此时切点)3ln 33,3(+M 到已知直线32+=c d 的距离最近,最近距离d ==,也即22)()(d b c a -+-的最小值为2229(2ln 3)9ln 553e d -==.14. 【2017年高考原创押题预测卷03(江苏卷)】设0,0a b >>,点(,)P a b 在过点(1,1),(2,3)A B --的直线上,则224S a b =+的最大值为.【答案】5415. 【淮安、宿迁、连云港、徐州苏北四市2016届高三第二次调研】设c b a ,,是正实数,满足a c b ≥+,则ba cc b ++的最小值为 .12【解析】11,2,,22c c b c a b c a b a b b c a b b c +≥+≥+≥≥++++,2b c b c c a b c b c+≥+++,令1211111,221221222b bc t t t c c b c t t +=+=+=+-≥=+++当且仅当12t =时取“=”, 则b a c c b ++1216.【江苏省清江中学数学模拟试卷】不等式2ln x x x +>的解集为 . 【答案】(1,)+∞【解析】当01x <≤时,2x x <,ln 0x ≤,所以2ln x x x +≤,当1x >时,2x x >,ln 0x >,所以2ln x x x +>,因此原不等式的解集为(1,)+∞.17.【江苏省清江中学数学模拟试卷】已知x ,y 是正整数,216max{,}()t x y x y =-,则t 的最小值为 . 【答案】8【解析】由题意只要考虑16()y x y -是正数,即0x y ->的情形,因为16()y x y -221664()2y x y x≥=+-,所以2221664max{,}max{,}()t x x y x y x =≥-,当28x =时,22648x x==,所以min 8t =. 18【江苏省清江中学2016届高三上学期周练数学试题】已知实数0y x >>,若以x y +,,x λ为三边长能构成一个三角形,则实数λ的范围为 .【答案】[12,【解析】根据已知条件得:x y x x x y x y x λλλ⎧+>>+++>⎪⎩①② ,0y x x y >>∴+=>,0x y x λλ>∴++>,0,0y x λ>>> 都成立;∴由①得,211()y yx xλ<+++,令1110y t t f t t f t x =>=+>'=,,()(),∴()f t 在1+∞(,)上单调递增;()()122f t f λ∴∴≤>= 由②得211()y y x x λ>+-+,令11y t t g t t x =>=+'=>,,()() ,∴g t ()在1+∞(,)单调递增; ()()1,1,1g t t g t g t λ=∴→∞→∴<∴≥=+,() ,综上即λ的取值范围为[12+,19.【扬州市2015—2016学年度第一学期期末检测试题】.已知1>>b a 且7log 3log 2=+a b b a ,则112-+b a 的最小值为 . 【答案】3【解析】令log a b t =,又1>>b a 得01t <<,32log 3log 27a b b a t t +=+=解得12t =,即21log ,2a b a b ==,21111311a ab a +=-++≥--,当且仅当2a =时取“=” 20.【镇江市2016届高三年级第一次模拟考试】已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-log 2x ,则不等式f (x )<0的解集是________. 【答案】(-2,0)∪(2,+∞).【解析】当x <0时,()()()2log 1f x f x x =--=--, f (x )<0,即()2log 10x --<,解得20x -<<;当x >0时,f (x )=1-log 2x ,f (x )<0,即21log 0x -<,解得2x >,综上所述,不等式f (x )<0的解集是(-2,0)∪(2,+∞).21.【泰州市2016届高三第一次模拟考试】若正实数,x y 满足2(21)(52)(2)xy y y -=+-,则12x y+的最大值为 .【答案】12- 【解析】令1,(0)2x t t y+=>,则222(22)(52)(2),(45)(88)80yt y y t y t y -=+--+-+=,因此222(88)32(45)0247001t t t t t ∆=---≥⇒+-≤⇒<≤-,当1t =-时,2440045t y x t -==>=>-,,因此12x y +1-. 22.【江苏歌风中如皋办高三数学九月月考】若实数,x y 满足0x y >>,且22log log 1x y +=,则22x y x y+-的最小值为 .【答案】4【解析】由已知222log log log 1xy x y =+=,2xy =,又0x y ->,所以222()2x y x y xyx y x y+-+=--4()x y x y =-+-4≥=(当且仅当2x y -=时取等号),所以最小值为4.【一年原创真预测】1.若正实数,a b 满足1ab =,则224ba--的最大值为 .【答案】14【解析】由题可得()2242b a b a--+-=,因为()22a b a b a b +≥+≥⇒-+≤-()()212224a b a b -+-+-⇒≤⇒≤,当且仅当1a b ==时, 224b a--取得最大值14. 【入选理由】】本题考查基本不等式和指数运算等基础知识,意在考查学生的运算能力,分析问题、解决问题的能力,以及学生逻辑推理能力.本题是基本不等式与指数函数结合,难度不大,故选此题.2.若关于x 的不等式0xe ax b --≥对任意实数x 恒成立,则ab 的最大值为_________. 【答案】2e【入选理由】本题考查不等式恒成立问题,利用导数判断函数的单调性,函数的极值与最值问题等基础知识,意在考查运用转化与化归思想、综合分析问题解决问题以及运算求解能力.本题是一个综合题,考查了不等式的性质的应用,同时又是一个函数性质题,有一定的难度,但构思比较巧,故选此题.3.已知||||2a b ==,对任意x R ∈,若不等式||1a xb +≥恒成立,则a b ⋅的取值范围是___________.【答案】(,-∞-,或)⎡+∞⎣【入选理由】本题考查向量的模,二次函数最值,不等式恒成立等基础知识,意在考查运用转化与化归思想、综合分析问题解决问题以及运算求解能力.本题是一个综合题,巧妙的把向量,二次函数,不等式有机的结合在一起,难度中等,此题的解题妙处就在把向量的模的问题转化为二次函数来处理,的确是一个好题,故选此题.。

2018高考数学(文)(人教新课标)大一轮复习配套文档第七章不等式7-4基本不等式及其应用Word版含答案

2018高考数学(文)(人教新课标)大一轮复习配套文档第七章不等式7-4基本不等式及其应用Word版含答案

7.4 基本不等式及其应用1.如果a >0,b >0,那么 叫做这两个正数的算术平均数.2.如果a >0,b >0,那么 叫做这两个正数的几何平均数.3.重要不等式:a ,b ∈R ,则a 2+b 2≥ (当且仅当a =b 时取等号).4.基本不等式:a >0,b >0,则 ,当且仅当a =b 时等号成立,即两个正数的算术平均数不小于它们的几何平均数.5.求最小值:a >0,b >0,当ab 为定值时,a +b ,a 2+b 2有 ,即a +b ≥ ,a 2+b 2≥ .简记为:积定和最小.6.求最大值:a >0,b >0,当a +b 为定值时,ab 有最大值,即 ,亦即 ;或a 2+b 2为定值时,ab 有最大值(a >0,b >0),即 .简记为:和定积最大.7.拓展:若a >0,b >0时,21a +1b≤ ≤a +b2≤ ,当且仅当a =b 时等号成立.自查自纠1.a +b22.ab3.2ab4.a +b2≥ab5.最小值 2ab 2ab6.ab ≤⎝ ⎛⎭⎪⎫a +b 22 ab ≤14(a +b )2 ab ≤a 2+b 227.ab a 2+b22已知a ,b ∈R +,且a +b =1,则ab 的最大值为( )A .1B .14C .12D.22解: 因为a ,b ∈R +,所以1=a +b ≥2ab ,所以ab ≤14,当且仅当a =b =12时等号成立.故选B .(2016·湖南模拟)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( )A .1+ 2B .1+ 3C .3D .4解:因为x >2,所以x -2>0,则f (x )=x +1x -2=(x -2)+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2,即x =3时取等号.即当f (x )取得最小值时,x =3,即a =3.故选C .设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q解:p =f (ab )=ln ab ,q =f ⎝⎛⎭⎪⎫a +b 2=ln a +b 2,r =12(f (a )+f (b ))=12ln ab =ln ab ,函数f (x )=ln x在(0,+∞)上单调递增,因为a +b2>ab ,所以f ⎝⎛⎭⎪⎫a +b 2>f (ab ).所以q>p =r .故选C .(2014·上海)若实数x ,y 满足xy =1,则x2+2y 2的最小值为________.解:由xy =1得x 2+2y 2=x 2+2x2≥22,当且仅当x =±42时等号成立.故填22.(2016·鄂州一模)已知x >0,则xx 2+4的最大值为________.解:因为x x 2+4=1x +4x,又x >0,所以x +4x≥2x ×4x =4,当且仅当x =4x,即x =2时取等号,所以0<1x +4x≤14,即x x 2+4的最大值为14.故填14.类型一 利用基本不等式求最值(1)函数y =(x +5)(x +2)x +1(x >-1)的值域为________.解:因为x >-1,所以x +1>0,令m =x +1,则m >0,且y =(m +4)(m +1)m =m +4m+5≥2m ·4m+5=9,当且仅当m =2时取等号.故填.(2)y =2 400-5(60-x )240-x=2 400-5,当且仅当40-x =40040-x ,即x =20∈(0,30]时,y 取得最大值2 000,所以当DN =20 m 时,得到的市民健身广场面积最大,最大面积为2 000 m 2.答略.【点拨】建立关于x 的函数关系式是解决本题的关键,在运用基本不等式求最小值时,除了“一正,二定,三相等”以外,在最值的求法中,使用基本不等式次数要尽量少,最好是在最后一步使用基本不等式,如果必须使用几次,就需要查看这几次基本不等式等号成立的条件是否有矛盾,有矛盾则应调整解法.(2016·徐州质检)某住宅小区为了使居民有一个优雅、舒适的生活环境,计划建一个八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为200 m 2的十字形区域.现计划在正方形MNPQ 上建一花坛,造价为4 200元/m 2,在四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为210元/m 2,再在四个空角(图中四个三角形)上铺草坪,造价为80元/m 2.(1)设总造价为S 元,AD 的长为x m ,试建立S 关于x 的函数关系式;(2)计划至少投入多少元,才能建造这个休闲小区?解:(1)设DQ 的长为y m ,则x 2+4xy =200, 所以y =200-x24x.S =4 200x 2+210×4xy +80×4×12y 2=38 000+4 000x 2+400 000x2(0<x <102). (2)S =38 000+4 000x 2+400 000x2≥38 000+24 000x 2×400 000x2=38 000+216×108=118 000, 当且仅当 4 000x 2=400 000x 2,即x =10时取“=”,所以S min=118 000(元).故计划至少要投入11.8万元才能建造这个休闲小区.1.要熟悉基本不等式的变式和推广,这对提高解题能力是有帮助的,常见的基本不等式的变式和推广有:①a 2+b 2≥(a +b )22;②ab ≤a 2+b 22;③ab ≤14(a+b )2;④⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22;⑤(a +b )2≥4ab ;⑥ab ≥21a +1b;⑦a +b +c3≥3abc ;⑧abc ≤a 3+b 3+c 33等.对于以上各式,要明了其成立的条件和取“=”的条件.2.在利用基本不等式求最值时,要注意一正,二定,三相等.“一正”是指使用均值不等式的各项(必要时,还要考虑常数项)必须是正数;“二定”是指含变数的各项的和或积必须是常数;“三相等”是指具备等号成立的条件,使待求式能取到最大或最小值.3.基本不等式的应用在于“定和求积,定积求和;和定积最大,积定和最小”,必要时可以通过变形(拆补)、配凑、常数代换、运算(指数、对数运算、平方等)构造“和”或者“积”,使之为定值.4.求1a +1b型最值问题,常通过“1”来进行转化,但不是所有的最值都可以通过基本不等式解决,有一些看似可以通过基本不等式解决的问题,由于条件的限制,等号不能够成立,这时就不能用基本不等式来解决,而要借助于其他求值域的方法来解决.5.基本不等式除具有求最值的功能外,还具有将“和式”转化为“积式”以及将“积式”转化为“和式”的放缩功能,常用于比较数(式)的大小或证明不等式,解决问题的关键是抓住不等式两边的结构特征,找准利用基本不等式的切入点.1.若a >1,则a +1a -1的最小值是( ) A .2B .aC .3D.2a a -1解:因为a >1,所以a +1a -1=a -1+1a -1+1≥2(a -1)·1a -1+1=2+1=3,当且仅当a =2时等号成立.故选C .2.(2015·大理模拟)已知a >0,b >0,且2a +b =4,则1ab的最小值为( )A.14B .4C.12D .2解:因为a >0,b >0,所以4=2a +b ≥22ab ,得ab ≤2,所以1ab ≥12,当且仅当a =1,b =2时等号成立.故选C .3.(2016·西安模拟)以下函数中,最小值为2的是( )A .y =x +1xB .y =3x +3-xC .y =lg x +1lg x (0<x <1)D .y =sin x +1sin x ⎝ ⎛⎭⎪⎫0<x <π2 解:因为3x>0,3-x>0,故3x +3-x≥2(当且仅当x =0时取等号).故选B .4.小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b2D .v =a +b2解:设甲、乙两地之间的距离为s . 因为a <b ,所以v =2ss a +s b=2ab a +b <2ab2ab =ab .又v -a =2ab a +b -a =ab -a 2a +b >a 2-a2a +b =0,所以v >a .故选A .5.(2016·重庆模拟)若正数a ,b 满足a +b =2,则1a +1+4b +1的最小值是( ) A .1 B .94C .9D .16解:1a +1+4b +1=⎝ ⎛⎭⎪⎫1a +1+4b +1·(a +1)+(b +1)4 =14⎣⎢⎡⎦⎥⎤1+4+b +1a +1+4(a +1)b +1≥14(5+4)=94, 当且仅当b +1a +1=4(a +1)b +1且a +b =2,即a =13,b =53时取等号.故选B .6.(2014·重庆)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( )A .6+2 3B .7+2 3C .6+4 3D .7+4 3解:因为log 4(3a +4b )=log 2ab ,所以log 4(3a+4b )=log 4(ab ),即3a +4b =ab ,且⎩⎪⎨⎪⎧3a +4b >0,ab >0, 即a >0,b >0,所以4a +3b=1(a >0,b >0),a +b =(a +b )⎝ ⎛⎭⎪⎫4a +3b =7+4b a +3a b ≥7+24b a ·3ab=7+43,当且仅当4b a =3ab时取等号.故选D .7.(2015·青海模拟)点(m ,n )在直线x +y =1位于第一象限内的图象上运动,则log 2m +log 2n 的最大值是________.解:由条件知,m >0,n >0,m +n =1,所以mn ≤⎝ ⎛⎭⎪⎫m +n 22=14,当且仅当m =n =12时取等号,所以log 2m +log 2n =log 2mn ≤log 214=-2.故填-2.8.(2014·四川)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解:易知定点A (0,0),B (1,3). 且无论m 取何值,两直线垂直. 所以无论P 与A ,B 重合与否,均有|PA |2+|PB |2=|AB |2=10(P 在以AB 为直径的圆上).所以|PA |·|PB |≤12(|PA |2+|PB |2)=5.当且仅当|PA |=|PB |=5时,等号成立.故填5. 9.已知0<x <43,求x (4-3x )的最大值.解:已知0<x <43,所以0<3x <4.所以x (4-3x )=13(3x )(4-3x )≤13⎝ ⎛⎭⎪⎫3x +4-3x 22=43, 当且仅当3x =4-3x ,即x =23时“=”成立.所以当x =23时,x (4-3x )取最大值为43.10.已知a >0,b >0,且2a +b =1,求S =2ab -4a 2-b 2的最大值.解:因为a >0,b >0,2a +b =1,所以4a 2+b2=(2a +b )2-4ab =1-4ab .且1=2a +b ≥22ab ,即ab ≤24,ab ≤18,所以S =2ab -4a 2-b 2=2ab -(1-4ab )=2ab +4ab -1≤2-12.当且仅当a =14,b =12时,等号成立.如图所示,已知树顶A 离地面212米,树上另一点B 离地面112米,某人在离地面32米的C 处看此树,则该人离此树________米时,看A ,B 的视角最大.解:问题转化为求△ABC 中∠BCA 的取值范围.过点C 作CD ⊥AB 交AB 的延长线于点D .设该人距离此树的距离CD =x 米,看A ,B 的视角最大,即∠BCA 最大.不妨设∠BCD =α,∠ACD =β,则∠BCA =β-α,且tan α=4x ,tan β=9x ,所以tan(β-α)=9x -4x 1+9x ×4x=5xx 2+36=5x +36x≤52x ×36x=512,当且仅当x =36x,即x =6时取等号,此时∠BCA 最大.故填6.1.(2016·肇庆模拟)如果log 3m +log 3n =4,那么m +n 的最小值是( )A .4B .4 3C .9D .18解:log 3m +log 3n =log 3mn =4,所以mn =34,而m +n ≥2mn =18,当且仅当m =n =9时等号成立.故选D .2.(2016·西安模拟)若a ,b 均为大于1的正数,且ab =100,则lg a ·lg b 的最大值是( )A .0B .1C .2D.52解:因为a >1,b >1,所以lg a >0,lg b >0.lg a ·lg b ≤(lg a +lg b )24=(lg ab )24=1.当且仅当a =b =10时取等号.故选B .3.(2016·安康模拟)若x >1,则函数y =x +1x+16xx 2+1的最小值为( ) A .16B .8C .4D .2解:y =x +1x +16x x 2+1=x 2+1x +16xx 2+1≥2x 2+1x ·16x x 2+1=8,当且仅当x 2+1x =16xx 2+1时等号成立.故选B .4.(2016·湖南模拟)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )A .60件B .80件C .100件D .120件解:由题意知平均每件产品的生产准备费用是800x元,则800x +x 8≥2800x ×x 8=20,当且仅当800x =x 8,即x =80时“=”成立,所以每批应生产产品80件.故选B .5.(2016·郑州模拟)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C . 6D .8解:因为(x +y )⎝ ⎛⎭⎪⎫1x +a y=1+ax y +y x+a ≥a +1+2a ,当且仅当ax y =y x时等号成立.要使原不等式恒成立,则只需a +1+2a ≥9恒成立,所以(a -2)(a +4)≥0,解得a ≥4, 所以正实数a 的最小值是4.故选B . 6.(2016·重庆模拟)若不等式tt 2+9≤a ≤t +2t2在t ∈(0,2]上恒成立,则a 的取值范围是( )A.⎣⎢⎡⎦⎥⎤16,1 B.⎣⎢⎡⎦⎥⎤16,22 C.⎣⎢⎡⎦⎥⎤16,413D.⎣⎢⎡⎦⎥⎤213,1解:t t 2+9=1t +9t,而y =t +9t在(0,2]上单调递减,故t +9t ≥2+92=132,t t 2+9=1t +9t≤213(当且仅当t=2时等号成立).因为1t ≥12,所以t +2t 2=1t +2t 2=2⎝ ⎛⎭⎪⎫1t +142-18≥1(当且仅当t =2时等号成立),故a 的取值范围为⎣⎢⎡⎦⎥⎤213,1.故选D .7.(2015·重庆)设a ,b >0,a +b =5,则a +1+b +3的最大值为________.解:因为a ,b >0,a +b =5,所以(a +1+b +3)2≤2(a +1)2+2(b +3)2=18,当且仅当a =72,b =32时等号成立,则a +1+b +3≤32,即a +1+b +3的最大值为3 2.故填32.8.(2016·湖南模拟)若直线ax +by -1=0(a >0,b >0)过曲线y =1+sin πx (0<x <2)的对称中心,则1a +2b的最小值为________.解:因为曲线y =1+sin πx (0<x <2)的对称中心为(1,1),所以a +b =1,1a +2b=(a +b )⎝ ⎛⎭⎪⎫1a +2b =3+b a+2ab≥3+2b a ·2a b =3+22,当且仅当b a =2ab,且a +b =1,即a =2-1,b =2-2时等号成立.故填3+22.9.点(x ,y )在直线x +2y =3上移动,求2x+4y的最小值.解:已知点(x ,y )在直线x +2y =3上移动,所以x +2y =3.所以2x+4y≥22x·4y=22x +2y=223=4 2.当且仅当⎩⎪⎨⎪⎧2x=4y,x +2y =3, 即⎩⎪⎨⎪⎧x =32,y =34时“=”成立.所以当⎩⎪⎨⎪⎧x =32,y =34时,2x +4y取最小值为4 2.10.如图,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?解:(1)设每间虎笼长为x m ,宽为y m ,则由条件,知4x +6y =36,即2x +3y =18.设每间虎笼的面积为S ,则S =xy .解法一:由于2x +3y ≥22x ×3y =26xy , 所以26xy ≤18,得xy ≤272,即S ≤272.当且仅当2x =3y 时等号成立.由⎩⎪⎨⎪⎧2x =3y ,2x +3y =18,解得⎩⎪⎨⎪⎧x =4.5,y =3. 故每间虎笼长为4.5 m ,宽为3 m 时,可使每间虎笼面积最大.解法二:由2x +3y =18,得x =9-32y .因为x >0,所以0<y <6.S =xy =⎝ ⎛⎭⎪⎫9-32y y =32(6-y )y .因为0<y <6,所以6-y >0. 所以S ≤32⎣⎢⎡⎦⎥⎤(6-y )+y 22=272. 当且仅当6-y =y ,即y =3时,等号成立,此时x=4.5.故每间虎笼长4.5 m ,宽3 m 时,可使每间虎笼面积最大.(2)由条件知S =xy =24.设钢筋网总长为l ,则l =4x +6y .解法一:因为2x +3y ≥22x ·3y =26xy =24, 所以l =4x +6y =2(2x +3y )≥48,当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧2x =3y ,xy =24,解得⎩⎪⎨⎪⎧x =6,y =4. 故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长度最小.解法二:由xy =24,得x =24y.所以l =4x +6y =96y+6y =6⎝ ⎛⎭⎪⎫16y+y ≥6×216y×y =48,当且仅当16y=y ,即y =4时,等号成立,此时x=6.故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长度最小.(2016·襄樊月考)已知a ,b 为正实数.(1)求证:a 2b +b 2a≥a +b ;(2)利用(1)的结论求函数y =(1-x )2x+x 21-x(0<x <1)的最小值.解:(1)证明:因为a ,b >0,所以(a +b )⎝ ⎛⎭⎪⎫a 2b +b 2a =a 2+b 2+a 3b +b 3a≥a 2+b 2+2ab =(a +b )2.所以a 2b +b 2a≥a +b ,当且仅当a =b 时等号成立.(2)因为0<x <1,所以1-x >0,由(1)的结论,函数y =(1-x )2x +x 21-x≥(1-x )+x =1.当且仅当1-x =x ,即x =12时等号成立.所以函数y =(1-x )2x +x21-x (0<x <1)的最小值为1.。

2018高考(江苏专版)大一轮数学(文)复习检测第48课 不等式的综合应用 Word版含答案

2018高考(江苏专版)大一轮数学(文)复习检测第48课 不等式的综合应用 Word版含答案

第课不等式的综合应用应知应会.已知>>(>).若是的充分不必要条件,则的最大值为..已知为实数,那么的最大值为..已知函数(),那么<的解集为..(·安阳一中模拟)若对任意>,≤恒成立,则实数的取值范围是..已知函数(),求不等式()≤()的解集..如图,某小区拟在空地上建一个占地面积为的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间的道路(图中阴影部分)的宽度均为.问:怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.(第题)巩固提升.(·四川卷)已知函数()()()(≥≥)在区间上单调递减,那么的最大值为..(·南京、盐城、徐州二模)已知α,β均为锐角,且(αβ),那么α的最大值是..若函数()的最小值为,则实数的值为..(·浙江卷)已知实数满足≤,那么的最大值是..已知函数()'()为()的导函数,设()'(),若对于任意的∈[],不等式()<()恒成立,求实数的取值范围. .(·镇江期末)如图,某工业园区是半径为的圆形区域,距离园区中心点处有一中转站,现准备在园区内修建一条笔直的公路,公路经过该中转站,并把园区分成两个区域.()设中心对公路的视角为α,求α的最小值,并求较小区域面积的最小值;()为方便交通,准备过中转站在园区内再修建一条与垂直的笔直公路,求两条公路长度和的最小值.(第题)第课不等式的综合应用应知应会.【解析】由题意知>或<,设(),则所以<≤,所以的最大值为..【解析】函数的定义域为[],且>,所以≤·,当且仅当,即时等号成立..【解析】原不等式可化为<,所以①或②由①解得≤<,由②解得<,所以所求解集为..【解析】因为>,所以≤,当且仅当(>),即时等号成立,故实数的取值范围是∞..【解答】()其图象如图所示.当≥时,令()(),即,解得(,舍去),从而不等式()≤()等价于≤,解得≥,即不等式()≤()的解集为[∞).(第题).【解答】设休闲广场的长为,则宽为,绿化区域的总面积为,则()。

高考一轮作业:7-4基本不等式及其应用(含答案)

高考一轮作业:7-4基本不等式及其应用(含答案)

时间:45分钟 满分:100分 班级:________姓名:________ 学号:________ 得分:________一、选择题(本大题共6小题,每小题6分,共36分,在下列四个选项中,只有一项是符合题目要求的)1.(2018·长春月考)设a ,b 是正实数,以下不等式:(1)a +1b≥2;(2)2+b 2≥a+b ;(3)ab ≥2ab a +b ;(4)a <|a -b|+b ,其中恒成立的有( ) A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(4) 解析:根据基本不等式,有2+b 2=2+b 2+2+b 2 ≥2+b 2+2ab =a +b ,故(2)正确;由a +b≥2ab ,则2ab a +b ≤1,两边同乘以ab ,得2ab a +b ≤ab ,故(3)正确.答案:B2.(2018·诸城一中月考)若实数a ,b 满足a +b =2,则3a +3b 的最小值是( )A .18B .6C .2 3D .3 3 解析:法一:3a +3b ≥23a ·3b =23a +b =6. 当且仅当a =b =1时取等号,故3a +3b 的最小值是6.法二:由a +b =2,得b =2-a ,∴3a +3b =3a +32-a =3a +93a ≥23a ·93a =6. 当且仅当3a =93a ,即a =1时等号成立. 答案:B3.(2018·桦甸一模)已知m =a +1a -2(a >2),n =(12)x 2-2(x <0),则m 、n 之间的大小关系是( ) A .m >nB .m <nC .m =nD .m≤n 解析:∵m =(a -2)+1a -2+2≥2-1a -2+2=4(当且仅当a =3时等号成立), n =22-x 2<4,∴m >n.答案:A4.(2018·延吉二模)不等式1a -b +1b -c +λc -a <0对满足a >b >c 恒成立,则λ的取值范围是( )A .(-∞,0]B .(-∞,1)C .(-∞,4]D .(4,+∞)解析:变形λ>(a -c)(1a -b +1b -c )=[(a -b)+(b -c)]·(1a -b +1b -c )=1+a -b b -c +b -c a -b+1≥4,(当且仅当(a -b)2=(b -c)2时,等号成立)∴λ>4.故应选D.答案:D5.(2018·莱州模拟)若a >0,b >0,c >0,且a(a +b +c)+bc =4-23,则2a +b +c 的最小值为( ) A.3-1 B.3+1 C .23+2D .23-2 解析:∵a(a +b +c)+bc =a 2+ab +ac +bc =(a +c)(b +a)=4-23,∴2a +b +c =(a +b)+(a +c)≥2++=23-2,当且仅当a +b =a +c =3-1时取等号.答案:D6.(2018·江西红色六校联考)已知a ,b ∈R +,且2a +b =1,则s =2ab -4a 2-b 2的最大值为( ) A.2-12 B.2-1C.2+1D.2+12 解析:∵a ,b ∈R +,1=2a +b≥22ab ,∴ab ≤24,4a 2+b 22≥2a +b 2,∴4a 2+b 2≥12,-4a 2-b 2≤-12,∴s =2ab -4a 2-b 2≤2ab -12≤2-12,当且仅当2a =b 时等号成立,故选A. 答案:A二、填空题(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上)7.(2018·临汾百题精选)若2y +4x =xy(x >0,y >0),则xy 的最小值为________.解析:22y·4x≤2y+4x =xy(x >0,y >0),当且仅当2y =4x 时“=”成立,∴xy≥32.答案:328.(2018·山东实验中学诊断)已知不等式(x +y)(1x +a y)≥9,对任意正实数x ,y 恒成立,则正实数a 的最小值是________.解析:由于x >0,y >0,所以(1x +a y )(x +y)=1+a +(y x +ax y )≥1+a +2a(当且仅当y x =ax y时“=”成立),此不等式恒成立,由题设1+a +2a ≥9,∴a +1≥3,a≥4,a min =4.答案:49.(2018·陕西)已知a ,b ,m ,n 均为正数,且a +b =1,mn =2,则(am +bn)(bm +an)的最小值为________. 解析:∵a +b =1,mn =2,∴(am +bn)(bm +an)=(a 2+b 2)mn +ab(m 2+n 2)=2(a 2+b 2)+ab(m 2+n 2)≥2(a 2+b 2)+ab·2mn=2(a +b)2=2.当且仅当m =n =2时,等号成立.答案:210.(2018·许昌模拟)已知a 、b 、c 都是正数,且a +2b +c =1,则1a +1b +1c的最小值是________. 解析:1a +1b +1c =(1a +1b +1c)(a +2b +c) =4+(2b a +a b )+(c a +a c )+(c b +2b c)≥6+4 2. 答案:6+4 2三、解答题(本大题共3小题,共40分,11、12题各13分,13题14分,写出证明过程或推演步骤)11.设a ,b ,c 为正数,求证:bc a +ca b +ab c≥a+b +c. 证明:∵a ,b ,c 均是正数,∴bc a ,ca b ,ab c均是正数, ∴bc a +ca b ≥2c,ca b +ab c ≥2a,ab c +bc a≥2b. 三式相加,得2(bc a +ca b +b c)≥2(a+b +c), ∴bc a +ca b +ab c≥a+b +c. 12.设函数f(x)=x +a x +1,x ∈[0,+∞). (1)当a =2时,求函数f(x)的最小值;(2)当0<a <1时,求函数f(x)的最小值.解:(1)把a =2代入f(x)=x +a x +1中, 得f(x)=x +2x +1=x +1+2x +1-1. 由于x ∈[0,+∞),所以x +1>0,2x +1>0, 所以f(x)≥22-1.当且仅当x +1=2x +1, 即x =2-1时,f(x)取得最小值,最小值为22-1.(2)因为f(x)=x +a x +1=x +1+a x +1-1,(此时再利用(1)的方法,等号取不到) 设x 1>x 2≥0,则f(x 1)-f(x 2)=x 1+a x 1+1-x 2-a x 2+1=(x 1-x 2)·[1-a 1+2+].由于x 1>x 2≥0,所以x 1-x 2>0,x 1+1>1,x 2+1≥1,所以(x 1+1)(x 2+1)>1,而0<a <1,所以a 1+2+<1,所以f(x 1)-f(x 2)>0,即f(x 1)>f(x 2),所以f(x)在[0,+∞)上单调递增,所以f(x)min =f(0)=a.13.(2018·贺兰一中期末)一变压器的铁芯截面为正十字型(两个全等的长方形,它们完全重合,把其中一个长方形绕中点旋转90°后而得的组合图叫正十字型),为保证所需的磁通量,要求十字应具有4 5 cm 2的面积,问应如何设计十字型宽x 及长y ,才能使其外接圆的周长最短,这样可使绕在铁芯上的铜线最节省.解:设y =x +2h ,由条件知:x 2+4xh =45,即h =45-x 24x ,设外接圆的半径为R ,即求R 的最小值,∵4R 2=x 2+(2h +x)2=2(x 2+2hx +2h 2),∴2R 2=f(x)=x 2+45-x 22+80-85x 2+x 48x 2=5+58x 2+10x 2(0<x <2R), ∴2R 2≥5+2254=5+5, 等号成立时,58x 2=10x2⇒x =2, ∴当x =2时2R 2最小,即R 最小,从而周长l 最小,此时x =2 cm ,y =2h +x =(5+1) cm.。

(江苏版)2018年高考数学一轮复习专题7.4基本不等式及其应用(测)

(江苏版)2018年高考数学一轮复习专题7.4基本不等式及其应用(测)

专题7.4 基本不等式及其应用一、填空题 1.-aa +(-6≤a ≤3)的最大值为_______.【解析】因为-6≤a ≤3,所以3-a ≥0,a +6≥0,则由基本不等式可知,-aa +≤-a +a +2=92,当且仅当a =-32时等号成立. 2.若2x+2y=1,则x +y 的取值范围是_______. 【解析】∵1=2x+2y≥22x·2y=22x +y当且仅当2x =2y =12,即x =y =-1时等号成立,∴2x +y≤12,∴2x +y≤14,得x +y ≤-2. 3.若直线x a +y b=1(a >0,b >0)过点(1,1),则a +b 的最小值等于_______.4.已知a >-1,b >-2,(a +1)(b +2)=16,则a +b 的最小值是_______. 【解析】 因为a >-1,b >-2,所以a +1>0,b +2>0,又(a +1)(b +2)≤⎝ ⎛⎭⎪⎫a +1+b +222,即16≤⎝⎛⎭⎪⎫a +b +322,整理得a +b ≥5,当且仅当a +1=b +2=4,即a =3,b =2时等号成立5.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是_______.【解析】 ∵不等式x +y 4<m 2-3m 有解,∴x +y 4min <m 2-3m ,∵x >0,y >0,且1x +4y =1,∴x +y 4=⎝ ⎛⎭⎪⎫x +y 4⎝ ⎛⎭⎪⎫1x +4y =4x y +y 4x +2≥24x y ·y 4x +2=4,当且仅当4x y =y 4x ,即x =2,y =8时取等号,∴⎝ ⎛⎭⎪⎫x +y 4min =4,∴m 2-3m >4,即(m +1)(m -4)>0,解得m <-1或m >4,故实数m 的取值范围是(-∞,-1)∪(4,+∞).6.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当xy z 取得最大值时,2x +1y -2z的最大值为_______. 【解析】xy z =xy x 2-3xy +4y 2=1x y +4y x-3≤14-3=1,当且仅当x =2y 时等号成立,此时z =2y 2,2x+1y -2z=-1y 2+2y=-⎝ ⎛⎭⎪⎫1y -12+1≤1,当且仅当y =1时等号成立,故所求的最大值为1.7.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b,则m +n 的最小值是________.【答案】4【解析】由题意知:ab =1,∴m =b +1a =2b ,n =a +1b=2a ,∴m +n =2(a +b )≥4ab =4.当且仅当a =b =1时取等号.8.若实数a ,b 满足1a +2b=ab ,则ab 的最小值为________.【答案】2 29.(2017·青岛模拟)已知实数x ,y 均大于零,且x +2y =4,则log 2x +log 2y 的最大值为________. 【答案】1【解析】因为log 2x +log 2y =log 22xy -1≤log 2⎝⎛⎭⎪⎫x +2y 22-1=2-1=1,当且仅当x =2y =2,即x =2,y =1时等号成立,所以log 2x +log 2y 的最大值为1.10.已知不等式2x +m +8x -1>0对一切x ∈(1,+∞)恒成立,则实数m 的取值范围是________. 【答案】(-10,+∞) 【解析】不等式2x +m +8x -1>0可化为2(x -1)+8x -1>-m -2, ∵x >1,∴2(x -1)+8x -1≥2x -8x -1=8, 当且仅当x =3时取等号. ∵不等式2x +m +8x -1>0对一切x ∈(1,+∞)恒成立, ∴-m -2<8, 解得m >-10. 二、解答题11.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.12.(2017·常州调研)某学校为了支持生物课程基地研究植物的生长规律,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2).(1)求S 关于x 的函数关系式; (2)求S 的最大值.解:(1)由题设,得S =(x -8)⎝ ⎛⎭⎪⎫900x -2=-2x -7 200x +916,x ∈(8,450).(2)因为8<x <450,所以2x +7 200x≥22x ×7 200x=240,当且仅当x =60时等号成立,从而S ≤676.故当矩形温室的室内长为60 m 时,三块种植植物的矩形区域的总面积最大,为676 m 2.。

2018高考数学文人教新课标大一轮复习配套文档:第七章

2018高考数学文人教新课标大一轮复习配套文档:第七章

7.4 基本不等式及其应用1.如果a >0,b >0,那么 叫做这两个正数的算术平均数.2.如果a >0,b >0,那么 叫做这两个正数的几何平均数.3.重要不等式:a ,b ∈R ,则a 2+b 2≥ (当且仅当a =b 时取等号).4.基本不等式:a >0,b >0,则 ,当且仅当a =b 时等号成立,即两个正数的算术平均数不小于它们的几何平均数.5.求最小值:a >0,b >0,当ab 为定值时,a +b ,a 2+b 2有 ,即a +b ≥ ,a 2+b 2≥ .简记为:积定和最小.6.求最大值:a >0,b >0,当a +b 为定值时,ab 有最大值,即 ,亦即 ;或a 2+b 2为定值时,ab 有最大值(a >0,b >0),即 .简记为:和定积最大.7.拓展:若a >0,b >0时,21a +1b≤ ≤a +b2≤ ,当且仅当a =b 时等号成立.自查自纠1.a +b22.ab3.2ab4.a +b2≥ab5.最小值 2ab 2ab6.ab ≤⎝ ⎛⎭⎪⎫a +b 22 ab ≤14(a +b )2 ab ≤a 2+b 227.ab a 2+b22已知a ,b ∈R +,且a +b =1,则ab 的最大值为( )A .1B .14C .12D.22解: 因为a ,b ∈R +,所以1=a +b ≥2ab ,所以ab ≤14,当且仅当a =b =12时等号成立.故选B .(2016·湖南模拟)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( )A .1+ 2B .1+ 3C .3D .4解:因为x >2,所以x -2>0,则f (x )=x +1x -2=(x -2)+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2,即x =3时取等号.即当f (x )取得最小值时,x =3,即a =3.故选C .设f (x )=ln x ,0<a <b ,若p =f (ab ),q =f ⎝⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q解:p =f (ab )=ln ab ,q =f ⎝⎛⎭⎪⎫a +b 2=ln a +b 2,r =12(f (a )+f (b ))=12ln ab =ln ab ,函数f (x )=ln x在(0,+∞)上单调递增,因为a +b2>ab ,所以f ⎝⎛⎭⎪⎫a +b 2>f (ab ).所以q>p =r .故选C .(2014·上海)若实数x ,y 满足xy =1,则x2+2y 2的最小值为________.(S元,AD的长为x计划至少投入多少元,才能建造这个休闲小解:问题转化为求△ABC中∠BCA若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度设每间虎笼长为x m ,宽为,即2x +3y =18.设每间虎笼的面积为S ,则S =xy x +3y ≥22x ×3y ,得xy ≤272,即。

专题7-4 基本不等式及其应用练-2018年高考数学一轮复

专题7-4 基本不等式及其应用练-2018年高考数学一轮复

一、填空题 1.下列不等式: ①lg ⎝⎛⎭⎫x 2+14>lg x (x >0); ②sin x +1sin x ≥2(x ≠k π,k ∈Z );③x 2+1≥2|x |(x ∈R ); ④1x 2+1<1(x ∈R ). 其中一定成立的是________(填序号). 【答案】③2.若2x +2y =1,则x +y 的取值范围是________. 【答案】(-∞,-2]【解析】22x +y ≤2x +2y =1,所以2x +y ≤14,即2x +y ≤2-2,所以x +y ≤-2.3.(2017·镇江期末)若a ,b 都是正数,则⎝⎛⎭⎫1+b a ·⎝⎛⎭⎫1+4a b 的最小值为________. 【答案】9【解析】∵a ,b 都是正数,∴⎝⎛⎭⎫1+b a ⎝⎛⎭⎫1+4a b =5+b a +4ab≥5+2b a ·4ab=9,当且仅当b =2a >0时取等号. 4.(2015·湖南卷改编)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为________.【答案】2 2【解析】依题意知a >0,b >0,则1a +2b≥22ab =22ab,当且仅当1a =2b ,即b =2a 时,“=”成立.因为1a +2b =ab ,所以ab ≥22ab ,即ab ≥22,所以ab 的最小值为2 2. 5.(2017·苏、锡、常、镇四市调研)若实数x ,y 满足xy >0,则x x +y +2yx +2y的最大值为________. 【答案】4-2 26.若正数x ,y 满足4x 2+9y 2+3xy =30,则xy 的最大值是________. 【答案】2【解析】由x >0,y >0,得4x 2+9y 2+3xy ≥2·(2x )·(3y )+3xy (当且仅当2x =3y 时等号成立),∴12xy +3xy ≤30,即xy ≤2,∴xy 的最大值为2.7.(2017·苏州调研)已知实数m ,n 满足m ·n >0,m +n =-1,则1m +1n 的最大值为________.【答案】-4【解析】∵m ·n >0,m +n =-1,∴m <0,n <0, ∴1m +1n =-(m +n )⎝⎛⎭⎫1m +1n =-⎝⎛⎭⎫2+n m +m n ≤-2-2n m ·m n =-4,当且仅当m =n =-12时,1m +1n取得最大值-4.8.若对于任意x >0,xx 2+3x +1≤a 恒成立,则实数a 的取值范围是________.【答案】⎣⎡⎭⎫15,+∞ 【解析】xx 2+3x +1=13+x +1x,因为x >0,所以x +1x ≥2(当且仅当x =1时取等号),则13+x +1x≤13+2=15, 即x x 2+3x +1的最大值为15,故a ≥15.二、解答题9.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y的最小值.10.(2017·苏北四市联考)如图,墙上有一壁画,最高点A 离地面4米,最低点B 离地面2米,观察者从距离墙x (x >1)米,离地面高a (1≤a ≤2)米的C 处观赏该壁画,设观赏视角∠ACB =θ. (1)若a =1.5,问:观察者离墙多远时,视角θ最大? (2)若tan θ=12,当a 变化时,求x 的取值范围.解 (1)当a =1.5时,过点C 作AB 的垂线,垂足为点D ,则BD =0.5,且θ=∠ACD -∠BCD , 由已知知观察者离墙x 米,且x >1,【能力提升】11.设正实数x,y,z满足x2-3xy+4y2-z=0,则当xyz取得最大值时,2x+1y-2z的最大值为________.【答案】1【解析】由已知得z=x2-3xy+4y2,(*)则xy z =xy x 2-3xy +4y 2=1x y +4y x -3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,所以2x +1y-2z =1y +1y -1y2=-⎝⎛⎭⎫1y -12+1≤1. 12.(2017·衡水中学调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +2by (a >0,b >0)的最大值为1,则1a 2+14b 2的最小值为________.【答案】813.(2017·盐城中学月考)a 是1+2b 与1-2b 的等比中项,则2ab|a |+2|b |的最大值为________.【答案】24【解析】依题意,a 2=1-4b 2,故a 2+4b 2=1≥4ab ,故ab ≤14,2ab |a |+2|b |≤2ab 22ab ≤24,当且仅当⎩⎨⎧a =22,b =24或⎩⎨⎧a =-22,b =-24时,等号成立.14.(2017·南京模拟)一位创业青年租用了如图所示的一块边长为1百米的正方形田地ABCD 来养蜂、产蜜与售蜜,他在正方形的边BC ,CD 上分别取点E ,F (不与正方形的顶点重合),连接AE ,EF ,F A ,使得∠EAF =45°.现拟将图中阴影部分规划为蜂源植物生长区,△AEF 部分规划为蜂巢区,△CEF 部分规划为蜂蜜交易区.若蜂源植物生长区的投入约为2×105元/百米2,蜂巢区与蜂蜜交易区的投入约为105元/百米2,则这三个区域的总投入最少需要多少元?解设阴影部分面积为S,三个区域的总投入为T.则T=2×105·S+105·(1-S)=105·(S+1),所以只要求S的最小值即可得T的最小值.设∠EAB=α(0°<α<45°),在△ABE中,因为AB=1,∠B=90°,所以BE=tan α,。

2018版高考数学文江苏专用大一轮复习讲义文档 高考专

2018版高考数学文江苏专用大一轮复习讲义文档 高考专

1.正三棱柱ABC-A1B1C1中,D为BC中点,E为A1C1中点,则DE与平面A1B1BA的位置关系为________.答案平行解析如图取B1C1的中点为F,连结EF,DF,DE,则EF∥A1B1,DF∥B1B,∴平面EFD∥平面A1B1BA,∴DE∥平面A1B1BA.2.设x、y、z是空间不同的直线或平面,对下列四种情形:①x、y、z均为直线;②x、y是直线,z是平面;③z是直线,x、y是平面;④x、y、z均为平面.其中使“x⊥z且y⊥z⇒x∥y”为真命题的是________.答案②③解析由正方体模型可知①④为假命题;由线面垂直的性质定理可知②③为真命题.3.(2016·无锡模拟)如图,在棱长为6的正方体ABCD-A1B1C1D1中,E,F分别在C1D1与C1B1上,且C1E=4,C1F=3,连结EF,FB,DE,BD,则几何体EFC1-DBC的体积为________.答案66解析 如图,连结DF ,DC 1,那么几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,那么几何体EFC 1-DBC 的体积为V =13×12×3×4×6+13×12×(3+6)×6×6=12+54=66.故所求几何体EFC 1-DBC 的体积为66.4.如图,在四棱锥V -ABCD 中,底面ABCD 为正方形,E 、F 分别为侧棱VC 、VB 上的点,且满足VC =3EC ,AF ∥平面BDE ,则VBFB=________.答案 2解析 连结AC 交BD 于点O ,连结EO ,取VE 的中点M ,连结AM ,MF ,∵VC =3EC ,∴VM =ME =EC ,又AO =CO ,∴AM ∥EO ,又EO ⊂平面BDE ,∴AM ∥平面BDE ,又AF ∥平面BDE ,AM ∩AF =A ,∴平面AMF ∥平面BDE ,又MF ⊂平面AMF ,∴MF ∥平面BDE ,又MF ⊂平面VBC ,平面VBC ∩平面BDE =BE ,∴MF ∥BE ,∴VF =FB ,∴VBFB=2.5.如图,在三棱锥P -ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.若P A ⊥AC ,P A =6,BC =8,DF =5.则直线P A 与平面DEF 的位置关系是________;平面BDE 与平面ABC 的位置关系是________.(填“平行”或“垂直”)答案 平行 垂直解析 ①因为D ,E 分别为棱PC ,AC 的中点, 所以DE ∥P A .又因为P A ⊄平面DEF ,DE ⊂平面DEF , 所以直线P A ∥平面DEF .②因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,P A =6,BC =8, 所以DE ∥P A ,DE =12P A =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2, 所以∠DEF =90°,即DE ⊥EF . 又P A ⊥AC ,DE ∥P A ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC , 所以DE ⊥平面ABC ,又DE ⊂平面BDE , 所以平面BDE ⊥平面ABC .题型一 求空间几何体的表面积与体积例1 (2016·全国甲卷)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D ′EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′-ABCFE 的体积.(1)证明 由已知得AC ⊥BD ,AD =CD ,又由AE =CF 得AE AD =CFCD,故AC ∥EF ,由此得EF ⊥HD ,折后EF 与HD 保持垂直关系,即EF ⊥HD ′,所以AC ⊥HD ′. (2)解 由EF ∥AC 得OH DO =AE AD =14.由AB =5,AC =6得DO =BO =AB 2-AO 2=4, 所以OH =1,D ′H =DH =3,于是OD ′2+OH 2=(22)2+12=9=D ′H 2, 故OD ′⊥OH .由(1)知AC ⊥HD ′,又AC ⊥BD ,BD ∩HD ′=H , 所以AC ⊥平面DHD ′,于是AC ⊥OD ′,又由OD ′⊥OH ,AC ∩OH =O ,所以OD ′⊥平面ABC . 又由EF AC =DH DO 得EF =92.五边形ABCFE 的面积S =12×6×8-12×92×3=694.所以五棱锥D ′-ABCFE 的体积V =13×694×22=2322.思维升华 (1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.正三棱锥的高为1,底面边长为26,内有一个球与它的四个面都相切(如图).求:(1)这个正三棱锥的表面积;(2)这个正三棱锥内切球的表面积与体积.解 (1)底面正三角形中心到一边的距离为13×32×26=2,则正棱锥侧面的斜高为12+(2)2= 3. ∴S 侧=3×12×26×3=9 2.∴S 表=S 侧+S 底=92+12×32×(26)2=92+6 3.(2)设正三棱锥P -ABC 的内切球的球心为O ,连结OP ,OA ,OB ,OC ,而O 点到三棱锥的四个面的距离都为球的半径r .∴V P -ABC =V O -P AB +V O -PBC +V O -P AC +V O -ABC =13S 侧·r +13S △ABC ·r =13S 表·r =(32+23)r .又V P -ABC =13×12×32×(26)2×1=23,∴(32+23)r =23,得r =2332+23=23(32-23)18-12=6-2.∴S 内切球=4π(6-2)2=(40-166)π. V 内切球=43π(6-2)3=83(96-22)π.题型二 空间点、线、面的位置关系例2 (2016·扬州模拟)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.(1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ;(3)求三棱锥E -ABC 的体积. (1)证明 在三棱柱ABC -A 1B 1C 1中, BB 1⊥底面ABC . 因为AB ⊂平面ABC , 所以BB 1⊥AB .又因为AB ⊥BC ,BC ∩BB 1=B , 所以AB ⊥平面B 1BCC 1. 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1.(2)证明 方法一 如图1,取AB 中点G ,连结EG ,FG . 因为E ,F 分别是A 1C 1,BC 的中点, 所以FG ∥AC ,且FG =12AC .因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形, 所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .方法二 如图2,取AC 的中点H ,连结C 1H ,FH . 因为H ,F 分别是AC ,BC 的中点,所以HF ∥AB , 又因为E ,H 分别是A 1C 1,AC 的中点, 所以EC 1綊AH ,所以四边形EAHC 1为平行四边形, 所以C 1H ∥AE ,又C 1H ∩HF =H ,AE ∩AB =A ,所以平面ABE ∥平面C 1HF , 又C 1F ⊂平面C 1HF , 所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3. 所以三棱锥E -ABC 的体积V =13S △ABC ·AA 1=13×12×3×1×2=33.思维升华 (1)①证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.②证明C 1F ∥平面ABE :(ⅰ)利用判定定理,关键是在平面ABE 中找(作)出直线EG ,且满足C 1F ∥EG .(ⅱ)利用面面平行的性质定理证明线面平行,则先要确定一个平面C 1HF 满足面面平行,实施线面平行与面面平行的转化.(2)计算几何体的体积时,能直接用公式时,关键是确定几何体的高,不能直接用公式时,注意进行体积的转化.(2016·南京模拟)如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG ∥平面ABC ; (2)BC ⊥SA .证明 (1)由AS =AB ,AF ⊥SB 知F 为SB 中点, 则EF ∥AB ,FG ∥BC ,又EF ∩FG =F ,AB ∩BC =B , 因此平面EFG ∥平面ABC .(2)由平面SAB ⊥平面SBC ,平面SAB ∩平面SBC =SB ,AF ⊂平面SAB ,AF ⊥SB , 所以AF ⊥平面SBC ,则AF ⊥BC .又BC ⊥AB ,AF ∩AB =A ,则BC ⊥平面SAB , 又SA ⊂平面SAB ,因此BC ⊥SA . 题型三 平面图形的翻折问题例3 (2015·陕西)如图1,在直角梯形 ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图2中△A 1BE 的位置,得到四棱锥A 1BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1BCDE 的体积为362,求a 的值. (1)证明 在题图1中,连结EC , 因为AB =BC =12AD =a ,∠BAD =π2,AD ∥BC ,E 为AD 中点,所以BC 綊ED ,BC 綊AE , 所以四边形BCDE 为平行四边形,故有CD ∥BE , 所以四边形ABCE 为正方形,所以BE ⊥AC ,即在题图2中,BE ⊥A 1O ,BE ⊥OC ,且A 1O ∩OC =O , 从而BE ⊥平面A 1OC ,又CD ∥BE , 所以CD ⊥平面A 1OC .(2)解 由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE ,又由(1)知,A 1O ⊥BE ,所以A 1O ⊥平面BCDE , 即A 1O 是四棱锥A 1BCDE 的高, 由题图1知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2, 从而四棱锥A 1BCDE 的体积为 V =13×S ×A 1O =13×a 2×22a =26a 3,由26a 3=362,得a =6. 思维升华 平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.(2016·苏州模拟)如图(1),四边形ABCD 为矩形,PD ⊥平面ABCD ,AB =1,BC=PC =2,作如图(2)折叠,折痕EF ∥DC .其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后,点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ; (2)求三棱锥M -CDE 的体积.(1)证明 因为PD ⊥平面ABCD ,AD ⊂平面ABCD , 所以PD ⊥AD .又因为ABCD 是矩形,CD ⊥AD ,PD 与CD 交于点D , 所以AD ⊥平面PCD .又CF ⊂平面PCD ,所以AD ⊥CF ,即MD ⊥CF . 又MF ⊥CF ,MD ∩MF =M ,所以CF ⊥平面MDF . (2)解 因为PD ⊥DC ,PC =2,CD =1,∠PCD =60°,所以PD =3,由(1)知FD ⊥CF , 在直角三角形DCF 中,CF =12CD =12.如图,过点F 作FG ⊥CD 交CD 于点G ,得FG =FC sin 60°=12×32=34,所以DE =FG =34,故ME =PE =3-34=334, 所以MD =ME 2-DE 2=(334)2-(34)2=62. S △CDE =12DE ·DC =12×34×1=38.故V M -CDE =13MD ·S △CDE =13×62×38=216.题型四 立体几何中的存在性问题例4 如图,在长方体ABCD -A 1B 1C 1D 1中,平面BMD 1N 与棱CC 1,AA 1分别交于点M ,N ,且M ,N 均为中点.(1)求证:AC ∥平面BMD 1N .(2)若AD =CD =2,DD 1=22,O 为AC 的中点.BD 1上是否存在动点F ,使得OF ⊥平面BMD 1N ?若存在,求出点F 的位置,并加以证明;若不存在,请说明理由.(1)证明 连结MN .因为M ,N 分别为CC 1,AA 1的中点,所以AN =12AA 1,CM =12CC 1.又因为AA 1∥CC 1,且AA 1=CC 1, 所以AN ∥CM ,且AN =CM ,所以四边形ACMN 为平行四边形,所以AC ∥MN . 因为MN ⊂平面BMD 1N ,AC ⊄平面BMD 1N , 所以AC ∥平面BMD 1N .(2)解 当点F 满足D 1F =3BF 时,OF ⊥平面BMD 1N ,证明如下:连结BD ,则BD 经过点O ,取BD 1的中点G ,连结OF ,DG ,又D 1F =3BF , 所以OF 为三角形BDG 的中位线,所以OF ∥DG . 因为BD =22=DD 1,且G 为BD 1的中点, 所以BD 1⊥DG ,所以BD 1⊥OF .因为底面ABCD 为正方形,所以AC ⊥BD .又DD1⊥底面ABCD,所以AC⊥DD1,又BD∩DD1=D,所以AC⊥平面BDD1,又OF⊂平面BDD1,所以AC⊥OF.由(1)知AC∥MN,所以MN⊥OF.又MN,BD1是平面四边形BMD1N的对角线,所以它们必相交,所以OF⊥平面BMD1N.思维升华对于线面关系中的存在性问题,首先假设存在,然后在这假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.(2016·镇江模拟)如图,在直四棱柱ABCD-A1B1C1D1中,已知DC=DD1=2AD =2AB,AD⊥DC,AB∥DC.(1)求证:D1C⊥AC1;(2)问在棱CD上是否存在点E,使D1E∥平面A1BD.若存在,确定点E位置;若不存在,说明理由.(1)证明在直四棱柱ABCD-A1B1C1D1中,连结C1D,∵DC=DD1,∴四边形DCC1D1是正方形,∴DC1⊥D1C.又AD⊥DC,AD⊥DD1,DC∩DD1=D,∴AD⊥平面DCC1D1,又D1C⊂平面DCC1D1,∴AD⊥D1C.∵AD⊂平面ADC1,DC1⊂平面ADC1,且AD∩DC1=D,∴D1C⊥平面ADC1,又AC1⊂平面ADC1,∴D1C⊥AC1.(2)解假设存在点E,使D1E∥平面A1BD.连结AD1,AE,D1E,设AD1∩A1D=M,BD∩AE=N,连结MN,∵平面AD1E∩平面A1BD=MN,要使D1E∥平面A1BD,可使MN∥D1E,又M是AD1的中点,则N是AE的中点.又易知△ABN≌△EDN,∴AB=DE.即E是DC的中点.综上所述,当E是DC的中点时,可使D1E∥平面A1BD.1.(2016·连云港模拟)如图所示,已知平面α∩平面β=l,α⊥β.A,B是直线l上的两点,C,D 是平面β内的两点,且AD⊥l,CB⊥l,DA=4,AB=6,CB=8.P是平面α上的一动点,且有∠APD=∠BPC,则四棱锥P-ABCD体积的最大值是________.答案24 3解析由题意知,△P AD,△PBC是直角三角形,又∠APD=∠BPC,所以△P AD∽△PBC.因为DA =4,CB =8,所以PB =2P A . 作PM ⊥AB 于点M ,由题意知,PM ⊥β. 令AM =t (0<t <6),则P A 2-t 2=4P A 2-(6-t )2, 所以P A 2=12-4t .所以PM =12-4t -t 2,即为四棱锥P -ABCD 的高, 又底面ABCD 为直角梯形,S =12×(4+8)×6=36.所以V =13×36×12-4t -t 2=12-(t +2)2+16≤12×12=24 3.2.(2016·南京模拟)已知α,β是两个不同的平面,l ,m 是两条不同的直线,l ⊥α,m ⊂β.给出下列命题:①α∥β⇒l ⊥m ;②α⊥β⇒l ∥m ;③m ∥α⇒l ⊥β;④l ⊥β⇒m ∥α. 其中正确的命题是________.(填写所有正确命题的序号) 答案 ①④解析 若l ⊥α,α∥β,则l ⊥β,又m ⊂β,则l ⊥m ,故①正确;若l ⊥α,α⊥β,则l ∥β或l ⊂β,又m ⊂β,则l 与m 可能平行、相交或异面,故②错误;若l ⊥α,m ∥α,则l ⊥m ,又m ⊂β,则l 与β可能平行、相交或l ⊂β,故③错误;若l ⊥α,l ⊥β,则α∥β,又m ⊂β,则m ∥α,故④正确.综上,正确的命题是①④.3.(2016·苏州模拟)如图,ABCD -A 1B 1C 1D 1为正方体,连结BD ,AC 1,B 1D 1,CD 1,B 1C ,现有以下几个结论:①BD ∥平面CB 1D 1;②AC 1⊥平面CB 1D 1;③CB 1与BD 为异面直线.其中所有正确结论的序号为________. 答案 ①②③解析 由题意可知,BD ∥B 1D 1, 又B 1D 1⊂平面CB 1D 1,BD ⊄平面CB 1D 1, 所以BD ∥平面CB 1D 1,①正确; 易知AC 1⊥B 1D 1,AC 1⊥B 1C ,又B1D1∩B1C=B1,所以AC1⊥平面CB1D1,②正确;由异面直线的定义可知③正确.4.(2016·泰州二模)如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E、F分别是AB、CD的中点,将四边形ADFE沿直线EF进行翻折,给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.在翻折过程中,可能成立的结论是________.(填写结论序号)答案②③解析因为BC∥AD,AD与DF相交不垂直,所以BC与DF不垂直,则①错误;设点D在平面BCF上的射影为点P,当BP⊥CF时就有BD⊥FC,而AD∶BC∶AB=2∶3∶4,可使条件满足,所以②正确;当点P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,所以③正确;因为点D的射影不可能在FC上,所以平面DCF⊥平面BFC不成立,即④错误.故答案为②③.5.如图,在正方体ABCD-A1B1C1D1中,点E是棱BC的中点,点F是棱CD上的动点,当CFFD =______时,D1E⊥平面AB1F.答案 1解析如图,连结A1B,则A1B是D1E在平面ABB1A1内的射影.∵AB1⊥A1B,∴D1E⊥AB1,又∵D1E⊥平面AB1F⇒D1E⊥AF.连结DE,则DE是D1E在底面ABCD内的射影,∴D1E⊥AF⇒DE⊥AF.∵ABCD是正方形,E是BC的中点,∴当且仅当F是CD的中点时,DE⊥AF,即当点F是CD的中点时,D1E⊥平面AB1F,∴CFFD=1时,D1E⊥平面AB1F.6.(2016·连云港模拟)如图,在直三棱柱ABC—A1B1C1中,AB⊥AC,AB=AC,点E是BC上一点,且平面BB1C1C⊥平面AB1E.(1)求证:AE⊥BC;(2)求证:A1C∥平面AB1E.证明(1)过点B在平面BB1C1C内作BF⊥B1E,∵平面BB1C1C⊥平面AB1E,平面BB1C1C∩平面AB1E=B1E,∴BF⊥平面AB1E.∵AE⊂平面AB1E,∴BF⊥AE.又在直三棱柱ABC—A1B1C1中,BB1⊥平面ABC,AE⊂平面ABC,∴BB1⊥AE.∵BB1∩BF=B,∴AE⊥平面BB1C1C,∵BC⊂平面BB1C1C,∴AE⊥BC.(2)连结A1B,设A1B∩AB1=G,连结GE,∵AE⊥BC,AB=AC,∴BE=CE,又A1G=BG,∴GE是△A1BC的中位线,∴GE∥A1C.∵GE⊂平面AB1E,A1C⊄平面AB1E,∴A1C∥平面AB1E.7.(2016·南通、扬州、泰州联考)如图,在四棱锥P—ABCD中,PC⊥平面P AD,AB∥CD,CD =2AB=2BC,M,N分别是棱P A,CD的中点.(1)求证:PC∥平面BMN;(2)求证:平面BMN⊥平面P AC.证明(1)设AC∩BN=O,连结MO,AN,因为AB =12CD ,AB ∥CD ,N 为CD 的中点,所以AB =CN ,且AB ∥CN , 所以四边形ABCN 为平行四边形, 所以O 为AC 的中点, 又M 为P A 的中点, 所以MO ∥PC .又因为MO ⊂平面BMN ,PC ⊄平面BMN , 所以PC ∥平面BMN .(2)方法一 因为PC ⊥平面PDA ,AD ⊂平面PDA ,所以PC ⊥AD . 由(1)同理可得,四边形ABND 为平行四边形, 所以AD ∥BN ,所以BN ⊥PC ,因为BC =AB ,所以平行四边形ABCN 为菱形, 所以BN ⊥AC .因为PC ∩AC =C ,所以BN ⊥平面P AC .因为BN ⊂平面BMN ,所以平面BMN ⊥平面P AC .方法二 连结PN ,因为PC ⊥平面PDA ,P A ⊂平面PDA ,所以PC ⊥P A .因为PC ∥MO ,所以P A ⊥MO .又PC ⊥PD .因为N 为CD 的中点,所以PN =12CD ,由(1)得AN =BC =12CD ,所以AN =PN ,又因为M 为P A 的中点,所以P A ⊥MN ,因为MN ∩MO =M ,所以P A ⊥平面BMN . 因为P A ⊂平面P AC ,所以平面P AC ⊥平面BMN .8.(2016·北京东城区一模)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,点O 是对角线AC 与BD 的交点,AB =2,∠BAD =60°,M 是PD 的中点.(1)求证:OM ∥平面P AB ; (2)求证:平面PBD ⊥平面P AC . (3)当三棱锥C -PBD 的体积等于32时,求P A 的长. (1)证明 因为在△PBD 中,O ,M 分别是BD ,PD 的中点,所以OM ∥PB . 又OM ⊄平面P AB ,PB ⊂平面P AB , 所以OM ∥平面P AB .(2)证明 因为底面ABCD 是菱形,所以BD ⊥AC . 因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以P A ⊥BD .又AC ∩P A =A ,所以BD ⊥平面P AC . 又BD ⊂平面PBD , 所以平面PBD ⊥平面P AC .(3)解 因为底面ABCD 是菱形,且AB =2,∠BAD =60°,所以S △BCD = 3. 又V C -PBD =V P -BCD ,三棱锥P -BCD 的高为P A , 所以13×3·P A =32,解得P A =32.9.(2016·盐城测试)如图,已知三棱柱ABC -A ′B ′C ′中,平面BCC ′B ′⊥底面ABC ,BB ′⊥AC ,底面ABC 是边长为2的等边三角形,AA ′=3,E ,F 分别在棱AA ′,CC ′上,且AE =C ′F =2.(1)求证:BB′⊥底面ABC;(2)在棱A′B′上找一点M,使得C′M∥平面BEF,并给出证明.(1)证明如图,取BC的中点O,连结AO,∵三角形ABC是等边三角形,∴AO⊥BC.∵平面BCC′B′⊥底面ABC,AO⊂平面ABC,平面BCC′B′∩平面ABC=BC,∴AO⊥平面BCC′B′.又BB′⊂平面BCC′B′,∴AO⊥BB′.又BB′⊥AC,AO∩AC=A,AO⊂平面ABC,AC⊂平面ABC,∴BB′⊥底面ABC.(2)解显然点M不是点A′,B′,若棱A′B′上存在一点M,使得C′M∥平面BEF,过点M作MN∥AA′交BE于N,连结FN,MC′,∴MN∥C′F,即C′M和FN共面,又平面MNFC′∩平面BEF=FN,∴C′M∥FN,∴四边形C′MNF为平行四边形,∴MN=2,∴MN是梯形A′B′BE的中位线,M为A′B′的中点.故当M为A′B′的中点时,C′M∥平面BEF.。

高考(江苏专版)大一轮数学(文)复习检测:第47课 基本不等式及其应用 Word版含答案

高考(江苏专版)大一轮数学(文)复习检测:第47课 基本不等式及其应用 Word版含答案

第47课基本不等式及其应用A 应知应会1.当x>1时,函数y=x+的最小值是.2.已知正数x,y满足x+y=1,那么+的最小值为.3.若x+2y=1,则2x+4y的最小值为.4.(2016·常熟中学)已知x>0,y>0,且4xy-x-2y=4,那么xy的最小值为.5.已知x>0,y>0,且x+y=1.(1)求+的最小值;(2)求+的最大值.6.运货卡车以x km/h的速度匀速行驶130 km,按交通法规限制50≤x≤100(单位:km/h).假设汽油的价格是2元/L,汽车每小时耗油L,司机的工资是14元/h.(1)求这次行车总费用y关于x的表达式;(2)当x为何值时,这次行车的总费用最低?并求出最低费用.B 巩固提升1.已知a>0,b>0,若不等式+≥恒成立,则m的最大值为.2.(2016·扬州期末)已知a>b>1,且2log a b+3log b a=7,那么a+的最小值为.3.(2016·苏州期末)已知ab=,a,b∈(0,1),那么+的最小值为.4.(2016·江苏卷)在锐角三角形ABC中,若sin A=2sin B sin C,则tan A tan B tan C的最小值是.5.已知变量x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为12,求+的最小值.6.(2016·苏北四市摸底)如图,墙上有一幅壁画,最高点A离地面4 m,最低点B离地面2 m,观察者从距离墙x m(x>1)、离地面高a m(1≤a≤2)的C处观赏该壁画.设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.(第6题)第47课基本不等式及其应用A 应知应会1.3【解析】因为x>1,所以y=x+=(x-1)++1≥2+1=3,当且仅当x-1=,即x=2时等号成立,故函数y 的最小值为3.2. 9【解析】+=(x+y)=1+++4≥5+2=5+4=9,当且仅当x=,y=时取等号.3. 2【解析】易知2x+4y=2x+22y≥2=2=2,当且仅当x=,y=时等号成立.4.2【解析】因为x>0,y>0,x+2y≥2,所以4xy-(x+2y)≤4xy-2,所以4≤4xy-2,所以(-2)(+1)≥0,所以≥2,所以xy≥2.5.【解答】(1)+=(x+y)=10++≥10+2=18,当且仅当=,即x=,y=时等号成立,所以+的最小值为18. (2)由题设得+≤=2,当且仅当2x+1=2y+1,即x=y=时取等号,所以+的最大值为2.6.【解答】(1)设所用时间为t h,则t=,y=×2×+14×,x∈[50,100],所以这次行车总费用y关于x 的表达式是y=+x,x∈[50,100].(2)y=+x≥26,当且仅当=x,即x=18时等号成立.故当行驶的速度为18 km/h时,这次行车的总费用最低,最低费用为26 元.B 巩固提升1. 12【解析】由+≥,得m≤(a+3b)=++6.又++6≥2+6=12,所以m≤12,所以m的最大值为12.2. 3【解析】因为2log a b+3log b a=7,所以2(log a b)2-7log a b+3=0,解得log a b=或log a b=3.因为a>b>1,所以log a b∈(0,1),故log a b=,从而b=,因此a+=a+=(a-1)++1≥3,当且仅当a=2时等号成立.3. 4+【解析】因为b=,a∈(0,1),所以+=+=++2=+2.令2a+1=t,则a=,原式=+2=+2≥+2=4+,当且仅当t=,即a=∈(0,1)时取等号,故原式的最小值为4+.4.8【解析】因为sin A=2sin B sin C,sin A=sin(B+C)=sin B cos C+cos B sin C,所以sin B cos C+cos B sin C=2sin B sin C,两边同时除以cos B cos C得tan B+tan C=2tan B tan C.又tan A tan B tan C=-tan(B+C)tan B tan C=-·tan B·tan C=.由锐角三角形ABC,得tan B>0,tan C>0,tan A=>0,即tan B tan C-1>0.令tan B tan C-1=t(t>0),则tan A tan B·tan C==2t++4≥8,当且仅当t=1时取等号.5.【解答】作出可行区域如图中阴影部分所示,当直线z=ax+by(a>0,b>0)过直线x-y+2=0与直线3x-y-6=0的交点A(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大值12,即4a+6b=12,即2a+3b=6,又+=·=+≥+2=,当且仅当=,即a=b=时取等号.所以+的最小值为.(第5题)6.【解答】(1)当a=1.5时,过C作AB的垂线,垂足为D,则BD=0.5 m,且θ=∠ACD-∠BCD.因为观察者离墙x m,且x>1,则tan∠BCD=,tan∠ACD=,所以tanθ=tan(∠ACD-∠BCD)===≤=,当且仅当x=,即x=>1时取等号.又因为tanθ在上单调递增,所以当观察者离墙m时,视角θ最大.(2)由题意得tan∠BCD=,tan∠ACD=,又tanθ=,所以tanθ=tan(∠ACD-∠BCD)===,所以a2-6a+8=-x2+4x.当1≤a≤2时,0≤a2-6a+8≤3,所以0≤-x2+4x≤3,解得0≤x≤1或3≤x≤4.又因为x>1,所以3≤x≤4,所以x的取值范围为[3,4].。

(江苏专用)2018版高考数学大一轮温习 第七章节 不等式 7.4 基本不等式及其应用讲义 文 苏教版

(江苏专用)2018版高考数学大一轮温习 第七章节 不等式 7.4 基本不等式及其应用讲义 文 苏教版

命题点2 通过常数代换法利用基本不等式 例2 已知a>0,b>0,a+b=1,则 1a+1b 的最小值为__4__.
答案 解析
∵a>0,b>0,a+b=1,
∴1a+1b=a+a b+a+b b=2+ba+ab ≥2+2 ba·ab=4,

1a+1b
的最小值为4,当且仅当a=b=
1 2
时等号成立.
引申探究
(3)函数y=
x2+2 x-1
(x>1)的最小值为_2___3_+__2_.
答案 解析
x2+2 x2-2x+1+2x-2+3 x-12+2x-1+3
y= x-1 =
x-1

x-1
=(x-1)+x-3 1+2≥2 3+2.
当且仅当(x-1)=
3 x-1

即x= 3+1时,等号成立.
∴a+b=(41a+41b)(a+b)=12+4ba+4ab≥12+2 4ba·4ab=1.
当且仅当a=b=
1 2
时取等号.
3.将条件改为a+2b=3,求 1a+1b 的最小值.
解答
∵a+2b=3,
∴13a+23b=1,
∴1a+1b=(1a+1b)(13a+23b)=13+23+3ab+23ba
≥1+2
1.条件不变,求(1+ 1a
)(1+
1 b
)的最小值.
解答
(1+1a)(1+1b)=(1+a+a b)(1+a+b b)=(2+ba)·(2+ab)
=5+2( ba+ab )≥5+4=9.
当且仅当a=b=
1 2
时,取等号.
2.已知a>0,b>0, 1a+1b =4,求a+b的最小值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第47课基本不等式及其应用
A 应知应会
1. 当x>1时,函数y=x+的最小值是.
2. 已知正数x,y满足x+y=1,那么+的最小值为.
3. 若x+2y=1,则2x+4y的最小值为.
4. (2016·常熟中学)已知x>0,y>0,且4xy-x-2y=4,那么xy的最小值为.
5. 已知x>0,y>0,且x+y=1.
(1) 求+的最小值;
(2) 求+的最大值.
6. 运货卡车以x km/h的速度匀速行驶130 km,按交通法规限制50≤x≤100(单位:km/h).假设汽油的价格是2元/L,汽车每小时耗油 L,司机的工资是14元/h.
(1) 求这次行车总费用y关于x的表达式;
(2) 当x为何值时,这次行车的总费用最低?并求出最低费用.
B 巩固提升
1. 已知a>0,b>0,若不等式+≥恒成立,则m的最大值为.
2. (2016·扬州期末)已知a>b>1,且2log a b+3log b a=7,那么a+的最小值为.
3. (2016·苏州期末)已知ab=,a,b∈(0,1),那么+的最小值为.
4. (2016·江苏卷)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.
5. 已知变量x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为12,求+的最小值.
6. (2016·苏北四市摸底)如图,墙上有一幅壁画,最高点A离地面4 m,最低点B离地面2 m,观察者从距离墙x m(x>1)、离地面高a m(1≤a≤2)的C处观赏该壁画.设观赏视角∠ACB=θ.
(1) 若a=1.5,问:观察者离墙多远时,视角θ最大?
(2) 若tanθ=,当a变化时,求x的取值范围.
(第6题)
第47课基本不等式及其应用
A 应知应会
1. 3 【解析】因为x>1,所以y=x+=(x-1)++1≥2+1=3,当且仅当x-1=,即x=2时等号成立,故函数y的最小值为3.
2. 9 【解析】+=(x+y)=1+++4≥5+2=5+4=9,当且仅当x=,y=时取等号.
3. 2 【解析】易知2x+4y=2x+22y≥2=2=2,当且仅当x=,y=时等号成立.
4. 2 【解析】因为x>0,y>0,x+2y≥2,所以4xy-(x+2y)≤4xy-2,所以4≤4xy-2,所以(-2)(+1)≥0,所以≥2,所以xy≥2.
5. 【解答】(1) +=(x+y)=10++≥10+2=18,当且仅当=,即x=,y=时等号成立,所以+的最小值为18.
(2) 由题设得+≤=2,
当且仅当2x+1=2y+1,即x=y=时取等号,所以+的最大值为2.
6. 【解答】(1) 设所用时间为t h,则t=,y=×2×+14×,x∈[50,100],所以这次行车总费用y关于x的表达式是y=+x,x∈[50,100].
(2) y=+x≥26,
当且仅当=x,即x=18时等号成立.
故当行驶的速度为18 km/h时,这次行车的总费用最低,最低费用为26 元.
B 巩固提升
1. 12 【解析】由+≥,得m≤(a+3b)=++6.又++6≥2+6=12,所以m≤12,所以m的最大值为1
2.
2. 3 【解析】因为2log a b+3log b a=7,所以2(log a b)2-7log a b+3=0,解得log a b=或log a b=
3.因为a>b>1,所以log a b∈(0,1),故log a b=,从而b=,因此a+=a+=(a-1)++1≥3,当且仅当a=2时等号成立.
3. 4+ 【解析】因为b=,a∈(0,1),所以+=+=++2=+2.令2a+1=t,则a=,原式=+2=+2≥+2=4+,当且仅当t=,即a=∈(0,1)时取等号,故原式的最小值为4+.
4. 8【解析】因为sinA=2sinBsinC,sinA=sin(B+C)=sinBcosC+cosBsinC,所以sinBcosC+cosBsinC=2sinBsinC,两边同时除以cosBcosC得tanB+tanC=2tanBtanC.又tanAtanBtanC=-tan(B+C)tanBtanC=-·tanB·tanC=.由锐角三角形ABC,得tanB>0,tanC>0,tanA=>0,即tanBtanC-1>0.令tanBtanC-1=t(t>0),则tanAtanB·tanC==2t++4≥8,当且仅当t=1时取等号.
5. 【解答】作出可行区域如图中阴影部分所示,
当直线z=ax+by(a>0,b>0)过直线x-y+2=0与直线3x-y-6=0的交点A(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大值12,即4a+6b=12,即2a+3b=6,又+=·=+≥+2=,当且仅当=,即a=b=时取等号.
所以+的最小值为.
(第5题)
6. 【解答】(1) 当a=1.5时,过C作AB的垂线,垂足为D,
则BD=0.5 m,且θ=∠ACD-∠BCD.
因为观察者离墙x m,且x>1,则tan∠BCD=,tan∠ACD=,
所以tanθ=tan(∠ACD-∠BCD)
==
=≤=,
当且仅当x=,即x=>1时取等号.
又因为tanθ在上单调递增,所以当观察者离墙 m时,视角θ最大.
(2) 由题意得tan∠BCD=,tan∠ACD=,又tanθ=,
所以tanθ=tan(∠ACD-∠BCD)
=
==,
所以a2-6a+8=-x2+4x.
当1≤a≤2时,0≤a2-6a+8≤3,
所以0≤-x2+4x≤3,
解得0≤x≤1或3≤x≤4.
又因为x>1,所以3≤x≤4,
所以x的取值范围为[3,4].。

相关文档
最新文档