不等式练习题
基本不等式练习题(含答案)

基本不等式1.函数y=x+1x(x>0)的值域为().A.(-∞,-2]∪[2,+∞) B.(0,+∞) C.[2,+∞) D.(2,+∞)2.下列不等式:①a2+1>2a;②a+bab≤2;③x2+1x2+1≥1,其中正确的个数是().A.0 B.1 C.2 D.33.若a>0,b>0,且a+2b-2=0,则ab的最大值为().A.12B.1 C.2 D.44.(2011·重庆)若函数f(x)=x+1x-2(x>2)在x=a处取最小值,则a=().A.1+ 2 B.1+ 3 C.3 D.45.已知t>0,则函数y=t2-4t+1t的最小值为________.利用基本不等式求最值【例1】►(1)已知x>0,y>0,且2x+y=1,则1x+1y的最小值为________;(2)当x>0时,则f(x)=2xx2+1的最大值为________.【训练1】(1)已知x>1,则f(x)=x+1x-1的最小值为________.(2)已知0<x<25,则y=2x-5x2的最大值为________.(3)若x,y∈(0,+∞)且2x+8y-xy=0,则x+y的最小值为________.利用基本不等式证明不等式【例2】►已知a>0,b>0,c>0,求证:bca+cab+abc≥a+b+c.【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1c ≥9.利用基本不等式解决恒成立问题【例3】►(2010·山东)若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________.考向三 利用基本不等式解实际问题【例3】►某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?(2010·四川)设a >b >0,则a 2+1ab +1a (a -b )的最小值是( ).A .1B .2C .3D .4双基自测1.答案 C2.解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2-1=1.答案 B3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤12.答案 A4.解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3.答案 C5.解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号.答案 -2【例1】解析 (1)∵x >0,y >0,且2x +y =1,∴1x +1y =2x +y x +2x +y y =3+y x +2x y ≥3+2 2.当且仅当y x =2xy 时,取等号.(2)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x ,即x =1时取等号.答案 (1)3+22 (2)1【训练1】.解析 (1)∵x >1,∴f (x )=(x -1)+1x -1+1≥2+1=3 当且仅当x =2时取等号.(2)y =2x -5x 2=x (2-5x )=15·5x ·(2-5x ),∵0<x <25,∴5x <2,2-5x >0,∴5x (2-5x )≤⎝⎛⎭⎪⎫5x +2-5x 22=1,∴y ≤15,当且仅当5x =2-5x , 即x =15时,y max =15.(3)由2x +8y -xy =0,得2x +8y =xy ,∴2y +8x =1,∴x +y =(x +y )⎝ ⎛⎭⎪⎫8x +2y =10+8y x +2x y =10+2⎝ ⎛⎭⎪⎫4y x +x y ≥10+2×2×4y x ·x y =18, 当且仅当4y x =xy ,即x =2y 时取等号,又2x +8y -xy =0,∴x =12,y =6,∴当x =12,y =6时,x +y 取最小值18.答案 (1)3 (2)15 (3)18【例2】证明 ∵a >0,b >0,c >0,∴bc a +ca b ≥2 bc a ·ca b =2c ;bc a +ab c ≥2 bc a ·abc=2b ;ca b +ab c ≥2 ca b ·ab c =2a .以上三式相加得:2⎝ ⎛⎭⎪⎫bc a +ca b +ab c ≥2(a +b +c ),即bc a +ca b +ab c ≥a +b +c .【训练2】 证明 ∵a >0,b >0,c >0,且a +b +c =1,∴1a +1b +1c =a +b +c a +a +b +cb +a +b +c c =3+b a +c a +a b +c b +a c +b c =3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.解析 若对任意x >0,x x 2+3x +1≤a 恒成立,只需求得y =xx 2+3x +1的最大值即可,因为x >0,所以y =x x 2+3x +1=1x +1x +3≤12 x ·1x=15,当且仅当x =1时取等号,所以a 的取值范围是⎣⎢⎡⎭⎪⎫15,+∞答案 ⎣⎢⎡⎭⎪⎫15,+∞【训练3】解析 由x >0,y >0,xy =x +2y ≥2 2xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,m ≤10,故m 的最大值为10.答案 10【例3.解 由题意可得,造价y =3(2x ×150+12x ×400)+5 800=900⎝ ⎛⎭⎪⎫x +16x +5 800(0<x ≤5),则y =900⎝ ⎛⎭⎪⎫x +16x +5 800≥900×2x ×16x +5 800=13 000(元),当且仅当x =16x ,即x =4时取等号.故当侧面的长度为4米时,总造价最低. 【示例】.正解 ∵a >0,b >0,且a +b =1, ∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (a +b )=1+2+b a +2a b ≥3+2b a ·2a b =3+2 2. 当且仅当⎩⎪⎨⎪⎧a +b =1,b a =2a b,即⎩⎨⎧a =2-1,b =2-2时,1a +2b 的最小值为3+2 2.【试一试】尝试解答] a 2+1ab +1a (a -b )=a 2-ab +ab +1ab +1a (a -b )=a (a -b )+1a (a -b )+ab +1ab ≥2 a (a -b )·1a (a -b )+2 ab ·1ab a (a -b )=1a (a -b )且ab =1ab ,即a =2b 时,等号成立.答案 D。
不等式练习题

不等式练习题一、基本不等式1. 已知a > b,求证:a + c > b + c。
2. 已知x > 3,求证:x^2 > 9。
3. 已知0 < x < 1,求证:x^3 < x。
4. 已知a, b均为正数,求证:a^2 + b^2 > 2ab。
5. 已知|x| > |y|,求证:x^2 > y^2。
二、一元一次不等式1. 解不等式:3x 7 > 2x + 4。
2. 解不等式:5 2(x 3) ≤ 3x 1。
3. 解不等式:2(x 1) 3(x + 2) > 7。
4. 解不等式:4 3(x 2) ≥ 2x + 5。
5. 解不等式:5(x 3) + 2(2x + 1) < 7x 9。
三、一元二次不等式1. 解不等式:x^2 5x + 6 > 0。
2. 解不等式:2x^2 3x 2 < 0。
3. 解不等式:x^2 4x + 4 ≤ 0。
4. 解不等式:3x^2 + 4x 4 > 0。
5. 解不等式:x^2 + 5x 6 < 0。
四、分式不等式1. 解不等式:x / (x 1) > 2。
2. 解不等式:1 / (x + 3) 1 / (x 2) ≤ 0。
3. 解不等式:(x 1) / (x + 1) < 0。
4. 解不等式:(2x + 3) / (x 4) ≥ 1。
5. 解不等式:(3x 2) / (x^2 5x + 6) > 0。
五、含绝对值的不等式1. 解不等式:|x 2| > 3。
2. 解不等式:|2x + 1| ≤ 5。
3. 解不等式:|3x 4| < 2。
4. 解不等式:|x + 3| |x 2| > 1。
5. 解不等式:|x 5| + |x + 1| < 6。
六、综合应用题1. 已知不等式组:$\begin{cases} 2x 3y > 6 \\ x + 4y ≤ 8 \end{cases}$,求x的取值范围。
100道不等式练习题

3
8abc(
1 a2
) 1
11: a,b, c 0, pro :
(a b)2 (a b)2
(a c)(b c) a2 b2 c2
由柯西 : LHS (a b)2 (b c)2 (c a)2 (a c)(b c) (b a)(c a) (c b)(a b)
ab c 1 1 1 1 1 1 1 c 1 1 1
1 ab 1 c
1 ab (1 c)2 1 2c c2 1 ab (1 c)2 ab 2 c
20 : x, y, z 0; pro : x y yz z x 1 引理 : 0 x, y 1 x y x
27
(4 xy)(4 xy)( x
y)2
27 x2 [
y2
10xy ]3
4( x 2
xy
y2 )3
16
16
3
8 : a,b, c 0, a b c 3, pro : 1 1 1 1 ab a 1 bc b 1 ca c 1
(a x 1)(b y 1) (a x 1)(b y 1)(c z 1)
(a a2
b)2 b2 c2
12
:
a,b, c
0;
pro
:
1 a
1 b
1 c
a
9 b
c
4(
a
1
) b
两边乘以(a
不等式练习题及答案

1.设M ={x |x 2-x ≤0},N ={x |1x ≤1},则M ∩N =( B ) A .∅ B .{1} C .{x |0<x ≤1} D .{x |x ≥1} 2.不等式组îïíïìx -1>a2x -4<2a 有解,则实数a 的取值范围是( A ) A .(-1,3) B .(-∞,-1)∪(3,+∞) C .(-3,1) D .(-∞,-3)∪(1,+∞) 3.已知a 1、a 2∈(0,1).记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( B ) A .M <N B .M >N C .M =ND .不确定.不确定4.设α∈(0,π2),β∈[0,π2],那么2α-β3的取值范围是( D ) A .(0,5π6) B .(-π6,5π6) C .(0,π) D .(-π6,π)5.若不等式ax 2+bx +c >0的解集是(-4,1),则不等式b (x 2-1)+a (x +3)+c >0的解集为( A ) A .(-43,1) B .(-∞,1)∪(43,+∞) C .(-1,4) D .(-∞,-2)∪(1,+∞) 6.(2012·洛阳调研)若不等式x 2+ax +1≥0对一切x ∈(0,12]成立,则a 的最小值为( C ) A .0 B .-2 C .-52D .-3 7.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( A )f (5)>0 A .(-235,+∞) B .[-235,1] C .(1,+∞) D .(-∞,-235] 8.(2012·贵阳质检)对于在区间[a ,b ]上有意义的两个函数m (x )与n (x ),如果对于区间[a ,b ]中的任意x 均有|m (x )-n (x )|≤1,则称m (x )与n (x )在[a ,b ]上是“密切函数”,[a ,b ]称为“密切区间”,若函数m (x )=x 2-3x +4与n (x )=2x -3在区间[a ,b ]上是“密切函数”,则b -a 的最大值为_____ 1 ___.x ∈[2,3] 9.(2012·上海交大附中月考)不等式(x +2)x 2-9≤0的解集为__x ≤-3或x =3.______. 10.若不等式-4<2x -3<4与不等式x 2+px +q <0的解集相同,则p q =_127_______. 11.设函数f (x )=ax +b (0≤x ≤1),则“a +2b >0”是“f (x )>0在[0,1]上恒成立”的____“必要但不充分____条件.(填“充分但不必要”,“必要但不充分”,“充要”或“既不充分也不必要”) 12、已知31,11£-££+£-y x y x ,求y x -3的取值范围。
完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。
(完整版)不等式练习及答案汇总

一.选择题(共2小题)1.若a>b,则下列不等式仍能成立的是()A.b﹣a<0 B.ac<bc C.D.﹣b<﹣a2.若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34 B.22 C.﹣3 D.0二.填空题(共2小题)3.若方程mx+13=4x+11的解为负数,则m的取值范围是.4.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对道.三.解答题(共9小题)5.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).6.某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.7.某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B 种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.8.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?9.某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.10.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.11.在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?12.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?13.随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.参考答案与试题解析一.选择题(共2小题)1.(2010春•邹城市校级期末)若a>b,则下列不等式仍能成立的是()A.b﹣a<0 B.ac<bc C.D.﹣b<﹣a【分析】根据不等式的基本性质分别判断,再选择.【解答】解:A、不等式的两边同时减去a,不等号的方向不变,则0<b﹣a,即b﹣a<0成立;B、不等式的两边同时乘以c,因为c的符号不确定,所以不等号的方向也不确定,故ac<bc不成立;C、不等式的两边同时除以b,因为b的符号不确定,所以不等号的方向也不确定,故不成立;D、不等式的两边同时乘以﹣1,不等号的方向改变变,则﹣a<﹣b,则﹣b<﹣a不成立.故选A.2.(2013春•蚌埠期中)若不等式≥4x+6的解集是x≤﹣4,则a的值是()A.34 B.22 C.﹣3 D.0【分析】先解不等式≥4x+6,得出用a表示出来的x的取值范围,再根据解集是x ≤﹣4,列出方程﹣=﹣4,即可求出a的值.【解答】解:∵≥4x+6,∴x≤﹣,∵x≤﹣4,∴﹣=﹣4,解得:a=22.故选B.二.填空题(共2小题)3.若方程mx+13=4x+11的解为负数,则m的取值范围是m>4.【分析】解关于x的方程得x=,由方程的解为负数得到关于m的不等式,解不等式即可.【解答】解:解方程mx+13=4x+11得:x=,∵方程的解为负数,∴<0,即4﹣m<0,解得:m>4,故答案为:m>4.4.(2016春•谷城县期末)某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少答对13道.【分析】根据小明得分要超过90分,就可以得到不等关系:小明的得分≤90分,设应答对x道,则根据不等关系就可以列出不等式求解.【解答】解:设应答对x道,则10x﹣5(20﹣x)>90解得x>12∴x=13三.解答题(共9小题)5.解不等式或不等式组:(1)3(x﹣2)﹣4(1﹣x)<1(2)1﹣≥x+2(3)(4).【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可;(3)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可;(4)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)去括号得:3x﹣6﹣4+4x<1,3x+4x<1+6+4,7x<11,x<;(2)去分母得:6﹣2x+1≥6x+12,﹣2x﹣6x≥12﹣6﹣1,﹣8x≥5,x≤﹣;(3)∵解不等式①得:x≤1,解不等式②得:x>﹣3,∴不等式组的解集为﹣3<x≤1;(4)∵解不等式①得:x≤4,解不等式②得:x>7,∴不等式组无解.6.(2016春•房山区期中)某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.【分析】根据题意设安排住宿的房间为x间,并用含x的代数式表示学生人数,根据“每间住4人,则还余20人无宿舍住和;每间住8人,则有一间宿舍不空也不满”列不等式组解答.【解答】解:设安排住宿的房间为x间,则学生有(4x+20)人,根据题意,得解之得5.25≤x≤6.25又∵x只能取正整数,∴x=6∴当x=6,4x+20=44.(人)答:住宿生有44人,安排住宿的房间6间.7.(2012春•东城区校级期中)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件.已知生产1件A种产品需甲种原料9千克、乙种原料3千克,生产1件B种产品需甲种原料4千克、乙种原料10千克,请你提出安排生产的方案.【分析】本题首先找出题中的不等关系即甲种原料不超过360千克,乙种原料不超过290千克,然后列出不等式组并求出它的解集.由此可确定出具体方案.【解答】解:设安排生产A种产品x件,则安排生产B种产品(50﹣x)件.依题意得解得30≤x≤32∵x为正整数,∴x=30,31,32,∴有三种方案:(1)安排生产A种产品30件,B种产品20件;(2)安排生产A种产品31件,B种产品19件;(3)安排生产A种产品32件,B种产品18件.8.(2015•黔东南州)去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?【分析】(1)关系式为:饮用水件数+蔬菜件数=320;(2)关系式为:40×甲货车辆数+20×乙货车辆数≥200;10×甲货车辆数+20×乙货车辆数≥120;(3)分别计算出相应方案,比较即可.【解答】解:(1)设饮用水有x件,则蔬菜有(x﹣80)件.x+(x﹣80)=320,解这个方程,得x=200.∴x﹣80=120.答:饮用水和蔬菜分别为200件和120件;(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.得:,解这个不等式组,得2≤m≤4.∵m为正整数,∴m=2或3或4,安排甲、乙两种货车时有3种方案.设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;(3)3种方案的运费分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元);∴方案①运费最少,最少运费是2960元.答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.9.(2013•云南)某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元.(1)请问榕树和香樟树的单价各多少?(2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案.【分析】(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,然后根据单价之间的关系和340元两个等量关系列出二元一次方程组,求解即可;(2)设购买榕树a棵,则香樟树为(150﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,在根据a是正整数确定出购买方案.【解答】解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,根据题意得,,解得,答:榕树和香樟树的单价分别是60元/棵,80元/棵;(2)设购买榕树a棵,则购买香樟树为(150﹣a)棵,根据题意得,,解不等式①得,a≥58,解不等式②得,a≤60,所以,不等式组的解集是58≤a≤60,∵a只能取正整数,∴a=58、59、60,因此有3种购买方案:方案一:购买榕树58棵,香樟树92棵,方案二:购买榕树59棵,香樟树91棵,方案三:购买榕树60棵,香樟树90棵.10.(2015•淄博模拟)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.【分析】(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.【解答】解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.答:有两种购货方案,其中获利最大的是方案一.11.(2012•绥化)在实施“中小学校舍安全工程”之际,某市计划对A、B两类学校的校舍进行改造,根据预算,改造一所A类学校和三所B类学校的校舍共需资金480万元,改造三所A类学校和一所B类学校的校舍共需资金400万元.(1)改造一所A类学校的校舍和一所B类学校的校舍所需资金分别是多少万元?(2)该市某县A、B两类学校共有8所需要改造.改造资金由国家财政和地方财政共同承担,若国家财政拨付的改造资金不超过770万元,地方财政投入的资金不少于210万元,其中地方财政投入到A、B两类学校的改造资金分别为每所20万元和30万元,请你通过计算求出有几种改造方案,每个方案中A、B两类学校各有几所?【分析】(1)等量关系为:改造一所A类学校和三所B类学校的校舍共需资金480万元;改造三所A类学校和一所B类学校的校舍共需资金400万元;(2)关系式为:地方财政投资A类学校的总钱数+地方财政投资B类学校的总钱数≥210;国家财政投资A类学校的总钱数+国家财政投资B类学校的总钱数≤770.【解答】解:(1)设改造一所A类学校的校舍需资金x万元,改造一所B类学校的校舍所需资金y万元,则,解得.答:改造一所A类学校的校舍需资金90万元,改造一所B类学校的校舍所需资金130万元.(2)设A类学校应该有a所,则B类学校有(8﹣a)所.则,解得由①的a≤3,由②得a≥1,∴1≤a≤3,即a=1,2,3.答:有3种改造方案.方案一:A类学校有1所,B类学校有7所;方案二:A类学校有2所,B类学校有6所;方案三:A类学校有3所,B类学校有5所.12.(2014•绥化)某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:A B进价(元/件)1200 1000售价(元/件)1380 1200(1)该商场购进A、B两种商品各多少件;(2)商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原售价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?【分析】(1)设购进A种商品x件,B种商品y件,列出不等式方程组可求解.(2)由(1)得A商品购进数量,再求出B商品的售价.【解答】解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和120件.(2)由于第二次A商品购进400件,获利为(1380﹣1200)×400=72000(元)从而B商品售完获利应不少于81600﹣72000=9600(元)设B商品每件售价为z元,则120(z﹣1000)≥9600解之得z≥1080所以B种商品最低售价为每件1080元.13.(2016•宿州二模)随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台18000元第二周4台10台31000元(1)求A,B两种型号的净水器的销售单价;(2)若电器公司准备用不多于54000元的金额在采购这两种型号的净水器共30台,求A 种型号的净水器最多能采购多少台?(3)在(2)的条件下,公司销售完这30台净水器能否实现利润为12800元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号净水器的销售单价分别为x元、y元,根据3台A型号5台B型号的净水器收入18000元,4台A型号10台B型号的净水器收入31000元,列方程组求解;(2)设采购A种型号净水器a台,则采购B种型号净水器(30﹣a)台,根据金额不多余54000元,列不等式求解;(3)设利润为12800元,列方程求出a的值为8,符合(2)的条件,可知能实现目标.【解答】解:(1)设A、B两种净水器的销售单价分别为x元、y元,依题意得:,解得:.答:A、B两种净水器的销售单价分别为2500元、2100元.(2)设采购A种型号净水器a台,则采购B种净水器(30﹣a)台.依题意得:2000a+1700(30﹣a)≤54000,解得:a≤10.故超市最多采购A种型号净水器10台时,采购金额不多于54000元.(3)依题意得:(2500﹣2000)a+(2100﹣1700)(30﹣a)=12800,解得:a=8,故采购A种型号净水器8台,采购B种型号净水器22台,公司能实现利润12800元的目标.。
不等式专项练习题200

30.
5 1 x2 x4 2 2
31.
x2 x5 2 3
32.
1 x 2x 1 2 3
33.
3x 1 2x 0 2
34.
1 x 1 2x 3 7
35.
2 x x 1 5 10
36.
x4 x 1 2 3
不等式专项练习 200 题(朱韬老师分享) 37.
3 x x 1 92. 5 4 x 3 x
2 x 3 x 1 93. 1 x 1 4
2 x 4 x 1 94. x 1 2 x 2
x 2 0 95. x 1 1 x 2
3 x 2 x 8 103. x x 1 3 2
x 3 2x 5 104. 1 3 1 x 2 2
不等式专项练习 200 题(朱韬老师分享)
3 x 2 x 4 105. x 1 x 0 2 3
11. 1 x 2 x 3
12. 2 x 1 4 x 12
13. 2 x 2 3 x 4
14. 3老师分享) 15. 3 x 2 4 2 x 16. 3 x 4 6 2 x 2
5 3 x 4 2 2 x 3 1
3 x 2 2 x 1 85. 4 x 3 3 x 2
2 x 4 0 86. 1 x 8 2 0 2
87.
2 x 1 2 3 x 3 x x 1
不等式专项练习 200 题(朱韬老师分享) 一、解不等式 1. 3x+2>﹣1 2. 3 x 12
解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)1.解不等式组专项练60题(附答案)2.解:2x+1≤3x,得x≥1;3x-16≥2x,得x≥16,综合得1≤x<16,即x∈[1,16)。
3.解:|a-1|<1,即-1<a-1<1,解得0<a<2;|a+2|<2,即-2<a+2<2,解得-4<a<-0.5.综合得-4<a<-0.5,0<a<2,即a∈(-4,-0.5)∪(0,2)。
4.解:x+1>0,即x>-1;x-3<0,即x<3,综合得-1<x<3,即x∈(-1,3)。
5.解:x-2≥0,即x≥2;2x+1≤3x-2,得x≥3,综合得x≥3,即x∈[3,∞)。
6.解:x+1>0,即x>-1;2x-3≤x+2,得x≤5,综合得-1<x≤5,即x∈(-1,5]。
7.解:x-3≥0,即x≥3;2x-1≤3x-4,得x≤3,综合得x=3.8.解:x+3>0,即x>-3;x-1≤0,即x≤1,综合得-3<x≤1,即x∈(-3,1]。
9.解:x+1>0,即x>-1;3x-2≤2x+8,得x≤10,综合得-1<x≤10,即x∈(-1,10]。
10.解:x-1≥0,即x≥1;x+2≥0,即x≥-2,综合得x≥1,即x∈[1,∞)。
11.解:x-3<0,即x<3;x-1≥0,即x≥1,综合得x∈(-∞,3)∩[1,∞),即x∈[1,3)。
12.删除此段。
13.解:x-2>0,即x>2;x+1≤0,即x≤-1,综合得x∈(2.-1]。
14.解:x+3≥0,即x≥-3;3x-2≤2x+5,得x≤7,综合得-3≤x≤7,即x∈[-3,7]。
15.解:x+1>0,即x>-1;2x-5≥0,即x≥2.5,综合得x>2.5,即x∈(2.5,∞)。
高中不等式练习题及答案

高中不等式练习题及答案高中不等式练习题及答案在高中数学学习中,不等式是一个重要的概念和工具。
不等式是数学中描述数值大小关系的一种方式,它可以帮助我们解决各种实际问题。
在学习不等式的过程中,练习题是必不可少的,下面我将为大家提供一些高中不等式练习题及其答案。
1. 练习题一:解不等式:2x - 5 < 3x + 2解答:将不等式中的变量移到一边,常数移到另一边,得到:2x - 3x < 2 + 5化简得:-x < 7由于系数为负数,所以不等号方向需要翻转,得到:x > -72. 练习题二:解不等式:3(x - 2) > 2(x + 3)解答:先进行分配律的运算,得到:3x - 6 > 2x + 6将变量移到一边,常数移到另一边,得到:3x - 2x > 6 + 6化简得:x > 123. 练习题三:解不等式:4x + 5 > 3 - 2x解答:将变量移到一边,常数移到另一边,得到:4x + 2x > 3 - 5化简得:6x > -2由于系数为正数,所以不等号方向不需要翻转,得到:x > -1/34. 练习题四:解不等式:2x - 3 > 5x + 1解答:将不等式中的变量移到一边,常数移到另一边,得到:2x - 5x > 1 + 3化简得:-3x > 4由于系数为负数,所以不等号方向需要翻转,得到:x < -4/35. 练习题五:解不等式:2x + 1 < 3(x - 2)解答:先进行分配律的运算,得到:2x + 1 < 3x - 6将变量移到一边,常数移到另一边,得到:2x - 3x < -6 - 1化简得:-x < -7由于系数为负数,所以不等号方向需要翻转,得到:x > 7通过以上的练习题,我们可以看到解不等式的基本步骤。
首先,将不等式中的变量移到一边,常数移到另一边;然后,化简不等式;最后,根据系数的正负确定不等号的方向。
不等式解决问题练习题

不等式解决问题练习题一、一元一次不等式1. 解不等式:3x 5 > 22. 解不等式:4 2x ≤ 13. 解不等式:5x + 8 > 34. 解不等式:7 3x < 45. 解不等式:2x 6 ≥ 4二、一元一次不等式组1. 解不等式组:\[\begin{cases}x 2 > 0 \\3x + 1 < 4\end{cases}\]2. 解不等式组:\[\begin{cases}2x 3 < 5 \\4x + 7 > 11\end{cases}\]3. 解不等式组:\[\begin{cases}5x + 4 > 2x 1 \\3x 2 ≤ 8\end{cases}\]三、一元二次不等式1. 解不等式:x^2 5x + 6 > 02. 解不等式:2x^2 4x 6 < 03. 解不等式:x^2 + 3x 4 ≥ 04. 解不等式:x^2 + 2x + 3 ≤ 05. 解不等式:4x^2 12x + 9 > 0四、分式不等式1. 解不等式:\(\frac{1}{x2} > 0\)2. 解不等式:\(\frac{2}{x+3} < 1\)3. 解不等式:\(\frac{3}{x1} + \frac{1}{x+2} ≥ 0\)4. 解不等式:\(\frac{4}{x+1} \frac{2}{x3} ≤ 2\)5. 解不等式:\(\frac{5}{x^2 4x + 3} > 0\)五、绝对值不等式1. 解不等式:|x 4| < 32. 解不等式:|2x + 1| ≥ 53. 解不等式:|3x 7| > 24. 解不等式:|4 x| ≤ 65. 解不等式:|5x + 3| < 8六、综合应用题1. 某企业生产一种产品,每件产品的成本为50元,售价为80元。
若该企业每月固定开支为2000元,要使企业不亏损,每月至少需要销售多少件产品?2. 一辆汽车以60km/h的速度行驶,行驶过程中,速度每增加10km/h,油耗增加1L/100km。
不等式练习题及答案解析

基本不等式练习题一、选择题1.下列各式,能用基本不等式直接求得最值的是( C )A .x +12xB .x 2-1+1x 2-1C .2x +2-x D .x (1-x )2.函数y =3x 2+6x 2+1的最小值是( D )A .32-3B .-3C .6 2D .62-3解析: y =3(x 2+2x 2+1)=3(x 2+1+2x 2+1-1)≥3(22-1)=62-3.3.已知m 、n ∈R ,mn =100,则m 2+n 2的最小值是( A )A .200B .100C .50D .20解析:选A.m 2+n 2≥2mn =200,当且仅当m =n 时等号成立. 4.给出下面四个推导过程:①∵a ,b ∈(0,+∞),∴b a +a b ≥2b a ·ab=2;②∵x ,y ∈(0,+∞),∴lg x +lg y ≥2lg x ·lg y ;③∵a ∈R ,a ≠0,∴4a +a ≥24a·a =4;w w w .x k b 1.c o m④∵x ,y ∈R ,,xy <0,∴x y +y x =-[(-x y )+(-y x )]≤-2(-x y )(-yx)=-2.其中正确的推导过程为( D )A .①②B .②③C .③④D .①④ 解析:选D.从基本不等式成立的条件考虑.①∵a ,b ∈(0,+∞),∴b a ,ab∈(0,+∞),符合基本不等式的条件,故①的推导过程正确;②虽然x ,y ∈(0,+∞),但当x ∈(0,1)时,lg x 是负数,y ∈(0,1)时,lg y 是负数,∴②的推导过程是错误的;③∵a ∈R ,不符合基本不等式的条件, ∴4a +a ≥24a·a =4是错误的; ④由xy <0得x y ,y x 均为负数,但在推导过程中将全体x y +y x 提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.5.已知a >0,b >0,则1a +1b+2ab 的最小值是( C )A .2B .2 2C .4D .5解析:选C.∵1a +1b +2ab ≥2ab +2ab ≥22×2=4.当且仅当⎩⎨⎧a =b ab =1时,等号成立,即a =b =1时,不等式取得最小值4.6.已知x 、y 均为正数,xy =8x +2y ,则xy 有( C )A .最大值64B .最大值164C .最小值64D .最小值164解析:选C.∵x 、y 均为正数,∴xy =8x +2y ≥28x ·2y =8xy ,当且仅当8x =2y 时等号成立.∴xy ≥64.7.若xy >0,则对 x y +yx说法正确的是( B )A .有最大值-2B .有最小值2C .无最大值和最小值D .无法确定8.设x ,y 满足x +y =40且x ,y 都是正整数,则xy 的最大值是( A )A .400B .100C .40D .20 9.在下列各函数中,最小值等于2的函数是( D ) A .y =x +1xB .y =cosx +1cosx ⎝ ⎛⎭⎪⎫0<x<π2C .y =x2+3x2+2D .24-+=x xee y [解析] x<0时,y =x +1x ≤-2,故A 错;∵0<x<π2,∴0<cosx<1,∴y =cosx +1cosx ≥2中等号不成立,故B 错;∵x2+2≥2,∴y =x2+2+1x2+2≥2中等号也取不到,故C 错∴选D.10.已知正项等比数列{an}满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得nm a a =4 a 1,则1m+4n 的最小值为( A ) A.32B.53C.256D .不存在[解析] 由已知an>0,a7=a6+2a5,设{an}的公比为q ,则a6q =a6+2a6q ,∴q2-q -2=0,∵q>0,∴q =2,∵aman =4a1,∴a12·qm+n -2=16a12,∴m +n -2=4, ∴m +n =6,∴1m +4n =16(m +n)⎝ ⎛⎭⎪⎫1m +4n =16⎣⎢⎡⎦⎥⎤5+n m +4m n ≥16⎝ ⎛⎭⎪⎫5+2n m ·4m n =32, 等号在n m =4mn,即n =2m =4时成立.11. “a=14”是“对任意的正数x ,均有x +ax ≥1”的( A )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件[解析] ∵a =14,x>0时,x +ax ≥2x·a x =1,等号在x =12时成立, 又a =4时,x +a x =x +4x≥2x·4x =4也满足x +ax≥1,故选A. 12.设a ,b ∈R ,则“a+b =1”是“4ab≤1”的( A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不是充分条件也不是必要条件[解析] a ,b 中有一个不是正数时,若a +b =1,显然有4ab≤1成立,a ,b 都是正数时,由1=a +b≥2ab 得4ab≤1成立,故a +b =1⇒4ab≤1,但当4ab≤1成立时,未必有a +b =1,如a =-5,b =1满足4ab≤1,但-5+1≠1,故选A.13.若a>0,b>0,a ,b 的等差中项是12,且α=a +1a ,β=b +1b ,则α+β的最小值为( D )A .2B .3C .4D .5[解析] ∵12为a 、b 的等差中项,∴a +b =12×2=1.a +1a +b +1b ⇒1+1a +1b =1+a +b ab =1+1ab, ∵ab ≤a +b 2,∴ab≤a +b 24=14.∴原式≥1+4.∴α+β的最小值为5.故选D.二、填空题1.函数y =x +1x +1(x ≥0)的最小值为____1____.2.若x >0,y >0,且x +4y =1,则xy 有最___大_____值,其值为___116_____.解析:1=x +4y ≥2x ·4y =4xy ,∴xy ≤116.3.(2010年高考山东卷)已知x ,y ∈R +,且满足x 3+y 4=1,则xy 的最大值为___3_____.解析:∵x >0,y >0且1=x 3+y 4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号.答案:34.已知x ≥2,则当x =_2___时,x +4x有最小值__4__.5.已知t>0,则函数y =t2-4t +1t 的最小值为__-2_____.[解析] y =t2-4t +1t =t +1t -4因为t>0,y =t +1t-4≥2t·1t -4=-2.,等号在t =1t,即t =1时成立.6.已知正数a ,b ,c 满足:a +2b +c =1则1a +1b +1c 的最小值为 [答案] [解析]1a +1b +1c =a +2b +c a +a +2b +c b +a +2b +c c =⎝ ⎛⎭⎪⎫2b a +a b +⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +2b c +4≥22+2+22+4=6+42,等号在2b a =a b ,c a =a c ,c b =2b c 同时成立时成立,即a =c =2b =1-22时等号成立.7.已知x>0,y>0,lg2x +lg8y =lg2,则xy 的最大值是____112____.[解析] ∵lg2x +lg8y =lg2,∴2x·8y =2,即2x +3y =2,∴x +3y =1,∴xy =13x·(3y)≤13·⎝⎛⎭⎫x +3y 22=112,等号在x =3y ,即x =12,y =16时成立. 三、解答题1.已知f (x )=12x+4x .(1)当x >0时,求f (x )的最小值; (2)当x <0 时,求f (x )的最大值.解:(1)∵x >0,∴12x ,4x >0. ∴12x +4x ≥212x ·4x =8 3.当且仅当12x=4x ,即x =3时取最小值83,∴当x >0时,f (x )的最小值为8 3.(2)∵x <0,∴-x >0.则-f (x )=12-x +(-4x )≥212-x ·(-4x )=83,当且仅当12-x=-4x 时,即x =-3时取等号.∴当x <0时,f (x )的最大值为-8 3.2.(1)设x >-1,求函数y =x +4x +1+6的最小值;(2)求函数y =x 2+8x -1(x >1)的最值.解:(1)∵x >-1,∴x +1>0.∴y =x +4x +1+6=x +1+4x +1+5≥2 (x +1)·4x +1+5=9,当且仅当x +1=4x +1,即x =1时,取等号.∴x =1时,函数的最小值是9.(2)y =x 2+8x -1=x 2-1+9x -1=(x +1)+9x -1=(x -1)+9x -1+2.∵x >1,∴x -1>0.∴(x -1)+9x -1+2≥2(x -1)·9x -1+2=8.当且仅当x -1=9x -1,即x =4时等号成立,∴y 有最小值8.3.已知a ,b ,c ∈(0,+∞),且a +b +c =1,求证:(1a -1)·(1b -1)·(1c-1)≥8.证明:∵a ,b ,c ∈(0,+∞),a +b +c =1,∴1a -1=1-a a =b +c a =b a +c a ≥2bc a , 同理1b -1≥2ac b ,1c -1≥2ab c ,以上三个不等式两边分别相乘得 (1a -1)(1b -1)(1c-1)≥8. 当且仅当a =b =c 时取等号.4.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x 米,则宽为200x米.总造价f (x )=400×(2x +2×200x )+100×200x+60×200=800×(x +225x )+12000≥1600x ·225x+12000=36000(元)当且仅当x =225x(x >0),即x =15时等号成立.。
初中几何不等式练习题

初中几何不等式练习题一、基本不等式1. 已知正数a、b,证明:a+b ≥ 2√(ab)。
2. 已知a、b为实数,证明:(a+b)² ≥ 4ab。
3. 已知a、b、c为正数,证明:a+b+c ≥ 3√[abc]。
4. 已知x、y为实数,求证:x² + y² ≥ 2xy。
5. 已知a、b、c为等差数列,求证:a² + b² + c² ≥ ab + bc+ ca。
二、三角形不等式1. 在△ABC中,求证:a+b > c,b+c > a,c+a > b。
2. 已知△ABC的三边长分别为3、4、5,求证:3² + 4² > 5²。
3. 在△ABC中,若∠A = 60°,求证:a > bsinA。
4. 在△ABC中,若a² = b² + c² bc,求证:∠A = 90°。
5. 已知△ABC的三边长满足a² + b² = 3c²,求证:∠C < 90°。
三、四边形不等式1. 已知平行四边形ABCD的对角线交于点E,求证:AE² + BE² + CE² + DE² ≥ 4AB²。
2. 在矩形ABCD中,求证:AB + BC > AC。
3. 已知菱形ABCD的对角线AC、BD交于点O,求证:AO² + BO² + CO² + DO² ≥ 4AB²。
4. 在梯形ABCD中,AB // CD,求证:AD + BC > CD。
5. 已知四边形ABCD的四边长分别为1、2、2、3,求证:不能构成矩形。
四、圆的不等式1. 在圆中,求证:直径所对的圆周角是直角。
2. 已知圆的半径为r,求证:圆的面积S ≤ πr²。
不等式练习题(含答案)

第九章 不等式与不等式组9.1 不等式1.不等式x ≥–1的解在数轴上表示为 A . B .C .D .2.“x 的2倍与3的差不大于8”列出的不等式是 A .238x -≤ B .238x -≥C .238x -<D .238x ->3.下列不等式中是一元一次不等式的是 ①2x –1>1;②3+12x <0;③x ≤2.4;④1x <5;⑤1>–2;⑥3x–1<0. A .2个 B .3个C .4个D .5个4.用不等式表示“x 的2倍与3的和大于10”是___________. 5.若1123x ->-,则x ___________23. 6.一个长方形的长为x 米,宽为50米,如果它的周长不小于280米,那么x 应满足的不等式为____________. 7.用适当的不等式表示下列不等关系: (1)x 减去6大于12; (2)x 的2倍与5的差是负数; (3)x 的3倍与4的和是非负数; (4)y 的5倍与9的差不大于1-;8.用“>”或“<”填空:(1)如果a–b<c–b,那么a________c;(2)如果3a>3b,那么a________b;(3)如果–a<–b,那么a________b;(4)如果2a+1<2b+1,那么a________b. 9.把下列不等式化为“x>a”或“x<a”的形式:(1)x+6>5;(2)3x>2x+2;(3)–2x+1<x+7;(4)–22x-<14x+.10.下列说法中,正确的是A.x=2是不等式3x>5的一个解B.x=2是不等式3x>5的唯一解C.x=2是不等式3x>5的解集D.x=2不是不等式3x>5的解11.用不等式表示图中的解集,其中正确的是A .x >–3B .x <–3C .x ≥–3D .x ≤–312.已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是A .x <2B .x >–2C .当a >0时,x <2D .当a >0时,x <2;当a <0时,x >213.不等式y +3>4变形为y >1,这是根据不等式的性质__________,不等式两边同时加上__________. 14.若a <b ,则a +c __________b +c ;,若mx >my ,且x >y 成立,则m __________0;若5m –7b >5n –7b ,则m __________n .15.如果不等式(a –3)x <b 的解集是x <3ba ,那么a 的取值范围是________. 16.阅读下面解题过程,再解题.已知a >b ,试比较–2019a +1与–2019b +1的大小. 解:因为a >b ,① 所以–2019a >–2019b ,② 故–2019a +1>–2019b +1.③问:(1)上述解题过程中,从第______步开始出现错误; (2)错误的原因是什么? (3)请写出正确的解题过程.17.不等式的解集中是否一定有无限多个数?不等式|x |≤0、x 2<0的解集是什么?不等式x 2>0和x 2+4>0的解集分别又是什么?18.(2018·广西)若m >n ,则下列不等式正确的是A .m –2<n –2B .4m >4n C .6m <6n D .–8m >–8n19.(2018·宿迁)若a <b ,则下列结论不一定成立的是A .a –1<b –1B .2a <2bC .–3a >–3b D .a 2<b 21.【答案】A【解析】不等式x ≥–1的解在数轴上表示为,故选A .2.【答案】A【解析】根据题意,得2x –3≤8.故选A . 3.【答案】C【解析】①符合一元一次不等式的定义,故①正确; ②符合一元一次不等式的定义,故②正确; ③符合一元一次不等式的定义,故③正确; ④1x是分式,故此不等式不是一元一次不等式,故④错误; ⑤此不等式不含未知数,不是一元一次不等式,故⑤错误;⑥符合一元一次不等式的定义,故⑥正确;故选C.4.【答案】2x+3>10【解析】∵x的2倍为2x,∴x的2倍与3的和大于10可表示为:2x+3>10.故答案为:2x+3>10.5.【答案】<【解析】12-x>13-两边都乘以−2得:x<23.故答案为:<.6.【答案】2(x+50)≥280【解析】∵一个长方形的长为x米,宽为50米,∴周长为2(x+50)米,∴周长不小于280米可表示为2(x+50)≥280,故答案为2(x+50)≥280.7.【解析】(1)由题意可得:x–6>12;(2)由题意可得:2x–5<0;(3)由题意可得:3x+4≥0;(4)由题意可得:5y–9≤–1.8.【解析】(1)由a–b<c–b得,a<c;(2)由3a>3b,得a>b;(3)由–a<–b,得a>b;(4)由2a+1<2b+1,得2a<2b,∴a<b.故答案为:(1)<;(2)>;(3)>;(4)<.9.【解析】(1)不等式两边同时减去6,得x+6–6>5–6,解得x>–1.(2)不等式两边同时减去2x,得3x–2x>2x+2–2x,解得x>2.(3)不等式两边同时减去(x+1),得–2x+1–(x+1)<x+7–(x+1),–3x<6,不等式两边同时除以–3,得x>–2.(4)不等式两边同时乘4,得–2(x–2)<x+1,整理得–2x+4<x+1,不等式两边同时减去(x+4),得–2x+4–(x+4)<x+1–(x+4),整理得–3x<–3,不等式两边同时除以–3,得x>1.10.【答案】A【解析】A.x=2是不等式3x>5的一个解,正确;B.不等式3x>5的解有无数个,则B错误;C.x=2是不等式3x>5的解,则C错误;D.x=2是不等式3x>5的解,则D错误,故选A.11.【答案】C【解析】由数轴知不等式的解集为x≥–3,故选C.12.【答案】D【解析】因为a的符号不确定,所以要分类讨论,当a>0时,x<2;当a<0时,x>2,故选D. 13.【答案】1;–3【解析】不等式y+3>4变形为y>1,这是根据不等式的性质1,不等式两边同时减去3,即加上–3,不等号的方向不变.故答案是:1;–3.14.【答案】<;>;>【解析】(1)若a<b,则a+c<b+c;(2)若mx>my,且x>y成立,则m>0;(3)若5m–7b>5n–7b,则m>n.故答案是:<;>;>.15.【答案】a>3【解析】因为不等号没有改变方向,所以a–3>0,则a>3,故答案为a>3.16.【解析】(2)②;(2)错误地运用了不等式的基本性质3,即不等式两边都乘以同一个负数,不等号的方向没有改变;(3)因为a>b,所以–2019a<–2019b,故–2019a+1<–2019b+1.17.【解析】不等式的解集中不一定有无数多个数.|x|≤0的解集是x=0,x2<0无解.x2>0的解集为x>0或x<0,x2+4>0的解集为一切实数.18.【答案】BC、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以–8,得:–8m<–8n,此选项错误;故选B.19.【答案】D。
不等式练习题及答案

不等式练习题(一)1、若a>b,下列不等式中一定成立的是( )1 1- b 1 C、2a2ba b a2、若-1<a<b<1,则下列不等式中成立的是( )A、-2<a-b<0B、-2<a-b<-1C、-1<a-b<0一十施亠2x 33、与不等式x1同解的不等式是( )A、x 1 OB、4•已知二次不等式A. a 1,b3x 22 0 C、lg ( x 3xlg(a b)-1<a-b<1>0 D、x3 x2 x 12ax bxB.a1 0的解集为x2,b 1 C.a,则a,b的值为5.方程mx2(2m 1)x mA m 1 B.m 0 C.6.若f (x) 3x2x 1,g(x)A. f (x) g(x)7、不等式(〔产38•若0x1,9•已知不等式x210、已知1 x11. (1 )已知函数D.a 1,b 0有两个不相等的实数解,则m的取值范围是2x2B.f(x) g(x) ax m 0或m 0 D. m2x的解集是2,则z x x 1,则f(x), g(x)的大小关系是( C.f(x) g(x) D.随x的值变化而变化4y的最小值为,最大值为4 0的解集为空集,贝U a的取值范围是4且2 x y 3,贝U z 2x 3y的取值范围是2f (x) log3(ax ax 1)的定义域为R,求实数a的取值范围;(2)已知函数f (x) log3(ax2 ax 1)的值域为R,求实数a的取值范围;5x b 0解集是x 3 x 2,求不等式bx 2 5x a 0的解集 22)x 2(a 2)x2的图象在x 轴下方,求实数a 的取值范围14•解关于X 的不等式 2 ax 2 2x ax 12、已知不等式ax 2 13.已知函数y (a不等式练习题一参考答案4 8.-4,9 1-6 C A D C C A 7. x 2 x9. a 4 a 4 10. (3,8)11. (1)0 a 4 (2)a 412. xx 2 或x 12 313. (学案62 页11 题)a 0 a 214. a 0 时,x x 1a 0 时,x x 1 或x —a2 a 0 时,x - x 1aa 2 时,x x 1a 2 时,x 1 x -a。
基本不等式练习题及答案

基本不等式练习题及答案1.函数y=x+x/(x>0)的值域是什么?正确答案:B.(0,+∞)解析:当x>0时,x/x=1,所以函数可以简化为y=2x。
因为x>0,所以函数的值域为(0,+∞)。
2.下列不等式中正确的个数是多少?正确答案:C.1解析:只有第一组不等式a^2+1>2a成立,其他两个不等式都不成立。
3.若a>0,b>0,且a+2b-2=0,则ab的最大值为多少?正确答案:B.1解析:将a+2b-2=0变形得到2b=2-a,所以b=1-a/2.因为a>0,所以1-a/2<1,所以b<1.所以ab的最大值为a(1-a/2)=a-a^2/2,当a=1时取得最大值为1/2.4.若函数f(x)=x+1/(x-2)在x=a处取最小值,则a等于多少?正确答案:C.3解析:f(x)可以写成x+1/(x-2)=x-2+3+1/(x-2),所以f(x)的最小值在x=3时取得,此时f(3)=3+1=4.5.已知t>0,则函数y=(t^2-4t+1)/t的最小值为多少?正确答案:1解析:将分子t^2-4t+1写成(t-2)^2-3,所以y=(t-2)^2/t-3/t。
因为t>0,所以y的最小值为3/t-(t-2)^2/t,当t=2时取得最小值1.某单位要建造一间背面靠墙的矩形小房,地面面积为12平方米,房子侧面的长度x不得超过5米。
房屋正面的造价为400元/平方米,房屋侧面的造价为150元/平方米,屋顶和地面的造价费用合计为5800元,墙高为3米,不计房屋背面的费用。
求侧面的长度为多少时,总造价最低。
去年,XXX年产量为10万件,每件产品的销售价格为100元,固定成本为80元。
今年起,工厂投入100万元科技成本,每年递增100万元科技成本,预计产量每年递增1万件。
每件水晶产品的固定成本g(n)与科技成本的投入次数n的关系是g(n)=80.若水晶产品的销售价格不变,求第n次投入后的年利润f(n)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式综合考点导读能利用不等式性质、定理、不等式解法及证明解决有关数学问题和实际问题,如最值问题、恒成立问题、最优化问题等.基础练习1.若函数()()()()22112,022x f x x x g x x x -⎛⎫=+>=≠ ⎪-⎝⎭,则()f x 与()g x 的大小关系是()()f x g x >2.函数()()22f x a x a =-+在区间[]0,1上恒为正,则a 的取值范围是0<a <2 3.当点(),x y 在直线320x y +-=上移动时,3271x y z =++的最小值是74.已知f(x)、g(x)都是奇函数,f(x)>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b ),则f (x )·g (x )>0的解集是22,,22b b a a ⎛⎫⎛⎫⋃-- ⎪ ⎪⎝⎭⎝⎭5.对于0≤m ≤4的m ,不等式x 2+mx >4x +m -3恒成立,则x 的取值范围是x >3或x <-1范例导析例1、已知集合⎥⎦⎤⎢⎣⎡=2,21P ,函数()22log 22+-=x ax y 的定义域为Q(1)若φ≠Q P ,求实数a 的取值范围。
(2)若方程()222log 22=+-x ax 在⎥⎦⎤⎢⎣⎡2,21内有解,求实数a 的取值范围。
分析:问题(1)可转化为2220ax x -+>在⎥⎦⎤⎢⎣⎡2,21内有有解;从而和问题(2)是同一类型的问题,既可以直接构造函数角度分析,亦可以采用分离参数. 解:(1)若φ≠Q P ,0222>+-∴x ax 在⎥⎦⎤⎢⎣⎡2,21内有有解xx a 222+->∴令2121122222+⎪⎭⎫⎝⎛--=+-=x x x u当⎥⎦⎤⎢⎣⎡∈2,21x 时,⎥⎦⎤⎢⎣⎡-∈21,4u 所以a>-4,所以a 的取值范围是{}4->a a(2)方程()222log 22=+-x ax 在⎥⎦⎤⎢⎣⎡2,21内有解则0222=--x ax 在⎥⎦⎤⎢⎣⎡2,21内有解2121122222-⎪⎭⎫⎝⎛+=+=∴x x x a当⎥⎦⎤⎢⎣⎡∈2,21x 时,⎥⎦⎤⎢⎣⎡∈12,23a 所以⎥⎦⎤⎢⎣⎡∈12,23a 时,()222log 22=+-x ax 在⎥⎦⎤⎢⎣⎡2,21内有解 点拨:本题用的是参数分离的思想例2.已知f (x)是定义在[—1,1]上的奇函数,且f (1)=1,若m 、n ∈[—1,1],m+n ≠0时有()().0>++nm n f m f(1)判断f (x)在[—1,1]上的单调性,并证明你的结论; (2)解不等式:⎪⎭⎫ ⎝⎛-<⎪⎭⎫ ⎝⎛+1121x f x f ; (3)若f (x)≤122+-at t 对所有x ∈[—1,1],a ∈[—1,1]恒成立,求实数t 的取值范围.分析:可利用定义法判断单调性,再利用单调性解决问题(2),问题(3)只要f (x)max ≤()2min21tat -+解:(1)任取—1≤x 1<x 2≤1,则f (x 1)—f (x 2)= f (x 1)+f (-x 2)=()()()212121x x x x x f x f -⋅--+∵—1≤x 1<x 2≤1,∴x 1+(-x 2)≠0, 由已知()()2121x x x f x f --+>0,又x 1-x 2<0,∴f (x 1)—f (x 2)<0,即f (x)在[—1,1]上为增函数. (2)∵f (x)在[—1,1]上为增函数,故有⎭⎬⎫⎩⎨⎧-<≤-⎪⎪⎪⎩⎪⎪⎪⎨⎧-<+≤-≤-≤+≤-123,1121,1111,1211x x x x x x 由此解得(3)由(1)可知:f (x )在[—1,1]上是增函数,且f (1)=1,故对x ∈[—l ,1],恒有f (x )≤1.所以要使f (x )≤122+-at t ,对所有x ∈[—1,1],a ∈[—1,1]恒成立, 即要122+-at t ≥1成立,故at t 22-≥0成立.记g(a )=at t 22-对a ∈[—1,1],g(a )≥0恒成立,只需g(a )在[—1,1]上的最小值大于等于零.故()()⎩⎨⎧≥-≤⎩⎨⎧≥>.010010g t g t ,或,, 解得:t ≤—2或t=0.点拨:一般地,若()[],,y f x x a b =∈与()[],,y g t t m n =∈若分别存在最大值和最小值,则()()f x g t ≤恒成立等价于()()max min f x g x ≤.反馈练习:1.设10<<a ,函数)22(log )(2--=x x a a a x f ,则使0)(<x f 的x 的取值范围是),0(+∞2.一个直角三角形的周长为2P ,其斜边长的最小值122+P3.首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是833d <≤ 4.如果函数213log (23)y x x =--的单调递增区间是(-∞,a ],那么实数a 的取值范围是____a <-1____5.若关于x 的不等式m x x ≥-42对任意]1,0[∈x 恒成立,则实数m 的取值范围为(,3]-∞-6.设实数m ,n ,x ,y 满足ny mx b y x a n m +=+=+则,,2222的最大值ab7.已知关于x 的方程sin 2x +2cos x +a =0有解,则a 的取值范围是[-2,2]8.对于满足0≤p ≤4的所有实数p ,使不等式342-+>+p x px x 都成立的x 的取值范围13-<>x x 或10.设曲线cx bx ax y ++=23213在点x 处的切线斜率为()x k ,且()01=-k ,对一切实数x ,不等式()()1212+≤≤x x k x 恒成立(0≠a ). (1)求()1k 的值; (2) 求函数()x k 的表达式. 解:(1)设()c bx ax x k ++=2,()()1212+≤≤x x k x , ()()1112111=+≤≤∴k , ()11=∴k (2)解:⎩⎨⎧==-1)1(0)1(k k=+=+-10c c b a ∴ ⎪⎪⎩⎪⎪⎨⎧=+=2121c a bx c x ax ≥++∴212, 161,0441,0212≥∴≤-=∆≥+-ac ac c x ax , 又()16142=+≤c a ac , 即41,161,161161==∴=∴≤≤c a ac ac ()()22141412141+=++=∴x x x x k 11.已知二次函数f (x)=()0,,12>∈++a R b a bx ax 且,设方程f (x )=x 的两个实根为x 1和x 2.(1)如果x 1<2<x 2<4,且函数f (x )的对称轴为x =x 0,求证:x 0>—1;(2)如果∣x 1∣<2,∣x 2—x 1∣=2,求b 的取值范围.解:(1)设g(x)= f (x)—x=()()0242.011212<<<<>+-+g x x a x b ax 得,由,且,且g(4)>0,即,81,221443,221443,03416,0124>-<--<<-∴⎩⎨⎧<-+<-+a a a a b a b a b a 得由∴.1814112,4112832-=⋅->-=->->-ab x a a b a 故(2)由g(x)=()同号、可知2121,01,011x x ax x x b ax ∴>==+-+. ①若0<x 1<2,则x 2一x 1=2,即x 2=x 1+2>2,∴g(2)=4a +2b —1<0,又()()(),负根舍去,得01112441222212>+-=+=--=-a b a aa b x x ,代入上式得();41,231122<-<+-b b b 解得②若-2<x 1<0,则x 2=-2+x 1<-2,∴g (-2)<0,即4a -2b +3<0,同理可求得47>b . 故当0<x 1<2时, 41<b ;当-2<x 1<0时,47>b . 高考题一.不等式的概念与性质5.,,[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1B. ln(x 2+1)>ln(y 2+1)C. sin x >sin yD. x 3>y 35.D [解析] 因为a x <a y (0<a <1),所以x >y ,所以sin x >sin y ,ln(x 2+1)>ln(y 2+1),1x 2+1>1y 2+1都不一定正确,故选D. 4.[2014·四川卷] 若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b c D.a d <b c4.D [解析] 因为c <d <0,所以1d <1c <0,即-1d >-1c >0,与a >b >0对应相乘得,-a d >-b c >0,所以a d <bc.故选D.二.绝对值不等式的解法9.、[2014·安徽卷] 若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4 D .-4或8 9.D [解析] 当a ≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1(x >-1),x +a -1⎝⎛⎭⎫-a 2≤x ≤-1,-3x -a -1⎝⎛⎭⎫x <-a 2.由图可知,当x =-a2时,f min (x )=f ⎝⎛⎭⎫-a 2=a 2-1=3,可得a =8. 当a <2时,f (x )⎩⎪⎨⎪⎧3x +a +1⎝⎛⎭⎫x >-a2,-x -a +1⎝⎛⎭⎫-1≤x ≤-a 2,-3x -a -1(x <-1).由图可知,当x =-a 2时,f min (x )=f ⎝⎛⎭⎫-a 2=-a2+1=3,可得a =-4.综上可知,a 的值为-4或8.三.一元二次不等式的解法2.、[2014·全国卷] 设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =( ) A .(0,4] B .[0,4) C .[-1,0) D .(-1,0]2.B [解析] 因为M ={x |x 2-3x -4<0}={x |-1<x <4},N ={x |0≤x ≤5},所以M ∩N ={x |-1<x <4}∩{0≤x ≤5}={x |0≤x <4}.12.、[2014·新课标全国卷Ⅱ] 设函数f (x )=3sin πx m,若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞)12.C [解析] 函数f (x )的极值点满足πx m =π2+k π,即x =m ⎝⎛⎭⎫k +12,k ∈Z ,且极值为±3,问题等价于存在k 0使之满足不等式m 2⎝⎛⎭⎫k 0+122+3<m 2.因为⎝⎛⎭⎫k +122的最小值为14,所以只要14m 2+3<m 2成立即可,即m 2>4,解得m >2或m <-2,故m 的取值范围是(-∞,-2)∪(2,+∞).四.简单的一元高次不等式的解法及简单的线性规划问题5.[2014·安徽卷] x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不.唯一..,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1 5.D [解析]方法一:画出可行域,如图中阴影部分所示,可知点A (0,2),B (2,0),C (-2,-2), 则z A =2,z B =-2a ,z c =2a -2.要使对应最大值的最优解有无数组,只要z A =z B >z C 或z A =z C >z B 或z B =z C >z A , 解得a =-1或a =2.方法二:画出可行域,如图中阴影部分所示,z =y -ax 可变为y =ax +z ,令l 0:y =ax ,则由题意知l 0∥AB 或l 0∥AC ,故a =-1或a =2.6.[2014·北京卷] 若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( ) A .2 B .-2 C.12 D .-126.D [解析] 可行域如图所示,当k >0时,知z =y -x 无最小值,当k <0时,目标函数线过可行域内A 点时z 有最小值.联立⎩⎪⎨⎪⎧y =0,kx -y +2=0,解得A ⎝⎛⎭⎫-2k ,0,故z min =0+2k =-4,即k =-12.11.[2014·福建卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.11.1 [解析] 作出不等式组表示的平面区域(如图所示),把z =3x +y 变形为y =-3x +z ,则当直线y =3x +z 经过点(0,1)时,z 最小,将点(0,1)代入z =3x +y ,得z min =1,即z =3x +y 的最小值为1.3.[2014·广东卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =( )A .5B .6C .7D .83.B [解析] 本题考查运用线性规划知识求目标函数的最值,注意利用数形结合思想求解.画出不等式组表示的平面区域,如图所示.当目标函数线经过点A (-1,-1)时,z 取得最小值;当目标函数线经过点B (2,-1)时,z 取得最大值.故m =3,n =-3,所以m -n =6.14.[2014·湖南卷] 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.14.-2 [解析] 画出可行域,如图中阴影部分所示,不难得出z =2x +y 在点A (k ,k )处取最小值,即3k =-6,解得k =-2.14.[2014·全国卷] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +2y ≤3,x -2y ≤1,则z =x +4y 的最大值为________.14.5 [解析] 如图所示,满足约束条件的可行域为△ABC 的内部(包括边界), z =x +4y 的最大值即为直线y =-14x +14z 的纵截距最大时z 的值.结合题意,当y =-14x +14z 经过点A时,z 取得最大值.由⎩⎪⎨⎪⎧x -y =0,x +2y =3,可得点A 的坐标为(1,1), 所以z max =1+4=5.9.、[2014·新课标全国卷Ⅰ] 不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D ,x +2y ≥2, p 3:∀(x ,y )∈D ,x +2y ≤3, p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是( ) A .p 2,p 3 B .p 1,p 2 C .p 1,p 4 D .p 1,p 39.B [解析] 不等式组表示的区域D 如图中的阴影部分所示,设目标函数z =x +2y ,根据目标函数的几何意义可知,目标函数在点A (2,-1)处取得最小值,且z min =2-2=0,即x +2y 的取值范围是[0,+∞),故命题p 1,p 2为真,命题p 3,p 4为假.9.[2014·新课标全国卷Ⅱ] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .29.B [解析] 已知不等式组表示的平面区域如图中的阴影部分所示,根据目标函数的几何意义可知,目标函数在点A 2×5-2=8.9.[2014·山东卷] 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -1≤0,2x -y -3≥0,当目标函数z =ax +by (a >0,b>0)在该约束条件下取到最小值25时,a 2+b 2的最小值为( )A. 5B. 4C. 5D. 29.B [解析] 画出约束条件表示的可行域(如图所示).显然,当目标函数z =ax +by 过点A (2,1)时,z 取得最小值,即2 5=2a +b ,所以2 5-2a =b ,所以a 2+b 2=a 2+(2 5-2a )2=5a 2-8 5a +20,构造函数m (a )=5a 2-8 5a +20(5>a >0),利用二次函数求最值,显然函数m (a )=5a 2-85a +20的最小值是4×5×20-(85)24×5=4,即a 2+b 2的最小值为4.故选B.18.,[2014·陕西卷] 在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值. 18.解:(1)方法一:∵P A →+PB →+PC →=0,又P A →+PB →+PC →=(1-x ,1-y )+(2-x ,3-y )+(3-x ,2-y )=(6-3x ,6-3y ),∴⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2, 即OP →=(2,2),故|OP →|=2 2. 方法二:∵P A →+PB →+PC →=0,则(OA →-OP →)+(OB →-OP →)+(OC →-OP →)=0, ∴OP →=13(OA →+OB →+OC →)=(2,2),∴|OP →|=2 2.(2)∵OP →=mAB →+nAC →, ∴(x ,y )=(m +2n ,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.5.,[2014·四川卷] 执行如图1-1所示的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )图1-1A .0B .1C .2D .35.C [解析] 题中程序输出的是在⎩⎪⎨⎪⎧x +y ≤1,x ≥0,y ≥0的条件下S =2x +y 的最大值与1中较大的数.结合图像可得,当x =1,y =0时,S =2x +y 取得最大值2,2>1,故选C.2.[2014·天津卷] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .52.B [解析] 画出可行域,如图所示.解方程组⎩⎪⎨⎪⎧x +y -2=0,y =1,得⎩⎪⎨⎪⎧x =1,y =1,即点A (1,1).当目标函数线过可行域内A 点时,目标函数有最小值,即z min =1×1+2×1=3.13. [2014·浙江卷] 当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.13.⎣⎡⎦⎤1,32 [解析] 实数x ,y 满足的可行域如图中阴影部分所示,图中A (1,0),B (2,1),C ⎝⎛⎭⎫1,32.当a ≤0时,0≤y ≤32,1≤x ≤2,所以1≤ax +y ≤4不可能恒成立;当a >0时,借助图像得,当直线z =ax +y 过点A 时z 取得最小值,当直线z =ax +y 过点B 或C 时z 取得最大值,故⎩⎪⎨⎪⎧1≤a ≤4,1≤2a +1≤4,1≤a +32≤4,解得1≤a ≤32.故a ∈⎣⎡⎦⎤1,32.五.2a b+≤16.、[2014·辽宁卷] 对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b +5c的最小值为________.16.-2 [解析] 由题知2c =-(2a +b )2+3(4a 2+3b 2).(4a 2+3b 2)⎝⎛⎭⎫1+13≥(2a +b )2⇔4a 2+3b 2≥34(2a +b )2,即2c ≥54(2a +b )2, 当且仅当4a 21=3b213,即2a =3b =6λ(同号)时,|2a +b |取得最大值85c ,此时c =40λ2.3a -4b +5c =18λ2-1λ=18⎝⎛⎭⎫1λ-42-2≥-2, 当且仅当a =34,b =12,c =52时,3a -4b +5c取最小值-2.14.,[2014·山东卷] 若⎝⎛⎭⎫ax 2+bx 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.14.2[解析] T r +1=C r 6(ax 2)6-r·⎝⎛⎭⎫b x r=C r6a 6-r ·b r x 12-3r ,令12-3r =3,得r =3,所以C 36a 6-3b 3=20,即a 3b 3=1,所以ab =1,所以a 2+b 2≥2ab =2,当且仅当a =b ,且ab =1时,等号成立.故a 2+b 2的最小值是2.10.,[2014·四川卷] 已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728D.1010.B [解析] 由题意可知,F ⎝⎛⎭⎫14,0.设A (y 21,y 1),B (y 22,y 2),∴OA →·OB →=y 1y 2+y 21y 22=2, 解得y 1y 2=1或y 1y 2=-2.又因为A ,B 两点位于x 轴两侧,所以y 1y 2<0,即y 1y 2=-2. 当y 21≠y 22时,AB 所在直线方程为y -y 1=y 1-y 2y 21-y 22(x -y 21)= 1y 1+y 2(x -y 21), 令y =0,得x =-y 1y 2=2,即直线AB 过定点C (2,0).于是S △ABO +S △AFO =S △ACO +S △BCO +S △AFO =12×2|y 1|+12×2|y 2|+12×14|y 1|=18(9|y 1|+8|y 2|)≥18×29|y 1|×8|y 2|=3,当且仅当9|y 1|=8|y 2|且y 1y 2=-2时,等号成立.当y 21=y 22时,取y 1=2,y 2=-2,则AB 所在直线的方程为x =2,此时求得S △ABO +S △AFO =2×12×2×2+12×14×2=1728,而1728>3,故选B. 14.,[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.14.5 [解析] 由题意可知,定点A (0,0),B (1,3),且两条直线互相垂直,则其交点P (x ,y )落在以AB 为直径的圆周上,所以|P A |2+|PB |2=|AB |2=10.∴|P A ||PB |≤|P A |2+|PB |22=5,当且仅当|P A |=|PB |时等号成立.六.不等式的证明方法20.[2014·北京卷] 对于数对序列P :(a 1,b 1),(a 2,b 2),…,(a n ,b n ),记 T 1(P )=a 1+b 1,T k (P )=b k +max{T k -1(P ),a 1+a 2+…+a k }(2≤k ≤n ),其中max{T k -1(P ),a 1+a 2+…+a k }表示T k -1(P )和a 1+a 2+…+a k 两个数中最大的数. (1)对于数对序列P :(2,5),(4,1),求T 1(P ),T 2(P )的值;(2)记m 为a ,b ,c ,d 四个数中最小的数,对于由两个数对(a ,b ),(c ,d )组成的数对序列P :(a ,b ),(c ,d )和P ′:(c ,d ),(a ,b ),试分别对m =a 和m =d 两种情况比较T 2(P )和T 2(P ′)的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使T 5(P )最小,并写出T 5(P )的值.(只需写出结论)20.解:(1)T 1(P )=2+5=7,T 2(P )=1+max{T 1(P ),2+4}=1+max{7,6}=8. (2)T 2(P )=max{a +b +d ,a +c +d }, T 2(P ′)=max{c +d +b ,c +a +b }.当m =a 时,T 2(P ′)=max{c +d +b ,c +a +b }=c +d +b .因为a +b +d ≤c +b +d ,且a +c +d ≤c +b +d ,所以T 2(P )≤T 2(P ′). 当m =d 时,T 2(P ′)=max{c +d +b ,c +a +b }=c +a +b .因为a +b +d ≤c +a +b ,且a +c +d ≤c +a +b ,所以T 2(P )≤T 2(P ′). 所以无论m =a 还是m =d ,T 2(P )≤T 2(P ′)都成立.(3)数对序列P :(4,6),(11,11),(16,11),(11,8),(5,2)的T 5(P )值最小, T 1(P )=10,T 2(P )=26,T 3(P )=42,T 4(P )=50,T 5(P )=52. 19.、、[2014·天津卷] 已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n q n -1,x i ∈M ,i =1,2,…,n }. (1)当q =2,n =3时,用列举法表示集合A .(2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .19.解:(1)当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3},可得A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -1,a i ,b i ∈M ,i =1,2,…,n 及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -1≤(q -1)+(q -1)q +…+(q -1)q n -2-q n -1=(q -1)(1-q n -1)1-q-q n -1=-1<0, 所以s <t .七. 不等式的综合应用9.、[2014·安徽卷] 若函数f (x )=|x +1|+|2x +a |的最小值为3,则实数a 的值为( ) A .5或8 B .-1或5 C .-1或-4 D .-4或8 9.D [解析] 当a ≥2时,f (x )=⎩⎪⎨⎪⎧3x +a +1(x >-1),x +a -1⎝⎛⎭⎫-a 2≤x ≤-1,-3x -a -1⎝⎛⎭⎫x <-a 2.由图可知,当x =-a2时,f min (x )=f ⎝⎛⎭⎫-a 2=a 2-1=3,可得a =8. 当a <2时,f (x )⎩⎪⎨⎪⎧3x +a +1⎝⎛⎭⎫x >-a2,-x -a +1⎝⎛⎭⎫-1≤x ≤-a 2,-3x -a -1(x <-1).由图可知,当x =-a 2时,f min (x )=f ⎝⎛⎫-a 2=-a2+1=3,可得a =-4.综上可知,a 的值为-4或8.13.[2014·福建卷] 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).13.160 [解析] 设底面矩形的一边长为x ,由容器的容积为4 m 3,高为1 m 得,另一边长为4xm.记容器的总造价为y 元,则 y =4×20+2⎝⎛⎭⎫x +4x ×1×10 =80+20⎝⎛⎭⎫x +4x ≥80+20×2x ·4x=160(元),当且仅当x =4x,即x =2时,等号成立.因此,当x =2时,y 取得最小值160元, 即容器的最低总造价为160元. 21.,,,[2014·陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.21.解:由题设得,g (x )=x1+x (x ≥0).(1)由已知,g 1(x )=x 1+x ,g 2(x )=g (g 1(x ))=x 1+x 1+x 1+x =x1+2x ,g 3(x )=x 1+3x ,…,可得g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x 1+x ,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x 1+kx 1+x 1+kx =x1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x恒成立. 设φ(x )=ln(1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax1+x 恒成立(仅当x =0时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )<0, ∴φ(x )在(0,a -1]上单调递减, ∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0, 故知ln(1+x )≥ax1+x不恒成立. 综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0.令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N +成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12,ln 3-ln 2>13,……ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证. 方法三:如图,⎠⎛0nx x +1d x 是由曲线y =x x +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+nn +1是图中所示各矩形的面积和,∴12+23+…+n n +1>⎠⎛0n x x +1d x = ⎠⎛0n ⎝⎛⎭⎫1-1x +1d x =n -ln (n +1), 结论得证. 八.单元综合16.、[2014·辽宁卷] 对于c >0,当非零实数a ,b 满足4a 2-2ab +4b 2-c =0且使|2a +b |最大时,3a -4b +5c的最小值为________.16.-2 [解析] 由题知2c =-(2a +b )2+3(4a 2+3b 2).(4a 2+3b 2)⎝⎛⎭⎫1+13≥(2a +b )2⇔4a 2+3b 2≥34(2a +b )2,即2c ≥54(2a +b )2, 当且仅当4a 21=3b213,即2a =3b =6λ(同号)时,|2a +b |取得最大值85c ,此时c =40λ2.3a -4b +5c =18λ2-1λ=18⎝⎛⎭⎫1λ-42-2≥-2, 当且仅当a =34,b =12,c =52时,3a -4b +5c取最小值-2.12.、[2014·辽宁卷] 已知定义在[0,1]上的函数f (x )满足: ①f (0)=f (1)=0;②对所有x ,y ∈[0,1],且x ≠y ,有|f (x )-f (y )|<12|x -y |.若对所有x ,y ∈[0,1],|f (x )-f (y )|<k 恒成立,则k 的最小值为( ) A.12 B.14 C.12πD.18 12.B [解析] 不妨设0≤y <x ≤1.当x -y ≤12时,|f (x )-f (y )|<12|x -y |=12(x -y )≤14.当x -y >12时,|f (x )-f (y )|=|f (x )-f (1)-(f (y )-f (0))|≤|f (x )-f (1)|+|f (y )-f (0)|<12|x -1|+12|y -0|=-12(x -y )+12<14.故k min =14.3.[2014·天津卷] 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为( )A .2B .3C .4D .53.B [解析] 画出可行域,如图所示.解方程组⎪⎨⎪⎧x +y -2=0,得⎩⎪⎨⎪⎧x =1,y =1,即点A (1,1).当目标函数线过可行域内A min =1×1+2×1=3. 16.[2014·广州七校联考] 不等式|x +2|+|x -1|≤5的解集为________.16.[-3,2] [解析] 根据绝对值的几何意义,得不等式的解集为-3≤x ≤2.4.[2014·安徽六校联考] 若正实数x ,y 满足x +y =2,且1xy≥M 恒成立,则M 的最大值为( )A .1B .2C .3D .44.A [解析] ∵x +y ≥2xy ,且x +y =2,∴2≥2xy ,当且仅当x =y =1时,等号成立,∴xy ≤1,∴1xy≥1,∴1≥M ,∴M max =1. 7.[2014·福建宁德期末] 已知关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最小值是( )A.63B.23 3C.43 3D.236 7.C [解析] 由题知x 1+x 2=4a ,x 1x 2=3a 2,∴x 1+x 2+a x 1x 2=4a +13a ≥2 43=4 33,当且仅当a =36时,等号成立.6.[2014·长沙模拟] 若f (x )为奇函数,且在区间(0,+∞)上单调递增,f (2)=0,则f (x )-f (-x )x>0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(0,2)C .(-2,0)∪(2,+∞)D .(-∞,-2)∪(2,+∞)6.D [解析] 因为f (x )为奇函数,且在区间(0,+∞)上单调递增,所以f (x )在区间(-∞,0)上单调递增.又f (-x )=-f (x ),所以f (x )-f (-x )x >0等价于2f (x )x>0.根据题设作出f (x )的大致图像如图所示.由图可知,2f (x )x>0的解集是(-∞,-2)∪(2,+∞).13.[2014·浙江六市六校联考] 已知正数x ,y 满足x +y +1x +9y=10,则x +y 的最大值为________.13.8 [解析] ∵1x +9y =10-(x +y ),∴(x +y )1x +9y =10(x +y )-(x +y )2.又(x +y )1x +9y=10+9x y +yx≥10+6=16,∴10(x +y )-(x +y )2≥16,即(x +y )2-10(x +y )+16≤0,∴2≤x +y ≤8,∴x +y 的最大值为8.。