马尾区实验中学2018-2019学年高三上学期11月月考数学试卷含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

马尾区实验中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a
的 取值范围是( )
A .(1,)-+∞
B .(1,0)- C. (2,)-+∞ D .(2,0)-
2. 在ABC ∆中,60A =,1b =
sin sin sin a b c
A B C
++++等于( )
A
. B
C
D
3. 设0<a <1,实数x ,y
满足,则y 关于x 的函数的图象形状大致是( )
A
. B
. C
. D

4. 设偶函数f (x )在[0,+∞)单调递增,则使得f (x )>f (2x ﹣1)成立的x 的取值范围是( ) A
.(,1)
B .(﹣∞
,)∪(1,+∞) C
.(﹣
,) D .(﹣∞
,﹣)∪
(,+∞)
5. 已知在△ABC 中,
a=

b=
,B=60°,那么角C 等于( )
A .135°
B .90°
C .45°
D .75°
6. 已知α,β为锐角△ABC 的两个内角,x ∈R ,f (x )=
()
|x ﹣2|
+


|x ﹣2|
,则关于
x 的不等
式f (2x ﹣1)﹣f (x+1)>0的解集为( ) A
.(﹣∞,)∪(2,+∞) B
.(,2)
C
.(﹣∞,﹣)∪(2,+∞)
D
.(﹣,2)
7. 设函数()()21x
f x e x ax a =--+,其中1a <,若存在唯一的整数,使得()0f t <,则的 取值范围是( ) A .3,12e ⎡⎫-
⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫
⎪⎢⎣⎭
1111] 8. 某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A.20,2 B.24,4 C.25,2 D.25,4
9.已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是()A.M∪N B.M∩N C.∁I M∪∁I N D.∁I M∩∁I N
10.向高为H的水瓶中注水,注满为止.如果注水量V与水深h的函数关系式如图所示,那么水瓶的形状是()
A.B.C.D.
11.已知f(x)为定义在(0,+∞)上的可导函数,且f(x)>xf′(x)恒成立,则不等式x2f()﹣f(x)
>0的解集为()
A.(0,1) B.(1,2) C.(1,+∞)D.(2,+∞)
12.有下列关于三角函数的命题
P1:∀x∈R,x≠kπ+(k∈Z),若tanx>0,则sin2x>0;
P2:函数y=sin(x﹣)与函数y=cosx的图象相同;
P3:∃x0∈R,2cosx0=3;
P4:函数y=|cosx|(x∈R)的最小正周期为2π,其中真命题是()
A.P1,P4B.P2,P4C.P2,P3D.P1,P2
二、填空题
13.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()t﹣a(a为常数),
如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室.
14.设有一组圆C k :(x ﹣k+1)2+(y ﹣3k )2=2k 4(k ∈N *).下列四个命题: ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点.
其中真命题的代号是 (写出所有真命题的代号).
15.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且,B=45°,面积S=2,则b 等于 . 16.已知
a 、
b 、
c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则
3
s i n c o s (
)4
A B π
-
+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想. 17.已知n S 是数列1{}2n n -的前n 项和,若不等式1|12
n n n S λ-+<+|对一切n N *
∈恒成立,则λ的取值范围是___________.
【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力. 18.设f (x )为奇函数,且在(﹣∞,0)上递减,f (﹣2)=0,则xf (x )<0的解集为 .
三、解答题
19.某校为选拔参加“央视猜灯谜大赛”的队员,在校内组织猜灯谜竞赛.规定:第一阶段知识测试成绩不小于160分的学生进入第二阶段比赛.现有200名学生参加知识测试,并将所有测试成绩绘制成如下所示的频率分布直方图.
(Ⅰ)估算这200名学生测试成绩的中位数,并求进入第二阶段比赛的学生人数;
(Ⅱ)将进入第二阶段的学生分成若干队进行比赛.现甲、乙两队在比赛中均已获得120分,进入最后抢答阶段.抢答规则:抢到的队每次需猜3条谜语,猜对1条得20分,猜错1条扣20分.根据经验,甲队猜对每条
谜语的概率均为,乙队猜对前两条的概率均为,猜对第3条的概率为.若这两队抢到答题的机会均等,您做为场外观众想支持这两队中的优胜队,会把支持票投给哪队?
20.本小题满分12分已知椭圆C 2. Ⅰ求椭圆C 的长轴长;
Ⅱ过椭圆C 中心O 的直线与椭圆C 交于A 、B 两点A 、B 不是椭圆C 的顶点,点M 在长轴所在直线上,且
2
2
OM
OA OM =⋅,直线BM 与椭圆交于点D ,求证:AD ⊥AB 。

21.求函数f (x )=﹣4x+4在[0,3]上的最大值与最小值.
22.如图,点A 是以线段BC 为直径的圆O 上一点,AD ⊥BC 于点D ,过点B 作圆O 的切线,与CA 的延长线相交于点E ,点G 是AD 的中点,连接CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P . (1)求证:BF=EF ;
(2)求证:PA是圆O的切线.
23.从某中学高三某个班级第一组的7名女生,8名男生中,随机一次挑选出4名去参加体育达标测试.(Ⅰ)若选出的4名同学是同一性别,求全为女生的概率;
(Ⅱ)若设选出男生的人数为X,求X的分布列和EX.
24.已知椭圆E:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,点(,)在椭圆
E上.
(1)求椭圆E的方程;
(2)设过点P(2,1)的直线l与椭圆相交于A、B两点,若AB的中点恰好为点P,求直线l的方程.
马尾区实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】A
【解析】

点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.
【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).
2. 【答案】B 【解析】
试题分析:由题意得,三角形的面积011sin sin 6022S bc A bc =
===4bc =,又1b =,所
以4c =,又由余弦定理,可得222220
2cos 14214cos6013a b c bc A =+-=+-⨯⨯=,所以a =
sin sin sin sin a b c a A B C A ++===++,故选B . 考点:解三角形.
【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用比例式的性质,得到sin sin sin sin a b c a
A B C A
++=++是解答的关键,属于中档试题.
3. 【答案】A
【解析】解:0<a<1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y
轴对称,
在(0,+∞)上单调递增,且函数的图象经过点(0,1),
故选:A.
【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题.
4.【答案】A
【解析】解:因为f(x)为偶函数,
所以f(x)>f(2x﹣1)可化为f(|x|)>f(|2x﹣1|)
又f(x)在区间[0,+∞)上单调递增,所以|x|>|2x﹣1|,
即(2x﹣1)2<x2,解得<x<1,
所以x的取值范围是(,1),
故选:A.
5.【答案】D
【解析】解:由正弦定理知=,
∴sinA==×=,
∵a<b,
∴A<B,
∴A=45°,
∴C=180°﹣A﹣B=75°,
故选:D.
6.【答案】B
【解析】解:∵α,β为锐角△ABC的两个内角,可得α+β>90°,cosβ=sin(90°﹣β)<sinα,同理cosα<sinβ,
∴f(x)=()|x﹣2|+()|x﹣2|,在(2,+∞)上单调递减,在(﹣∞,2)单调递增,
由关于x的不等式f(2x﹣1)﹣f(x+1)>0得到关于x的不等式f(2x﹣1)>f(x+1),
∴|2x﹣1﹣2|<|x+1﹣2|即|2x﹣3|<|x﹣1|,化简为3x2﹣1x+8<0,解得x∈(,2);
故选:B.
7.【答案】D
【解析】

点:函数导数与不等式.1
【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令()0f x =将函数变为两个函数()()()21,x g x e x h x ax a =-=-,将题意中的“存在唯一整数,使得()g t 在直线()h x 的下方”,转化为存在唯一的整数,使得()g t 在直线()h x ax a =-的下方.利用导数可求得函数的极值,由此可求得m 的取值范围.
8. 【答案】C 【解析】

点:茎叶图,频率分布直方图. 9. 【答案】D
【解析】解:∵全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6}, ∴M ∪N={1,2,3,6,7,8}, M ∩N={3};
∁I M ∪∁I N={1,2,4,5,6,7,8}; ∁I M ∩∁I N={2,7,8}, 故选:D .
10.【答案】 A
【解析】解:考虑当向高为H 的水瓶中注水为高为H 一半时,注水量V 与水深h 的函数关系.
如图所示,此时注水量V 与容器容积关系是:V <水瓶的容积的一半.
对照选项知,只有A 符合此要求.
故选A .
【点评】本小题主要考查函数、函数的图象、几何体的体积的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
11.【答案】C
【解析】解:令F(x)=,(x>0),
则F′(x)=,
∵f(x)>xf′(x),∴F′(x)<0,
∴F(x)为定义域上的减函数,
由不等式x2f()﹣f(x)>0,
得:>,
∴<x,∴x>1,
故选:C.
12.【答案】D
【解析】解:对于P1,∀x∈R,x≠kπ+(k∈Z),若tanx>0,则sin2x=2sinxcosx
==>0,则P1为真命题;
对于P2,函数y=sin(x﹣)=sin(2π+x﹣)=sin(x+)=cosx,则P2为真命题;
对于P3,由于cosx∈[﹣1,1],∉[﹣1,1],则P3为假命题;
对于P4,函数y=|cosx|(x∈R),f(x+π)=|cos(x+π)|=|﹣cosx|=|cosx|=f(x),
则f(x)的最小正周期为π,则P4为假命题.
故选D.
【点评】本题考查全称性命题和存在性命题的真假,以及三角函数的图象和周期,运用二倍角公式和诱导公式以及周期函数的定义是解题的关键,属于基础题和易错题.
二、填空题
13.【答案】0.6
【解析】解:当t>0.1时,可得1=()0.1﹣a
∴0.1﹣a=0
a=0.1
由题意可得y≤0.25=,
即()t﹣0.1≤,
即t﹣0.1≥
解得t≥0.6,
由题意至少需要经过0.6小时后,学生才能回到教室.
故答案为:0.6
【点评】本题考查函数、不等式的实际应用,以及识图和理解能力.易错点:只单纯解不等式,而忽略题意,得到其他错误答案.
14.【答案】②④
【解析】解:根据题意得:圆心(k﹣1,3k),
圆心在直线y=3(x+1)上,故存在直线y=3(x+1)与所有圆都相交,选项②正确;
考虑两圆的位置关系,
圆k:圆心(k﹣1,3k),半径为k2,
圆k+1:圆心(k﹣1+1,3(k+1)),即(k,3k+3),半径为(k+1)2,
两圆的圆心距d==,
两圆的半径之差R﹣r=(k+1)2﹣k2
=2k+,
任取k=1或2时,(R﹣r>d),C k含于C k+1之中,选项①错误;
若k取无穷大,则可以认为所有直线都与圆相交,选项③错误;
将(0,0)带入圆的方程,则有(﹣k+1)2+9k2=2k4,即10k2﹣2k+1=2k4(k∈N*),
因为左边为奇数,右边为偶数,故不存在k使上式成立,即所有圆不过原点,选项④正确.
则真命题的代号是②④.
故答案为:②④
【点评】本题是一道综合题,要求学生会将直线的参数方程化为普通方程,会利用反证法进行证明,会利用数形结合解决实际问题.
15.【答案】5.
【解析】解:∵,B=45°,面积S=2,
∴S=acsinB==2a=2.
∴a=1
由余弦定理得b 2
=a 2+c 2﹣2accosB=12
+(4
)2﹣2×1×
×=25
∴b=5. 故答案为:5.
【点评】本题考查三角形的面积公式:三角形的面积等于任意两边与它们夹角正弦的一半、考查利用三角形的余弦定理求边长.
16.【答案】62
(1,)+ 【



17.【答案】31λ-<< 【解析】由221111
1123(1)22
22n n n S n n
--=+⨯
+⨯++-⋅
+,2
111
12222n
S =⨯+⨯+…111(1)22n n n n -+-⋅+⋅,两式相减,得2111111212222222n n n n n S n -+=++++-⋅=-,所以12
42
n n n S -+=-,
于是由不等式12
|1
42
n λ-+<-|对一切N n *∈恒成立,得|12λ+<|,解得31λ-<<. 18.【答案】 (﹣∞,﹣2)∪(2,+∞)
【解析】解:∵f (x )在R 上是奇函数,且f (x )在(﹣∞,0)上递减, ∴f (x )在(0,+∞)上递减,
由f (﹣2)=0,得f (﹣2)=﹣f (2)=0, 即f (2)=0,
由f (﹣0)=﹣f (0),得f (0)=0, 作出f (x )的草图,如图所示:
由图象,得xf (x )<0⇔或

解得x <﹣2或x >2,
∴xf (x )<0的解集为:(﹣∞,﹣2)∪(2,+∞) 故答案为:(﹣∞,﹣2)∪(2,+∞)
三、解答题
19.【答案】
【解析】解:(Ⅰ)设测试成绩的中位数为x ,由频率分布直方图得, (0.0015+0.019)×20+(x ﹣140)×0.025=0.5, 解得:x=143.6.
∴测试成绩中位数为143.6.
进入第二阶段的学生人数为200×(0.003+0.0015)×20=18人. (Ⅱ)设最后抢答阶段甲、乙两队猜对灯谜的条数分别为ξ、η,
则ξ~B (3,),
∴E (ξ)=

∴最后抢答阶段甲队得分的期望为[]×20=30,
∵P (η=0)=,
P (η=1)=,
P (η=2)=,
P (η=3)=,
∴E η=

∴最后抢答阶段乙队得分的期望为[]×20=24.
∴120+30>120+24, ∴支持票投给甲队.
【点评】本小题主要考查概率、概率与统计等基础知识,考查推理论证能力、数据处理能力、运算求解能力及应用意识,考查或然与必然的思想,属中档题.
20.【答案】
【解析】Ⅰ由已知
224c a b a =+=,又222a b c =+,解得223,1a b ==,
所以椭圆C
的长轴长Ⅱ以O 为坐标原点长轴所在直线为x 轴建立如图平面直角坐标系xOy ,
不妨设椭圆C 的焦点在x 轴上,则由1可知椭圆C 的方程为2
213
x y +=;
设A 11(,)x y ,D 22(,)x y ,则A 11(,)x y -- ∵
2
2
OM
OA OM =⋅ ∴M 1(2,0)x 根据题意,BM 满足题意的直线斜率存在,设1:(2)l y k x x =-, 联立22
1
13(2)x y y k x x ⎧+=⎪⎨⎪=-⎩,消去y 得2222211(13)121230k x k x x k x +-+-=,
22222222111(12)4(13)(123)12(413)0k x k k x k x k ∆=--+-=-++>,
22211121222
12123,,1313k x k x x x x x k k --+=-⋅=++
212111************
(2)(2)(5)4112313AD y y k x x k x x k x x kx k k k x x x x x x x k k --+---====-=----+
11111
(2)3AB y k x x k k x x ---===
1AD AB k k ∴⋅=- ∴AD ⊥AB
21.【答案】
【解析】
解:∵
,∴f ′(x )=x 2
﹣4,
由f ′(x )=x 2
﹣4=0,得x=2,或x=﹣2, ∵x ∈[0,3],∴x=2,
极小值
当x=0时,f (x )max =f (0)=4, 当x=2时,.
22.【答案】
【解析】证明:(1)∵BC 是圆O 的直径,BE 是圆O 的切线,∴EB ⊥BC . 又∵AD ⊥BC ,∴AD ∥BE .
可得△BFC ∽△DGC ,△FEC ∽△GAC . ∴
,得

∵G是AD的中点,即DG=AG.
∴BF=EF.
(2)连接AO,AB.
∵BC是圆O的直径,∴∠BAC=90°.
由(1)得:在Rt△BAE中,F是斜边BE的中点,
∴AF=FB=EF,可得∠FBA=∠FAB.
又∵OA=OB,∴∠ABO=∠BAO.
∵BE是圆O的切线,
∴∠EBO=90°,得∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,
∴PA⊥OA,由圆的切线判定定理,得PA是圆O的切线.
【点评】本题求证直线是圆的切线,着重考查了直角三角形的性质、相似三角形的判定与性质和圆的切线判定定理等知识,属于中档题.
23.【答案】
【解析】解:(Ⅰ)若4人全是女生,共有C74=35种情况;若4人全是男生,共有C84=70种情况;
故全为女生的概率为=.…
(Ⅱ)共15人,任意选出4名同学的方法总数是C154,选出男生的人数为X=0,1,2,3,4…
P(X=0)==;P(X=1)==;P(X=2)==;
P(X=3)==;P(X=4)==.…
X
0 1 2 3 4
EX=0×+1×+2×+3×+4×=.…
【点评】本题考查离散型随机变量的分布列、期望及古典概型的概率加法公式,正确理解题意是解决问题的基础.
24.【答案】
【解析】解:(1)由题得=,=1,又a2=b2+c2,
解得a2=8,b2=4.
∴椭圆方程为:.
(2)设直线的斜率为k,A(x1,y1),B(x2,y2),
∴,=1,
两式相减得=0,
∵P是AB中点,∴x1+x2=4,y1+y2=2,=k,
代入上式得:4+4k=0,解得k=﹣1,
∴直线l:x+y﹣3=0.
【点评】本题考查了椭圆的标准方程及其性质、“点差法”、斜率计算公式、中点坐标坐标公式,考查了推理能力与计算能力,属于中档题.。

相关文档
最新文档