第2章 杆件的内力分析.

合集下载

第2章 杆件的内力分析

第2章 杆件的内力分析

第2章构件的内力分析思考题2-1 判断题(1) 梁在集中力偶的作用处,剪力F S图连续,弯矩M图有突变。

(对)(2) 思2-1(1)图示的两种情况下,左半部的内力相同。

思2-1(1)图(3) 按静力学等效原则,将梁上的集中力平移不会改变梁的内力分布。

(4) 梁端铰支座处无集中力偶作用,该端的铰支座处的弯矩必为零。

(5) 若连续梁的联接铰处无载荷作用,则该铰的剪力和弯矩为零。

(6) 分布载荷q(x)向上为负,向下为正。

(7) 最大弯矩或最小弯矩必定发生在集中力偶处。

(8) 简支梁的支座上作用集中力偶M,当跨长l改变时,梁内最大剪力发生改变,而最大弯矩不改变。

(9) 剪力图上斜直线部分可以肯定有分布载荷作用。

(10) 若集中力作用处,剪力有突变,则说明该处的弯矩值也有突变。

2-2 填空题(1) 用一个假想截面把杆件切为左右两部分,则左右两部分截面上内力的关系是,左右两面内力大小相等,( )。

A. 方向相反,符号相反B. 方向相反,符号相同C. 方向相同,符号相反D. 方向相同,符号相同(2) 如思2-1(2)图所示矩形截面悬臂梁和简支梁,上下表面都作用切向均布载荷q,则( )的任意截面上剪力都为零。

A. 梁(a)B. 梁(b)C. 梁(a)和(b)D. 没有梁第2章 构件的内力分析思2-1(2)图(3) 如思2-1(3)图所示,组合梁的(a),(b)两种受载情形的唯一区别是梁(a)上的集中力F 作用在铰链左侧梁上,梁(b)上的集中力作用在铰链右侧梁上,铰链尺寸不计,则两梁的( )。

A. 剪力F S 图相同B. 剪力F S 图不相同C. 弯矩M 图相同D. 弯矩M 图不相同思2-1(3)图(4) 如思2-1(4)图所示,组合梁的(a),(b)两种受载情形的唯一区别是集中力偶M 分别作用在铰链左右侧,且铰链尺寸可忽略不计,则两梁的( )。

A. 剪力F S 图相同B. 剪力F S 图不相同C. 弯矩M 图相同D. 弯矩M 图不相同思2-1(4)图(5) 如思2-1(5)图所示,梁ABCD 在C 点作用铅垂力F ,若如思2-1(5)图(b)所示,在B 点焊接一刚架后再在C 点正上方作用铅垂力F ,则两种情形( )。

杆件的内力分析

杆件的内力分析

故:
W W'
(c)
将(a)、(b)两式代入上式,于是求得:
Me
9549
P n
(N·m)
如果功率P以马力为单位,代入〈c〉式则可得:
Me
7024
N n
(N·m)
例1、 传动轴如图所示,主动轮A输入功率PA=50kW,从动轮 B、C、D输出功率分别为PB=PC=15kW,PD=20kW,轴的转速 n=300r/min,计算各轮上所受的外力偶矩。
x
T3
3
D
Mx 0 MD T3 0 T3 MD= 637N m
横截面3-3处的扭矩T3也可以利用3—3截面左边的受力平 衡来解决。
1
MB
MC
2 MA
3
1
B
2
C
3
A
M x 0 M B M C M A T3 0
T3
M
B
MC
M

A
637
N
m
4、扭矩图:用来表示受扭杆件横截面上扭矩随轴线位置变化
A B
已知:电动机通过皮带轮输给AB轴的功率为P千瓦。AB轴 的转速n转/分。
则: 电动机每秒钟所作的功为:
W P1000N m
(a)
设电动机通过皮带轮作用于AB轴上的外力偶矩为Me
则:Me在每秒内完成的功为:
W
2
n 60
M
e
(N
m)
(b)
由于Me所作的功也就是电动机通过皮带轮给AB轴输入的功
N
单位:KN
F
N

20kN
10kN
30kN
10kN
30kN
20kN

第二章 杆件的内力·截面法讲解

第二章 杆件的内力·截面法讲解

F
FN (+)FN
F
F
FN (-)FN
F
轴力图: 轴力沿轴线变化的图形
F
F
FN
轴力图的意义
+ x
① 直观反映轴力与截面位置变化关系; ② 确定出最大轴力的数值及其所在位置,即确定危险截面位置,为 强度计算提供依据。
例 图示杆的A、B、C、D点分别作用着大小为FA = 5 F、 FB = 8 F、 FC = 4 F、 FD= F 的力,方向如图,试求各段内力并画出杆 的轴力图。
应变
一、正应变(线应变)定义
av

Du Ds
棱边 ka 的平均正应变
lim
Du k点沿棱边 ka 方向的正应变
Ds0 Ds
正应变特点
1、 正应变是无量纲量 2、 过同一点不同方位的正应变一般不同
二、切应变定义 微体相邻棱边所夹直角的
改变量 g ,称为切应变
切应变量纲与单位
切应变为无量纲量 切应变单位为 弧度(rad)
BC
D
FN 2 FB FC FD 0
FB
FC
FD
FN2= –3F,
求BC段内力:
FN3
C
D
Fx 0 FN3 FC FD 0 FN3= 5F,
FC
FD
FN4
D
求CD段内力:
Fx 0 FN 4 FD 0
FN4= F
FD
FN1 2F, FN2= –3F, FN3= 5F, FN4= F
M
M
取左段为研究对象:
M 0, T M 0 M x
Tx
T M
取右段为研究对象:

第2章 杆件的内力

第2章 杆件的内力

16
建筑力学与结构
出版社
科技分社
1)工程中的受弯杆—— 在工程实际中,受荷载作用而产生弯曲变形的 杆是常见的,通常把它们叫做受弯杆或称之为梁。
17
建筑力学与结构
出版社
科技分社
图2.20简支梁图
2.21悬臂梁图
2.22外伸梁
18
建筑力学与结构
出版社
科技分社
2 图2.23(a)所示的梁是立体杆,设沿杆长为x 轴,在横截面上设y轴铅垂向下,z轴水平向右。当 外力(荷载与支座反力)都作用在纵向对称平面之 内时,梁弯曲之后,其轴线将变成挠曲线,它仍在
24
建筑力学与结构
出版社
科技分社
图2.28 剪力图与弯矩图的坐标轴之假设
25
建筑力学与结构
出版社
科技分社
2 既然剪力和弯矩都将随着x(横截面位置)的 变化而变化,那么两者均可以表示为坐标x的函数 ,即
26
建筑力学与结构
出版社
科技分社
27
建筑力学与结构
出版社
科技分社
28
建筑力学与结构
出版社
科技分社
建筑力学与结构
出版社
科技分社
第2章
第一节 内力的概念
杆件的内力
内力”是指构件的内部之力,它与作用在构件的 外力(如荷载、约束反力)是相对应的。在研究外 力之后,需要由表及里地探索构件的内力。如果你 想了解内力究竟是怎么回事,那就请看下面的内容 吧。
1
建筑力学与结构
出版社
科技分社
一、内力的概念 从结构的外部看,结构在荷载(属于外在的主 动力)作用下处于平衡,并产生约束反力,这都属 于力的外效应。在荷载作用下结构还会发生变形, 这是力的内效应。从结构的内部看,结构变形时, 各质点之间的相对位置都会发生改变,其内因是存 在各质点之间的相互作用力,这就是内力。其外因 当然是荷载(即外力)作用而引起的,故又把它称 之为“附加内力”。

杆件的内力分析

杆件的内力分析

第2章构件的内力分析思考题2-1 判断题(1) 梁在集中力偶的作用处,剪力F S图连续,弯矩M图有突变。

(对)(2) 思2-1(1)图示的两种情况下,左半部的内力相同。

思2-1(1)图(3) 按静力学等效原则,将梁上的集中力平移不会改变梁的内力分布。

(4) 梁端铰支座处无集中力偶作用,该端的铰支座处的弯矩必为零。

(5) 若连续梁的联接铰处无载荷作用,则该铰的剪力和弯矩为零。

(6) 分布载荷q(x)向上为负,向下为正。

(7) 最大弯矩或最小弯矩必定发生在集中力偶处。

(8) 简支梁的支座上作用集中力偶M,当跨长l改变时,梁内最大剪力发生改变,而最大弯矩不改变。

(9) 剪力图上斜直线部分可以肯定有分布载荷作用。

(10) 若集中力作用处,剪力有突变,则说明该处的弯矩值也有突变。

2-2 填空题(1) 用一个假想截面把杆件切为左右两部分,则左右两部分截面上内力的关系是,左右两面内力大小相等,( )。

A. 方向相反,符号相反B. 方向相反,符号相同C. 方向相同,符号相反D. 方向相同,符号相同(2) 如思2-1(2)图所示矩形截面悬臂梁和简支梁,上下表面都作用切向均布载荷q,则( )的任意截面上剪力都为零。

A. 梁(a)B. 梁(b)C. 梁(a)和(b)D. 没有梁第2章 构件的内力分析思2-1(2)图(3) 如思2-1(3)图所示,组合梁的(a),(b)两种受载情形的唯一区别是梁(a)上的集中力F 作用在铰链左侧梁上,梁(b)上的集中力作用在铰链右侧梁上,铰链尺寸不计,则两梁的( )。

A. 剪力F S 图相同B. 剪力F S 图不相同C. 弯矩M 图相同D. 弯矩M 图不相同思2-1(3)图(4) 如思2-1(4)图所示,组合梁的(a),(b)两种受载情形的唯一区别是集中力偶M 分别作用在铰链左右侧,且铰链尺寸可忽略不计,则两梁的( )。

A. 剪力F S 图相同B. 剪力F S 图不相同C. 弯矩M 图相同D. 弯矩M 图不相同思2-1(4)图(5) 如思2-1(5)图所示,梁ABCD 在C 点作用铅垂力F ,若如思2-1(5)图(b)所示,在B 点焊接一刚架后再在C 点正上方作用铅垂力F ,则两种情形( )。

第2章 杆件的内力分析

第2章 杆件的内力分析

与观察者位置无关
FQ FQ
与观察者位置有关


刚架内力图的画法
力 (1) 无需建立坐标系;
图 (2) 控制面、平衡微分方程;
(3) 弯矩的数值标在受拉边;
刚 (4) 轴力、剪力画在里侧和外侧均可,
架 内
但需标出正负号;
力 图
(5) 注意节点处的平衡关系。

节点处的平衡关系

FN
FQ


FQ
FN

材料力学(I)
返回主目录
第2章
杆件的内力分析

2

引言


平衡微分方程
的 内
内力图

结论与讨论


引 言
引 言(Introduction)
内力(Internal Forces) 内力主矢与内力主矩(Resultant
Force and Resultant Moment) 内力分量(Components of the
概 念
刚体平衡概念的扩展和延伸:总体平衡
,则其任何局部也必然是平衡的。

内力与外力的相依关系






某一截面上的内力与作用在该截
内 力
面一侧局部杆件上的外力相平衡;


在荷载无突变的一段杆的各截面
力 关
上内力按相同的规律变化;系Biblioteka 平 衡结论

分 方
杆件各截面上内力
程 变化规律随着外力的变
FQ

内 力
M
M FN

FQ

材料力学 复习题cllx

材料力学 复习题cllx

第二章杆件的内力分析1、梁弯曲时,凡剪力对梁内任一点的力矩是____ __转向的为正。

2、梁弯曲时,凡弯矩使所取梁段产生______ ____变形的为正。

3、梁在某截面处剪力为零,则该截面处弯矩有_________值。

4、同一根梁采用不同的坐标系(如右手坐标系与左手坐标系)时,则对指定截面求得的剪力和弯矩将;两种坐标系所得的剪力方程和弯矩方程是的;由剪力、弯矩方程绘制的剪力、弯矩图是的。

5、若简支梁上的均布荷载用静力等效的集中力来代替,则梁的支反力值将与原梁的支反力值,而梁的最大弯矩值将原梁的最大弯矩值。

6、根据q与剪力、弯矩间的微分关系,若梁段上有均布荷载q作用,则该梁段的剪力图为一条,弯矩图为一条;若剪力图数值由正到负或由负到正经过零处,则弯矩图在该处具有第三章杆件横截面上的应力应变分析1、截面上任一点处的全应力一般可分解为方向和方向的分量。

前者称为该点的,用符号表示;后者称为该点的,用符号表示。

2、横截面面积为A的等直杆两端受轴向拉力F时,杆件内最大正应力为,发生在面上,该截面上的切应力为;最大切应力为,发生在面上,该截面上的正应力为;任意两个相互垂直的斜截面上的正应力之和都等于。

3、各向同性材料有个弹性常数,它们分别是,它们之间的关系是。

因此,各向同性材料独立的弹性常数是个。

4、内、外直径分别为d和D的空心圆轴,则横截面的极惯性矩表达式为____________。

5、变速箱中的高速轴一般较细,低速轴较粗,这是因为6、纯弯曲是指________________ ________。

7、应用叠加原理分析组合变形杆内的应力,应满足的条件为:(1)_________________________ ; (2)_________________ 。

8、当梁只受集中力和集中力偶作用时,最大剪力必发生在。

9、称为切应力互等定理。

10、梁在横向力作用下发生平面弯曲时,横截面上的最大正应力发生在,最大切应力发生在。

材料力学第2章-杆件的内力与内力图

材料力学第2章-杆件的内力与内力图

C
l
FRB
FQ
ql + - ql ql2/2
x
2、选择控制面,并求出其上的剪力与弯矩 C右截面:FQ=0,M=0 A左截面:FQ =ql,M=ql2/2 A右截面:FQ =0,M=ql2/2 B左截面:FQ =-ql,M=0 3 、根据 M 、 FQ 、 q 之间的关系画出剪力图和 弯矩图
x
M

材料力学
FN(B')
M(B') FQ(B') B B'
F
x
0 , ql ql FQ B 0
FQ B 0
Fy 0 , FN B
FN B ql 2
材料力学
内力与内力分量
材料力学
弹性体在外力作用下产生的附加内力
F1
F2
F3
假想截面
Fn
F1
F
2
F
3
Fn
材料力学
弹性体内力的特征:
F1
F
2
F
3
Fn
(1)连续分布力系 (2) 与外力组成平衡力系 ( 特殊情形下内力本身形成自 相平衡力系)
材料力学
内力主矢与内力主矩
F1
分布内力
F
3
F1 FR
内力主矢与主矩
B
C
qa
a
FRB
A右截面:FQ=9qa/4,M=0 B左截面:FQ =-7qa/4,M=qa2 B右截面:FQ =-qa,M=qa2 C左截面:FQ =-qa,M=0
3、建立剪力坐标系并标出控制面上的剪力
4、根据FQ、q之间的关系画出剪力图 5、建立弯矩坐标系并标出控制面上的弯矩
FQ 9qa/4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章构件的内力分析思考题2-1 判断题(1) 梁在集中力偶的作用处,剪力F S图连续,弯矩M图有突变。

(对)(2) 思2-1(1)图示的两种情况下,左半部的内力相同。

思2-1(1)图(3) 按静力学等效原则,将梁上的集中力平移不会改变梁的内力分布。

(4) 梁端铰支座处无集中力偶作用,该端的铰支座处的弯矩必为零。

(5) 若连续梁的联接铰处无载荷作用,则该铰的剪力和弯矩为零。

(6) 分布载荷q(x)向上为负,向下为正。

(7) 最大弯矩或最小弯矩必定发生在集中力偶处。

(8) 简支梁的支座上作用集中力偶M,当跨长l改变时,梁内最大剪力发生改变,而最大弯矩不改变。

(9) 剪力图上斜直线部分可以肯定有分布载荷作用。

(10) 若集中力作用处,剪力有突变,则说明该处的弯矩值也有突变。

2-2 填空题(1) 用一个假想截面把杆件切为左右两部分,则左右两部分截面上内力的关系是,左右两面内力大小相等,( )。

A. 方向相反,符号相反B. 方向相反,符号相同C. 方向相同,符号相反D. 方向相同,符号相同(2) 如思2-1(2)图所示矩形截面悬臂梁和简支梁,上下表面都作用切向均布载荷q,则( )的任意截面上剪力都为零。

A. 梁(a)B. 梁(b)C. 梁(a)和(b)D. 没有梁第2章 构件的内力分析思2-1(2)图(3) 如思2-1(3)图所示,组合梁的(a),(b)两种受载情形的唯一区别是梁(a)上的集中力F 作用在铰链左侧梁上,梁(b)上的集中力作用在铰链右侧梁上,铰链尺寸不计,则两梁的( )。

A. 剪力F S 图相同B. 剪力F S 图不相同C. 弯矩M 图相同D. 弯矩M 图不相同思2-1(3)图(4) 如思2-1(4)图所示,组合梁的(a),(b)两种受载情形的唯一区别是集中力偶M 分别作用在铰链左右侧,且铰链尺寸可忽略不计,则两梁的( )。

A. 剪力F S 图相同B. 剪力F S 图不相同C. 弯矩M 图相同D. 弯矩M 图不相同思2-1(4)图(5) 如思2-1(5)图所示,梁ABCD 在C 点作用铅垂力F ,若如思2-1(5)图(b)所示,在B 点焊接一刚架后再在C 点正上方作用铅垂力F ,则两种情形( )。

A. AB 梁段的剪力F S 相同B. BC 梁段的剪力F S 相同C. CD 梁段的剪力F S 相同D. AB 梁段的弯矩M 相同E. BC 梁段的弯矩M 相同F. CD 梁段的弯矩M 相同思2-1(5)图(6) 如思2-1(6)图所示,梁的剪力F S ,弯矩M 和载荷集度q 之间的微分关系S d d M F x =-和S d d F q x=-适用于图( )所示微梁段,其中F 0和M 0分别为集中力和集中力偶。

材料力学思2-1(6)图(7) 如思2-1(7)图所示组合梁( )。

A. 梁段AB弯矩为常量B. 梁段AB剪力为常量C. 梁段BC弯矩为常量D. 梁段BC剪力为常量(8) 如思2-1(8)图所示,当集中力偶沿简支梁AB任意移动时( )。

A. 梁内剪力为常量B. 梁内剪力不为常量,但最大剪力值不变C. 梁内弯矩为常量D. 梁内弯矩不为常量,但最大弯矩值不变思2-1(7)图思2-1(8)图(9) 悬臂梁左端自由,右端固定,梁上载荷元集中力偶,剪力图如思2-1(9)图所示,则梁上作用的最大集中载荷F max(绝对值)=_______________,梁内最大弯矩为M max=_______________。

(10) 如思2-1(10)图所示,外伸梁长l,载荷F可能作用在梁的任意位置,为了减小梁的最大弯矩值,则外伸段长度a=_______________。

思2-1(9)图思2-1(10)图答案:(2)A (3)AC (4)BD (5)ACDF (6)D (7)BD (8)A (9)4F,3Fa(10)l/5(需要用等强设计思想分析)2-3 简答题第2章 构件的内力分析(1) 梁的弯矩峰值一般会产生在什么位置?(2) 在集中力和集中力偶矩处,梁的剪力图和弯矩图各有什么特点?(3) 若结构对称,载荷对称或反对称,其剪力图和弯矩图各有什么特点?(4) 某梁分别承受A 、B 两组载荷,A 组载荷只比B 组载荷多一个集中的力偶矩。

有人认为,由于画剪力图时,集中力偶矩不影响剪力,因此,对应于这两组载荷的剪力图是完全一样的。

这种看法对吗?为什么?(5) 某梁的弯矩图如思2-3(5)图所示。

如果将支反力也视为一种外荷载,那么,梁承受了哪些载荷?这些载荷各作用于什么位置?(6) 如思2-3(6)图所示的简支梁上有一副梁。

集中力F 作用于副梁上。

在求简支梁A 、B 处的支反力时,可以将F 沿其作用线平移至梁上D 处吗?在求简支梁中的剪力和弯矩时,是否可以将F 平移至D 处?(7) 思2-3(7)图所示的对称结构的中点作用有一个集中力偶。

这种情况载荷是对称的还是反对称的?或是既不对称又不反对称?思2-3(5)图 思2-3(6)图 思2-3(7)图习 题2-1 铰接梁的尺寸及载荷如题2-1图所示,B 为中间铰。

求支座反力和中间铰两侧面上的内力。

答:1312,,,3263Ay Cy Dy B F F F F F F F F -====。

题2-1图2-2 如题2-2图所示悬臂梁AB ,试求:(1) 支座反力,(2) 1-1,2-2,3-3截面上的内力。

答:1-1:M =2.5kN ⋅m(顺时针),F S =5kN(↑);2-2:M =7.5kN ⋅m(顺时针),F S =5kN(↑);3-3:M =10kN ⋅m(顺时针),F S =5kN(↑)。

2-3 如题2-3图所示为一端固支的半圆弧杆,自由端受F 力作用。

求截面1-1,2-2,3-3上的内力。

材料力学答:1-1:M /2(顺时针),F N /2(正法向),F S = F /2(向心);2-2:M =FR (顺时针),F N =F (向上),F S = 0;3-3:M =Fa (逆时针),F N =0,F S = F (向上)。

题2-2图 题2-3图2-4 塔式架的受力与支承如题2-4图所示。

若己知载荷F 和尺寸a ,h 。

试求1,2,3杆的内力。

答:N1N2N3/(),(),2/F Fh a F a F Fh a ===拉力拉力(压力)。

2-5 如题2-5图所示杆系结构在C ,D ,E ,G ,H 处均为铰接。

C ,D 铰分别设置在AH 杆和BH 杆的下侧。

已知F =100kN ,求杆1~5所受的轴向力。

答: F 1=125kN(拉),F 2=75kN(压),F 3=100kN(拉),F 4=75kN(压),F 5=125kN(拉),题2-4图 题2-5图2-6 一等直杆及其受力情况如题2-6图所示。

试作此杆的内力图。

答:F Nmax =50kN 。

2-7 两组人员拔河比赛,某瞬时作用于绳子上的力如题2-7图所示。

已知F l =0.4kN ,F 2=0.3kN ,F 3=0.35kN ,F 4=0.35kN ,F 5=0.25kN ,F 6=0.45kN 。

试求横截面1-1,2-2,3-3,4-4,5-5上的内力。

答: F N1=0.4kN ,F N2=0.7kN ,F N3=1.05kN ,F N4=0.7kN ,F N5=0.45kN 。

第2章构件的内力分析题2-6图题2-7图2-8 试求如题2-8图所示等直杆横截面1-1,2-2上的内力,并作内力图。

已知F=100kN,a=1m。

答:F N1=-100kN,F N2=200kN。

2-9 电车架空线立柱结构如题2-9图所示,假设杆AB与杆BC在B处为固定连接。

(1)若在A处作用有沿z 方向的力F,试问AB和BC两杆各产生什么基本变形形式,并求截面1-1和截面2-2上的内力。

(2)若在A处作用有沿y方向(垂直于AB)的力F,试问AB和BC两杆各产生什么基本变形形式,并求截面1-1和截面2-2上的内力。

答:(1) AB杆:剪切与弯曲变形,BC杆:压缩与弯曲变形;F S1=-F,M1=-Fa,F N1=-F,M2=-2Fa。

(2) AB杆:剪切与弯曲变形,BC杆:剪切、弯曲与扭转变形;|F S1|=F,|M1|=Fa,|F S1|=F,|T|=2Fa。

2-10 如题2-10图所示一环形夹具,由两个半薄壁圆筒组成,内部受均布载荷p作用,若圆筒直径为D,沿轴线方向圆筒的长度为b,试求左右螺栓所受的内力。

答:F N=0.5pbD。

题2-8图题2-9图题2-10图2-11 空气泵操纵杆如题2-11图所示。

所受力F l=8.5kN,试求截面1-1上的内力。

答:F S1=17kN,M1=5.44kN m。

题2-11图2-12 试求如题2-12图所示各梁在指定横截面1,2,3上的内力。

答:(a) F S1=M/2l,M1=M/2,F S2=-M/2l,M2=M0,F S3=0,M1=M0。

(b) F S1=-q0a/3,M1=0,F S2=-q0a/12,M2=-q0a2/4,F S3=-2q0a/3,M1=0。

材料力学(c) F S1=0.75qa,M1=-qa2,F S2=-qa,M2=-qa2,F S3=-qa,M1=0。

(d) F S1=0.5qa,M1=0,F S2=0.5qa,M2=0,F S3=-0.5qa,M1=0。

(e) F S1=-ql,M1=-1.5ql2,F S2=-ql,M2=-0.5ql2,F S3=-ql,M1=-0.5ql2。

(f) F S1=-F,M1=-Fa,F S2=-F,M2=0,F S3=-F,M1=0。

题2-12图2-13 试写出如题2-13图所示各梁的内力方程,并作出内力图。

答:(a) F Smax=qa,|M|max=0.5qa2;(b) F Smax=0.75ql,|M|max=0.25ql2;(c) F Smax=ql,M max=0.5ql2;(d) F Smax=1.25qa,M max=0.75qa2;(e) |F S|max=1.25ql,M max=ql2;(f) |F S|max=1.5ql,|M|max=9ql2/8。

第2章构件的内力分析题2-13图2-14 利用剪力、弯矩与荷载集度之间的微分关系作出题2-14图所示各梁的内力图。

答:(a) F Smax=2ql,M max=ql2;(b) |F S|max=qa,M max=2qa2;(c)|F S|max=7qa/4,M max=49qa2/64; (d) F Smax=1.5qa,M max=3.125qa2;(e) F Smax=ql,|M|max=ql2;(f) F Smax=ql,|M|max=0.5ql2。

题2-14图材料力学2-15 试用奇异函数写出题2-14的内力方程。

相关文档
最新文档