培优专题14_如何做几何证明题(含答案)

合集下载

初中生如何做好几何证明题(含答案)

初中生如何做好几何证明题(含答案)

14.若何做几何证实题【常识精读】1. 几何证实是平面几何中的一个主要问题,它对造就学生逻辑思维才能有着很大感化.几何证实有两种根本类型:一是平面图形的数目关系;二是有关平面图形的地位关系.这两类问题经常可以互相转化,如证实平行关系可转化为证实角等或角互补的问题.2. 控制剖析.证实几何问题的经常运用办法:(1)综正当(由因导果),从已知前提动身,经由过程有关界说.定理.正义的运用,慢慢向前推动,直到问题的解决;(2)剖析法(执果索因)从命题的结论斟酌,斟酌使其成立须要具备的前提,然后再把所需的前提算作要证的结论持续斟酌,如斯慢慢往上逆求,直到已知事实为止;(3)两端凑法:将剖析与综正当归并运用,比较起来,剖析法利于思虑,综正当易于表达,是以,在现实思虑问题时,可归并运用,灵巧处理,以利于缩短题设与结论的距离,最后达到证实目标.3. 控制结构根本图形的办法:庞杂的图形都是由根本图形构成的,是以要擅长将庞杂图形分化成根本图形.在更多时刻须要结构根本图形,在结构根本图形时往往须要添加帮助线,以达到分散前提.转化问题的目标.【分类解析】1.证实线段相等或角相等两条线段或两个角相等是平面几何证实中最根本也是最主要的一种相等关系.许多其它问题最后都可化归为此类问题来证.证实两条线段或两角相等最经常运用的办法是运用全等三角形的性质,其它如线段中垂线的性质.角等分线的性质.等腰三角形的剖断与性质等也经经常运用到.例1. 已知:如图1所示,∆ABC中,∠=︒===90,,,.C AC BC AD DB AE CF求证:DE=DF剖析:由∆ABC是等腰直角三角形可知,∠=∠=︒A B45,由D是AB中点,可斟酌贯穿连接CD,易得CD AD=,∠=︒DCF45.从而不难发明∆∆≅DCF DAE证实:贯穿连接CD解释:在直角三角形中,作斜边上的中线是经常运用的帮助线;在等腰三角形中,作顶角的等分线或底边上的中线或高是经常运用的帮助线.显然,在等腰直角三角形中,更应当贯穿连接CD,因为CD既是斜边上的中线,又是底边上的中线.本题亦可延伸ED到G,使DG=DE,贯穿连接BG,证∆EFG是等腰直角三角形.有兴致的同窗无妨一试.例2. 已知:如图2所示,AB=CD,AD=BC,AE=CF.求证:∠E=∠F证实:贯穿连接AC在∆ABC和∆CDA中,在∆BCE和∆DAF中,解释:运用三角形全等证实线段求角相等.常须添帮助线,制作全等三角形,这时应留意:(1)制作的全等三角形应分离包含求证中一量;(2)添帮助线可以或许直接得到的两个全等三角形.2.证实直线平行或垂直在两条直线的地位关系中,平行与垂直是两种特别的地位.证两直线平行,可用同位角.内错角或同旁内角的关系来证,也可经由过程边对应成比例.三角形中位线定理证实.证两条直线垂直,可转化为证一个角等于90°,或运用两个锐角互余,或等腰三角形“三线合一”来证.例3. 如图3所示,设BP.CQ是∆ABC的内角等分线,AH.AK分离为A到BP.CQ 的垂线.求证:KH∥BC剖析:由已知,BH等分∠ABC,又BH⊥AH,延伸AH交BC于N,则BA=BN,AH=HN.同理,延伸AK交BC于M,则CA=CM,AK=KM.从而由三角形的中位线定理,知KH∥BC.证实:延伸AH交BC于N,延伸AK交BC于M∵BH等分∠ABC又BH⊥AHBH=BH同理,CA=CM,AK=KM∴KH是∆AMN的中位线即KH//BC解释:当一个三角形中消失角等分线.中线或高线重应时,则此三角形必为等腰三角形.我们也可以懂得成把一个直角三角形沿一条直角边翻折(轴对称)而成一个等腰三角形.例4. 已知:如图4所示,AB=AC,∠,,90.A AE BF BD DC=︒==求证:FD⊥ED证实一:贯穿连接AD在∆ADE和∆BDF中,解释:有等腰三角形前提时,作底边上的高,或作底边上中线,或作顶角等分线是经常运用帮助线.证实二:如图5所示,延伸ED到M,使DM=ED,贯穿连接FE,FM,BM解释:证实两直线垂直的办法如下:(1)起首剖析前提,不雅察可否用供给垂直的定理得到,包含添经常运用帮助线,见本题证二.(2)找到待证三直线所构成的三角形,证实个中两个锐角互余.(3)证实二直线的夹角等于90°.3.证实一线段和的问题(一)在较长线段上截取一线段等一较短线段,证实其余部分等于另一较短线段.(截长法)例5. 已知:如图6所示在∆ABC中,∠=︒B60,∠BAC.∠BCA的角等分线AD.CE 订交于O.求证:AC=AE+CD剖析:在AC上截取AF=AE.易知∆∆B60,知≅,∴∠=∠AEO AFO12.由∠=︒,,.∴∠=∠=∠=∠=︒∠+∠=︒∠=︒∠+∠=︒566016023120123460,得:≅∴=,∆∆FOC DOC FC DC证实:在AC上截取AF=AE又∠=︒B60即AC AE CD=+(二)延伸一较短线段,使延伸部分等于另一较短线段,则两较短线段成为一条线段,证实该线段等于较长线段.(补短法)例6. 已知:如图7所示,正方形ABCD中,F在DC上,E在BC上,∠=︒EAF45.求证:EF=BE+DF剖析:此题若模仿例1,将会碰到艰苦,不轻易运用正方形这一前提.无妨延伸CB至G,使BG=DF.证实:延伸CB至G,使BG=DF在正方形ABCD中,∠=∠=︒=90,ABG D AB AD又∠=︒EAF45即∠GAE=∠FAE4.中考题:如图8所示,已知∆ABC为等边三角形,延伸BC到D,延伸BA到E,并且使AE=BD,贯穿连接CE.DE.求证:EC=ED证实:作DF//AC交BE于F∆ABC是正三角形∴∆BFD是正三角形又AE=BD即EF=AC题型展现:证实几何不等式:例题:已知:如图9所示,∠=∠>12,AB AC.求证:BD DC>证实一:延伸AC到E,使AE=AB,贯穿连接DE在∆ADE和∆ADB中,证实二:如图10所示,在AB上截取AF=AC,贯穿连接DF则易证∆∆≅ADF ADC解释:在有角等分线前提时,常以角等分线为轴翻折结构全等三角形,这是经常运用帮助线.【实战模仿】1. 已知:如图11所示,∆ABC 中,∠=︒C 90,D 是AB 上一点,DE⊥CD 于D,交BC 于E,且有AC AD CE ==.求证:DE CD =122. 已知:如图12所示,在∆ABC 中,∠=∠A B 2,CD 是∠C 的等分线. 求证:BC =AC +AD3. 已知:如图13所示,过∆ABC 的极点A,在∠A 内任引一射线,过B.C 作此射线的垂线BP 和CQ.设M 为BC 的中点.求证:MP =MQ4. ∆ABC 中,∠=︒⊥BAC AD BC 90,于D,求证:()AD AB AC BC <++14【试题答案】1. 证实:取CD 的中点F,贯穿连接AF又∠+∠=︒∠+∠=︒14901390,2. 剖析:本题从已知和图形上看仿佛比较简略,但一时又不知若何下手,那么在证实一条线段等于两条线段之和时,我们经常采取“截长补短”的手段.“截长”即将长的线段截成两部分,证实这两部分分离和两条短线段相等;“补短”即将一条短线段延伸出另一条短线段之长,证实其和等于长的线段.证实:延伸CA 至E,使CE =CB,贯穿连接ED在∆CBD 和∆CED 中,又∠=∠+∠BAC ADE E3. 证实:延伸PM 交CQ 于R又BM CM BMP CMR,=∠=∠∆斜边上的中线∴QM是Rt QPR4. 取BC中点E,贯穿连接AE。

八年级数学几何证明题技巧含答案

八年级数学几何证明题技巧含答案

几何证明题的技巧 1. 几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1. 已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。

求证:DE =DF分析:由∆ABC 是等腰直角三角形可知,∠=∠=︒A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=︒DCF 45。

从而不难发现∆∆DCF DAE ≅ 证明:连结CD说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。

显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。

2021年中考数学必考点培优系列 14 等面积法的应用(有答案)

2021年中考数学必考点培优系列   14 等面积法的应用(有答案)

等面积法的应用在解决几何问题时,通常可采用等积法来解决一些问题,即同一个图形采用不同的面积表示方法来建立等式.等积法也常在证明某些定理时被用到.【例题讲解】例题1 已知:如图,在Rt △ABC 中,∠BAC =90°,AB =4,AC =3,AD ⊥BC ,求AD 的长为 .D CB A答案: AD =2.4.例题2、如图,E 是边长为1的正方形ABCD 的对角线上一点,且BE =BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ +PR 的值为 .RQPEDCBA. 【解析】连接BP ,易知BEC S △=BEP S △+BCP S △,所以12·BE ·CM =12·BE ·PR +12·BC ·PQ ,由BC =BE ,等号两边同时约掉,剩下CM =PR +PQ ,所以CMBC. 连接BP ,过C 作CM ⊥BD , ∵BEC S △=BEP S △+BCP S △ =BC ×PQ ×12+BE ×PR ×12=BC ×(PQ +PR )×12=BE ×CM ×12, BC =BE , ∴PQ +PR =CM ,∵BE =BC =1,且正方形对角线BD又∵BC =CD ,CM =BD ,∴M 为BD 中点,又△BDC 为直角三角形, ∴CM =12BD,即PQ +PR. MR QPEDCBA【对于填空选择题,可用特殊值法!】例题3 如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C 点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B '、C '、D ',则B B '+C C '+D D '的最大值为 ,最小值为 .PB'C 'D 'DCBA答案:2【解析】连接AC 、DP , ABCD S 正方形=1×1×1,由勾股定理得:AC∵AB =1, ∴1≤APDPC S ∆=APC S ∆=12AP ×C C ', 1=ABCD S 正方形=ABP S ∆+ADP S ∆+DPC S ∆=12AP (B B '+C C '+D D '), B B '+C C '+D D '=2AP, ∵1≤APB B '+C C '+D D '≤2,PB'C'D'D CBA【巩固练习】1、如图,点P为等边△ABC内任意一点,AB=2,则点P到△ABC三边的距离之和为 .2、如图,在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD,PE⊥AC,E、F分别是垂足,则PE+PF的长为.3、如图,D是Rt△ABC斜边AB上一点,且BD=BC=AC=1,P为CD上任意一点,PF⊥BC于点F,PE ⊥AB于点E,则PE+PF的值是 .4.如图,已知直线y=2x-2上有一动点Q,点P坐标为(-1,0),则PQ的最小值为 .【请用等积法】5.如图,在Rt △ABC 中,∠ABC =90°,点D 是斜边上的中点,点P 在AB 上,PE ⊥BD 于E ,PF ⊥AC 于F ,若AB =6,BC =3.,则PE +PF = .PFE D CBA6.将两个全等的直角三角形按图1所示摆放,其中∠DAB =90°,求证:a ²+b ²=c ².7.如图,在△ABC 中,∠ A =90°,D 是AC 上的一点,BD =DC ,P 是BC 上的任一点,PE ⊥BD ,PF ⊥AC ,E 、F 为垂足.求证:PE +PF =AB .PFE D CBA8.如图,平行四边形ABCD 中,AB : BC =3:2,∠DAB =60°,E 在AB 上,且AE : EB =1:2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,求证:DP CEDQ AFQP FEDCBA图4 图59.在△ABC 中,AB =13,BC =14.(1)如图1,AD ⊥BC 于点D ,且BD =5,则△ABC 的面积为 ;(2)在(1)的条件下,如图2,点H 是线段AC 上任意一点,分别过点A ,C 作直线BH 的垂线,垂足为E ,F ,设BH =x ,AE =m ,CF =n ,请用含x 的代数式表示m +n ,并求m +n 的最大值和最小值.CBA HFEDCB A10.【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC 中,AB =AC ,点P 为边BC 上的任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,过点C 作CF ⊥AB ,垂足为F .求证:PD +PE =CF .FE PD CBA FGE PD CBAEFABC DP小军的证明思路是:如图2,连接AP ,由△ABP 与△ACP 面积之和等于△ABC 的面积可以证得:PD +PE =CF .小俊的证明思路是:如图2,过点P 作PG ⊥CF ,垂足为G ,可以证得:PD =GF ,PE =CG ,则PD +PE =CF .【变式探究】如图3,当点P 在BC 延长线上时,其余条件不变,求证:PD -PE =CF ; 请运用上述解答中所积累的经验和方法完成下列两题:【结论运用】如图4,将矩形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C 处,点P P 为折痕EF 上的任一点,过点P 作PG ⊥BE 、PH ⊥BC ,垂足分别为G 、H ,若AD =8,CF =3,求PG +PH 的值;C'PH GFEDCBA【迁移拓展】图5是一个航模的截面示意图.在四边形ABCD 中,E 为AB 边上的一点,ED ⊥AD ,EC ⊥CB ,垂足分别为D 、C ,且AD ·CE =DE ·BC ,AB =,AD =3dm ,BD .M 、N 分别为AE 、BE 的中点,连接DM 、CN ,求△DEM 与△CEN 的周长之和.NM E DCBA参考答案1..2.答案:60 13.3.答案:2.【解析】如图所示,过C作CH AB⊥于H,D是Rt ABC∆斜边AB上一点,且1BD BC AC===,CH∴=∴111222BDCS BD CH∆==⨯=,又1111112222BCD BPC BPDS S S BD PE BC PF PE PF∆∆∆=+=+=⨯⨯+⨯⨯,PE PF∴+=.HPFDCBA4..【解析】如图,过点P作PQ⊥AB于点Q,过点Q作QC+QB,则∵y=2x-2∴A(0,-2),B(1,0)∵△PQB∽△AOB∴BQOB=PBAB∵AB,PB=2,OB=1∴1BQ∴BQ∴PQ.5.65如图作BM ⊥AC 于M ,连接PD .MPFE D CBA∵∠ABC =90°,AD =DC ,AB =6,BC =3, ∴BD =AD =DC ,AC 22AB BC +35 ∵12·AB ·BC =12·AC ·BM , ∴BM 65∴ABD S ∆=ADP S ∆+BDP S ∆, ∴12·AD ·BM =12·AD ·PF =12·BD ·PE , ∴PE +PF =BM 65MPFE D CBA6.答案:连接DB ,过点D 作BC 边上的高DF ,则DF =EC =b -a . ∵ADCB S 四边形=ACD S ∆+ABC S ∆=12b ²+12ab . 又∵ADCB S 四边形=ADB S ∆+DCB S ∆=12c ²+12a (b -a ) ∴12b ²+12ab =12c ²+12a (b -a ) ∴a ²+b ²=c ².FDBFb EA请参照上述证法,利用图2证明:a ²+b ²=c ².【解析】连结BD ,过点B 作DE 边上的高BF ,可得BF =b -a , ∵ACBED S 五边形=ACB S ∆+ABE S ∆+ADE S ∆=12ab +12b ²+12ab , 又ACBED S 五边形=ACB S ∆+ABD S ∆+BDE S ∆=12ab +12c ²+12a (b -a ), ∴12ab +12b ²+12ab =12ab +12c ²+12a (b -a ), ∴a ²+b ²=c ².Fb A7.【解析】过P 作PG ⊥AB 于G ,交BD 于O , ∵PF ⊥AC ,∠A =90°, ∴∠A =∠AGP =∠PF A =90°, ∴四边形AGPF 是矩形, ∴AG =PF ,PG ∥AC , ∵BD =DC ,∴∠C =∠GPB =∠DBP , ∴OB =OP ,∵PG ⊥AB ,PE ⊥BD , ∴∠BGO =∠PEO =90°, 在△BGO 和△PEO 中 BGO PEO GOB EOP OB OP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BGO ≌△PEO , ∴PE =BG , ∵AB =BG +AG , ∴PE +PF =AB .G O P FED CBA8.【解析】连接DE 、DF ,∵根据三角形的面积和平行四边形的面积得:12DEC DFA ABCD S S S ∆∆==平行四边形,即12AF ×DF =12CE ×DQ ,∴AF ×DP =CE ×DQ , ∴DP CE DQ AF=. Q PFE DCB A9.【解析】(1)在Rt △ABD 中,AB =13,BD =5, ∴AD12.∵BC =14,∴ABC S △=12BC ·AD =12×14×12=84. 故答案为:84.(2)∵ABC S △=ABH S △+BHC S △, ∴12BH ·AE +12BH ·CF =84. ∴xm +xn =168.∴m +n =168x∵AD =12,DC =14-5=9,∴AC=15,∵m +n 与x 成反比,∴当BH ⊥AC 时,m +n 有最大值.∴(m +n )BH =AC ·BH .∴m +n =AC =15.∵m +n 与x 成反比,∴当BH 值最大时,m +n 有最小值.∴当点H 与点C 重合时m +n 有最小值.∴m +n =16814, ∴m +n 等于12.∴m +n 的最大值为15,最小值为12.10.【解析】【问题情境】证明:(小军的方法)连接AP ,如图②∵PD ⊥AB ,PE ⊥AC ,CF ⊥AB ,且ABC S △=ABP S △+ACP S △, ∴12AB ·CF =12AB ·PD +12AC ·PE . ∵AB =AC ,∴CF =PD +PE .(小俊的方法)过点P 作PG ⊥CF ,垂足为G ,如图②. ∵PD ⊥AB ,CF ⊥AB ,PG ⊥FC ,∴∠CFD =∠FDP =∠FGP =90°∴四边形PDFG 是矩形.∴DP =FG ,∠DPG =90°.∴∠CGP =90°∵PE ⊥AC ,∴∠CEP =90°,∴∠PGC =∠CEP .∵∠BDP =∠DPG =90°,∴PG ∥AB .∴∠GPC =∠B .∵AB =AC ,∴∠B =∠ACB .∴∠GPC =∠ECP .在△PGC 和△CEP 中,PGC CEP GPC ECP PC CP ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△PGC ≌△CEP .∴CG =PE .CF =CG +FG=PE +PDG E P FDC BA【变式探究】证明:连接AP ,如图③.∵PD ⊥AB ,PE ⊥AC ,CF =AB ,且ABC S △=ABP S △-ACP S △, ∴12AB ·CF =12AB ·PD -12AC ·PE . ∵AB =AC ,∴CF =PD -PE .GE FABC DP【结论运用】过点E 作EQ ⊥BC ,垂足为Q ,如图④,∵四边形ABCD 是矩形,∴AD =BC ,∠C =∠ADC =90°.∵AD =8,CF =3,∴BF =BC -CF =AD -CF =5.由折叠可得:DF =BF ,∠BEF =∠DEF .∴DF =5.∵∠C =90°,∴DC=4.∵EQ ⊥BC ,∠C =∠ADC =90°,∴∠EQC =90°=∠C =∠ADC .∴四边形EQCD 是矩形.∴EQ =DC =4.∵AD ∥BC ,∴∠DEF =∠EFB .∵∠BEF =∠DEF ,∴∠BEF =∠EFB .∴BE =BF .由问题情境中的结论可得:PG +PH =EQ .∴PG +PH =4.∴PG +PH 的值为4.Q C 'P H G FEDCB A【迁移拓展】延长AD 、BC 交于点F ,作BH ⊥AF ,垂足为H ,如图⑤. ∵AD ·CE =DE ·BC , ∴AD DE =BC EC . ∵ED ⊥AD ,EC ⊥CB ,∴∠ADE =∠BCE =90°.∴△ADE ∽△BCE .∴∠A =∠CBE .∴F A =FB .由问题情境中的结论可得:ED +EC =BH .设DH =x dm ,则AH =AD +DH =(3+x )dm .∵BH ⊥AF ,∴∠BHA =90°.∴BH ²=BD ²-DH ²=AB ²-AH ².∵AB=AD =3,BDx²=()²-(3+x )².解得:x =1.∴BH ²=BD ²-DH ²=37-1=36.∴BH =6dm.∴ED +EC =6.∵∠ADE =∠BCE =90°,且M 、N 分别为AE 、BE 的中点,∴DM =AM =EM =12AE ,CN =BN =EN =12BE . ∴△DEM 与△CEN 的周长之和=DE +DM +EM +CN +EN +EC=DE +AE +BE +EC=DE +AB +EC=DE +EC +AB=6+∴△DEM 与△CEN 的周长之和为(6+dm . FHNM E DC BA。

初中生如何做好几何证明题(含答案)上课讲义

初中生如何做好几何证明题(含答案)上课讲义

初中生如何做好几何证明题(含答案)14、如何做几何证明题【知识精读】1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【分类解析】1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1. 已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。

求证:DE =DF分析:由∆ABC 是等腰直角三角形可知,∠=∠=︒A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=︒DCF 45。

从而不难发现∆∆DCF DAE ≅ 证明:连结CDAC BC A BACB AD DBCD BD AD DCB B A AE CF A DCB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆ADE CDFDE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。

八年级数学几何证明题技巧(含答案).

八年级数学几何证明题技巧(含答案).

几何证明题的技巧1. 几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分。

求证:DE =DFCD ,易得CD AD =,证明:连结CDAC BC A BACB AD DBCD BD AD DCB B A AE CF A DCB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆A D E CDFDE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。

显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。

本题亦可延长ED 到G ,使DG =DE ,连结BG ,证∆EFG 是等腰直角三角形。

八年级数学几何证明题技巧(含答案)

八年级数学几何证明题技巧(含答案)

八年级数学几何证明题技巧(含答案)1. 几何证明是平面几何中的一个重要问题;它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化;如证明平行关系可转化为证明角等或角互补的问题。

2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果);从已知条件出发;通过有关定义、定理、公理的应用;逐步向前推进;直到问题解决; (2)分析法(执果索因)从命题的结论考虑;推敲使其成立需要具备的条件;然后再把所需的条件看成要证的结论继续推敲;如此逐步往上逆求;直到已知事实为止;(3)分析综合法:将分析与综合法合并使用;比较起来;分析法利于思考;综合法易于表达;因此;在实际思考问题时;可合并使用;灵活处理;以利于缩短题设与结论的距离;最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的;因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形;在构造基本图形时往往需要添加辅助线;以达到集中条件、转化问题的目的。

1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质;其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1. 已知:如图1所示;∆ABC 中;∠=︒===C AC BC AD DB AE CF 90,,,。

求证:DE =DFCFBA ED图1分析:由∆ABC 是等腰直角三角形可知;∠=∠=︒A B 45;由D 是AB 中点;可考虑连结CD ;易得CD AD =;∠=︒DCF 45。

从而不难发现∆∆DCF DAE ≅证明:连结CDΘΘΘAC BC A BACB AD DBCD BD AD DCB B A AE CF A DCB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆ADE CDFDE DF说明:在直角三角形中;作斜边上的中线是常用的辅助线;在等腰三角形中;作顶角的平分线或底边上的中线或高是常用的辅助线。

初中生如何做好几何证明题(含答案)

初中生如何做好几何证明题(含答案)

14、怎么样干几许道明题之阳早格格创做【知识粗读】1. 几许道明是仄里几许中的一个要害问题,它对于培植教死逻辑思维本领有着很大效率.几许道明有二种基原典型:一是仄里图形的数量闭系;二是有闭仄里图形的位子闭系.那二类问题时常不妨相互转移,如道明仄止闭系可转移为道明角等或者角互补的问题.2. 掌握领会、道明几许问题的时常使用要领:(1)概括法(由果导果),从已知条件出收,通过有闭定义、定理、公理的应用,逐步背前促成,曲到问题的办理;(2)领会法(执果索果)从命题的论断思量,推敲使其创制需要具备的条件,而后再把所需的条件瞅成要证的论断继承推敲,如许逐步往上顺供,曲到已知究竟为止;(3)二头凑法:将领会与概括法合并使用,比较起去,领会法好处思索,概括法易于表白,果此,正在本量思索问题时,可合并使用,机动处理,以好处收缩题设与论断的距离,末尾达到道明脚段.3. 掌握构制基原图形的要领:搀纯的图形皆是由基原图形组成的,果此要擅于将搀纯图形领会成基原图形.正在更多时间需要构制基原图形,正在构制基原图形时往往需要增加辅帮线,以达到集结条件、转移问题的脚段.【分类剖析】1、道明线段相等或者角相等二条线段或者二个角相等是仄里几许道明中最基原也是最要害的一种相等闭系.很多其余问题末尾皆可化归为此类问题去证.道明二条线段或者二角相等最时常使用的要领是利用齐等三角形的本量,其余如线段中垂线的本量、角仄分线的本量、等腰三角形的判决与本量等也经时常使用到.例1. 已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,. 供证:DE =DF领会:由∆ABC 是等腰曲角三角形可知,∠=∠=︒A B 45,由D 是AB 中面,可思量连结CD ,易得CD AD =,∠=︒DCF 45.进而没有易创制∆∆DCF DAE ≅ 道明:连结CD道明:正在曲角三角形中,做斜边上的中线是时常使用的辅帮线;正在等腰三角形中,做顶角的仄分线或者底边上的中线或者下是时常使用的辅帮线.隐然,正在等腰曲角三角形中,更该当连结CD ,果为CD 既是斜边上的中线,又是底边上的中线.原题亦可延少ED 到G ,使DG =DE ,连结BG ,证∆EFG 是等腰曲角三角形.有兴趣的共教无妨一试. 例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF.供证:∠E =∠F道明:连结AC正在∆ABC 战∆CDA 中,正在∆BCE 战∆DAF 中,道明:利用三角形齐等道明线段供角相等.常须加辅帮线,制制齐等三角形,那时应注意:(1)制制的齐等三角形应分别包罗供证中一量;(2)加辅帮线不妨间接得到的二个齐等三角形.2、道明曲线仄止或者笔曲正在二条曲线的位子闭系中,仄止与笔曲是二种特殊的位子.证二曲线仄止,可用共位角、内错角或者共旁内角的闭系去证,也可通过边对于应成比率、三角形中位线定理道明.证二条曲线笔曲,可转移为证一个角等于90°,或者利用二个钝角互余,或者等腰三角形“三线合一”去证.例3. 如图3所示,设BP、CQ是∆ABC的内角仄分线,AH、AK分别为A到BP、CQ的垂线.供证:KH∥BC领会:由已知,BH仄分∠ABC,又BH⊥AH,延少AH接BC于N,则BA=BN,AH=HN.共理,延少AK接BC于M,则CA=CM,AK =KM.进而由三角形的中位线定理,知KH∥BC.道明:延少AH接BC于N,延少AK接BC于M∵BH仄分∠ABC又BH⊥AHBH=BH共理,CA=CM,AK=KM∴KH是∆AMN的中位线即KH//BC道明:当一个三角形中出现角仄分线、中线或者下线沉适时,则此三角形必为等腰三角形.咱们也不妨明白成把一个曲角三角形沿一条曲角边翻合(轴对于称)而成一个等腰三角形.例4. 已知:如图4所示,AB=AC,∠,,90.A AE BF BD DC=︒==供证:FD⊥ED道明一:连结AD正在∆ADE战∆BDF中,道明:有等腰三角形条件时,做底边上的下,或者做底边上中线,或者做顶角仄分线是时常使用辅帮线.道明二:如图5所示,延少ED到M,使DM=ED,连结FE,FM,BM道明:道明二曲线笔曲的要领如下:(1)最先领会条件,瞅察是可用提供笔曲的定理得到,包罗加时常使用辅帮线,睹原题证二.(2)找到待证三曲线所组成的三角形,道明其中二个钝角互余.(3)道明二曲线的夹角等于90°.3、道明一线段战的问题(一)正在较少线段上截与一线段等一较短线段,道明其余部分等于另一较短线段.(截少法)例5. 已知:如图6所示正在∆ABC中,∠=︒B60,∠BAC、∠BCA的角仄分线AD、CE相接于O.供证:AC=AE+CD领会:正在AC上截与AF=AE.易知∆∆≅,∴∠=∠12.由∠=︒AEO AFOB60,知∠+∠=︒∠=︒∠+∠=︒,,.∴∠=∠=∠=∠=︒566016023120123460,得:,≅∴=FOC DOC FC DC∆∆道明:正在AC上截与AF=AE又∠=︒B60即AC AE CD=+(二)延少一较短线段,使延少部分等于另一较短线段,则二较短线段成为一条线段,道明该线段等于较少线段.(补短法)例6. 已知:如图7所示,正圆形ABCD中,F正在DC上,E正在BC 上,∠=︒EAF45.供证:EF=BE+DF领会:此题若仿照例1,将会逢到艰易,没有简单利用正圆形那一条件.无妨延少CB至G,使BG=DF.道明:延少CB至G,使BG=DF正在正圆形ABCD中,∠=∠=︒=ABG D AB AD90,又∠=︒EAF45即∠GAE=∠FAE4、中考题:如图8所示,已知∆ABC为等边三角形,延少BC到D,延少BA到E,而且使AE=BD,连结CE、DE.供证:EC=ED道明:做DF//AC接BE于F∆ABC是正三角形∴∆BFD是正三角形又AE=BD即EF=AC题型展示:道明几许没有等式:例题:已知:如图9所示,∠=∠>12,AB AC.供证:BD DC >道明一:延少AC 到E ,使AE =AB ,连结DE正在∆ADE 战∆ADB 中,道明二:如图10所示,正在AB 上截与AF =AC ,连结DF 则易证∆∆ADF ADC ≅道明:正在有角仄分线条件时,常以角仄分线为轴翻合构制齐等三角形,那是时常使用辅帮线.【真战模拟】1. 已知:如图11所示,∆ABC 中,∠=︒C 90,D 是AB 上一面,DE ⊥CD 于D ,接BC 于E ,且有AC AD CE ==.供证:DE CD =122. 已知:如图12所示,正在∆ABC 中,∠=∠A B 2,CD 是∠C 的仄分线. 供证:BC =AC +AD3. 已知:如图13所示,过∆ABC 的顶面A ,正在∠A 内任引一射线,过B 、C 做此射线的垂线BP 战CQ.设M 为BC 的中面.供证:MP =MQ4. ∆ABC 中,∠=︒⊥BAC AD BC 90,于D ,供证:()AD AB AC BC <++14【试题问案】1. 道明:与CD 的中面F ,连结AF又∠+∠=︒∠+∠=︒14901390,2. 领会:原题从已知战图形上瞅佳象比较简朴,但是一时又没有知怎么样下脚,那么正在道明一条线段等于二条线段之战时,咱们时常采与“截少补短”的脚法.“截少”将要少的线段截成二部分,道明那二部分分别战二条短线段相等;“补短”将要一条短线段延少出另一条短线段之少,道明其战等于少的线段.道明:延少CA至E,使CE=CB,连结ED 正在∆CBD战∆CED中,又∠=∠+∠BAC ADE E3. 道明:延少PM接CQ于R又BM CM BMP CMR,=∠=∠∴QM是Rt QPR∆斜边上的中线4. 与BC中面E,连结AE。

几何证明练习题及解法解析

几何证明练习题及解法解析

几何证明练习题及解法解析在几何学中,经常会遇到需要证明的问题。

通过证明,可以推导出几何图形的性质和定理,进一步加深对几何概念的理解。

本文将提供一些几何证明的练习题,并对每个问题给出解法解析。

题目一:证明等腰三角形的底边角相等。

解法解析:设三角形ABC为等腰三角形,AB=AC。

要证明∠B=∠C。

根据等腰三角形的定义,我们可以得到以下等式:AB = AC (1)∠A + ∠B + ∠C = 180° (2)由于AB=AC,我们可以令BC=x,由此得到以下等式:AB + BC = AC + BCAC + BC = AC + xBC = x (3)根据等腰三角形的性质,我们知道∠B=∠C,因此∠B+∠C=180°-∠A。

将等腰三角形的定义和等式(2)带入上述等式中,可以得到:∠A + ∠B + ∠C = ∠A + ∠C + 180° - ∠A∠B + ∠C = 180°根据等腰三角形的性质,我们知道∠B+∠C=180°-∠A,即180°-∠A=180°,解得∠A=0°。

由此可见,∠A为0°,所以∠B+∠C=180°-∠A成立。

在等式中代入∠A=0°,可以得到∠B+∠C=180°。

同时根据等式(2)可得∠B+∠C=180°-∠A。

综上所述,等腰三角形的底边角相等,证毕。

题目二:证明平行线的内错角相等。

解法解析:设直线AB和CD平行,要证明∠1=∠2。

根据平行线的定义,直线AB和CD的内错角之和为180°,即∠1+∠3=180°和∠2+∠4=180°。

为了证明∠1=∠2,我们需要利用这两个等式,进行一定的代换和运算。

首先,我们可以将∠3=180°-∠1代入第一个等式中,得到∠1+(180°-∠1)=180°。

我们可以合并同类项,得到180°=180°。

培优专题14_如何做几何证明题(含答案).

培优专题14_如何做几何证明题(含答案).

14、如何做几何证明题【知识精读】1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:一是平面图形的数量关系; 二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2. 掌握分析、证明几何问题的常用方法:(1综合法(由因导果,从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2分析法(执果索因从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离, 最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形, 在构造基本图形时往往需要添加辅助线, 以达到集中条件、转化问题的目的。

【分类解析】1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质, 其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例 1. 已知:如图 1求证:DE =DF分析:由∆ABC 连结 CD ,易得 CD AD = 证明:连结 CDAC BC A BACB AD D BCD BD AD D CB B A AE CF A D CB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90, , , ,∴≅∴=∆∆A D E C D FDE DF说明:在直角三角形中, 作斜边上的中线是常用的辅助线; 在等腰三角形中, 作顶角的平分线或底边上的中线或高是常用的辅助线。

几何证明题目及解题方法

几何证明题目及解题方法

几何证明题目及解题方法在学习几何学的过程中,我们经常需要面对各种证明题目。

几何证明题目的解题方法多种多样,本文将为大家介绍几种常见的几何证明题目及其解题方法。

一、证明两条直线平行首先,我们来讨论如何证明两条直线平行。

对于给定的两条直线AB和CD,我们可以通过以下步骤来进行证明:1. 过点A画一条与CD平行的直线AE。

2. 在AE上找一点F,使得角EFD等于角CDA。

3. 连接BF。

4. 若BF与CD重合,则可得出结论:AB与CD平行。

通过以上步骤,我们可以证明两条直线的平行关系。

二、证明三角形全等下面,我们来介绍如何证明两个三角形全等。

假设我们需要证明三角形ABC和三角形DEF全等,我们可以使用以下方法:1. 检查三组对应的边是否相等。

即检查AB是否等于DE,BC是否等于EF,以及AC是否等于DF。

2. 检查两组对应的角是否相等。

即检查∠ABC是否等于∠DEF,∠BCA是否等于∠EFD。

若以上两个条件都满足,则可以得出结论:三角形ABC和DEF全等。

三、证明两个三角形相似接下来,我们来讨论如何证明两个三角形相似。

假设我们需要证明三角形ABC和三角形DEF相似,我们可以使用以下方法:1. 检查两组对应的角是否相等。

即检查∠ABC是否等于∠DEF,∠BCA是否等于∠EDF。

2. 找到共同的角。

若在ABC中存在一个角∠B,使得∠BDE等于∠ABC,那么我们可以得出结论∠B等于∠B。

3. 检查两组对应的边的比例关系。

即检查AB与DE的比值是否等于BC与EF的比值,以及AC与DF的比值是否相等。

若以上三个条件都满足,则可以得出结论:三角形ABC和DEF相似。

综上所述,我们介绍了几何证明题目的一些解题方法及步骤。

希望通过这些方法,大家能够更好地应对几何证明题目,提高自己的解题能力。

同时,大家也可以根据具体题目的要求,灵活运用这些方法,并结合具体的几何性质来解题。

通过不断练习和掌握这些方法,相信大家在几何学的学习中会有更好的表现。

初中生如何做好几何证明题(含标准答案)

初中生如何做好几何证明题(含标准答案)

14、如何做几何证明题【知识精读】1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【分类解析】1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1. 已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。

求证:DE =DFCF BA ED图1分析:由∆ABC 是等腰直角三角形可知,∠=∠=︒A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=︒DCF 45。

从而不难发现∆∆DCF DAE ≅ 证明:连结CDAC BC A BACB AD DBCD BD AD DCB B A AE CF A DCB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆A D E CDF DE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。

几何证明题的解题方法

几何证明题的解题方法

几何证明题的解题方法几何证明题是数学中较为困难的问题,它需要通过一系列有效的步骤和有用的工具,才能够把一个问题进行成功证明。

在这里,我们将结合一些有效的解决方案和技巧,为大家介绍如何解决几何证明题。

第一步,对于几何证明题的解题,首先要把要证明的证明结论或者为什么会出现这样的结论进行总体的理解,然后把它们用语言清晰地表述出来。

在这个阶段,我们应该仔细阅读题干和定义,以便正确理解几何证明题要求证明什么。

第二步,在几何证明题中,除了找出问题,需要仔细梳理它们之间的关系,分析证明结论的依据条件和要求,确定证明目标。

几何证明题要求证明结论,我们需要确定自己是怎样的,并从中获取有效的线索。

只有确定了要证明的结论,才有可能找出恰当的证明过程。

第三步,进一步认识问题,复习数学知识,总结可能用到的工具,这一步对解决几何证明题至关重要。

在这里,我们需要把所有可能的知识和工具都整合起来,并在脑海中形成一个总体的框架,以便在证明的过程中,能够清晰地展现出来。

第四步,把第三步所整合的知识和工具,以及题目中给定的条件,结合起来,进行有效的数学推理和分析,以便于解决几何证明题,这一步是比较困难的,也是证明问题的关键。

我们要仔细推敲,把握数学推理的方向,必要时要准备模型,并及时复查自己的推理,以便迅速地证明出我们所要证明的结论。

第五步,证明问题的结论。

解几何证明题的最后一步就是进行最终的结论证明,即在上述所有推理的基础上,把证明结论写出来,以便于确定证明结论的正确性。

总之,几何证明题是不同于一般数学题目的,它是以证明理由为主,而不是仅针对结果的计算或求解。

在解几何证明题时,要动脑筋,学会思考问题,把握证明方向,善于总结工具,分析证明结论的依据条件和要求,这样才能在短时间内解决几何证明题,解出正确的结论。

八年级数学几何证明题技巧(含答案)

八年级数学几何证明题技巧(含答案)

几何证明题的技巧之答禄夫天创作1. 几何证明是平面几何中的一个重要问题,它有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题经常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2. 掌握分析、证明几何问题的经常使用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)分析综合法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最经常使用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经经常使用到。

例1.已知:如图1所示,中,。

求证:DE =DF分析:由是等腰直角三角形可知,,由D是AB中点,可考虑连结CD,易得,。

从而不难发现证明:连结CD说明:在直角三角形中,作斜边上的中线是经常使用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是经常使用的辅助线。

显然,在等腰直角三角形中,更应该连结CD,因为CD既是斜边上的中线,又是底边上的中线。

本题亦可延长ED到G,使DG=DE,连结BG,证是等腰直角三角形。

有兴趣的同学无妨一试。

说明:利用三角形全等证明线段求角相等。

几何证明题解题技巧

几何证明题解题技巧

几何证明题解题技巧几何证明题需要运用几何性质和定理来推导和证明,以下是一些解题技巧可以帮助更好地解决几何证明题:1.理解题意和图形:仔细阅读题目,理解题目要求和给出的条件。

绘制图形,并标出已知信息,以便更好地理解问题。

2.利用已知条件:根据题目给出的已知条件,利用几何定理和性质进行分析。

观察可以得到什么信息,可以使用什么定理或性质来解决问题。

3.运用推理和推导:运用逻辑推理和几何性质来推导出需要证明的结论。

使用相关几何定理和性质来推断出中间结果,并逐步向目标推进。

4.利用反证法:反证法是一种常用的证明技巧,在证明中假设结论不成立,然后通过推理和推导推出矛盾,从而证明结论的正确性。

5.利用相似性和比例:利用相似三角形的性质和比例关系来解决几何问题。

观察图形中是否存在相似的部分,并利用比例关系求解问题。

6.利用等边和等角:等边三角形和等角三角形具有特殊的性质,可以利用这些性质来解题。

观察图形中是否存在等边或等角的情况,并利用相应的性质进行推理。

7.联想和类比:将问题与已知的几何定理和解决方法进行类比。

寻找类似的几何形状或已知问题,并应用相应的解决方法。

8.重点观察特殊点和特殊线段:特殊的点和线段往往具有重要的性质和关系,观察并利用这些特殊点和线段来解决问题。

9.综合运用多个定理和性质:将多个几何定理和性质综合运用,逐步推进解题思路,获得所需的证明结论。

10.反复练习和复习:几何证明需要大量的练习和熟悉,通过反复练习和复习,加深对几何定理和性质的理解和应用,提高解题能力。

以上的解题技巧可以帮助更好地解决几何证明题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14、如何做几何证明题【知识精读】1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【分类解析】1、证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1. 已知:如图1所示,∆ABC 中,∠=︒===C AC BC AD DB AE CF 90,,,。

求证:DE =DFCFBA ED图1分析:由∆ABC 是等腰直角三角形可知,∠=∠=︒A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=︒DCF 45。

从而不难发现∆∆DCF DAE ≅ 证明:连结CDAC BC A BACB AD DBCD BD AD DCB B A AE CF A DCB AD CD=∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆A D E CDFDE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。

显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。

本题亦可延长ED 到G ,使DG =DE ,连结BG ,证∆EFG 是等腰直角三角形。

有兴趣的同学不妨一试。

例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。

求证:∠E =∠FDBCFE A图2证明:连结AC 在∆ABC 和∆CDA 中,AB CD BC AD AC CA ABC CDA SSS B D AB CD AE CFBE DF===∴≅∴∠=∠==∴=,,,∆∆()在∆BCE 和∆DAF 中,BE DF B D BC DA BCE DAF SAS E F=∠=∠=⎧⎨⎪⎩⎪∴≅∴∠=∠∆∆()说明:利用三角形全等证明线段求角相等。

常须添辅助线,制造全等三角形,这时应注意:(1)制造的全等三角形应分别包括求证中一量; (2)添辅助线能够直接得到的两个全等三角形。

2、证明直线平行或垂直在两条直线的位置关系中,平行与垂直是两种特殊的位置。

证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。

证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。

例3. 如图3所示,设BP 、CQ 是∆ABC 的内角平分线,AH 、AK 分别为A 到BP 、CQ 的垂线。

求证:KH ∥BCABC MNQ PKH 图3分析:由已知,BH 平分∠ABC ,又BH ⊥AH ,延长AH 交BC 于N ,则BA =BN ,AH =HN 。

同理,延长AK 交BC 于M ,则CA =CM ,AK =KM 。

从而由三角形的中位线定理,知KH ∥BC 。

证明:延长AH 交BC 于N ,延长AK 交BC 于M ∵BH 平分∠ABC ∴=∠∠ABH NBH 又BH ⊥AH∴==︒∠∠A H B N H B 90 BH =BH∴≅∴==∆∆ABH NBH ASA BA BN AH HN(),同理,CA =CM ,AK =KM ∴KH 是∆AMN 的中位线 ∴KH MN // 即KH//BC说明:当一个三角形中出现角平分线、中线或高线重合时,则此三角形必为等腰三角形。

我们也可以理解成把一个直角三角形沿一条直角边翻折(轴对称)而成一个等腰三角形。

例4. 已知:如图4所示,AB =AC ,∠,,A AE BF BD DC =︒==90。

求证:FD ⊥EDBC A FED321图4证明一:连结ADAB AC BD DCDAE DABBAC BD DCBD ADB DAB DAE==∴+=︒==︒=∴=∴==,∠∠,∠∠∠,∠∠∠129090在∆ADE 和∆BDF 中,AE BF B DAE AD BD ADE BDFFD ED===∴≅∴∠=∠∴∠+∠=︒∴⊥,∠∠,∆∆313290说明:有等腰三角形条件时,作底边上的高,或作底边上中线,或作顶角平分线是常用辅助线。

证明二:如图5所示,延长ED 到M ,使DM =ED ,连结FE ,FM ,BMBCA EFD M图5BD DCBDM CDE DM DE BDM CDE CE BM C CBM BM ACA ABM AAB AC BF AE AF CE BM=∠=∠=∴≅∴=∠=∠∴∠=︒∴∠=︒=∠==∴==,,,∆∆//9090∴≅∴==∴⊥∆∆AEF BFM FE FM DM DE FD ED说明:证明两直线垂直的方法如下:(1)首先分析条件,观察能否用提供垂直的定理得到,包括添常用辅助线,见本题证二。

(2)找到待证三直线所组成的三角形,证明其中两个锐角互余。

(3)证明二直线的夹角等于90°。

3、证明一线段和的问题(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。

(截长法)例5. 已知:如图6所示在∆ABC 中,∠=︒B 60,∠BAC 、∠BCA 的角平分线AD 、CE 相交于O 。

求证:AC =AE +CD图6B CAEDF O142356分析:在AC 上截取AF =AE 。

易知∆∆AEO AFO ≅,∴∠=∠12。

由∠=︒B 60,知∠+∠=︒∠=︒∠+∠=︒566016023120,,。

∴∠=∠=∠=∠=︒123460,得:∆∆FOC DOC FC DC ≅∴=,证明:在AC 上截取AF =AE()∠=∠=∴≅∴∠=∠BAD CAD AO AOAEO AFO SAS ,∆∆42又∠=︒B 60∴∠+∠=︒∴∠=︒∴∠+∠=︒∴∠=∠=∠=∠=︒∴≅∴=566016023120123460∆∆FOC DOC AAS FC DC()即AC AE CD =+(二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。

(补短法)例6. 已知:如图7所示,正方形ABCD 中,F 在DC 上,E 在BC 上,∠=︒EAF 45。

求证:EF =BE +DFGB EC AFD123图7分析:此题若仿照例1,将会遇到困难,不易利用正方形这一条件。

不妨延长CB 至G ,使BG =DF 。

证明:延长CB 至G ,使BG =DF在正方形ABCD 中,∠=∠=︒=ABG D AB AD 90,∴≅∴=∠=∠∆∆ABG ADF SAS AG AF (),13又∠=︒EAF 45∴∠+∠=︒∴∠+∠=︒23452145即∠GAE =∠FAE ∴=∴=+GE EFEF BE DF4、中考题:如图8所示,已知∆ABC 为等边三角形,延长BC 到D ,延长BA 到E ,并且使AE =BD ,连结CE 、DE 。

求证:EC =EDE BD F AC 图8证明:作DF//AC 交BE 于F ∆ABC 是正三角形 ∴∆BFD 是正三角形又AE =BD∴==∴==AE FD BFBA AF EF即EF =ACAC FDEAC EFD EAC DFE SAS EC ED//()∴∠=∠∴≅∴=∆∆题型展示:证明几何不等式:例题:已知:如图9所示,∠=∠>12,AB AC 。

求证:BD DC >D B A1C 2E图9证明一:延长AC 到E ,使AE =AB ,连结DE 在∆ADE 和∆ADB 中,AE AB AD AD ADE ADBBD DE E B DCE B DCE EDE DC BD DC=∠=∠=∴≅∴=∠=∠∠>∠∴∠>∠∴>∴>,,,,21∆∆证明二:如图10所示,在AB 上截取AF =AC ,连结DFD BA2C 1F 图1043则易证∆∆ADF ADC ≅∴∠=∠=>∠∠>∠∴∠>∠∴>∴>3434,,DF DC BFD B BFD B BD DF BD DC说明:在有角平分线条件时,常以角平分线为轴翻折构造全等三角形,这是常用辅助线。

【实战模拟】1. 已知:如图11所示,∆ABC 中,∠=︒C 90,D 是AB 上一点,DE ⊥CD 于D ,交BC 于E ,且有AC AD CE ==。

求证:DE CD =12C图11AB D E2. 已知:如图12所示,在∆ABC 中,∠=∠A B 2,CD 是∠C 的平分线。

求证:BC =AC +ADA CBD图123. 已知:如图13所示,过∆ABC 的顶点A ,在∠A 内任引一射线,过B 、C 作此射线的垂线BP 和CQ 。

设M 为BC 的中点。

求证:MP =MQBP MQCA 图134. ∆ABC 中,∠=︒⊥BAC AD BC 90,于D ,求证:()AD AB AC BC <++14【试题答案】1. 证明:取CD 的中点F ,连结AF3EA D 41CB FAC ADAF CD AFC CDE =∴⊥∴∠=∠=︒90又∠+∠=︒∠+∠=︒14901390,∴∠=∠=∴≅∴=∴=4312AC CEACF CED ASA CF EDDE CD ∆∆() 2. 分析:本题从已知和图形上看好象比较简单,但一时又不知如何下手,那么在证明一条线段等于两条线段之和时,我们经常采用“截长补短”的手法。

“截长”即将长的线段截成两部分,证明这两部分分别和两条短线段相等;“补短”即将一条短线段延长出另一条短线段之长,证明其和等于长的线段。

BDC AE证明:延长CA 至E ,使CE =CB ,连结ED在∆CBD 和∆CED 中,CB CE BCD ECDCD CD CBD CEDB E BAC BBAC E=∠=∠=⎧⎨⎪⎩⎪∴≅∴∠=∠∠=∠∴∠=∠∆∆22又∠=∠+∠BAC ADE E∴∠=∠∴=∴==+=+A D E E AD AE BC CE AC AE AC AD, 3. 证明:延长PM 交CQ 于RQP BM C ARCQ AP BP APBP CQ PBM RCM⊥⊥∴∴∠=∠,//又BM CM BMP CMR =∠=∠, ∴≅∴=∆∆BPM CRM PM RM∴QM 是Rt QPR ∆斜边上的中线 ∴=MP MQ4. 取BC 中点E ,连结AEAB CD E∠=︒∴=BAC AE BC 902AD BC AD AE BC AE AD⊥∴<∴=>,22 () AB AC BCBC AB AC BC AD AB AC BC AD AB AC BC +>∴<++∴<++∴<++2414。

相关文档
最新文档