高中物理与大学物理衔接之电磁学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理与大学物理的衔接——电磁学部分
上海师范大学附属中学李树祥
知识点的异同
1、电场:相同点主要有电荷及其守恒定律律、点电荷、元电荷、检验电荷、库仑定律、静电场、电场强度、匀强电场及电场的叠加、电场线、电势能、电势、电势差、电场力做功与电势差的关系、电场线与等势面的关系、静电的利用与防范等;不同点主要是大学阶段比高中阶段多出以下内容:电偶极子及其电场、电通量、高斯定理(含介质下的高斯定理)及其应用、安培环路定理及其应用、电势叠加原理、电场强度与电势的微分关系、电势梯度、导体的静电平衡及其条件、静电平衡下导体上电荷的分布、电场的能量与能量密度、电容、电容器的串并联、电容器的储能、电场的能量等。

2、磁场:相同点主要有基本磁现象(含奥斯特实验)、磁场、磁感应强度、磁感线、安培分子电流假说、安培力及应用、磁通量;不同点主要是大学阶段比高中阶段多出以下内容:洛伦兹力及应用、毕奥—萨伐尔定律及应用、磁偶极子(磁偶极矩及其所受磁场的扭转力矩)、运动电荷的磁场、磁场的高斯定理与安培环路定理及其应用、磁介质、磁化强度、磁场强度、磁介质中的环路定理、铁磁质的相关概念与应用等。

3、电磁感应:相同点主要有电磁感应现象、右手定则、楞次定律、感应电动势、导体切割磁感线时感应电动势的大小、电磁场与电磁波谱;不同点主要是大学阶段比高中阶段多出以下内容:法拉第电磁感应定律、自感现象及应用、涡电流及应用、感应电动势中的非静电力(动生与感生)、互感现象及应用、暂态过程(电路)、磁场能量及能量密度、涡旋电场与位移电流、麦克斯韦方程组的积分形式。

4、电路:相同点主要有欧姆定律、电动势、闭合电路的欧姆定律等;不同点主要由两个方面构成,一是大学阶段比高中阶段多出的内容即电感元件与电容元件对变化电流的作用、电流密度、连续性方程、稳流条件、欧姆定律微分形式,基尔霍夫定理、暂态电路;二是高中阶段比大学阶段多出的内容即电阻的串并联、电功、电功率、焦耳定律、多用电表的使用、简单逻辑电路等。

从以上四部分的对比看,大学物理的内容与知识点远多于高中阶段,特别是前三个章节,因为前三个部分是与电磁场紧密联系的。

大学物理侧重于让学生了解电磁场这种物质形态的研究方法及其基本规律。

而高中阶段更侧重于让学生了解电磁场的基本知识(常识)及应用。

在电路中由于在大学阶段理工类专业一般都要开设专门的课程,如电工学、电子线路、电路分析及相关实验等,那些应用性强的内容都被并入了应用型课程之中。

大学物理仅将那些与电磁理论密切联系的电路知识列入其中,一是为电磁理论的讲授服务,二是为后续应用型课程提供理论支撑。

这恰好说明物理学课程在中学、大学不同阶段被赋予的内涵与开课目的是有区别的,即大学阶段是较为纯粹的基础理学学科,它一方面为学生提供基本的世界观、方法论与科学素养培育,另一方面它又肩负着为其他应用学科提供必须的基础理论支撑;与此相比中学阶段的物理更多被赋予了工程与自然常识学科的使命。

知识点的衔接
1、基本概念的衔接。

我们以电势概念为例。

在高中教材中电势是这样定义的:物理学中用电场中某点的电荷的电势能跟它的电量的比值反映电场的能的性质,叫做电势。

用符号ϕ表示,ϕ=E p。

电势是标量,没有方向。

电势是相对量,必须先规定某处电势为零后,才能
q
确定电场中其他各点电势的值。

电场中电势为零的位置也就是电荷在该点的电势能为零的位
置。

电场中某点的电势在数值上等于单位正电荷从该点移到零点势能点的过程中电场力所做的功。

另外,把电场中两点间的电势的差值叫做电势差,电势差的单位与电势的单位相同,都为伏特,并且都是标量,在实际生活当中,我们更关注的是电势差,因为电场中某点电势的大小与电势零点的选取有关,但两点间的电势差和电势零点的选取是没有关系的。

用电场线不但可以表示电场的强弱,也可以表示电势的高低。

沿着电场线的方向,电势越来越低;反之,电势越来越高。

电场线方向与电势高低的这种关系在任何电场中都是成立的。

大学教材中,如果计算空间某点的电势数值到底是多少,我们需要选择参考点,并令参考点的电势(大学又称为电位)为零,该点的电位值定义为与此参考点的电位差。

在计算中,如果场源局限在有限大小的空间,为了方便,常选择无限远处为电势能零点,即W ∞=0,那么,空间任意一点P 的电位p ϕ就等于该点的电势差,即p ϕ=W p q =
W p∞q =p E dl ∞⋅⎰u r r ,电场力做功与路径无关,对于空间任意的两点P 和Q ,有U PQ =U P -U Q =Q P
E d l ⋅⎰u r r 。

因为电场力做功
是与路径没有关系的,因此对于空间任意的两点P 和Q 之间的电势差U PQ 就等于P 的电势U P 减去Q 的电势U Q 。

通常在场源电荷分布于有限空间内时,可选择无穷远处为电势零点,但当场源电荷分布延伸到无限远处时(如无限长直导线、无限大带点平板),就不能再选无限远处为电势零点。

在实际应用当中,常选择大地或者电器外壳为电势零点。

改变参考点,各点电势的数值将随之改变,但是两点之间的电势差与参考点的选择是没有关系的。

两者的衔接在于都指出了电势是个相对量,要确定电场中某一点的电势值,必须先确定好零电势参考点,而电势差是由电场力做功得出。

两者的差别为:在高中教材中,定性的给出了电势的定义,即取任意一位置作为零电势,某点的电势在数值上就等于单位正电荷由该点移动到零电势点时电场力所做的功。

大学教材从高中定性的基础上,定量的给出电势的计算公式为U P
=p
E dl ∞⋅⎰u r r ,即选择无穷远处为零电势参考点,把单位正电荷由P 移动到无穷远处时电场力做的功,并且大学教材中公式的计算都运用到了积分。

2、基本规律的衔接。

我们以欧姆定律为例。

导体中的电流跟导体两端的电压U 成正比,跟导体的电阻R 成反比,这是我们高中所学习的欧姆定律,它们之间的关系式为I =U R 。

高中所学的欧姆定律是在实验的基础上进行归纳总结出的规律,但是在大学物理中欧姆定律虽然是在稳恒电路中导体内的电流与电场之间的关系,但两者的衔接点是一致的,都可以用1=U R 进行表示,式中的比例系数R 与电流I 的大小无关,而是由导体的固有属性决定的,同种材料的导体,其电阻R 与它的长度L 成正比,与它的横截面积S 成反比,导体电阻还与构成它的材料有关,用公式表示则是R=L S ρ
,其中ρ是该种材料的电阻率,但是不同于高中物理的是大学物理将电阻率ρ的倒数定义为电导率,符号为σ,并且大学物理对于横截面或电阻率不均匀的导体电阻R ,给出了积分表达式为R =dl
S ρ⎰,高中学习的欧姆定律形
式是反映一段导体内电流与电场之间的整体关系,没有反映出导体内逐点的电流与电场的关系。

为此,大学物理在更深层次上进行了研究,在载流导体内P 点取一垂直横截面△S O 和
长度△L 都很小的电流管,这个电流管内的电流为△I 。

由欧姆定律和电阻公式可得△I =0S U L ρ∆∆∆或0
I U =S L σ∆∆∆∆,这里△U 为这段小电流管两端之间的电压,由于△S O 和△L 很小,可以认为△S O 上电流分布是均匀的,且与△L 之间电场也是均匀的。

又因为电流流动方向与
电场方向一致,而E=U L ∆∆这样上式可变为=j E σr u r 。

这个公式称之为欧姆定律的微分形式,
其中j 为电流密度矢量。

它表明导体内一点的电流密度矢量j 与该点的电场方向相同,大小成比例。

欧姆定律的微分形式更细致地描述了导体的导电规律,把电场与电流之间的关系逐点联系起来,便于从场的观点去阐述电路的原理。

此外,欧姆定律的微分形式比高中教材表达的欧姆定律适用范围更广,对于随时间变化不是十分快的非稳恒电流情况,高中教材欧姆定律已经失效,但实验发现,欧姆定律的微分形式依然适用。

知识点的学习方法
1、掌握电磁学的发展史,要尊重客观事实,遵循自然规律。

只有这样才能理解物理过程,建立物理模型,进而解释物理现象。

要学习物理学家对物理科学的热爱和努力追求科学的严谨态度;学习他们不怕失败敢于胜利的精神;例如,法拉第电磁感应定律的建立,在法拉第之前,安培也做过电流感应实验,只是安培只观察了恒定电流的情况,而法拉第也经历了同样的失败,终于在1831年仔细地注意到变化电流时,发现了电磁感应现象。

学习他们善于假设、实验、发现、创新的辨证思想,如位移电流假说,麦克斯韦大胆地假设电场的变化和磁场相联系,推广了安培环路定理。

学习他们对物理的认识有着独创见解、并能自成体系的勇气和胆略,如克斯韦从法拉第的力线概念出发,经过坚持不解的研究得到了一完美的数学理论即麦克斯韦方程组。

2、领会物理学思想,并能逐步转化为自己的思想,培养自己的物理的思维模式,锻炼用物理的方法解决其他实际问题的能力。

3、注意微分思想,放弃高中解题的方法,逐渐树立微分思想在解决实际问题中的重要性。

如在电磁学中主要讲的是静电学和静磁学,涉及的基本模型是点电荷和电流元,对于连续带电体就可以用点电荷的思想求解电场和电势分布,而对于连续通电导体就可以用电流元的思想求解磁场分布。

4、注意类比。

如学习电流密度概念,电流密度是矢量,类似静电场中电场强度是矢量,我们关心的是通过闭合曲面电场的通量是多少,即垂直于电场方向单位面积通过的电场线条数。

那么,在电流场中,通过某一面积的电流就是通过该面积的电流密度的通量,而对于闭合曲面,电流密度的通量就是单位时间内从闭合曲面内向外流出的正电荷的电量。

再有磁学部分的基本物理量是磁感应强度,类比电场强度,也需要给出磁场的高斯定理和环路积分定理,两者的不同点是静电场由静止的电荷激发,而磁场由电流即运动的电荷激发静电场的高斯定理说明电场强度通过闭合曲面的通量只和闭合面内的电荷有关,则磁场的环路定理给出的闭合回路的环流仅和闭合回路内的电流元有关。

这样既理解了新知识,又巩固了旧知识,一举两得。

相关文档
最新文档