最新第二章 可靠性基本概念

合集下载

第2章可靠性的的定义及评价指标要点

第2章可靠性的的定义及评价指标要点

第2章可靠性的的定义及评价指标要点可靠性是指系统在规定的时间内,能够按照规定的功能要求正常运行的能力。

在现实世界中,几乎所有的系统都有一定的可靠性要求,特别是对于一些关键性的系统,如航空、核能等领域。

因此,正确评价和定义可靠性是非常重要的。

一、可靠性的定义可靠性的定义是指系统在规定的时间内正常工作的概率或能力。

具体来说,可靠性可以分为两个方面来考虑,在时间维度上是指系统故障发生的概率,也就是系统无故障的能力;在空间维度上是指系统故障修复的时间,也就是系统恢复正常工作的速度。

1. 故障率(Failure Rate)故障率是评估系统可靠性的重要指标之一,它指的是单位时间内系统出现故障的概率。

通常用失效时间与故障次数的比值来表示,即故障率=故障次数/工作时间。

故障率越低,说明系统的可靠性越高。

2.平均无故障时间(MTTF)平均无故障时间是指系统在连续工作一段时间内,平均无故障发生的时间。

它是衡量系统可靠性的重要参数之一,也是故障率的倒数。

MTTF 越长,说明系统可靠性越高。

3.平均修复时间(MTTR)平均修复时间是指系统在出现故障后,平均修复所需的时间。

MTTR 越短,说明系统的可靠性越高,因为故障能够及时修复,系统恢复正常运行。

4. 可用性(Availability)可用性是指系统在规定时间内能够正常工作的概率,也可以理解为系统处于正常工作状态的时间占总时间的比例。

可用性是衡量系统可靠性的重要指标之一,它包含了故障率、MTTR等因素的影响。

可用性越高,说明系统的可靠性越好。

5.故障间隔时间(MTBF)故障间隔时间是指系统连续工作一段时间内出现故障的间隔时间。

它是衡量系统可靠性的重要参数之一,也是MTTF与MTTR之和。

MTBF越长,系统的可靠性越高。

6. 故障概率(Probability of Failure)故障概率是指系统在一段时间内出现故障的概率。

故障概率可以通过故障率与总工作时间之积来计算得到。

可靠性的基本概念

可靠性的基本概念
由于环境介质、应力共同作用引 起的低应力破断
由于周期(交变)作用力引起的 低应力破坏
高温
由于两物体接触表面在接触应力 作用下有相对运动造成材料流失 所引起的一种失效方式
由于有害环境气氛的化学及物理 化学作用所引起
(2)按失效的时间特性,可分为突然失效和渐变失效。
(3)按失效原因,可分为早期失效、偶然失效和耗损失效。
Rˆ (t1
t2
|
t1 )
Ns (t1 t2 ) Ns (t1)
例:某批电子器件有1000个,开始工作至500h内有 100个 损坏,工作至1000h共有500个损坏,求该批 电子器件工作到500h和1000h的可靠度。
2.失效率 (t)
失效率(Failure Rate)又称为故障率,其定义为“工作到某
理解这一定义应注意以下几个要点:
(1)产品:即可靠性的对象,包括系统、机器、零部件等。 (2)规定的条件:一般是指产品使用时的环境条件,如载荷、
温度、压力、湿度、辐射、振动、冲击、噪声、磨损、 腐蚀等等。 (3)规定的时间:机械产品可靠性明显的与时间有关,产品 的可靠性应对使用期限有明确的规定。 (4)规定的功能:在设计或制造任何一种产品时,都赋予它 一定的功能。例如机床的功能是进行机械加工。 (5)概率:概率是故障和失效可能性的定量度量,其值在0~ 1之间,如可靠度为99.9%或99.99%等。
不可修复产品:失效=报废
失效分类
(1)机械零部件的失效按失效形式划分为:变形失效、断 裂失效和表面损伤失效三大类型。
序号
1 2
3
失效类型 变形失效
断裂失效
表面损伤 失效
表2-1 失效形式分类
具体失效形式 过量弹性变形

第二章__可靠性的基本概念

第二章__可靠性的基本概念

2.3 可靠性尺度
表示产品总体可靠性水平高低的各种可靠性指
标称为可靠性尺度。
2.3.1 可靠性概率指标及其函数 1. 可靠度与失效概率
可靠度可定义:产品在规定的条件下和规定的时间内,完成规 定功能的概率,通常以“R”表示。考虑到它是时间的函数,又 可表示为R(t) ,称为可靠度函数。 如果用随机变量T表示产品从开始工作到发生失效或故障的 时间,则该产品在某一指定时刻t的可靠度为:
tr
r
失效率是产品可靠性常用的数量特征之一,失效率愈高,则 可靠性愈低。失效率的单位用单位时间的百分数表示。例如:
1 -1。比如,某型号滚动轴承的失 效率为 % 10 3 h 1 , km,次 λ(t)=5*10-5/h,表示105个轴承中每小时有5个失 效,它反映 了轴承失效的速度。
f (t ) F (t ) R(t ) f (t ) d ln Rt (t ) R(t ) R(t ) R(t ) 1 F (t ) dt
0 R(t ) e
( t ) dt
t
——可靠度函数R(t)的一般方程
说明:
(1)R(t),F(t),f (t),λ(t)可由1个推算出其余3个。 (2)R(t),F(t)是无量纲量,以小数或百分数表示。 f(t), λ(t)是 有量纲量。 当λ(t)为恒 定值时:
① 早期失效
一般为产品试车跑合
λ(t )
早期失效期
偶然失效期
阶段。由于材料缺陷、制造工艺缺 陷、检验差错等引起。出厂前应进 行 严格的测试,查找失效原因,并 采取 各种措施,发现隐患,纠正缺 ② 正常运行期
损耗失效期
机械产品
λ=常数
电子产品
tm t

可靠性基础知识

可靠性基础知识

1. 可靠性的基本概念1.1 可靠性(Reliability):产品在规定条件下和规定时间内完成规定功能的能力称为产品的可靠性。

1.2 广义可靠性(Dependability):广义可靠性是可靠性性能、可维护性性能和维护支持性能的综合描述。

1.3 可维护性(Maintainability):当在给定条件下和使用规定程序及资源进行维护时,产品保持或恢复到执行规定功能的能力。

1.4 维护支持性(Maintenance support performance):维护机构在规定条件下,按照给定的维护方针为产品提供维护所需资源的能力。

1.5 评定产品可靠性时的注意事项:(a) 产品的可靠性与规定条件分不开,在评价产品的可靠性时,尤其应注意其工作条件与所规定的条件是否一致。

(b) 产品的可靠性与规定时间密切相关。

(c) 产品的可靠性与规定功能有关,它要对产品的所有技术性能指标作出综合性评价。

2. 可靠性常用指标2.1 平均故障间隔时间MTBF(Mean Time Between Failure)指相邻两故障间正常工作时间,也叫平均无故障工作时间,它是衡量产品可靠性的主要指标。

华为公司的质量方针提出“实现产品无故障工作2000天”,这是个高标准要求,要靠我们大家共同努力来实现。

2.2 平均故障前时间MTTF(Mean Time To Failure)指系统从开始工作到失效这一段时间的平均值。

所谓失效是指产品执行规定功能能力的终止。

2.3 平均修复时间MTTR(Mean Time To repair)对产品实施修复所需时间的平均值,它反映了产品的可维护性。

2.4 可用度A(Availability)产品工作时间与总时间之比。

若不考虑产品的储存时间和闲置时间,可用度A可用如下公式表示:A=MTBF/(MTBF+MTTR)可用度取决于一个产品的可靠性性能、可维护性性能和维护支持性能的综合状况,所以要提高产品的可用度,应尽可能同时改善产品的可靠性和维修性。

2 可靠性基本概念及其度量

2 可靠性基本概念及其度量

t
i 1
N
i
2.4可靠性寿命特征
• 平均寿命能够说明一批产品寿命的平均水平,而寿命方差 和寿命标准差则能够反映产品寿命的离散程度。产品寿命 方差的定义为:
(t- ) f (t )dt t 2 f (t )dt 2
2 0 0

2

• 如果n个产品抽样测试的寿命分别为t1,t2,…,tn,产品 寿命平均值与方差分别为:
ˆ (t ) n(t t ) n(t ) n f N t N t
F (t ) f (t )dt
0 t
单位时间内产品寿命 在t到t+Δt的产品数占 总产品数的百分比。
2.3可靠性函数
• 4 故障率 工作到t时刻尚未失效的产品,在该时刻t后的单位时 间内发生失效的概率,称之为产品的故障率。 设t=0时有N个产品正常工作,到t时刻有N-n(t)个产品 正常工作,至t+△t时刻,有N-n(t+△t)个产品正常工作
2.2寿命剖面与任务剖面
1.寿命剖面 产品从制造到寿命终结或退出使用这段时间内所经历的 全部事件和环境的时序描述。它包含一个或多个任务剖面。 通常把产品的寿命剖面分为后勤和使用两个阶段。
贮 存 检 测 任 务 剖 面
采 购
包 装
运 输
运 输
发 送
使 检用 测贮 存
运 输
运 输
维 修
运 输
报 废
后勤阶段 寿命剖面内的事件
1 n ti n i 1 1 n 2 (ti )2 n 11
1 n (ti )2 n 11


1

2.4可靠性寿命特征
• 2.可靠寿命:指给定的可靠度所对应的产品工作时间。 • 3.中位寿命:当可靠度等于0.5对应的工作时间。 • 4.特征寿命: R(t ) e1

可靠性基本概念、参数体系及模型建立

可靠性基本概念、参数体系及模型建立

可靠性基本概念
寿命剖面与任务剖面
寿命剖面:产品从制造到寿命终结或退出使用这段时间内所经历 的全部事件和环境的时序描述
关键因素:事件、事件顺序、持续时间、环境和工作方式 包含一个或多个任务剖面,分为后勤和使用两个阶段 产品指标论证时就应提出
任务剖面:产品在规定任务这段时间内所经历的事件和环境的 时序描述
20
可靠性模型建立
基本可靠性模型和任务可靠性模型
正确区分系统原理图、功能框图、功能流程图和可靠性框图 正确建立系统基本可靠性模型和任务可靠性模型
基本可靠性模型:估计产品及其组成单元可能发生的故障引起的维修及保障 要求,全串联模型 任务可靠性模型:估计产品在执行任务过程中完成规定功能的概率,描述完 成任务过程中产品各单元的预定作用并度量工作有效性
可靠性建模方法
可靠性框图、网络可靠性模型 故障树模型、事件树模型 马尔科夫模型、Petri网模型、GO图模型 19
可靠性模型建立
可靠性框图模型
定义:为预计或估算产品的可靠性而建立的可靠性方框图和数学 模型 组成:代表产品或功能的方框、逻辑关系和连线、节点组成
节点:分为输入节点、输出节点和中间节点 输入节点:系统功能流程的起点 输出节点:系统功能流程的终点 连线:有向、无向,反映系统功能流程的方向,无向意即双向
n
RS = e
−λt
(1 +
RD λ t )
28
可靠性模型建立
典型可靠性模型
桥联系统:可靠性模型逻辑描述中出现了电路中桥式结构逻辑关 系,其数学模型较为复杂,不能建立通用的表达式 网络模型:从抽象的角度看,网络就是一个图,由一些节点及连 接节点的弧组成,应用图论理论进行分析
29
可靠性模型建立

第二章 可靠性基本概念

第二章 可靠性基本概念
到t时刻仍在正常工作的产品数 N n(t ) 函数R(t)为: R(t ) 试验的产品总数 N 式中 N — t = 0时,在规定条件下进行工作的产品数;
n(t) — 在0到t时刻的工作时间内,产品的累计故障数。
例:有50个在恒定载荷条件下运行的零件,运行记 录如表所示,求这批零件在100小时,400小时时 的可靠度。
寿命方差和寿命标准差
• 平均寿命只能够说明一批产品寿命的平均水平, 而寿命方差和标准差反映产品寿命的离散程度

n 1 2 ( t ) i n 1 i 1
可靠寿命、中位寿命和特征寿命
• 由可靠度反求相应的工作寿命(时间) – 可靠寿命
• 指可靠度等于给定值r时产品的寿命
– 中位寿命
– 取决于设计技术、制造技术、零部件材料和结构等
– 产品的开发者可以控制
• 使用可靠性
– 产品在实际使用过程中表现出的可靠性
– 包括使用维修方法、操作人员的技术水平等 – 除固有可靠性的影响因素外,还要考虑安装、操作使用、维修保 障等方面因素的影响
可靠性基本概念—维修性
• 维修性
– 在规定条件下使用的产品,在规定时间内,按 规定的程序和方法进行维修时,保持或恢复到 完成功能的能力
• r=50%时产品的可靠度寿命
– 特征寿命 1 r e 0.368时的可靠寿命 •
可靠性指标间的关系
例子2
• 已知某产品的失效率为常数, (t ) 0.25 10 4 / h 可靠度函数 R(t ) e t ,求可靠度为99%的可 靠寿命,以及中位寿命和特征寿命 • 解:对可靠度函数两边去对数,即
• 有时也用与其相当的“动作次数”、“转数”、 “距离”等的倒数

第二章-结构可靠性的基本概念和原理

第二章-结构可靠性的基本概念和原理

若结构或结构构件达到正常使用或耐久性能的某项规
定限值,则认为其达到正常使用极限状态。如:影响正常
使用或外观的变形;影响正常使用或耐久性能的局部损坏。
(3)整体性极限状态(抗连续破坏极限状态)
结构由于局部损坏而达到其余部分将发生连续破坏(或
连续20倒21/塌4/)9状态限值。
5
2.2 可靠度基本概念
第二章:结构可靠性的基本概念和原理
2.2 可靠度基本概念
2.2.1 极限状态
1、工程结构的功能函数
无论是房屋、桥梁、隧道等工程结构设计时,应使其在
使用期内,力求在经济合理前提下满足下列各项要求:
(1)能承受正常施工和正常使用期间可能出现的各种作用
(包括荷载及外加变形或约束变形)—结构的安全性;
(2)在正常使用时具有良好的性能—结构的适用性;
N(S,S )
对R,S作标准化变



S S S
R R
R
显然, Sˆ , Rˆ 均服从 N (0 ,1分) 布.
Z R ˆR R (S ˆSS ) 0
c
o
s
S

2 R
2除上式得
S
S ˆcosSR ˆcosˆR0
c
o
s
R
S
2 R
2 S
R
2 R
2 S
2021/4/9
14
由解析几何知,在标准正态化坐标系SˆOˆ Rˆ 中,上式为极 限状态直线的标准法线式方程。 为原点 O ˆ 到极限状态 直线的法线距离 Oˆ p (见图2-4)。cosS,cosR为法线对各 坐标向量的方向余弦。 的几何意义为标准正态坐标 系中原点 O ˆ 到极限状态直线的最短距离。对结构极限 状态方程为若干相互独立、正态变量构成非线性方程 情况,同样可证明 的合理近似取值为标准正态坐标 系中原点 O ˆ 到极限状态曲面的最短距离。

2 可靠性基本概念及其度量

2 可靠性基本概念及其度量

dR(t ) f (t ) (t ) R(t ) R(t )
R(t ) exp[ (t )dt ]
o
t
(t )dt ln R(t ) |
0
t
t 0
f(t)
f (t ) (t ) exp[ (t )dt}
0
f(t) R(to) F(to)
t
R(t ) exp(t ) F (t ) 1 exp(t ) f (t ) exp(t )
n(t t ) n(t ) n ˆ f (t ) N t N t
F (t ) f (t )dt
0 t
单位时间内产品寿命 在t到t+Δt的产品数占 总产品数的百分比。
2.3可靠性函数
• 4 故障率 工作到t 时刻尚未失效的产品,在该时刻 t 后的单位时 间内发生失效的概率,称之为产品的故障率。 设t=0时有 N个产品正常工作,到t 时刻有 N-n(t) 个产品 正常工作,至t+△t时刻,有N-n(t+△t)个产品正常工作
2.4可靠性寿命特征

如果仅考虑首次失效前的一段工作时间,那么可将 不可修和可修产品统称为平均寿命,记作θ。若产品失 效密度函数f(t)已知,由概率论中数学期望的定义,有:
tf (t )dt
0

tf (t )dt
0

tdF (t ) tdR(t )
0 0
t
i 1
N
i
2.4可靠性寿命特征
• 平均寿命能够说明一批产品寿命的平均水平,而寿命方差 和寿命标准差则能够反映产品寿命的离散程度。产品寿命 方差的定义为:
(t- ) f (t )dt t 2 f (t )dt 2

公共基础知识可靠性基础知识概述

公共基础知识可靠性基础知识概述

《可靠性基础知识综合性概述》一、引言在当今科技飞速发展的时代,各种产品和系统的可靠性成为人们关注的焦点。

从日常生活中的电子产品到工业领域的大型设备,从交通运输工具到航天航空系统,可靠性都起着至关重要的作用。

可靠性不仅关系到产品的质量和性能,还直接影响着人们的生命财产安全和社会的稳定发展。

因此,深入了解可靠性基础知识,对于提高产品和系统的质量、降低风险、保障安全具有重要的意义。

二、可靠性的基本概念1. 定义可靠性是指产品在规定的条件下和规定的时间内,完成规定功能的能力。

这里的“规定条件”包括使用环境、操作方法、维护保养等;“规定时间”是指产品的使用寿命或工作时间;“规定功能”则是产品设计时所确定的功能和性能指标。

2. 指标(1)可靠度可靠度是产品在规定条件下和规定时间内,完成规定功能的概率。

通常用 R(t)表示,其中 t 为时间。

可靠度是可靠性的一个重要指标,它反映了产品在一定时间内保持正常工作的可能性。

(2)失效率失效率是指产品在某一时刻 t 后的单位时间内发生失效的概率。

通常用λ(t)表示。

失效率是衡量产品可靠性的另一个重要指标,它反映了产品在使用过程中的失效速度。

(3)平均寿命平均寿命是指产品的寿命的平均值。

对于不可修复产品,平均寿命是指产品从开始使用到失效的平均时间;对于可修复产品,平均寿命是指产品在两次相邻故障之间的平均时间。

三、可靠性的核心理论1. 可靠性模型可靠性模型是用于描述产品或系统的可靠性结构和关系的数学模型。

常见的可靠性模型有串联模型、并联模型、混联模型等。

(1)串联模型串联模型是指产品或系统由多个子系统组成,只有当所有子系统都正常工作时,整个产品或系统才能正常工作。

串联系统的可靠度等于各个子系统可靠度的乘积。

(2)并联模型并联模型是指产品或系统由多个子系统组成,只要有一个子系统正常工作,整个产品或系统就能正常工作。

并联系统的可靠度等于 1 减去各个子系统失效率的乘积。

(3)混联模型混联模型是指产品或系统由串联和并联子系统组成的复杂结构。

第二章 可靠性基本理论

第二章 可靠性基本理论

MTTF与MTBF的理论意义实际上是一样的,故 通称为平均寿命。
1 N 对于小样本不分组,平均寿命θ: ti N i 1
对于大样本将全部寿命数据按一定时间间隔分 组,取每组寿命数据的中值ti作为该组的寿命,则平 均寿命θ:
1 n (ti ni ) N i 1
△ni--第i组寿命数据的个数
第二段:偶然失效期,失效率基本保持不变, (相当中年寿命期) 失效原因:由于不能控制也不能预测的缺陷。 尽量增长第二段时间,使产品失效率低于规定值。 第三段:耗损失效期,失效率为递增型。(相 当老年寿命期) 失效原因:耗损、老化、磨损、疲劳等。 充分合理的预防性维修计划、提高维修性设计、 及时更换易损件,使失效率不高于规定值。
t2 2
2
t 2
2
t2 t2 2 2 1 e 0
R(t ) 1 F (t ) e
f (t ) t e (t ) t2 R(t ) e 2
t2 2
t
(t ) ct , t≥0, c为常数, 例2-7: 设某产品的故障率为: 求该产品的故障密度函数 f(t) 与可靠度函数R(t)。
当产品总体的失效密度函数f(t)已知,N→∞时,
E ( T ) tf ( t ) dt 产品的平均寿命: 0 0 R(t )dt
当λ(t)=λ=常数时,
t 0 R (t ) dt 0 e dt
1

四、可靠寿命、中位寿命、特征寿命
F (500) 1 R(500) 1 0.909 0.0909
F (1000) 1 R (1000) 1 0.5181 0.4818
例2-3 现有某种零件100个,已工作了6年,工作满5 年时共有3个失效,工作满6年时共有6个失效。试 计算这批零件工作满5年时的失效率。

最新可靠性基础知识介绍

最新可靠性基础知识介绍

预防性维修:也称维护,是根据产品功能随时 间衰减的特性及可能出现的故障采取预防性措 施,以延长产品的寿命。 恢复性维修:是产品发生故障后,使其产品尽 可能恢复故障前的状态。 产品可靠性和可维修性,是产品设计的两个重 要设计特性。在产品的方案论证、评审中,就 要对此提出要求,并落实到产品的设计中。 3、可用性 可用性定义:在要求的外部资源得到保证的前
4、安全性 安全性定义:是不发生危险事件的能力。导致 以下后果发生的事件为危险事件: ①人员伤亡; ②财产损失; ③环境破坏。 5、全寿命周期费用LCC 全寿命周期费用:是指在系统的整个寿命周期 内,为获取并维持系统的运营(包括处置)所 发生的全部费用。全寿命周期费用分布见图1。
图1
三、可靠性的常用度量
灯泡不能正常点亮的故障机理。 2、浴盆曲线 大多数产品故障概率随时间变化的曲线,呈浴 盆形状,故将故障率曲线,称“浴盆曲线”。
①早期故障期 是产品刚刚投入使用的初期,此时故障率较高, 故障缺陷容易暴露,产品的早期失效一般是由 于设计缺陷、制作缺陷、材料缺陷、安装调整 不当等原因引起。 出现的早期故障可以通过加强工艺措施、质量 管理措施及环境应力筛选等设计措施加以防止。 ②偶然故障期 此时已将早期失效的故障降到最低,发生的故 障是由偶然因素引起,在此区域性能基本稳定
例:设t=0时,有10000只灯泡投入工作,当t= 365天时,有300只灯泡坏了,计算工作一年后 灯泡的可靠度? 10000 300 R(t)= =0.97
10000
例:某电子元件110个,在同样的条件下进行 试验,试验结果见下表,计算电子元件的可靠 度R(t)、累计故障(失效)分布函数F(t) 各是多少?见下表1:
No
由上例可知 ,计算灯泡的累计故障函数,即不 可靠度为: F(t)=1-0.97=0.03 3、故障概率密度函数f 故障概率密度函数f(t),是累计故障分布函数 F(t)的导数,它表示在t时刻后的一个单位时间 内产品发生故障的概率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 可靠性基本概 念
学习目标
1. 准确理解可靠性定义 2. 掌握可靠性的概率指标和寿命指标 3. 认识产品失效的一般规律
可靠性基本概念—维修性
• 维修性
– 在规定条件下使用的产品,在规定时间内,按 规定的程序和方法进行维修时,保持或恢复到 完成功能的能力
– 为了保持产品的可靠性而采取的措施 – 实际的维修工作,包括检查、修理、调整和更
– 在设计产品时用数学方法来计算和预测其可靠性 – 在产品生产出来后用试验方法等来考核和评定其可靠性
故障及其分类
• 故障及其分类 产品或产品的一部分不能或将不能完成预定功
能的事件或状态,称之为故障。
故障的表现形式,叫做故障模式。 引起故障的物理化学变化等内在原因,叫做故障机理。
• 不可修产品(如电子元器件):失效
这个过程中故障率最低
• 平均寿命θ
平均寿命
对不可修复产品的平均寿命是指产品失效前的平
R(t)F(t)1
可靠度函数与不可靠度函数的性质
R(t) 与 F (t) 的性质如下表 所示:
取值范围 单调性 对偶性
R (t )
[0,1] 非增函数
1 F(t)
F (t)
[0,1] 非减函数
1 R(t)
失效概率密度
• 失效概率密度f(t)
➢ 产品工作到时刻t后,单位时间内发生失效的概率;
➢ 累计失效概率对时间t的导数。依定义可知,它也是是时 间的函数,即
式中 N — t = 0时,在规定条件下进行工作的产品数; n(t) — 在0到t时刻的工作时间内,产品的累计故障数。
例:有50个在恒定载荷条件下运行的零件,运行记 录如表所示,求这批零件在100小时,400小时时 的可靠度。
时间t 10 25 50 100 150 250 350 400 500 600 700 1000 1200 1500 2000
• 产品的故障按其故障的规律可以分为两大类:
–偶然故障 –渐变故障
可靠度及可靠度函数
• 可靠度R(t)及可靠度函数
产品在规定的条件下和规定的时间内,完成规 定功能的概率称为可靠度。依定义可知,可靠度 函数R(t)为:R(t)到t时试 刻验 仍的 在产 正品 常 品总 工 数 数 作 NN的 n(t)产
因 此 ,R(t)、F(t)与f(t)之 间 的 关 系 如 图 所 示 。
f(t)
f(t)
F(to)
R(to)
to
t
图 R(t)、F(t)与f(t)关系
• 故障率(又叫失效率)
工作到某时刻尚未失效的产品,在该时刻后 单位时间内发生失效的概率,称之为产品的失 效率。 用数学符号表示为:
(t)在时间 (在 t,t 时t刻 t)仍 内正 每常 单工 位作 时的 间产 失品 品 效数 数 的产
f(t)dF(t) F'(t)

dt
f (t) F(t t)F(t)
t
在时间(t,t
t)内每单位时间失效品 的数 产 试验的产品总数
n(t t)n(t) n(t)
Nt
Nt
累积失效分布函数
• 可靠度函数与累积失效分布函数的性质
由 密 度 函 数 的 性 质 f(t)dt1可 知 : 0
t
R(t)1F(t)10f(t)dtt f(t)dt
人类健康的曲线
(t)
A
为革命健康工作五十年
年幼体弱
年富力强 图人类典型的健康曲线
B
年老体衰
t
故障率曲线
• 浴盆曲线
大多数产品的故障率随时间的变化曲线形似浴盆,称之 为浴盆曲线。由于产品故障机理的不同,产品的故障率
随时间的变化大致可以分为三个阶段:
故障率曲线
早期失效阶段
➢ 特点:失效率高,随着使用时间的增加,失效率迅速降低 ➢ 原因:设计、制造、原材料等缺陷引起
换零部件等
可靠性与经济性的关系
• 经济性
– 主要指研制产品的投资费用 – 可靠性越高,投资费用越高 – 可靠性越高,维修费用和停工损
失越少 – 考虑成本的极小值
可靠性指标
可靠性指标:衡量可靠性的定量化尺度,也是描绘产品可 靠性特性的参数
概率指标:可靠度、累计失效概率、失效率 寿命指标:平均寿命、可靠寿命、中位寿命、特征寿命 维修性:维修度、平均修复时间、有效度和重要度等 统一的可靠性指标
失效数 4 2 3 7 5 3 2 2 0 0 0
0
1
1
0
累计失 效数
4
6
9 16 21 24 26 28 28 28 28
28
29
30
30
仍工作 零件数
46 44
41
34
29
26
24
22 22 22
22
22
21
20
20
R(10)0340.68 R(40)0220.4450 Nhomakorabea50
• 可靠度性质
可靠度是一个非增函数。随着工作时 间的延长而逐渐减小。
偶然失效阶段
➢ 特点:失效率低且稳定 ➢ 原因:应力条件突然变化,促使产品偶然失效 ➢ 最佳工作时间
耗损失效阶段
➢ 特点:失效率随着时间的延长迅速上升 ➢ 原因:材料的老化、疲劳、机械过渡磨损等因素引起
故障率曲线
产品寿命
• 产品寿命是指产品工作到规定状态的工作期限 • 使用寿命:是指产品处于最佳状态的工作时间的长短。在
• 失效率单位通常用时间的倒数表每示110。00^06个h产,品只工有作一个
失效
1 菲 1 特 9 0 /h 1 6 0 /13 h 0
• 有时也用与其相当的“动作次数”、“转数”、 “距离”等的倒数
故障率与可靠度、故障密度函数的关系
(t) n (t) n (t) Nf(t) (N n (t) ) t N t N n (t) R (t) f (t) n(t) Nt R(t)Nn(t) N
范围: 0R(t)1
累计失效概率(不可靠度)
• 累积失效概率 F(t)
产品在规定的条件下和规定的时间内,丧失规定功能的 概率称为累积失效概率(又叫不可靠度)。 依定义可知,产品的累积故障概率是时间的函数,即
F(t) 到t试 时验 刻的 失产 效品 的总 产数 品 n数 N(t) 显然,以下关系成立:
n(t) (Nn(t))t
式中 (t) ——故障率; n(t)——t 时刻后,t 时间内故障的产品数;
Nn(t) —残存产品数,即到t时刻尚未故障的产品数。
失效率问题
• 失效率是概率值么? • 失效率有量纲么? • 失效率和失效密度之间有什么关系?
失效率的单位
对于低故障率的元部件常以 109 /h 为故障率的单位,称之为菲 特(Fit)。
相关文档
最新文档