初中几何辅助线技巧秘籍
数学—初中几何辅助线大全(很详细哦)
![数学—初中几何辅助线大全(很详细哦)](https://img.taocdn.com/s3/m/89b424f6710abb68a98271fe910ef12d2af9a990.png)
初中几何辅助线—克胜秘籍等腰三角形1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2. 作一腰上的高;3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。
梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单。
无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。
还有一些关于平方的考虑勾股,A字形等。
三角形图中有角平分线,可向两边作垂线(垂线段相等)。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
②在比例线段证明中,常作平行线。
作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
初中数学作辅助线的方法
![初中数学作辅助线的方法](https://img.taocdn.com/s3/m/5050590ace84b9d528ea81c758f5f61fb73628db.png)
初中数学作辅助线的方法在数学中,辅助线是指在解题过程中,为了更加清晰地理解和解答问题,而额外添加的辅助线条。
辅助线能够帮助我们识别几何形状的性质、简化题目、发现问题的特点,进而解决问题。
下面将介绍一些初中数学中常用的辅助线的方法。
1.直线的辅助线:1.1利用等角性质:当一道题目中出现两条或多条直线之间存在相等角度的关系时,可以通过画一条平行于其中一条直线的辅助线,从而使问题更加清晰。
例如,当一道题目中有两条平行线上辅助线之间的交角等于已知夹角时,我们可以通过画一条与两条线垂直的辅助线,从而找到问题的解决方法。
1.2利用中点性质:当一道题目中出现一个直线段上存在中点的情况时,可以通过连接这个中点和其它的点,并利用中点将辅助线分成两等分的方式,简化问题。
例如,当一道题目中需要证明一个线段平分另一个线段时,可以通过在两个线段的中点之间画一条辅助线,从而将问题转化为证明两个等腰三角形。
2.圆的辅助线:2.1利用相切性质:当一道题目中出现一个圆和另一个圆间存在相切的情况时,可以通过在两个圆的相切点处引出切线,并连接相切点和圆心的辅助线来简化问题。
例如,当一道题目中有两个圆相切于一个点,需要求证两个圆的半径之比时,可以通过连接两个圆心之间的辅助线,并利用切线及其垂直性质来求解。
2.2利用内接性质:当一道题目中出现一个圆内接于一个图形的情况时,可以通过在圆和图形的交点处引出辅助线,并利用内接四边形的特点来简化问题。
例如,当一道题目中有一个圆内切于一个正方形,需要证明半径与正方形边长之比时,可以通过连接正方形的对角线并利用内接四边形的性质来证明。
3.三角形的辅助线:3.1利用中位线性质:当一道题目中有一个三角形的中位线时,可以通过连接三角形的中位线两端点与对应边上其他点的辅助线,来简化问题。
例如,当一道题目中需要证明两个三角形形状相似时,可以通过连接两个三角形的中位线,然后利用垂直性质来证明。
3.2利用高线性质:当一道题目中有一个三角形的高线时,可以通过连接三角形的高线两端点与对应边上其他点的辅助线,来简化问题。
初中几何辅助线秘籍:常见辅助线作法口诀
![初中几何辅助线秘籍:常见辅助线作法口诀](https://img.taocdn.com/s3/m/bf30bf9c01f69e3142329421.png)
初中几何辅助线秘籍:罕见辅助线作法口诀之答禄夫天创作三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形罕见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。
初中几何辅助线口诀和秘籍
![初中几何辅助线口诀和秘籍](https://img.taocdn.com/s3/m/8a8e4e21974bcf84b9d528ea81c758f5f61f29ac.png)
初中几何辅助线口诀和秘籍初中几何学是数学学科中的一个重要分支,它研究的是平面和空间中的形状、大小、位置等几何性质。
在初中几何学中,辅助线是解题的常用方法之一,可以帮助我们发现问题的隐藏规律,简化复杂的几何问题。
本文将介绍一些初中几何中常用的辅助线口诀和秘籍,希望能对同学们的学习有所帮助。
一、关于三角形的辅助线口诀1. 三角形内角和为180度:任意三角形的三个内角之和都等于180度。
利用这个性质,我们可以通过辅助线来求解三角形内角的问题。
2. 三角形的中线定理:三角形的三条中线交于一点,且这个点到三角形的顶点的距离是中线长度的二分之一。
利用这个性质,我们可以通过辅助线来证明三角形的中线定理。
3. 三角形的高线定理:三角形的三条高线交于一点,且这个点到三角形的三边的距离分别等于各边上对应高的长度。
利用这个性质,我们可以通过辅助线来证明三角形的高线定理。
二、关于四边形的辅助线口诀1. 平行四边形的性质:平行四边形的对角线互相平分,即对角线交于一点且互相平分。
利用这个性质,我们可以通过辅助线来证明平行四边形的性质。
2. 矩形的性质:矩形的对角线相等且互相平分,即对角线交于一点且相等。
利用这个性质,我们可以通过辅助线来证明矩形的性质。
3. 菱形的性质:菱形的对角线互相垂直,即对角线交于一点且垂直。
利用这个性质,我们可以通过辅助线来证明菱形的性质。
三、关于圆的辅助线口诀1. 切线与半径的垂直关系:切线与半径的连线垂直于半径。
利用这个性质,我们可以通过辅助线来证明切线与半径的垂直关系。
2. 弧上两点与圆心连线的垂直关系:弧上的两点与圆心连线垂直于弧所对的圆心角的平分线。
利用这个性质,我们可以通过辅助线来证明弧上两点与圆心连线的垂直关系。
四、关于面积的辅助线秘籍1. 分割图形:当一个图形较复杂时,我们可以通过辅助线将其分割成几个简单的图形,然后计算每个简单图形的面积,再将它们相加,得到整个图形的面积。
2. 相似三角形的面积比:两个相似三角形的面积的比等于它们对应边的长度的平方的比。
初中几何辅助线技巧
![初中几何辅助线技巧](https://img.taocdn.com/s3/m/a4685798ac51f01dc281e53a580216fc700a531e.png)
初中几何辅助线技巧
一、画圆
1、通过一点和半径弧线
(1)以其中一个点O为圆心,使用一个圆规将点O的坐标锁定,之后以笔触拉出半径的弧线来作圆。
(2)通过拉出2条切线,使圆的圆心两边都有正确的半径。
2、通过三点画圆
(1)首先准备三个点A、B、C,遵循“连AB及BC的中点与圆的圆心重合”的原则,先将A、B、C三点连线,找出AB和BC两条线段的中点,这两个中点就是圆的圆心O了。
(2)圆心O锁定后,再分别用圆规拉出离圆心O有正确半径的弧线。
二、画直线
1、用规则
(1)使用直尺保持直线的整洁程度,把两个点的坐标连起来,使用反射法实现直线两端的平行。
(2)用圆规拉出两点的中点,再以这个中点连接两点的坐标,画成一条直线。
(3)使用两点式的方法,输入两个点的横纵坐标,然后根据y=kx+b的方程式,连接两个点的坐标,得到一条直线。
2、使用辅助线
(1)画等边三角形,两个点通过等边三角形垂线来画出一条直线。
(2)画正方形,两个点通过正方形的对角线画出一条直线。
(3)圆内外六种角,两个点通过圆内外六种角画出一条直线。
三、画角
1、用圆规
(1)将圆规放置在锐角处,拉出一条线,此线段的角度就是锐角的角度了。
(2)如果需要画出钝角。
完整)初中数学几何辅助线技巧
![完整)初中数学几何辅助线技巧](https://img.taocdn.com/s3/m/feaf3e0fef06eff9aef8941ea76e58fafab045f0.png)
完整)初中数学几何辅助线技巧
几何常见辅助线口诀
三角形
在三角形中,可以使用角平分线来构造垂线,也可以将图形对折以后进行对称,从而得到更多的关系。
同时,角平分线还可以和平行线一起使用,来构造等腰三角形。
另外,在线段问题中,垂直平分线常常被用来将线段连接起来,而线段和差的问题可以通过延长或缩短线段来解决。
四边形
在处理平行四边形时,可以使用对称中心和等分点来进行计算。
对于梯形问题,可以将其转换为三角形或平行四边形,然后利用已有的知识来解决。
如果出现腰中点,可以连接中位线来解决问题。
如果以上方法都无法奏效,可以尝试使用全等来解决问题。
在证明相似时,可以使用比例和平行线的关系来辅助证明。
圆形
在圆形问题中,可以利用半径和弦长来计算弦心距。
如果出现切线,可以使用勾股定理来计算其长度。
要想证明一条线段是切线,需要利用半径垂线进行辨别。
在处理弧的问题时,需要记住垂径定理和圆周角的性质。
如果要作出内接或外接圆,需要将各边的中垂线或角平分线连起来。
如果遇到相交圆,需要注意作出公共弦。
最后,如果要证明等角关系,可以使用角平分线来构造辅助线。
由角平分线想到的辅助线
在使用角平分线时,可以通过截取构造全等来解决问题。
也可以在角分线上的点向两边作垂线,来构造全等三角形。
同时,三线合一也可以用来构造等腰三角形。
最后,在处理角平分线和平行线问题时,可以使用线段的加减和移动来解决问题。
初中几何作辅助线的方法与口诀
![初中几何作辅助线的方法与口诀](https://img.taocdn.com/s3/m/1eaa7c683169a4517623a33d.png)
初中几何作辅助线的方法一:中点、中位线,延线,平行线。
如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。
二:垂线、分角线,翻转全等连。
如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。
其对称轴往往是垂线或角的平分线。
三:边边若相等,旋转做实验。
如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。
其对称中心,因题而异,有时没有中心。
故可分“有心”和“无心”旋转两种。
四:造角、平、相似,和、差、积、商见。
如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。
在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。
故作歌诀:“造角、平、相似,和差积商见。
”托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表)五:两圆若相交,连心公共弦。
如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。
六:两圆相切、离,连心,公切线。
如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。
七:切线连直径,直角与半圆。
如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。
即切线与直径互为辅助线。
如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。
即直角与半圆互为辅助线。
八:弧、弦、弦心距;平行、等距、弦。
如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。
十大辅助线口诀
![十大辅助线口诀](https://img.taocdn.com/s3/m/16b63ab650e79b89680203d8ce2f0066f53364be.png)
十大辅助线口诀在进行几何作图时,辅助线的作用是不可忽视的。
正确使用辅助线可以大大提高作图效率,减少错误率,更加准确地画出所需图形。
为了帮助大家更好地理解和掌握辅助线的使用方法,我们整理出了“十大辅助线口诀”,便于大家记忆和应用。
第一大辅助线口诀:“中点万能定位,利用中垂线交点作图”。
这是一个非常实用的口诀,利用中点和中垂线可以快速定位图形的位置和大小。
例如,在画平行四边形时,只需画出其中一条对角线的中垂线,然后在中垂线上取一点作为原点,再利用对角线的中点和原点连线即可准确画出整个平行四边形。
第二大辅助线口诀:“平移移动平行线,平行四边形任意成”。
这个口诀可以帮助我们在画平行四边形时更加方便灵活。
只要确定两条平行线段,就可以通过平移移动其中一条线段使其与另一条平行线段重合,然后连接相应点即可。
第三大辅助线口诀:“圆周角相等,利用等角、同弦定位”。
在画与圆有关的图形时,这个口诀非常实用。
只需利用圆周角相等的性质,画出等角或同弦即可确定圆上的点位置。
第四大辅助线口诀:“切线垂直半径,直角可随便”。
这个口诀是在画圆和圆内的图形时比较常用的。
利用切线垂直半径的性质,可以确定直角位置,使作图更加准确。
第五大辅助线口诀:“直角三角形,利用勾股定位”。
这个口诀是在画直角三角形时非常实用的。
只要确定两条直角边的长度,就可以利用勾股定理求出第三条边的长度,并画出整个三角形。
第六大辅助线口诀:“四边形内对角线,对半分线交于一点”。
这个口诀是在画四边形时非常实用的,只需将对角线对半分,再连接相应线段的中点即可确定四边形的位置和大小。
第七大辅助线口诀:“平行线分段比,适用比例定位”。
这个口诀是在画平行线间的图形时非常实用的,只需利用线段比例的性质来确定每个点的位置。
第八大辅助线口诀:“正多边形内角和,等于360度”。
这个口诀是在画正多边形时非常实用的,只需根据内角和为360度的性质来确定每个角度,即可画出整个正多边形。
第九大辅助线口诀:“等腰三角形,利用对称轴对称”。
初中数学须掌握的几何辅助线技巧
![初中数学须掌握的几何辅助线技巧](https://img.taocdn.com/s3/m/8466c356ae1ffc4ffe4733687e21af45b307fecd.png)
初中数学必须掌握的几何辅助线技巧01几何常见辅助线口诀三角形图中有角平分线,可向两边作垂线也可将图对折看,对称以后关系现角平分线平行线,等腰三角形来添角平分线加垂线,三线合一试试看线段垂直平分线,常向两端把线连线段和差及倍半,延长缩短可试验线段和差不等式,移到同一三角去三角形中两中点,连接则成中位线三角形中有中线,倍长中线得全等四边形平行四边形出现,对称中心等分点梯形问题巧转换,变为三角或平四平移腰,移对角,两腰延长作出高如果出现腰中点,细心连上中位线上述方法不奏效,过腰中点全等造证相似,比线段,添线平行成习惯等积式子比例换,寻找线段很关键直接证明有困难,等量代换少麻烦斜边上面作高线,比例中项一大片圆形半径与弦长计算,弦心距来中间站圆上若有一切线,切点圆心半径连切线长度的计算,勾股定理最方便要想证明是切线,半径垂线仔细辨是直径,成半圆,想成直角径连弦弧有中点圆心连,垂径定理要记全圆周角边两条弦,直径和弦端点连弦切角边切线弦,同弧对角等找完要想作个外接圆,各边作出中垂线还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦内外相切的两圆,经过切点公切线若是添上连心线,切点肯定在上面要作等角添个圆,证明题目少困难02由角平分线想到的辅助线一、截取构全等如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。
分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。
这里面用到了角平分线来构造全等三角形。
另外一个全等自已证明。
此题的证明也可以延长BE与CD的延长线交于一点来证明。
自己试一试。
二、角分线上点向两边作垂线构全等如图,已知AB>AD,∠BAC=∠FAC,CD=BC。
求证:∠ADC+∠B=180°。
分析:可由C向∠BAD的两边作垂线。
近而证∠ADC与∠B之和为平角。
三、三线合一构造等腰三角形如图,AB=AC,∠BAC=90°,BD为∠ABC的平分线,CE⊥BE。
初中几何辅助线秘籍:常见辅助线作法口诀
![初中几何辅助线秘籍:常见辅助线作法口诀](https://img.taocdn.com/s3/m/dabeb18927d3240c8547efbd.png)
初中几何辅助线秘籍:罕见辅助线作法口诀之阿布丰王创作三角形图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
四边形平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形罕见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
圆半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。
初中几何辅助线口诀和秘籍
![初中几何辅助线口诀和秘籍](https://img.taocdn.com/s3/m/24ef09266ad97f192279168884868762cbaebb75.png)
初中几何辅助线口诀和秘籍初中几何是数学学科中的一块重要内容,而几何辅助线是解决几何问题时常用的一种方法。
下面我将为大家介绍一些初中几何辅助线的口诀和秘籍。
一、角平分线角平分线是指将一个角分为两个相等的角的线段。
在解决几何问题时,我们常常需要用到角平分线来帮助我们求解。
如何画角平分线呢?下面是一个简单的口诀:“角平分线,一刀两半,角分两相等,求解题简单。
”二、三角形的中线三角形的中线是连接三角形的一个顶点与对边中点的线段。
在解决三角形相关问题时,中线也是一个常用的辅助线。
我们可以通过以下口诀来记忆中线的特点:“三角形中线,一条有三,中点连顶点,两边相等。
”三、垂直平分线垂直平分线是指将一个线段垂直分割并且分成两个相等部分的线段。
垂直平分线在解决线段相关问题时非常有用。
下面是一个简洁的口诀来帮助我们记忆垂直平分线的画法:“垂直平分线,画在线上,两边相等,线段垂直。
”四、角的对称线角的对称线是指将一个角按照对称轴对折后,得到的两个相等角的辅助线。
在解决角相关问题时,角的对称线可以帮助我们找到一些相等角。
以下是一个简单的口诀来帮助我们记忆角的对称线:“角的对称线,轴线中间,两边相等,角对称分。
”五、相似三角形的辅助线在解决相似三角形问题时,有一些特殊的辅助线可以帮助我们找到相似三角形之间的对应关系。
例如,高线可以帮助我们找到相似三角形的对应边的比例关系。
以下是一个简单的口诀来帮助我们记忆相似三角形的辅助线:“相似三角形辅助线,高线找比例,边线对应比例,找答案简单。
”通过以上口诀和秘籍,我们可以更加方便地使用几何辅助线来解决初中几何问题。
当然,在实际解题的过程中,我们还需要根据具体问题的要求灵活运用这些辅助线,以达到解题的目的。
总结起来,初中几何辅助线是解决几何问题时的重要工具。
通过记忆和掌握一些几何辅助线的特点和画法,我们能够更加高效地解决几何问题,提高我们的数学水平。
希望以上口诀和秘籍能够帮助到大家,让我们在初中几何学习中取得更好的成绩!。
史上最全初中数学几何辅助线秘籍
![史上最全初中数学几何辅助线秘籍](https://img.taocdn.com/s3/m/43772366bf1e650e52ea551810a6f524ccbfcbca.png)
史上最全初中数学几何辅助线秘籍
几何是初中数学的重难点题型,很多同学们在数学考试中拿不到高分,就是因为不会做几何题。
初中数学几何考验的是大家的抽象逻辑思维,除了掌握各种几何公式,更重要的一点是分析几何的类型和做辅助线
其实想要攻克初中数学几何题型,没有别的捷径,1方面是要牢记住各类几何图形的计算公式,另1方面一定要多练习,熟悉解题思路,掌握解题和做图的方法。
只有做的题多了,才能熟能生巧,在考试中才能灵活变通,运用自如一:由角平分线想到的辅助线
1截取构全等;2角分线上点向两边作垂线构全等;3三线合一构造等腰三角形;4角平分线+平行线
二:由线段和差想到的辅助线
1截长补短法
三:由中点想到的辅助线
1中线把三角形面积等分;2中点连中点得中位线;3倍长中线;4直角三角形斜边中线
四:由全等三角形想到的辅助线
1倍长过中点得线段;2截长补短;3平移变换;4旋转;5作中位线
五:由梯形想到的辅助线
1平移一腰:利用平移- -腰将梯形分割成三角形和平行四边形;
2平移两腰:利用平移两腰把梯形底角放在一个三角形内
在初中数学几何题学习过程中,很多经验、技巧和思想上的差距在数学题里可能就体现在一个微小的点村你可能看到的就是差一条辅助线,但这一条辅助线恰恰就是初中数学平面几何的灵魂。
每条辅助线都不是没理由的凭空添在那个位置的:在哪添加,为何在那里添加辅助线背后都有着数学思想方法的支撑,光会一道题添加辅助线不好用的,需要数十甚至上百道题目的积累。
初中几何辅助线口诀和秘籍
![初中几何辅助线口诀和秘籍](https://img.taocdn.com/s3/m/8b2ee7ea81eb6294dd88d0d233d4b14e85243e27.png)
初中几何辅助线口诀和秘籍初中几何学是数学学科中的一门重要课程,学习几何学除了需要掌握基本的概念和定理外,还需要学会灵活运用辅助线。
辅助线是指在几何图形中,为了解决问题而临时引入的辅助线段或辅助点。
正确使用辅助线可以帮助我们更好地理解和解决几何问题。
下面,我将为大家介绍一些初中几何中常用的辅助线口诀和秘籍。
一、辅助线口诀1. 平分线辅助口诀:平分线的作用是将线段、角等等平均分成两份。
当我们遇到需要将线段或角平分的问题时,可以使用平分线来解决。
平分线的特点是与所要平分的线段或角相交于一点,并将其平分为两份。
2. 垂直平分线辅助口诀:垂直平分线的作用是将线段平分,并且垂直于所要平分的线段。
当我们需要将线段垂直平分时,可以使用垂直平分线来解决。
垂直平分线的特点是与所要平分的线段相交于中点,并且与该线段垂直。
3. 高线辅助口诀:高线的作用是求解三角形的高。
当我们需要求解三角形的高时,可以使用高线来解决。
高线的特点是从一个顶点引垂线到对边,该垂线即为三角形的高。
4. 中位线辅助口诀:中位线的作用是将三角形的两个顶点与对边的中点连线。
当我们需要求解三角形的中位线时,可以使用中位线来解决。
中位线的特点是连接三角形的两个顶点与对边中点,将三角形分成两个相等的小三角形。
5. 角平分线辅助口诀:角平分线的作用是将角平分为两个相等的角。
当我们需要将角平分时,可以使用角平分线来解决。
角平分线的特点是从角的顶点引一条线段与角的两边相交于一点,并将角平分为两个相等的角。
二、辅助线秘籍1. 利用垂直平分线求解线段的长度:当我们需要求解一个线段的长度时,可以通过引入垂直平分线的方式来解决。
首先,我们将该线段的两个端点与垂直平分线的两个交点相连,然后利用勾股定理求解。
2. 利用高线求解三角形的面积:当我们需要求解一个三角形的面积时,可以通过引入高线的方式来解决。
首先,我们从一个顶点引垂线到对边,然后利用面积公式S=底×高/2求解。
初中几何辅助线秘籍口诀
![初中几何辅助线秘籍口诀](https://img.taocdn.com/s3/m/e88a3b484b73f242326c5f52.png)
初中几何辅助线秘籍、口诀【导读】:人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,这就是辅助线的由来。
一、初中几何辅助线秘籍等腰三角形1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法;2. 作一腰上的高;3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。
梯形1. 垂直于平行边2. 垂直于下底,延长上底作一腰的平行线3. 平行于两条斜边4. 作两条垂直于下底的垂线5. 延长两条斜边做成一个三角形菱形1. 连接两对角2. 做高平行四边形1. 垂直于平行边2. 作对角线——把一个平行四边形分成两个三角形3. 做高——形内形外都要注意矩形1. 对角线2. 作垂线很简单。
无论什么题目,第一位应该考虑到题目要求,比如 AB=AC+BD....这类的就是想办法作出另一条 AB 等长的线段,再证全等说明 AC+BD=另一条 AB,就好了。
还有一些关于平方的考虑勾股,A 字形等。
二、解几何题时如何画辅助线?①见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。
②在比例线段证明中,常作平行线。
作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。
③对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交三、初中数学辅助线的添加浅谈人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。
初二几何题辅助线技巧
![初二几何题辅助线技巧](https://img.taocdn.com/s3/m/b42532e10408763231126edb6f1aff00bed57090.png)
初二几何题辅助线技巧
初二的几何学习中,辅助线是一个重要的技巧。
它可以帮助我们更快地解决难题,节省时间,提高解题效率。
以下是一些关于初二几何题辅助线技巧的建议:
1.使用垂线和平行线
在解决三角形和四边形的问题时,我们可以使用垂线和平行线来辅助解题。
例如,当我们需要求一个三角形的高度时,我们可以通过画一条垂线,将三角形分割成两个直角三角形,然后应用三角函数求解。
同样,在解决四边形的问题时,我们可以使用平行线来构造相似三角形,然后应用相似三角形的性质来求解。
2.使用中垂线
在解决圆的问题时,我们可以使用中垂线来辅助求解。
中垂线是连接圆心与一个线段中点的线段。
当我们需要求一个线段的中点时,我们可以通过将两个圆心连接线段两端,然后连接两个圆心的中垂线来找到线段中点。
同样,在解决圆的切线问题时,我们可以使用中垂线来构造一个直角三角形,然后应用三角函数来求解。
3.使用角平分线
在解决角度问题时,我们可以使用角平分线来辅助求解。
角平分线将一个角分成两个相等的角。
当我们需要求一个角度的大小时,我们可以通过使用角平分线来构造一个直角三角形,然后应用三角函数来求解。
同样,在解决三角形相似性问题时,我们可以使用角平分线来构造相似三角形,然后应用相似三角形的性质来求解。
综上所述,初二几何题辅助线技巧是解决难题的有效方法。
通过熟练掌握这些技巧,我们可以更快地解决问题,提高解题效率。
初中必须掌握的几何辅助线技巧
![初中必须掌握的几何辅助线技巧](https://img.taocdn.com/s3/m/10d0c915cec789eb172ded630b1c59eef9c79a41.png)
初中必须掌握的几何辅助线技巧初中阶段,学习几何学是数学学科的一个重要组成部分。
在学习几何学时,掌握几何辅助线技巧是非常关键的。
几何辅助线技巧可以帮助学生更好地理解和应用几何学的概念和定理。
下面将介绍初中必须掌握的几何辅助线技巧,供参考。
1.垂直辅助线:对于一个已知线段或角的垂直平分线,可以通过画一个与之垂直的辅助线将其分成两等分。
2.平行辅助线:对于一条已知直线上的点,可以通过平行辅助线的方法,画出与已知直线平行的直线。
3.底角等分线:对于一个已知三角形的底边,可以通过画一条从顶点到底边中点的辅助线,将底角等分为两个相等的角。
4.中位线:对于一个已知三角形,可以通过画一条连接两个顶点的中位线来找到三角形的第三个顶点。
5.延长线:对于已知线段或角,可以通过延长线的方法,将其延长至达到所需目的。
6.弦线:对于一个已知圆,可以通过在圆内画一个弦线来找到圆心所在的位置。
7.三角形内切圆:对于一个已知三角形,可以通过三边的角平分线的交点来找到一个内切圆。
8.直角三角形的高线:对于一个已知直角三角形,可以通过高线的方法,找到三角形的高线。
9.可能轨迹:通过连续改变一个量的取值,绘制出图形。
找出构成图形的关系,得到图形的特点。
10.相似图形属性:通过相似图形的性质,推导出两个相似图形的对应边、对应角的比例关系。
11.形状特征辅助线:通过画一些特定形状的辅助线,如矩形的对角线、平行四边形的对角线等,可以帮助我们找出图形的特征。
12.角角平行线:对于一对已知的角,可以通过角角平行线的方法,来判断两条直线是否平行。
13.内角和公式:对于一个已知多边形,可以通过内角和公式来计算多边形的内角和。
14.对称辅助线:对于一个已知图形,可以通过对称辅助线的方法来找出图形的对称中心或对称轴。
15.圆心角和弧度:对于一个已知圆,可以通过圆心角和弧度的概念来计算圆心角的度数或弧的长度。
以上就是初中必须掌握的几何辅助线技巧,每一种技巧都有其特定的应用领域。
初三数学几何辅助线解题技巧
![初三数学几何辅助线解题技巧](https://img.taocdn.com/s3/m/edef8f00a22d7375a417866fb84ae45c3a35c255.png)
初三数学几何辅助线解题技巧
初三数学中,几何是一个比较重要的章节,而在几何中使用辅助线解题技巧是十分必要的。
辅助线可以帮助我们找到几何图形中的对称点、平分线、垂线等,从而解决难题。
以下是一些常见的几何问题和辅助线解题技巧:
1. 求正方形对角线的长度
解法:通过连接正方形的对角线,我们可以构成两个全等的直角三角形,如图所示。
因此,我们可以使用勾股定理求出正方形对角线的长度。
2. 求等腰三角形中,底角的大小
解法:连接等腰三角形的底边中点和顶点,如图所示。
这条线段会将等腰三角形分成两个全等的直角三角形。
因此,我们可以使用三角形内角和公式求得底角的大小。
3. 求平行四边形中对角线的交点
解法:连接平行四边形的相邻顶点,如图所示。
这条线段可以将平行四边形分成两个全等的三角形,并且交点即为两条对角线的交点。
4. 求正弦函数的值
解法:在三角形中,我们可以使用正弦函数求解一个角的正弦值。
如图所示,我们可以通过连接角的顶点和对边中点,构成一个直角三角形,从而使用正弦函数求解。
以上是几种常见的辅助线解题技巧,希望能够帮助同学们更好地应对几何问题。
同时,在解题过程中,我们要注意辅助线的选择和使用,避免增加难度或者引入冗余信息,从而导致解题失败。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中几何辅助线技巧大全一初中几何常见辅助线口诀人说几何很困难,难点就在辅助线。
辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
线段和差及倍半,延长缩短可试验。
线段和差不等式,移到同一三角去。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
平行四边形出现,对称中心等分点。
梯形问题巧转换,变为△和□。
平移腰,移对角,两腰延长作出高。
如果出现腰中点,细心连上中位线。
上述方法不奏效,过腰中点全等造。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。
二 由角平分线想到的辅助线口诀:图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。
对于有角平分线的辅助线的作法,一般有两种。
①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。
通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。
至于选取哪种方法,要结合题目图形和已知条件。
与角有关的辅助线(一)、截取构全等几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试。
下面就几何中常见的定理所涉及到的辅助线作以介绍。
如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。
图1-1BD例1. 如图1-2,AB//CD ,BE 平分∠BCD ,CE 平分∠BCD ,点E 在AD 上,求证:BC=AB+CD 。
分析:此题中就涉及到角平分线,可以利用角平分线来构造全等三角形,即利用解平分线来构造轴对称图形,同时此题也是证明线段的和差倍分问题,在证明线段的和差倍分问题中常用到的方法是延长法或截取法来证明,延长短的线段或在长的线段长截取一部分使之等于短的线段。
但无论延长还是截取都要证明线段的相等,延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所证明的目的。
简证:在此题中可在长线段BC 上截取BF=AB ,再证明CF=CD ,从而达到证明的目的。
这里面用到了角平分线来构造全等三角形。
另外一个全等自已证明。
此题的证明也可以延长BE 与CD 的延长线交于一点来证明。
自已试一试。
例2. 已知:如图1-3,AB=2AC ,∠BAD=∠CAD ,DA=DB ,求证DC ⊥AC 分析:此题还是利用角平分线来构造全等三角形。
构造的方法还是截取线段相等。
其它问题自已证明。
例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB-AC=CD分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。
用到的是截取法来证明的,在长的线段上截取短的线段,来证明。
试试看可否把短的延长来证明呢?练习 1.已知在△ABC 中,AD 平分∠BAC ,∠B=ABC图1-4ABC2∠C ,求证:AB+BD=AC2.已知:在△ABC 中,∠CAB=2∠B ,AE 平分∠CAB 交BC 于E ,AB=2AC ,求证:AE=2CE3.已知:在△ABC 中,AB>AC,AD 为∠BAC 的平分线,M 为AD 上任一点。
求证:BM-CM>AB-AC4.已知:D 是△ABC 的∠BAC 的外角的平分线AD 上的任一点,连接DB 、DC 。
求证:BD+CD>AB+AC 。
(二)、角分线上点向角两边作垂线构全等过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。
例1. 如图2-1,已知AB>AD, ∠BAC=∠FAC,CD=BC 。
求证:∠ADC+∠B=180分析:可由C 向∠BAD 的两边作垂线。
近而证∠ADC 与∠B 之和为平角。
例2. 如图2-2,在△ABC 中,∠A=90 ,AB=AC ,∠ABD=∠CBD 。
求证:BC=AB+AD分析:过D 作DE ⊥BC 于E ,则AD=DE=CE ,则构造出全等三角形,从而得证。
此题是证明线段的和差倍分问题,从中利用了相当于截取的方法。
例3. 已知如图2-3,△ABC 的角平分线BM 、CN 相交于点P 。
求证:∠BAC 的平分线也经过点P 。
分析:连接AP ,证AP 平分∠BAC 即可,也就是证P 到AB 、AC 的距离相等。
图2-1BC图2-2BCAB练习:1.如图2-4∠AOP=∠BOP=15 ,PC//OA ,PD ⊥O A ,如果PC=4,则PD=( )A 4B 3C 2D 12.已知在△ABC 中,∠C=90 ,AD 平分∠CAB ,CD=1.5,DB=2.5.求AC 。
3.已知:如图2-5, ∠BAC=∠CAD,AB>AD ,CE ⊥AB ,AE=21(AB+AD ).求证:∠D+∠B=180 。
4.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC上的点,∠FAE=∠DAE 。
求证:AF=AD+CF 。
5.已知:如图2-7,在Rt △ABC 中,∠ACB=90 ,CD ⊥AB ,垂足为D ,AE 平分∠CAB 交CD 于F ,过F 作FH//AB 交BC 于H 。
求证CF=BH 。
(三):作角平分线的垂线构造等腰三角形从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中位线的性质与等腰三角形的三线合一的性质。
(如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交)。
图2-4OA DABD图2-6ECD图2-7DBA例1. 已知:如图3-1,∠BAD=∠DAC ,AB>AC,CD ⊥AD 于D ,H 是BC 中点。
求证:DH=21(AB-AC ) 分析:延长CD 交AB 于点E ,则可得全等三角形。
问题可证。
例2. 已知:如图3-2,AB=AC ,∠BAC=90 ,AD 为∠A BC 的平分线,CE ⊥BE.求证:BD=2CE 。
分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形。
例3.已知:如图3-3在△ABC 中,AD 、AE 分别∠BAC 的内、外角平分线,过顶点B 作BFAD ,交AD 的延长线于F ,连结FC 并延长交AE 于M 。
求证:AM=ME 。
分析:由AD 、AE 是∠BAC 内外角平分线,可得EA ⊥AF ,从而有BF//AE ,所以想到利用比例线段证相等。
例4. 已知:如图3-4,在△ABC 中,AD 平分∠BAC ,AD=AB ,CM ⊥AD 交AD延长线于M 。
求证:AM=21(AB+AC )分析:题设中给出了角平分线AD ,自然想到以AD 为轴作对称变换,作△AB D 关于AD 的对称△AED ,然后只需证DM=21EC ,另外由求证的结果AM=21(AB+AC ),即2AM=AB+AC ,也可尝试作△ACM 关于CM 的对称△FCM ,然后只需证DF=C F 即可。
练习: 1.已知:在△ABC 中,AB=5,AC=3,D 是BC 中点,AE 是∠BAC 的平分线,且CE ⊥AE 于E ,连接DE ,求DE 。
B图3-2BC图3-3E2. 已知BE 、BF 分别是△ABC 的∠ABC 的内角与外角的平分线,AF ⊥BF于F ,AE ⊥BE 于E ,连接EF 分别交AB 、AC 于M 、N ,求证MN=21BC (四)、以角分线上一点做角的另一边的平行线有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形。
或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形。
如图4-1和图4-2所示。
图4-2图4-1ABC BIG例4 如图,AB>AC, ∠1=∠2,求证:AB -AC>BD -CD 。
例5 如图,BC>BA ,BD 平分∠ABC ,且AD=CD ,求证:∠A+∠C=180。
1 2ACDBBDCA例6 如图,AB ∥CD ,AE 、DE 分别平分∠BAD 各∠ADE ,求证:AD=AB+CD 。
练习:1. 已知,如图,∠C=2∠A ,AC=2BC 。
求证:△ABC 是直角三角形。
2.已知:如图,AB=2AC ,∠1=∠2,DA=DB ,求证:DC ⊥AC3.已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD4.已知:如图在△ABC 中,∠A=90°,AB=AC ,BD 是∠ABC 的平分线,求证:BC=AB+ADAB ECDCAB A EB D CABDC1 2三 由线段和差想到的辅助线口诀:线段和差及倍半,延长缩短可试验。
线段和差不等式,移到同一三角去。
遇到求证一条线段等于另两条线段之和时,一般方法是截长补短法: 1、截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;2、补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。
对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法放在一个三角形中证明。
一、 在利用三角形三边关系证明线段不等关系时,如直接证不出来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1、 已知如图1-1:D 、E 为△ABC 内两点,求证:AB+AC>BD+DE+CE. 证明:(法一)将DE 两边延长分别交AB 、AC 于M 、N , 在△AMN 中,AM+AN>MD+DE+NE;(1) 在△BDM 中,MB+MD>BD ;(2) 在△CEN 中,CN+NE>CE ;(3) 由(1)+(2)+(3)得:ABCD ABCDEN M 11 图AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE ∴AB+AC>BD+DE+EC (法二:图1-2)延长BD 交AC 于F ,廷长CE 交BF 于G ,在△ABF 和△GFC 和△GDE 中有:AB+AF>BD+DG+GF (三角形两边之和大于第三边)…(1) GF+FC>GE+CE (同上)(2) DG+GE>DE (同上)(3) 由(1)+(2)+(3)得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC 。