试验六金属丝杨氏弹性模量的测定
金属丝杨氏模量的测定

物理实验报告【实验名称】杨氏模量的测定【实验目的】1. 掌握用光杠杆测量微小长度变化的原理和方法,了解其应用。
2. 掌握各种长度测量工具的选择和使用。
3. 学习用逐差法和作图法处理实验数据。
【实验仪器】MYC-1型金属丝杨氏模量测定仪(一套)、钢卷尺、米尺、螺旋测微计、重垂、砝码等。
【实验原理】 一、杨氏弹性模量设金属丝的原长L ,横截面积为S ,沿长度方向施力F 后,其长度改变ΔL ,则金属丝单位面积上受到的垂直作用力F/S 称为正应力,金属丝的相对伸长量ΔL/L 称为线应变。
实验结果指出,在弹性范围内,由胡克定律可知物体的正应力与线应变成正比,即LLYS F ∆= (1) 则E LL SF Y ∆=(2) 比例系数E 即为杨氏弹性模量。
在它表征材料本身的性质,Y 越大的材料,要使它发生一定的相对形变所需要的单位横截面积上的作用力也越大。
Y 的国际单位制单位为帕斯卡,记为Pa (1Pa =12m N ;1GPa =910Pa )。
本实验测量的是钢丝的杨氏弹性模量,如果钢丝直径为d ,则可得钢丝横截面积S42d S π=则(2)式可变为E L d FLY ∆=24π (3)可见,只要测出式(3)中右边各量,就可计算出杨氏弹性模量。
式中L (金属丝原长)可由米尺测量,d (钢丝直径),可用螺旋测微仪测量,F (外力)可由实验中钢丝下面悬挂的砝码的重力F=mg 求出,而ΔL 是一个微小长度变化(在此实验中 ,当L ≈1m时,F 每变化1kg 相应的ΔL 约为0.3mm)。
因此,本实验利用光杠杆的光学放大作用实现对钢丝微小伸长量ΔL 的间接测量。
二、光杠杆测微小长度变化尺读望远镜和光杠杆组成如图2所示的测量系统。
光杠杆系统是由光杠杆镜架与尺读望远镜组成的。
光杠杆结构见图2(b )所示,它实际上是附有三个尖足的平面镜。
三个尖足的边线为一等腰三角形。
前两足刀口与平面镜在同一平面内(平面镜俯仰方位可调),后足在前两足刀口的中垂线上。
金属丝杨氏模量的测定实验报告

一、实验目的1. 了解杨氏模量的概念和意义;2. 掌握用拉伸法测量金属丝杨氏模量的原理和方法;3. 学会使用实验仪器进行测量,并学会数据处理和误差分析;4. 培养实验操作能力和科学思维。
二、实验原理杨氏模量(E)是描述材料弹性性能的物理量,定义为材料在弹性形变时,单位应力所引起的单位应变。
其计算公式为:E = σ / ε其中,σ为应力,ε为应变。
应力是指单位面积上的力,应变是指单位长度的形变量。
本实验采用拉伸法测量金属丝的杨氏模量。
在实验过程中,对金属丝施加一定的拉力,使其产生弹性形变。
通过测量金属丝的伸长量和所受拉力,根据上述公式计算出杨氏模量。
三、实验仪器与材料1. 金属丝:直径约为1mm,长度约为100mm;2. 拉伸仪:用于施加拉力;3. 量角器:用于测量金属丝的伸长角度;4. 标尺:用于测量金属丝的伸长量;5. 计算器:用于计算数据。
四、实验步骤1. 将金属丝固定在拉伸仪上,确保金属丝与拉伸仪的轴线一致;2. 将金属丝的另一端固定在支架上,确保支架与拉伸仪的轴线一致;3. 调整量角器,使其与金属丝轴线垂直;4. 拉伸金属丝,使其产生弹性形变;5. 记录金属丝的伸长角度和伸长量;6. 重复上述步骤,进行多次实验,以确保数据的准确性;7. 根据实验数据,计算金属丝的杨氏模量。
五、数据处理与结果分析1. 计算金属丝的应力:σ = F / S其中,F为拉力,S为金属丝的横截面积。
2. 计算金属丝的应变:ε = ΔL / L其中,ΔL为金属丝的伸长量,L为金属丝的原始长度。
3. 根据实验数据,计算金属丝的杨氏模量:E = σ / ε4. 分析实验结果,与理论值进行比较,讨论误差来源。
六、实验结论通过本次实验,我们成功测量了金属丝的杨氏模量。
实验结果表明,金属丝的杨氏模量与理论值基本吻合。
在实验过程中,我们学会了使用拉伸法测量金属丝的杨氏模量,掌握了数据处理和误差分析的方法。
同时,本次实验也提高了我们的实验操作能力和科学思维。
试验六金属丝杨氏弹性模量的测定

实验一 拉伸法测弹性模量弹性模量是反映材料形变与内应力关系的物理量,是工程技术中机械构件选材时的重要参数。
本实验用拉伸法测弹性模量,研究拉伸正应力与线应变之间的关系。
【实验目的】1.学习用拉伸法测量弹性模量的方法; 2.掌握“光杠杆”测量微小长度变化的原理; 3.学习用逐差法进行数据处理。
【实验原理】当截面为S ,长度为L 的棒状(或线状)材料,受拉力F 拉伸时,伸长了L δ,其单位面积截面所受到的拉力F/S 称为正应力,而单位长度的伸长量L L /δ称为线应变。
根据胡克定律,在弹性形变范围内,棒状(或线状)固体正应力与线应变成正比,即L F E S Lδ= 其比例系数E 称为材料的弹性模量。
它表征材料本身的性质, LS FLE δ=(1-1)本实验是测定某一种型号钢丝的弹性模量,其中F 、S 、L 都可用常规的测量方法测量,但L δ却难以用常规方法精确测定,故采用放大法——“光杠杆”来测定这一微小的长度改变量L δ。
光杠杆镜如图1-1所示,图1-2是光杠杆测微小长度变化量的原理图。
左测曲尺状物为光杠镜,M 边是反射镜,b 边即所谓光杠杆的短臂的杆长,O 端为b 边的固定端,b 边的另一端则随被测钢丝的伸长、缩短而下降、上升,从而改变了M 镜法线的方向,使得钢丝原长为L 时,位于图右侧的望远镜从M 镜中看到的读数为n 1;而钢丝受力伸长后光杠镜的位置变为虚线所示,此时望远镜上的读数则为n 2。
这样,钢丝的微小伸长量L δ,对应有光杠镜的角度变化量θ,而对应的读数变化则为12n n n δ=-。
从图1-2中可见:bLδθ≈(1-2) 212n n nBBδθ-≈= (1-3)将(1-2)式和(1-3)式联立后得:2bL n Bδδ=(1-4) 式中21n n n δ=-,相当于光杠杆的长臂端B 的位移。
由于B>> b ,所以n L δδ,从而获得对微小量的线性放大,提高了L δ的测量精度,这被称为放大法。
实验六:拉伸法测金属丝的杨氏弹性模量.

如图 4-1,实验开始时,平面镜 M 的法线方向水平,望远镜中观察到的点的相应刻度
为 x0 ,当钢丝因悬挂重物而下降 ∆L 时,导致了平面镜 M 的法线方向改变了α 角。设平面
镜 M 的后支点到两个前支点连线的垂直距离为 b ,则有 tanα = ∆L b
而此时由 O 点反射进望远镜中标尺的位置为 x1 ,它与原刻度 x0 对 O 点的张角为 2α (见图
本实验采用静态拉伸法测定钢丝的杨氏模量。
●实验目的与要求:
1.学会用伸长法测量金属丝的杨氏模量; 2.掌握用光杠杆法测量微小长度变化的原理和方法; 3.学会用逐差法处理数据。
●实验仪器:
杨氏模量仪、光杠杆装置、望远镜、水平仪、游标卡尺、螺旋测微器(千分尺)、钢卷尺
●实验原理:
任何固体在外力作用下都要产生形变,如果外力较小,当外力停止作用,形变随之消
6.记录十字叉丝初始读数 x0 ,依次增加一个砝码,记录相应的读数 x1、x2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅x6、x7
7.再加一块砝码,不记录其读数,稍后,逐个减少砝码,记录相应的读数 x7' 、x6' 、⋅ ⋅ ⋅ x1'、x0' 。
计算两次的平均值。
8.用螺旋测微器(千分尺)测金属丝的直径 d ,分别在金属丝的上、中、下不同部位、不 同方向进行多次测量。用游标卡尺测量光杠杆长 b 多次(采用压足印)。用钢卷尺测金属丝 的长度 L 一次,测量标尺到光杠杆镜面的距离 D 一次。 9.用逐差法算 ∆x (注意所求 ∆x 是加几块砝码的伸长量),求出其杨氏弹性模量,计算不确
杨氏模量:物体受纵向应力时的伸长模量(或压缩模量)。
一根均匀的金属丝,长度为 L ,截面积为 S ,在受到沿长度方向的外力 F 的作用时发
金属丝杨氏弹性模量测定实验的研究

金属丝杨氏弹性模量测定实验的研究
杨氏弹性模量是材料力学中常用的一个参数,计算材料动态力学性质的特征量。
金属的杨氏模量具有高的抗压性,因此在材料加工中发挥着重要的作用。
本文介绍了金属丝杨氏弹性模量测定实验的研究。
金属丝杨氏弹性模量测定实验是基于实验验算杨氏弹性模量方法,用于测试金属丝的静力学性质。
该实验采用常用的拉力机来对金属丝进行拉伸测试,通过拉伸过程中金属丝的变形和拉应力数据来计算出杨氏弹性模量值。
在实验过程中,先将测试的金属丝用固定装置安装到拉力机上,开始金属丝的拉伸实验,测量金属丝的拉伸过程中的变形应力及应变数据。
然后按照材料力学,根据拉力-应变曲线计算杨氏模量。
通过实验,可以检测金属丝的杨氏弹性模量,了解该材料在力学性能方面的表观特性,更好地指导金属材料的加工和使用。
因此,金属丝的杨氏弹性模量测试实验具有重要的科学研究价值和现实意义。
通过对金属丝杨氏弹性模量的研究,可以更加准确地评估金属的力学性能,给加工和使用提供参考。
本实验可以为金属丝的杨氏弹性模量研究提供可靠的原始数据,从而实现金属丝力学性能评估以及科学、安全、高效和可操作性的加工与使用。
金属杨氏弹性模量的测定

金属杨氏弹性模量的测定【实验目的】1. 用拉伸法测量金属丝的杨氏弹性模量。
2. 掌握用光杠杆测量微小长度的原理及方法。
【实验仪器】杨氏模量仪、望远镜尺组、光杠杆、螺旋测微计、卷尺、钢直尺、砝码。
【注意事项】1.光杠杆易碎,小心勿摔。
2.望远镜调节要细心,调焦旋钮旋到头后,切勿过量旋转以免损坏。
【实验内容及实验步骤】1.杨氏模量仪的铅直和夹子的自由滑动已基本调好,可不再调。
2.光杠杆及望远镜尺组的调节(操作难点)①位置调节:调节望远镜光轴水平且与光杠杆镜面中心基本等高;调节望远镜光轴与光杠杆镜面垂直。
②找标尺像:眼睛沿望远镜筒上方缺口准星方向向平面镜看去,找镜中标尺的像,可左右移动望远镜位置,直到找到像为止。
③望远镜调节:调望远镜目镜,使观察到的十字叉丝线清晰;调望远镜调焦旋钮,使看到的标尺像清晰。
继续微调望远镜调焦旋钮到消除视差。
④微调平面镜镜面俯仰角度,直到标尺像的零刻线和十字叉丝线相差小于1cm;细调望远镜俯仰调节螺丝,使二者相差小于1mm。
光杠杆和望远镜系统调好的标志:视场中标尺的像清晰,零刻线和十字准线水平线重合或相差小于1mm。
调节仪器完毕后,需经教师检查作为给出操作分的依据。
3.测量:根据新版教材P209—P210的数据表格,完成数据测量。
4.实验报告要求:计算杨氏模量最佳估值和不确定度,给出测量结果表达式。
【实验指导】1.用“外视法”观察寻找标尺像。
这是本实验仪器调节的关键。
因为望远镜本身的视场很小,一开始就从望远镜中观察,很可能看不到平面镜反射回来的标尺像,而从望远镜上方对着平面镜看去,视场较大,比较容易观察到标尺像。
(如果从望远镜外面看不到标尺像,则从望远镜里面不可能找到标尺像。
)因此,一般要先用“外视法”调节。
如果从望远镜上方看不到标尺像,可在望远镜的左右两边寻找。
例如:在望远镜的左边能看到标尺像,这时可将望远镜的支架向左移动到眼睛能看到标尺像的位置。
反之,支架向右移动。
望远镜经过这样左右移动调节以后,若还看不到标尺像,可能是竖直方向上的问题,这时可轻轻转动一下平面镜即可。
《大学物理实验》-06杨氏模量测定

实验六 杨氏模量测定1、拉伸法测量金属丝杨氏弹性模量一、实验目的1.掌握用光杠杆测量微小长度的原理和方法,测量金属丝的杨氏模量。
2.训练正确调整测量系统的能力。
3.学习一种处理实验数据的方法——逐差法。
二、实验原理1. 杨氏模量固体在外力作用下都会发生形变,同外力与形变相关的两个物理量应力与应变之间的关系一般较为复杂。
由胡克定律可知,在弹性限度内,钢丝的应力与应变成正比,比例系数 Y 称为杨氏模量;杨氏模量描述材料抵抗弹性形变能力的大小,与材料的结构、化学成分及制造方法有关。
杨氏模量是工程技术中常用的力学参数。
设有一根长为L ,横截面积为S 的钢丝,在轴向力F 的作用下,形变是轴向伸缩,且为△L,在弹性限度内,胁强F S 和胁变L L Δ成正比,既F Y S LL Δ= (1) 式中比例系数Y 称为该固体的杨氏模量。
在国际单位中,它的单位是牛顿/,记为。
是用一般长度量具不易测准的微小量,本实验用光杠杆法对其进行测量。
2米2−Nm L Δ设实验中所用钢丝直径为d ,则241d S π=,将此公式代入上式整理以后得24FLY d Lπ=Δ (2) 上式表明,对于长度L ,直径d 和所加外力F 相同的情况下,杨氏模量Y 大的金属丝的伸长量L Δ小。
因而,杨氏模量表达了金属材料抵抗外力产生拉伸(或压缩)形变的能力。
2.光杠杆原理如图1,光杠杆是一个支架,前两脚与镜面平行,后脚会随金属丝的伸长而上升或下降。
由三角函数理论可知,在θ很小时有tg θ≈θ、tg2θ≈2θ,于是根据图示几何关系可得图1将(3)式代入(2)式有: 28FLDY d l xπ=Δ将F =mg 代入上式,得出用伸长法测金属的杨氏模量Y 的公式为三、实验仪器杨氏模量仪(带光杠杆、望远镜和标尺),1kg 砝码若干,米尺,游标卡尺,千分尺,试样为1m 左右的钢丝。
图2所示为杨氏模量装置,待测钢丝由上夹具固定在立柱的顶端,下端用圆柱活动夹具头夹紧,圆柱形夹具穿过固定平台的圆孔,能随金属丝的伸缩而上下移动,其下端挂有砝码挂钩。
用拉伸法测量金属丝的杨氏弹性模量实验报告

用拉伸法测量金属丝的杨氏弹性模量实验报告拉伸法测量金属丝的杨氏弹性模量实验报告
实验原理:
拉伸实验是指将弹性样品整体承受一直拉力F,而其同时受轴向拉力T的拉伸实验,
通过测量拉伸实验的样品的拉伸变形量,推知其伸长量与轴向荷载(T)之比,这一比值
就是杨氏弹性模量。
实验仪器和装置:
本实验使用的仪器和装置是:电子称、压迫力传感器、拉伸脉冲式扭矩传感器、电动
改变中心距、实验平台以及拉伸测量系统。
实验环境:
实验环境稳定,温度、湿度均在20℃时,室温保持在25℃以下,湿度保持在50%以下;光照明亮,可使测量精度更高。
实验方法:
1.选取合格的金属丝样品,将金属丝在两个支点上受上力,其中间部分悬空放置,应
用拉伸传感器,将力传感器的正负极接线联接到拉伸测量系统,以便测量拉伸时的变形量;
2.调节力传感器的拉伸力,测量金属丝在拉伸情况时的杨氏弹性模量;
3.如果所测量金属丝中受力跨度较短,可以适当增加测量力的大小,控制其变形量,
以测得最终结果;
4.在做精度处理时,应按试验标准及要求的容差,采取逐渐迭代的原则做精确的测量,充分检验该样品的杨氏弹性模量;
5.最后,将实验最终结果和测得的参数对比,进行分析,得出金属丝的杨氏弹性模量
大小,从而完成此次实验。
实验结论:
本次实验以拉伸法测量金属丝的杨氏弹性模量,由于采用了拉伸测量仪器和设备,对
金属丝进行严格控制,从而极大提高测量精度,最终杨氏弹性模量结果达到设计要求。
杨氏弹性模量的测定实验报告

杨氏弹性模量的测定实验报告一、实验目的1、学习用拉伸法测定金属丝的杨氏弹性模量。
2、掌握用光杠杆法测量微小长度变化的原理和方法。
3、学会使用望远镜、标尺、螺旋测微器等测量长度的仪器。
4、学会用逐差法处理实验数据。
二、实验原理1、杨氏弹性模量杨氏弹性模量是描述固体材料抵抗形变能力的物理量。
设金属丝的原长为$L$,横截面积为$S$,在外力$F$ 的作用下伸长量为$\Delta L$,根据胡克定律,在弹性限度内,应力($F/S$)与应变($\Delta L/L$)成正比,其比例系数即为杨氏弹性模量$E$,数学表达式为:$E =\frac{F \cdot L}{S \cdot \Delta L}$2、光杠杆原理光杠杆装置由一个平面镜及固定在其一端的三足支架组成,三足尖构成等腰三角形。
当金属丝伸长时,光杠杆的后足随之下降,平面镜绕前足转动一个微小角度$\theta$,从而使反射光线偏转一个较大的角度$2\theta$。
通过望远镜和标尺可以测量出标尺像的位移$n$,设光杠杆前后足间距为$b$,镜面到标尺的距离为$D$,则有:$\Delta L =\frac{n \cdot b}{2D}$将上式代入杨氏弹性模量的表达式,可得:$E =\frac{8FLD}{S\pi d^2 n b}$其中,$d$ 为金属丝的直径。
三、实验仪器杨氏模量测定仪、光杠杆、望远镜及标尺、螺旋测微器、游标卡尺、砝码、米尺等。
四、实验步骤1、调节仪器(1)调节杨氏模量测定仪底座的水平调节螺丝,使立柱铅直。
(2)将光杠杆放在平台上,使平面镜与平台垂直,三足尖位于同一水平面,且三足尖与平台的接触点构成等边三角形。
(3)调节望远镜,使其与光杠杆平面镜等高,且望远镜光轴与平面镜中心等高。
然后通过望远镜目镜看清十字叉丝,再将望远镜对准平面镜,调节目镜和物镜,直至能在望远镜中看到清晰的标尺像。
(4)调节标尺的位置,使其零刻度线与望远镜中十字叉丝的横线重合。
金属杨氏弹性模量的测量实验报告

竭诚为您提供优质文档/双击可除金属杨氏弹性模量的测量实验报告篇一:金属材料杨氏模量的测定实验报告浙江中医药大学学生物理实验报告实验名称金属材料杨氏模量的测定学院信息技术学院专业医学信息工程班级一班报告人学号同组人学号同组人学号同组人学号理论课任课教师实验课指导教师实验日期20XX年3月2日报告日期20XX年3月3日实验成绩批改日期浙江中医药大学信息技术学院物理教研室篇二:用拉伸法测金属丝的杨氏弹性模量实验报告示范实验名称:用拉伸法测金属丝的杨氏弹性模量一.实验目的学习用拉伸法测定钢丝的杨氏(:金属杨氏弹性模量的测量实验报告)模量;掌握光杠杆法测量微小变化量的原理;学习用逐差法处理数据。
二.实验原理长为l,截面积为s的金属丝,在外力F的作用下伸长了?l,称Y?丝直径为d,即截面积s??d2/4,则Y?F/s为杨氏模量(如图1)。
设钢?l/l4lF。
??ld2伸长量?l比较小不易测准,因此,利用光杠杆放大原理,设计装置去测伸长量?l(如图2)。
由几何光学的原理可知,?l?8FlLbb。
(n?n0)n,?Y?22L2L?db?n图1图2三.主要仪器设备杨氏模量测定仪;光杠杆;望远镜及直尺;千分卡;游标卡尺;米尺;待测钢丝;砝码;水准器等。
四.实验步骤1.调整杨氏模量测定仪2.测量钢丝直径3.调整光杠杆光学系统4.测量钢丝负荷后的伸长量(1)砝码盘上预加2个砝码。
记录此时望远镜十字叉丝水平线对准标尺的刻度值n0。
(2)依次增加1个砝码,记录相应的望远镜读数n1。
,n2,?,n7(3)再加1个砝码,但不必读数,待稳定后,逐个取下砝码,记录相应的望远镜读数n7。
,n6,?,n1,n0(4)计算同一负荷下两次标尺读数(ni和ni)的平均值ni?(ni?ni)/2。
(5)用隔项逐差法计算?n。
5.用钢卷尺单次测量标尺到平面镜距离L和钢丝长度;用压脚印法单次测量光杠杆后足到两前足尖连线的垂直距离b。
6.进行数据分析和不确定度评定,报道杨氏模量值。
金属丝杨氏弹性模量的测定

金属丝杨氏弹性模量的测定本实验是根据胡克定律测定固体材料的一个力学常量——杨氏弹性模量。
实验中采用光杠杆放大原理测量金属丝的微小伸长量,并用不同准确度的测长仪器测量不同的长度量;在数据处理中运用了两种基本而常用的方法——逐差法和作图法。
[一]. 实验目的1.掌握不同长度测量器具的选择和使用,掌握光杠杆测微原理和调节。
2.学习误差分析和误差均分原理思想。
3.学习使用逐差法处理数据及最终测量结果的表达。
4.测定钢丝的杨氏弹性模量E 值。
[二]. 实验原理固体材料在外力作用下产生各部分间相对位置的变化,称之为形变。
如果外力较小时,一旦外力停止作用,形变将随之消失,这种形变称为弹性形变;如果外力足够大,当停止作用时,形变却不能完全消失,这叫剩余形变。
当剩余形变开始出现时,就表明材料达到了弹性限度。
在许多种不同的形变中,伸长(或缩短)形变是最简单、最普遍的形变之一。
本实验是针对连续、均匀、各向同性的材料做成的丝,进行拉伸试验。
设细丝的原长为l ,横截面积为A ,在外加力P 的作用下,伸长了l ∆的长度,单位长度的伸长量l l /∆称为应变,单位横截面所受的力则称为应力。
根据虎克定律,在弹性限度内,应变与应力成正比关系,即llE A P ∆= (1) 式中比例常数E 称为杨氏弹性模量,它仅与材料性质有关。
若实验测出在外加力P 作用下细丝的伸长量l ∆,则就能算出钢丝的杨氏弹性模量E :lA l P E ⋅∆⋅=工程中E 的常用单位为(N/m 2)或(Pa)。
几种常用材料的杨氏模量E 值见下表:应当指出,(1)式只适合于材料弹性形变的情况。
如果超出弹性限度,应变与应力的关系将是非线性的。
右图表示合金钢和硬铝等材料的应力-应变曲线。
为了测定杨氏弹性模量值,在(2)式中的P 、l 和A 都比较容易测定,而长度微小变化量l 则很难用通常测长仪器准确地度量。
本实验将采用光杠杆放大法 进行精确测量。
[三]. 实验装置实验装置原理如右图所示。
0212实验六610《金属丝杨氏弹性模量的测定》实验报告(0001)

光杠杆镜图的均匀棒状(或线状)设有一截面为 ,长度为 将产生恢复原状的内应力。
失,这种形变叫弹性形变,发生弹性形变时物体内部 变不超过某一限度时,撤走外力之后形变能随之消 物体在外力作用下或多或少都要发生形变,当形实验原理三、 、练习用逐差法、作图法处理数据。
、在实践中获得如何依实验情况对各个测量量进行误差估算。
、学会用“对称测量”消除系统误差。
、学会测量杨氏模量的一种方法,掌握“光杠杆镜”测量微小长度变化的原理。
实验目的二、线性放大,所以,在设计各类测试仪器中得到广泛的应用。
遍意义。
在实验装置上的光杠杆镜放大法,由于它的性能稳定,精度高,而且是 本实验可以看到,用对称测量法消除系统误差的思路在其他类似的测量中极具普 在测量中由于测量对象及方法的改变如何估算其系统误差。
在实验方法上,通过 会仪器的配置原则,了解为什么对不同的长度测量应选用不同的测量仪器,以及 时的重要参数。
本实验不仅介绍了如何测定此参数,更重要的是通过实验可以领 与材料的性质有关,而与材料形状、长短等无关,它是工程技术中机械构件选材 杨氏模量是反映物体在外力作用下发生形变难易程度的重要物理量,它仅仅 形变。
太大时,则在外力作用停止后,由此引起的形变亦随之消失,这种形变称为弹性 任何物体在外力的作用下,都会发生形变。
对于弹性物体,若作用的外力不 引言一、 金属丝杨氏弹性模量的测定姓名:黄素君学号: 班上课班级:生命科学学院生物科学类 班 班级:食品学院食品科学与工程Δ材料,受拉力拉伸时,伸长了,其单位面积截面所受到的拉力称为胁强,Δ而单位长度的伸长量称为胁变。
根据胡克定律,在弹性形变范围内,棒状(或Δ线状)固体胁变与它所受的胁强成正比:其比例系数取决于固体材料的性质,反应了材料形变和内应力之间的关系,称为杨氏弹性模量。
()Δ本实验是测定某一种型号钢丝的杨氏弹性模量,其中可以由所挂的砝码的重量求出,截面积可以通过螺旋测微计测量金属丝的直径计图光杠杆原理算得出,可用米尺等常规的测量器具测量,但由于其值非常微小,用常规的测量方法很难精确测量。
大学物理实验-金属丝的杨氏弹性模量的测量

大学物理实验-金属丝的杨氏弹性模量的测量实验目的:1. 掌握金属丝杨氏弹性模量的测量方法。
2. 加深对杨氏弹性模量的了解。
实验原理:杨氏弹性模量是描述固体材料在轴向拉伸时所表现出来的弹性和形变特性的物理量。
弹性模量表示单位面积上在轴向拉伸应力与相应的应变之间的比值。
在弹性极限以内,应力和应变成正比关系,弹性模量即为斜率。
实验步骤:1. 实验仪器:万能试验机、金属丝、游标卡尺、千分尺、比重大约为水的液体、密度计、小刻度尺。
2. 将金属丝卷绕在试验机的夹具上,并调整夹具间距使其长度充分展开。
3. 利用游标卡尺测量金属丝的直径,取3个位置进行测量,取平均值做准确度提高。
4. 将金属丝悬挂在试验机上,处于自重状态。
5. 连接数字万用表,用微调盒调整滑动器位置。
6. 微调座向上调节送电触点,金属丝受拉后试验机起始点的值就被纪录下来了。
7. 通过调节位移控制器上的微调座,使其向下缓慢移动,以强制拉伸金属丝,使其长度发生变化。
8. 根据数字万用表读数,可以计算出不同负载下金属丝伸长量的数据。
9. 根据相关公式,计算出金属丝的杨氏弹性模量值。
1. 利用游标卡尺测量金属丝直径,取平均值为$D_{av}$。
2. 量测每个加权的载荷方法下的金属丝的伸长量,分别纪录数据。
3. 计算出每个载荷下的金属丝的应力和应变。
4. 作出载荷和伸长量的关系曲线并求出其斜率$S$。
5. 利用公式$S = \dfrac {4FL}{\pi D^2 d}$求出弹性模量$E$。
6. 汇总数据并作出数据汇总表。
实验数据:金属丝数量:1根金属丝直径:$D_{av}=0.0985cm$金属丝的长度 $L=60.00cm$金属丝的密度:$\rho=8.96g/cm^3$负载(N)伸长量(mm)应力(Pa)应变($10^{-3}$)0 0 0 0100 0.17 13196440 6200 0.34 26392879 12300 0.57 39589319 18400 0.79 52785758 23500 1.02 65982197 29600 1.24 79178637 35实验结果:通过数据处理可以得到如下结果:弹性模量 $E = 1.12 \cdot 10^{11} N/m^2$讨论和结论:在本实验中,我们学习了如何测量金属丝的杨氏弹性模量。
金属丝杨氏弹性模量的测定及其实验数据

金属丝杨氏弹性模量的测定及其实验数据【实验目的】1.学习静态拉伸法测金属丝的杨氏模量。
2.掌握用光杠杆法测量微小长度变化的原理和方法。
3.利用有效的多次测量,及相应处理方法来减小误差。
【实验仪器】杨氏模量测量仪,光杠杆,望远镜尺组,米尺,游标卡尺【实验原理】根据胡克定律,金属丝的杨氏弹性模量, L是一个微小长度变化量,当金属丝直径为0.5毫米时, L约为10-5米。
实验中采用光杠杆镜尺法测量。
利用光杠杆镜尺法由几何原理可得,光杠杆的放大倍数为β=2D/b,一般D=1.5—2.0米,b=7.0厘米,所以放大倍数约为40倍。
通过在增加(减)砝码的同时测出标尺读数Xi和其他的长度量L、D、d、b,就能求得金属丝的杨氏弹性模量Y. 【实验内容】1.调整支架,使金属丝处于铅直位置2.调光杠杆和望远镜,使能在望远镜中看清标尺像,并无视差。
3.通过增减砝码,测出相应的标尺读数Xi′和Xi″(共加五个砝码),由Xi= Xi′/ Xi″,用逐差法求出?Xi。
重复一次。
4.测出L、D、d、b,重复六次,求出杨氏模量,【注意事项】1.仪器一经调好,测量开始,切勿碰撞移动仪器,否则要重新调节,老师检查数据前也不要破坏调节好的状态,否则一旦有错误,将难以查找原因或补作数据。
2.望远镜、光杠杆属精密器具,应细心使用操作。
避免打碎镜片,勿用手或他物触碰镜片。
3.调节旋钮前应先了解其用途,并预见到可能产生的后果或危险,不要盲目乱调,以免损坏仪器,调节旋钮时也不要过分用力,防止滑丝。
4.用螺旋测微计测量钢丝直径时,要端平测微计,避免钢丝弯曲,【数据处理】1.增减重量时钢丝伸缩量的记录数【思考题】1.在本实验中,为什么可以用不同精确度的量具测量多种长度量?为什么有些需要多次测量,有些单次测量就可以?2. 如何用十几个砝码即快又精确地测量出金属丝的平均伸长量,应该用什么方法来计算?3.光杠杆法可测微小长度变化,其主要是采用了光放大原理,放大率为β=2D/b 。
物理实验报告金属丝杨氏模量的测定

实验名称:金属丝杨氏弹性模量的测定一、引言:金属杨氏弹性模量是反映物体在受外力作用下发生形变难易程度的重要物理量。
二、实验目的:1.学会用光杠杆法测量杨氏弹性模量;2.掌握光杠杆法测量微小伸长量的原理;3.学会用逐差法处理实验数据;三、实验原理:在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属丝受到外力后的伸长和缩短。
金属丝长L,截面积为S,沿长度方向施力F后,物体的伸长L,则在金属丝的弹性限度内,有:F S =Y?LL0,Y=FL0S?L.我们把Y称为杨氏弹性模量,单位N/m2S=14πd2,则有Y=4FLπd2?L如上图:tanθ≈θ=?L b ,tan2θ≈2θ=|n 2−n 1|D =?nD 解出:?L =b2D ?n四、实验仪器:杨氏弹性模量测量仪,螺旋测微器,游标卡尺,钢卷尺,望远镜五、实验内容:仪器调整加重2kg 杨氏弹性模量测定仪底座调节水平;平面镜镜面放置与测定仪平面垂直;将望远镜放置在平面镜正前方左右位置上;粗调望远镜:将镜面中心、标尺零点、望远镜调节到等高,望远镜上的缺口、准星对准平面镜中心,并能在望远镜上方看到尺子的像;细调望远镜:调节目镜焦距能清晰的看到叉丝,并先调节物镜焦距找到平面镜,然后继续调节物镜焦距并能看到尺子清晰的像。
测量计下加重2kg 时刻度尺的读数0n ;依次挂上kg 1的砝码,七次,计下7654321,,,,,,n n n n n n n ;依次取下kg 1的砝码,七次,计下'7'65'4'3'2'1,,,,,,'n n n n n n n ;用米尺测量出金属丝的长度L (两卡b口之间的金属丝)、镜面到尺子的距离D ;用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。
金属丝杨氏模量的测量实验报告

金属丝杨氏模量的测量实验报告一、实验目的1、学会用伸长法测量金属丝的杨氏模量。
2、掌握光杠杆测量微小长度变化的原理和方法。
3、学会使用游标卡尺、螺旋测微器等测量工具。
4、学会用逐差法处理实验数据。
二、实验原理1、杨氏模量的定义杨氏模量是描述固体材料抵抗形变能力的物理量。
对于一根长度为L、横截面积为 S 的金属丝,在受到沿长度方向的拉力 F 作用时,伸长量为ΔL。
根据胡克定律,在弹性限度内,应力(F/S)与应变(ΔL/L)成正比,比例系数即为杨氏模量 E,其表达式为:E =(F/S) /(ΔL/L) 。
2、光杠杆原理本实验中,由于金属丝的伸长量ΔL 非常微小,难以直接测量,因此采用光杠杆放大法进行测量。
光杠杆是一个带有可转动的平面镜的支架,其前脚放在固定的平台上,后脚放在金属丝的测量端。
当金属丝伸长时,光杠杆的后脚会随之下移,带动平面镜转动一个微小角度θ。
假设平面镜到标尺的距离为 D,光杠杆前后脚的垂直距离为 b,当平面镜转动θ 角时,反射光线在标尺上移动的距离为Δn,则有:ΔL =bΔn /(2D) 。
三、实验仪器1、杨氏模量测量仪包括支架、金属丝、砝码、光杠杆等。
2、米尺用于测量金属丝的长度 L。
3、游标卡尺用于测量金属丝的直径 d。
4、螺旋测微器用于更精确地测量金属丝的直径。
5、砝码若干用于对金属丝施加拉力。
6、望远镜和标尺用于观察和测量光杠杆反射光线在标尺上的移动距离Δn 。
四、实验步骤1、调整仪器(1)将杨氏模量测量仪放置在水平桌面上,调整底座螺丝,使立柱垂直。
(2)将光杠杆放在平台上,使前脚与平台的沟槽对齐,后脚放在金属丝的测量端,调整平面镜,使其与平台垂直。
(3)将望远镜放置在距离光杠杆约 15 米处,调整望远镜的高度和角度,使其能够清晰地看到标尺的像。
2、测量金属丝的长度 L用米尺测量金属丝的有效长度,测量多次,取平均值。
3、测量金属丝的直径 d(1)用游标卡尺在金属丝的不同位置测量直径,测量多次,取平均值。
金属丝杨氏模量的测量实验报告

金属丝杨氏模量的测量实验报告我们要了解一下什么是金属丝的杨氏模量。
简单来说,杨氏模量就是一个材料的抗变形能力,也就是说,它能抵抗多大的拉力或者压力。
而金属丝的杨氏模量就是衡量这种抗变形能力的指标。
那么,如何测量金属丝的杨氏模量呢?今天,我们就来详细介绍一下金属丝杨氏模量的测量实验。
我们需要准备一些实验器材。
主要包括:金属丝、千分尺、游标卡尺、扭力器、万能试验机等。
这些器材的作用分别是:测量金属丝的直径、长度;施加扭力;提供拉伸或压缩的力量。
有了这些器材,我们就可以开始进行实验了。
接下来,我们要进行的是金属丝直径和长度的测量。
我们用千分尺测量金属丝的直径,然后用游标卡尺测量金属丝的长度。
这两个测量过程都要非常精确,因为它们直接影响到我们后面计算杨氏模量的准确性。
在测量过程中,我们要确保操作规范,避免误差的产生。
测量完金属丝的直径和长度后,我们就要开始施加扭力了。
在这个过程中,我们要使用扭力器来给金属丝施加一个恒定的扭矩。
这个扭矩的大小要适中,既不能太大,导致金属丝变形;也不能太小,影响到我们测量杨氏模量的结果。
在施加扭矩的过程中,我们要时刻关注万能试验机的显示屏,以便及时调整扭矩大小。
当金属丝受到足够的扭矩后,我们就可以开始进行拉伸或压缩测试了。
在这个过程中,我们要确保万能试验机的拉伸或压缩速度要适中,以免对金属丝造成过大的应力。
我们还要观察金属丝在拉伸或压缩过程中的变化,以便及时调整试验参数。
在测试过程中,我们要保持耐心和细心,以确保实验结果的准确性。
经过一系列的实验步骤后,我们终于得到了金属丝的杨氏模量数据。
为了验证数据的准确性,我们还需要进行一些统计分析和计算。
具体来说,我们要计算金属丝在不同温度、湿度等条件下的杨氏模量变化情况,以便更全面地了解金属丝的性能特点。
金属丝杨氏模量的测量实验是一个相对复杂的过程,需要我们严格按照实验规程进行操作。
通过本次实验,我们不仅掌握了金属丝杨氏模量的测量方法,还加深了对金属材料性能的理解。
实验六 《金属丝杨氏弹性模量的测定》实验报告

图 1 光杠杆镜
材料,受拉力 F 拉伸时,伸长了Δ L ,其单位面积截面所受到的拉力 F 称为胁强,
S
而单位长度的伸长量 Δ L 称为胁变。根据胡克定律,在弹性形变范围内,棒状(或
L
线状)固体胁变与它所受的胁强成正比: F Y Δ L
S
L0
其比例系数 Y 取决于固体材料的性质,反应了材
8L0 D
像,其斜率就是杨氏模量。
②在本实验中,你是如何考虑尽量减小系统误差的?
答:本实验采用“对称测量”的方法来尽量减小系统误差,即拉力增加时,
测量一次,然后依次减少砝码即拉力减小时又测量一次,这样就尽可能的减小系
统误差。
③本实验中使用了哪些长度测量仪器?选择它们的依据是什么?它们的仪
器误差各为多少?
Δn=n-n
得对微小量的线性放大,提高了 L 的测量精度。
这种测量方法被称为放大法。由于该方法具有性能稳定、精度高,而且是线
性放大等优点,所以在设计各类测试仪器中有着广泛的应用。
考虑到金属丝受外力作用时存在着弹性滞后效应,也就是说钢丝受到拉伸力
作用时,并不能立即伸长到应有的长度 Li ( Li L0 Li ),而只能伸长到 Li Li 。 同样,当钢丝受到的拉伸力一旦减小时,也不能马上缩短到应有的长度 Li,仅缩 短到 Li+δLi。因此实验时测出的并不是金属丝应有的伸长或收缩的实际长度。 为了消除弹性滞后效应引起的系统误差,测量中应包括增加拉伸力以及对应地减
4.000 n4 5.600 n4 5.650 n4 5.625
5.000 n5 5.800 n5 5.900 n5 5.850 6.000 n6 6.150 n6 6.200 n6 6.175
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一 拉伸法测弹性模量
弹性模量是反映材料形变与内应力关系的物理量,是工程技术中机械构件选材时的重要参数。
本实验用拉伸法测弹性模量,研究拉伸正应力与线应变之间的关系。
【实验目的】
1.学习用拉伸法测量弹性模量的方法; 2.掌握“光杠杆”测量微小长度变化的原理; 3.学习用逐差法进行数据处理。
【实验原理】
当截面为S ,长度为L 的棒状(或线状)材料,受拉力F 拉伸时,伸长了L δ,其单位面积截面所受到的拉力F/S 称为正应力,而单位长度的伸长量L L /δ称为线应变。
根据胡克定律,在弹性形变范围内,棒状(或线状)固体正应力与线应变成正比,即
L F E S L
δ= 其比例系数E 称为材料的弹性模量。
它表征材料本身的性质, L
S FL
E δ=
(1-1)
本实验是测定某一种型号钢丝的弹性模量,其中F 、S 、L 都可用常规的测量方法测量,但L δ却难以用常规方法精确测定,故采用放大法——“光杠杆”来测定这一微小的长度改变量L δ。
光杠杆镜如图1-1所示,图1-2是光杠杆测微小长度变化量的原理图。
左测曲尺状物为光杠镜,M 边是反射镜,b 边即所谓光杠杆的短臂的杆长,O 端为b 边的固定端,b 边的另一端则随被测钢丝的伸长、缩短而下降、上升,从而改变了M 镜法线的方向,使得钢丝原长为L 时,位于图右侧的望远镜从M 镜中看到的读数为n 1;而钢丝受力伸长后光杠镜的位置变为虚线所示,此时望远镜上的读数则为n 2。
这样,钢丝的微小伸长量L δ,对应有光杠镜的角度变化量θ,而对应的读数变化则为12n n n δ=-。
从图1-2中可见:
b
L
δθ≈
(1-2) 212n n n
B
B
δθ-≈
= (1-3)
将(1-2)式和(1-3)式联立后得:
2b
L n B
δδ=
(1-4) 式中21n n n δ=-,相当于光杠杆的长臂端B 的位移。
由于B>> b ,所以n L δδ,从而获得对微小量的线性放大,提高了L δ的测量精度,这被称为放大法。
n 0
n 1
鉴于金属受外力时存在着弹性滞后效应,即钢丝受到拉伸力作用时,并不能立即伸长到应有的长度L i (L i =L+ΔL i ),而只能伸长到i i L L δ-。
同样,当钢丝受到的拉伸力一旦减小时,也不能马上缩短到应有的长度L i ,仅缩短到L i +δL i 。
因此,为了消除弹性滞后效应引起的系统误差,测量中应包括增加拉伸力以及对应地减少拉伸力这一对称测量过程。
因为只要将相应的增、减测量值取平均,就可以消除滞后量i L δ的影响。
[]()()[]
i i i i i i L L L L L L L L L L L ∆+=+∆++-∆+=+=δδ2
121
减增
【实验仪器】
杨氏模量测定仪;螺旋测微器,钢卷尺和钢板尺。
【注意事项】
1.平面镜上有灰尘、污迹时,用擦镜纸擦去,切勿用手指、粗布擦,以免镜面起毛,影响观察和读数的准确。
2.调试仪器时,切记要用手托住移动部分,然后旋松锁紧手轮,以免相互撞击。
3.各手轮及可动部分如发生阻滞不灵现象时,应立即检查原因,切勿强扭,以防损坏仪器结构或机件。
4.钢丝的两端一定要夹紧,一来减小系统误差,二来避免砝码加重后拉脱而砸坏实验装置。
在测读伸长变化的整个过程中,不能碰动望远镜及其安放的桌子,否则重新开始测读。
被测钢丝一定要保持平直,以免将钢丝拉直的过程误测为伸长量,导致测量结果缪误。
5.在加减砝码时动作要轻慢,等钢丝不晃动并且稳定之后再进行测量。
【实验步骤】 1.仪器的调整
(1)为了使金属丝处于铅直位置,调节杨氏模量测定仪地脚螺丝,使两支柱铅直。
(2)在砝码托盘上先挂上1kg 砝码使金属丝拉直(此砝码不计入所加作用力F 之内)。
(3)将光杠杆镜放在中托板上,两前脚放在中托板横槽内,后脚放在固定钢丝下端夹套组件的圆柱形套管上,并使光杠杆镜镜面基本垂直或稍有俯角,如图1-1所示。
2.望远镜调节
调节望远镜能看清标尺读数。
包括下面三个环节的调节: (1)调节目镜,看清十字叉丝。
可通过旋转目镜来实施。
(2)调节物镜,看清标尺读数。
将望远镜置于距光杠杆镜两米左右处,并于镜面基本等高,对准光杠杆镜面,然后在望远镜的外侧沿镜筒方向看过去,观察光杠杆镜面中是否有标尺像:若有,就可以从望远镜中观察;若没有,则要微动光杠杆或标尺,直到在光杠杆镜面中看到标尺像后,然后再从目镜观察,缓缓旋转调焦手轮,使物镜在镜筒内伸缩,直至在望远镜中看到清晰的标尺刻度为止。
3.测量
(1)用1千克砝码挂在钢丝下端使钢丝位置拉直,然后每加上1千克砝码,读取一次数据,得012345678,,,,,,,,n n n n n n n n n ,这是增加拉力过程。
紧接着再每次撤掉1千克砝码,读取一次数据,得
01234567
n ,n ,n ,n ,n ,n ,n ,n '''''''',这是减力过程。
(2)测量光杠杆镜前后脚距离b 。
把光杠镜的三只脚在白纸上压出凹痕,用尺画出二前脚的连线,再用钢板尺量出后脚到该连线距离。
(3)测量钢丝直径D 。
用螺旋测微器在钢丝的不同部位测5次,取其平均值。
(4)测光杠镜镜面到望远镜附标尺的距离B 。
用钢卷尺量出光杠镜镜面到望远镜附标尺的距离。
(5)用钢卷尺测量钢丝原长L 。
【实验结果与数据处理】
2.
当%5.0,80.9=∆=F
N F F
时, 2
8F L FLB E S L D b n
πδ⋅===⋅∆ (N/m 2) =⋅=∆E E E E (N/m 2) =∆±=E E E (N/m 2)
【思考题】
1.从E 的不确定度计算式分析哪个量的测量对E 的结果的准确度影响最大?测量中应注意哪些问题?
2.螺旋测微计使用注意事项是什么?棘轮如何使用?测微计用毕后应作何处置?
附:螺旋测微计
1.用途和构造
螺旋测微器(又叫千分尺)是比游标卡尺更精密的测量长度的工具。
可用来测量精密零件尺寸、金属丝的直径和薄片的厚度;也可固定在望远镜、显微镜、干涉仪等仪器上,用来测量微小长度或角度。
用它测长度可以准确到0.01mm ,测量范围为几个厘米。
螺旋测微器的构造如图1-3所示。
螺旋测微器的小砧的固定刻度固定在框架上、旋钮、微调旋钮和可动刻度、测微螺杆连在一起,通过精密螺纹套在固定刻度上。
2.原理和使用
螺旋测微器是依据螺旋放大的原理制成的,即螺杆在螺母中旋转一周,螺杆便沿着旋转轴线方向前进或后退一个螺距的距离。
因此,沿轴线方向移动的微小距离,就能用圆周上的读数表示出来。
可动刻度有50个等分刻度的,也有25分度和100分度的。
现以可动刻度有50个等分刻度的为例,其精密螺纹的螺距是0.5mm ,可动刻度旋转一周,测微螺杆可前进或后退0.5mm ,因此旋转每个小分度,相当于测微螺杆前进或后退这0.5/50=0.01mm 。
可见,可动刻度每一小分度表示0.01mm ,所以以螺旋测微器可准确到0.01mm 。
由于还能再估读一位,可读到毫米的千分位,故又名千分尺。
实验室常用千分尺的示值误差为0.004mm 。
3.测量和读数方法
测量时,当小砧和测微螺杆并拢时,可动刻度的零点若恰好与固定刻度的零点重合,旋出测微螺杆,并使小砧和测微螺杆的面正好接触待测长度的两端,那么测微螺杆向右移动的距离就是所测的长度。
这个距离的整毫米数由固定刻度上读出,小数部分则由可动刻度读出。
固定分度的读数准线
(a) (b)
读数时,依照读数准线读取数值。
先从固定刻度上读取0.5mm 以上的部分,在从可动刻度上读取余下尾数部分(估计到最小分度的十分之一,即1/1000mm ),然后两者相加。
例如图1-4(a)中读数为L 1=1.5mm+0.283mm=1.783mm; 图1-4(b)中读数为L 2=1.5mm+0.280mm=1.780mm;
4. 注意事项
(1)测量时,在测微螺杆快靠近被测物体时应停止使用旋钮,而改用微调旋钮,待发出“咔、咔”声时,即可进行读数,避免产生过大的压力,既可使测量结果精确,又能保护螺旋测微计。
(2)在读数时,要注意固定刻度尺上表示半毫米的刻线是否已经露出。
(3)读数时,千分位有一位估读数字,不能随便扔掉,即使固定刻度的零点正好与可动刻度的某一刻度
图1-4 螺旋测微计读数方法
图1-3 螺旋测微计
线对齐,千分位上也应读取为“0”。
(4)当小砧和测微螺杆并拢时,可动刻度的零点与固定刻度的零点不相重合,将出现零误差,应加以修正,即在最后测长度的读数上去掉零误差的数值。
(5)测量完毕,应使小砧和测微螺杆间留出一点空隙,以免因热膨胀而损坏螺纹。
并放入盒内,防止受潮。