回转窑托轮的调整
回转窑的调整方法及注意事项20180414

回转窑的调整方法及注意事项2018年4月14日回转窑托轮调整是使回转窑运行稳定的重要手段。
所以正确且有效的对回转窑托轮进行维护,可以使回转窑轮带在托轮上往复运行,使托轮表面均匀磨损,避免出现台阶从而出现设备故障。
下面是具体调整方法与步骤。
回转窑托轮调整方法与步骤:1)回转窑在运行时,为减轻托轮与轮带的摩擦阻力,一般在托轮上方安装有石磨块对其进行。
我们在调整托轮时,则需要增加托轮与轮带的摩擦力,因此,在调整托轮前要把所有托轮上的石磨块取掉。
2)每个托轮轴承座侧都装有顶丝,为便于调整,顶丝的螺纹处应当经常加油。
3)确定托轮调整方向。
首先确定我们是要让回转窑上行还是下行,根据回转窑的旋转方向绘出托轮所受摩擦力矢量图,需要注意的是托轮所受摩擦力沿回转窑轴心线上的分量必须与窑所需要移动的方向相反;然后根据托轮需要歪斜方向确定要调整的托轮轴承座。
4)拧松需要调整的托轮轴承座的脚螺栓,并将该轴承座顶丝锁紧螺母松退2圈。
先将顶丝预调90°至180°,然后启动回转窑以0.3至0.6rmin的速度慢转。
(调整回转窑必须是回转窑在运行状态,并且是在高温工况下进行)。
必要时可调整顶丝,此时回调90°,观察1小时,观察上行速度再调,调整到位时,顶丝要回位。
回位顶丝也要逐步退,顶丝在退到位后,等一段时间,托轮轴承座与顶丝接触后再固定轴承座螺栓,紧固锁紧螺母。
5)装回托轮石磨块。
回转窑托轮调整应注意事项:回转窑托轮调整一般以只调Ⅰ挡为好,必要时可调Ⅱ挡;拖轮歪斜后其所受摩擦力沿回转窑轴心线上的分量方向必须一致,即不能出现八字形。
必须经常细致地对每个托轮承受的正压力、推力大小及托轮是否产生歪斜等全面检查,从而作出准确判断,这是调整好托轮的关键。
具体判断方法是:托轮正压力大小用轮带与托轮接触面的光泽来识别,接触面发亮的受力大,发暗的受力小。
托轮推力的大小,用低端托轮轴肩推力盘的油膜厚薄来识别,轴肩推力盘油膜少而薄则推力大,油膜厚的推力小。
调整回转窑托轮受力和窑体轴向的办法

调整回转窑托轮受力和窑体轴向的办法通过偏斜托轮轴摆放位置,可以使回转窑窑体能沿轴向正常地往复窜动;使用说明书要求回转窑的上下行速度控制在小于l mm/min,中铝股份山西分公司回转窑上下行速度为O.1~0.5 mm/min,每行10分钟,停留l小时。
通过控制液压挡轮分阶段上下行至端点的调窑方法,可以促使窑体上下窜动,有利于托轮的均匀磨损。
但当托轮摆放位置不正确时,窑体的上行或下行力特别大,超过了液压挡轮的推力,导致液压挡轮毁坏,甚至出现大小齿轮脱开,造成事故。
托轮轴线与窑轴线在垂直面上的投影不平行称为倾斜,在水平面(严格说是窑安装的斜平面)上的投影不平行称为偏斜。
设置普通挡轮时,需靠托轮轴线相对于滚圈偏斜产生使窑体上窜的力,当它大于窑体自重的下滑分力时,窑体能上窜,反之,使窑体下滑。
而对于推力挡轮和液压挡轮,则要求托轮轴线与滚圈轴线平行,即同一档托轮的两轴端距离相等,允许误差小于I mm,严禁使托轮摆放出现促使窑体下窜的偏斜位置而加大挡轮负荷。
托轮偏斜角度一般不大于0°30’。
应使获得的上窜力稍大于窑体的下滑力,在窑的运转过程中,使窑体处于上窜状态。
为使窑体下柑,Il1在受力较大的托轮面上抹少量油,减小摩擦系数。
一般每班使窑体反复窜动1~2次即可。
调整托轮促使回转窑窑体上下窜动应遵循“手势定则”,即大拇指方向表示窑体窜动方向,即指向窑体高端,三手指握起手指指示方向表示窑的回转方向,而小拇指所指的方向则为托轮轴偏斜方向。
“手势定则”有“右手定则”和“左手定则”之分,其鉴别法是:站在窑出料端(窑头),如窑为顺时针转动,则用“右手定则”;如窑为逆时针转动,则用“左手定则”。
托轮摆放位置严禁呈八字形,即同一档两托轮轴中心线偏斜方向不同。
同时亦严禁使各档托轮摆成促使窑体向下窜的位置,即违背了“手势定则”。
如出现此种异常情况,则使各档同托轮互相“争力”或“对抗”。
在调整托轮之前,必须根据窑体的窜动情况,查明窜动原因,避免盲目的行动。
回转窑托轮的调整及维护1

静止时 T>G2
1、托轮的受力分析
为防止筒体向下窜动过大,造成破坏事故,根据窑回转方
向,将托轮整体调歪斜(同向)
1#窑 1# 窑尾 窑头
3#
2#
V1 β V2
V
β=1~30〃
V2=轮带圆周线速度
2、托轮的结构
3、回转窑托轮调整法则
仰手法则(左、右手法则)
面对窑筒体所要调整的方 向,握手,手心向上,大拇指 与窑体中心线一致,并指向窑 体所需要调整的方向,使四指 的方向与窑体回转方向一致, 然后根据窑的转向选用左手或 右手,在选定的手上沿着四指 的中间关节连成一条直线,即 是托轮中心线所需调整的歪斜 方向。
学习目的
1. 了解回转窑的托轮系统功用
2. 详细了解回转窑托轮系统的结构,
3. 托轮系统的相关检查、维护及故障处理
1、托轮系统功用
回转窑托轮系统是整个回转窑系统的重要组成部 分 它是回转窑进行回转运动的支撑 提供回转窑所所需的上行推力
1、托轮的受力分析
筒体中心线斜度4:100;冷端筒体L<3.3D; 热端
1、托轮的受力分析
运转后由于驱动,产生轮带表面切线方向圆周力(垂 直与于2),使轮带与托轮接触表面处产生弹性变形而 引起的弹性滑动,从而减小一部分摩擦力,当T>G2时, 向窑头滑动。
G2 G3 G3
T
G2
20 G3
f=0.15
G
G1
G
G2=G×Sina≈0.025G T=2×f×G3 ≈ 0.173G
总 结
托轮的受力
托轮的结构
仰手法则
L<1.5D;其余L<8D; L<32D称为短窑(干法线); (1#窑382t)
调整陶粒砂回转窑拖轮常用的方法

改变摩擦系数的方法进行调整。改变摩擦系数常
采用在陶粒砂回转窑拖轮表面上涂抹或浇淋粘度
不同的润滑剂,以改变陶粒砂回转窑拖轮和轮带 接触时的摩擦因数,达到控制窑体合
合理窜动的目的。加油法操作简单,效果明显,
在使用该方法时,首先应判断欲加润滑剂的陶粒
砂回转窑拖轮的受力情况,然后决定加大摩擦因
数的润滑剂。陶粒砂回转窑拖轮所受反力的大小 及方向,可根据经验判断:第一点:
若轮带的表面发亮则受力大,轮带的表面发乌则
表明受力较小;第二点,陶粒砂回转窑拖轮轴颈
表面上的油膜教薄,表明受力大,反之则受力小。
当筒体上窜时,在陶粒砂回转窑拖轮表面涂抹粘 度较大的油,减少陶粒砂回转窑拖
轮与轮带表面间的摩擦系数,以空盒子筒体向上
下即低端窜动;若两侧间隙基本相等,说明陶粒 砂回转窑拖轮所受的轴向力基本平衡
;若所有的陶粒砂回转窑拖轮均如此,表明窑体
处在相对平衡状态。一般情况下,在轮带与陶粒
砂回转窑拖轮表面上市价粘度大的润滑剂时窑体
向上窜动,施加稠度小的润滑剂时窑体向下窜动。 广州陶粒,广东陶粒 编
下应尽量避免使用,只有在极特殊的情况下,如
发现因窑体的窜动马上就要出现大的事故时才可
暂时使用。陶粒砂回转窑拖轮推动窑体的窜动方
向,可以通过观察陶粒砂回转窑拖轮轴端或轴跟 上的挡环或止推环与轴瓦端面的体向高端窜动,若间隙出现在
高端,说明陶粒砂回转窑拖轮推动轮带或窑体向
窜动;当筒体下窜时,在陶粒砂回转窑拖轮表面
涂抹粘度较小的油,增加陶粒砂回转窑拖轮与轮
带表面间的摩擦系数,以控制筒体向下窜动。另 外也可以向陶粒砂回转窑拖轮表面撒
粉状物,如陶粒砂、飞灰等来来改变摩擦因数,
窑中心线找正及回转窑托轮调整

窑中心线找正及回转窑托轮调整窑中心线找正回转窑是连续运转设备,在运转中重要的是保持窑体的“直而圆”和轴向窜动的稳定性。
而窑体中心线的直线度和窑体的正常游动,是受各个托轮位臵影响的。
因此,窑体中心线的直线度和托轮位臵的正确与否,是回转窑长期安全运转在机械方面的关键。
1、窑体中心线不直的危害回转窑在运转中,窑体中心线保持一直线,是长期安全运转的重要条件之一。
窑体中心线不直,会造成支承零件过快的磨损或损坏、功率消耗增加、密封装臵失效,致使窑内耐火砖松动,发生掉砖红窑事故,以及造成窑体产生裂纹,直至影响回转窑的运转。
2、窑体中心线不直的原因回转窑中心线不直,多数是由于托轮组基础下沉不均匀;托轮位臵调整的不正确;支承零件(轮带、托轮、托轮轴颈、轴承、窑体热板等)磨损不一致;检修更换支承零件时没考虑新旧尺寸的影响;窑体刚度不够以及停窑时,操作不正确等原因所造成。
因此,要定期校正窑体中心线。
3、窑体中心线找正的方法回转窑窑体中心线找正的方法有:挂钢丝法、灯光法、纬仪法、压铅丝法和激光法等。
回转窑托轮调整为了保证回转窑的长期安全运转,在回转窑的运转过程中,在机械维护方面的首要任务是维护窑体的“直而圆”和轴向窜动的稳定性,而要完成上述任务的最重要的工作之一,就是正确地调整托轮。
1、调整托轮的基本原则(1)调整托轮使窑体中心线是一直线回转窑的窑体是通过轮带支承在多挡托轮上的,在支承零部件尺寸不变的情况下,窑体的位臵是受托轮位臵确定的。
回转窑在是使用过程中,要经常调整托轮的位臵,保证窑体中心线呈一条直线。
即调整托轮的水平位臵及同一挡两托轮中心距的大小。
(2)调整托轮使窑体正常游动(适用于固定挡轮)回转窑在运转中,为使托轮和轮带表面磨损均匀,应使窑体在上下挡轮之间不断地轴向窜动(称为游动),但不允许轮带与挡轮经常接触转动,即使偶尔接触转动,也不要受力过大或时间过长,以免顶坏挡轮。
为实现上述要求,应将各个托轮(传动装臵附近的托轮除外)的中心线歪斜一个小角度,使托轮在转动过程中,产生一个对窑体的向上的推力,以克服窑体的下滑动,并使窑体缓慢地向上窜动,当窑体达到上挡轮位臵时,可在托轮表面加适量的润滑油,减小托轮与轮带表面之间的摩擦系数,使托轮的向上推力减小,窑体依靠其下滑力缓慢向下窜动;当窑体达到下挡轮位臵时,托轮表面的润滑也没有了,窑体又开始向上窜动,即进行再一个循环的游动,这就叫做人工游动法。
回转窑托轮的调整及维护2

Manufacturing Workforce Training – 回转窑
Filters.ppt
总 结
托轮的受力 托轮的结构 仰手法则 运转中调整托轮注意事项
HuaxinCem
托轮轴瓦过热分析、处理 托轮轴瓦过热分析、 回转窑上窜严重的处理 常规检查及注意事项
8
Huaxin Group Support
Manufacturing Workforce Training 制造业工人培训材料
PRODUCTION
实施区域: Operation Area(s)实施区域 实施区域 范畴: 范畴 设备:
所
有
回转窑
Module/Sub-Module模数 子模数 回转窑托轮的调整及维护 模数/子模数 模数 子模数: Presentation Name介绍的名称 介绍的名称: 介绍的名称 Version译本 译本: 译本 Date时间 时间: 时间 托轮组件 1.0 03-04-07
1、运转中调整托轮注意事项 、
力求保持窑筒体中心线为一直线,即吃力大的托轮要远离中心线,各 托轮受力均匀的原则。 为保护齿轮啮合,不轻易调整3号托轮,首选2#墩托轮,其次1#墩 托轮,再次是3#;(要综合分析,向里进效果优于向外退,但窑运 转、接触面较好时较难) 向外退油壶时,可先退油壶定位调节螺栓,再松开地脚螺栓。运转 5~10分钟后,检查调整螺栓与油壶底座间隙是否贴紧。注意地脚螺 栓松开程度不宜过大。 调整时要保持托轮歪斜方向一致,不允许八字型、S型等;且每次调 整量不宜过大,一般在450~900,最多不超过1800为宜,(小于30″ );调节螺栓节距4mm 调整时,尽量保持两侧托轮中心线总距不变,以免筒体中心线抬高或 降低。 因停窑未及时盘窑造成的筒体临时弯曲,一般不作调整,若弯曲量较 大时,致使一边托轮受力过大时,则应将受力大的托轮稍微向外平移 ,并在运转后逐步退回原位,使窑调直。(注意发热情况)
回转窑窑体串动调整方法及注意事项

回转窑窑体串动调整方法及注意事项回转窑窑体串动调整方法及留意事项如下:一.回转窑以筒体中心线与水平线呈3%—5%的斜度放置在托轮上。
在实际运转中。
回转窑筒体在有限的范围内时而上,时而下地窜动,保持相对稳定,这种上下窜动是正常的。
窑体正常窜动,防止了轮带与托轮的局部磨损。
但是,假如窑体只在一个方向上作较长时间的窜动,给轮带与托轮表面造成严重磨损,甚至润滑油冒烟,拖动电机电流增大,甚至烧毁,就属于机械事故了。
二.回转窑托轮的中心线假如都平行干筒体的中心线,筒体转动时,轮带与托轮的接触处作用着两个力:一个是窑体回转部分重力产生的下滑力,其方向平行于筒体中心线向下;另一个是由大齿轮带动筒体回转产生的园周力,其方向沿轮带切线且垂直于筒体下滑的力,从理论方面计祘表明,这两个力的合力仅是摩擦力的1/2-1/8,不能克服托轮与轮带的摩擦力,因此,筒体不会向下窜动.但是由于轮带与托轮接触处产生了弹性变形而造成弹性滑动,至使筒体向下滑动.为了掌握筒体下滑,通常在生产中把一组或两组托轮中心线调斜一定的角度.假如在安装时超过了这个托轮中心线需要调斜的角度值,筒体就会向上窜动.也就是说,站在窑头面对岀料端观看,一台顺时针旋转的回转窑,窑体在右斜的托轮上旋转,其右斜角度过大,窑体必定上窜;角度过小,窑体下窜。
三.长期运转后的回转窑,即使当时安装时完全无误,由于基础沉降状况不一样,筒体弯曲和轮带与托轮不圴匀磨损,特殊是由于轮带与托轮接触之间的摩察系数的变化,使窑体只在一亇方向上作长时间窜动,必定会引起回转窑筒体的上或下窜动超出极限值。
四.当一组托轮两侧的斜度相反,即将托轮摆置成正八字或倒八字时,斜度相反就会产生相反方向的摩察力,俗称抱闸作用,这时如不准时调整,就会使轴承单侧受力,局部摩察加剧,又会导致润滑油冒烟,拖动电机电流增大甚至绕坏的恶性事故。
五.回转窑筒体只在一个方向上作长时间窜动时,必需进行调整。
⑴转变轮带与托轮表面摩察系数。
回转窑托轮的调整

回转窑托轮的调整回转窑托轮的调整(二)2 回转窑筒体轴向窜动的控制由前所述,回转窑筒体因倾斜放置,在运转时发生沿轴向下窜是必然的。
如果不加控制就会发生掉窑或窑体下炕的重大设备事故。
这种事故确实在一些水泥厂中发生过,如抚顺水泥厂。
但是,如果采取一定的措施,使回转窑筒体在运转时不发生窜动是完全可能的。
可是这样做会导致托轮和轮带表面的磨损不均,表面母线出现凹凸现象,大小齿轮两侧很快出现台棱,有时由此会引发不应有的事故。
因此必须对窑体的窜动进行控制。
2.1 回转窑筒体轴向窜动控制的要求为了保证回转窑筒体能够有规律地作上下往复窜动,控制的核心是窜动速度。
由上文对Φ3.5 m×145 m回转窑筒体窜动的实例分析中可见:如果不加控制,其下窜速度是很大的,每分钟达3.8 mm。
显然,这样大的窜动速度必然会加剧托轮、轮带和大小齿轮的磨损,有害无益。
长期的使用经验表明,回转窑筒体上下一个周期往复窜动时间,对传统窑型,即1 r/min左右的回转窑筒体控制在24 h左右就能有效地避免轮带和托轮表面以及大小齿轮磨损不均。
这就是说,在保证托轮、轮带和大小齿轮沿宽度方向磨损均匀的前提下,窑体的窜动速度越少越好。
经讨论认为:窑体上窜的时间为8 h,下窜时间为16 h较为恰当。
在以前设计的回转窑,窑体往复窜动的距离为50 mm左右。
因此,窑体的上窜速度为vs,50,8,6(25 mm/h,即窑体每转一转上窜为0.104 mm左右;窑体的下窜速度为vd,50,16,3(125 mm/h,即窑体每转一转下窜为0.05 mm左右。
对于新型干法预分解窑,窑筒体转速n1,3,4 r/min,即是传统窑型的3,4倍。
使用的时间还不算太长,这方面的经验还没有总结出来。
不过从磨损速率保持相当来看,窑体上下往复一个周期的时间应该缩短,为传统窑型的1,3,1,4,即8,6 h,平均为7 h,上窜时间控制在2.5,3.0 h,下窜时间控制在4.5,5.0 h左右。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回转窑托轮的调整回转窑托轮的调整(二)2回转窑筒体轴向窜动的控制由前所述,回转窑筒体因倾斜放置,在运转时发生沿轴向下窜是必然的。
如果不加控制就会发生掉窑或窑体下炕的重大设备事故。
这种事故确实在一些水泥厂中发生过,如抚顺水泥厂。
但是,如果采取一定的措施,使回转窑筒体在运转时不发生窜动是完全可能的。
可是这样做会导致托轮和轮带表面的磨损不均,表面母线出现凹凸现象,大小齿轮两侧很快出现台棱,有时由此会引发不应有的事故。
因此必须对窑体的窜动进行控制。
2.1回转窑筒体轴向窜动控制的要求为了保证回转窑筒体能够有规律地作上下往复窜动,控制的核心是窜动速度。
由上文对Φ3.5 m×145 m回转窑筒体窜动的实例分析中可见:如果不加控制,其下窜速度是很大的,每分钟达3.8 mm。
显然,这样大的窜动速度必然会加剧托轮、轮带和大小齿轮的磨损,有害无益。
长期的使用经验表明,回转窑筒体上下一个周期往复窜动时间,对传统窑型,即1 r/min左右的回转窑筒体控制在24 h左右就能有效地避免轮带和托轮表面以及大小齿轮磨损不均。
这就是说,在保证托轮、轮带和大小齿轮沿宽度方向磨损均匀的前提下,窑体的窜动速度越少越好。
经讨论认为:窑体上窜的时间为8 h,下窜时间为16 h较为恰当。
在以前设计的回转窑,窑体往复窜动的距离为50 mm左右。
因此,窑体的上窜速度为vs=50/8=6.25 mm/h,即窑体每转一转上窜为0.104 mm左右;窑体的下窜速度为vd=50/16=3.125 mm/h,即窑体每转一转下窜为0.05 mm左右。
对于新型干法预分解窑,窑筒体转速n1=3~4 r/min,即是传统窑型的3~4倍。
使用的时间还不算太长,这方面的经验还没有总结出来。
不过从磨损速率保持相当来看,窑体上下往复一个周期的时间应该缩短,为传统窑型的1/3~1/4,即8~6 h,平均为7 h,上窜时间控制在2.5~3.0 h,下窜时间控制在4.5~5.0 h左右。
这样上下窜动的速度也就同时增大了3~4倍。
窑体上下窜动的距离近来有减小的趋势发展。
以前一般都设计在50 mm左右,而现在有设计为10~15 mm的。
这样,托轮和小齿轮的宽度就都可以减小,不必像以前托轮比轮带、小齿轮比大齿圈起码宽50 mm以上。
同时也会简化窑头和窑尾密封的结构,从而大大改善其密封效果,还会减轻托轮和小齿轮两侧出现凸肩、轮带和大齿圈两侧出现压延卷边的现象,从而可延长它们的使用寿命。
2.2回转窑筒体轴向窜动控制的方法为防止回转窑筒体因轴向窜动不当而产生事故,在结构上设计了三种挡轮装置:不吃力挡轮或称信号挡轮、吃力挡轮和液压挡轮。
前两种应用已久,至今也仍有应用,后一种出现较晚,比较先进,现在在较大的回转窑上普遍应用。
不吃力挡轮和吃力挡轮没有推动窑筒体沿轴向向上窜动的功能,只能当窑体轴向下窜一定位置时阻挡其下窜。
因此,如果不采取措施,回转窑筒体通过轮带侧面与挡轮外锥面或外圆面的接触而受到挡轮的阻挡,不再轴向下窜。
这样一来,窑体就会永远处在一个固定的轴向位置上回转。
显然,这不是人们所期望的。
况且不吃力挡轮还没有平衡窑体下窜力的能力,即使发出信号,也使操作者束手无策。
为防止将这种挡轮顶坏,只有停窑。
这就必须设法使窑体产生一个上窜的能够平衡下窜的作用力,当信号挡轮发出信号时,使上窜的作用力发挥作用,迫使窑体上窜。
对于吃力挡轮,虽然能够平衡窑体的下窜力,不会造成设备事故,但窑体永远处在轴向一个固定位置上运转也是十分不利的。
于是产生了歪斜托轮调整法。
2.2.1歪斜托轮调整法带有吃力挡轮和不吃力挡轮的回转窑,普遍采用歪斜托轮调整法使回转窑筒体按所需要的规律上下往复窜动。
2.2.1.1歪斜托轮调整法的原理如图5a所示,当托轮的轴向中心线完全平行于回转窑筒体轴向中心线时,托轮与轮带在接触处的平均圆周线速度。
但是,当托轮轴向中心线调成与窑筒体轴向中心线歪斜一个很小的角度θ时,则托轮与轮带在接触处的平均圆周线速度。
它们之间的关系变成图5b所示的情况,托轮的平均圆周线速度方向与托轮和轮带横向中心线PQ也歪斜一个θ角。
将分解为一个横向平均分速度,s和轴向平均的速度,x,显然,s=v1,即与轮带的平均圆周线速度相等,方向也一致。
而托轮的轴向平均分速度,x迫使窑体与其同向缓慢地移动,由于周向弹性滑动总是存在的,所以窑体便作边回转边轴向的运动。
对于轮带上的某一点来说是一个螺旋运动,即所谓的“螺旋效应”。
而这一点的运动方向与相同。
a.托轮与窑体中心线平行b.托轮中心线歪斜图5歪斜托轮调整法的原理分析图为使窑筒体的位置稳定,就必须使轴向平均分速度,x等于窑体弹性滑动的下窜速度vx。
根据图5b所示的速度关系得:(23)将公式(15)代入到(23)式中,则有:(24)消去υ1后可得托轮轴向中心线的歪斜角θ为:(25)式中:θ就是保持通过调歪托轮所产生的上窜速度与窑体下窜速度平衡时托轮中心所调歪的歪斜角,单位为度。
其余符号同前。
托轮歪斜θ角之后,托轮两端轴承的中心其相对位移由图5b所示的关系可利用下式计算:e=Lsinθ(mm) (26)式中:e—两个托轮轴承中心的相对位移,mm;L—两个托轮轴承中心的跨距,mm;其余符号同前。
现以不带液压挡轮的Φ3.5 m×145 m回转窑为例来计算托轮中心线最小的歪斜角θ和(26)式中的e。
Φ3.5 m×145 m回转窑的斜度为tgα=0.03502,cosβ=cos 30°=0.86603,μ=0.11,托轮材料为ZG55,轮带材料为ZG45,故取系数为0.001,回转窑筒体转速n1=1 r/min,将这些已知值代入到(25)式中便可计算出θ为0°00′57″。
托轮两轴承中心跨距L=1 500 mm,将θ值代入(26)式中,可计算出两轴承中心的相对位移量为0.42 mm。
对1 r/min左右的Φ3.5 m×145 m回转窑,只要将托轮的轴向中心线调斜θ=57″,由此产生的上窜速度便与下窜速度平衡。
这就是说,在这种情况理论上回转窑就能在某一轴向位置稳定运转。
因为这种方法是从速度平衡的角度出来分析的,所以有人又把它称为速度分析法。
2.2.1.2歪斜托轮调整法托轮歪斜方向的判别托轮歪斜方向的调整是非常重要的。
如果方向调反,会加速窑体的下窜,甚至会发生掉窑事故,造成巨大的经济损失。
如果将两挡托轮的方向调错,会造成轮带顶坏挡铁,加速磨损,过早失效。
如鲁南水泥厂Φ4 m×60 m预分解窑,曾发生过一夜之间轮带顶掉7块挡铁的事故。
托轮歪斜方向的判别基本上有三种方法:(1)速度分析法速度分析法就是将速度分解为径向速度或横向速度和轴向速度的方法,轴向速度υx的方向就是窑体的窜动方向,托轮轴向中心线KL的方向就是托轮应该歪斜的方向,参见图5b。
这种方法的特点是不易发生错误,所以比较稳妥可靠。
但比较复杂,一是需要绘图,二是需要有一定的矢量分析知识。
对一般工人来说,判别就有一定困难。
(2)经济判别法——面对轮带法观察者面向轮带,托轮和轮带接触处的圆周线速度在水平面投影方向指向窑体的中心方向,若窑筒体需要向下窜动,即向观察者的右臂方向窜动,则托轮的轴向中心线应向以托轮轴向和横向交叉中心点C为轴心的顺时针方向偏斜。
若窑体需要向上窜动,即向观察者的左臂方向窜动,则托轮的轴向中心线应向逆时针方向偏斜一个θ角,如图6所示。
图6托轮轴向中心线歪斜方向的判别(3)仰手律判别法经验判别法虽然比速度分析法简单一些,既不需要绘图,也不需要失量分析的过多知识,但用起来不太方便。
因为托轮轴向中心线围绕C点的歪斜方向离开了人体,所以很容易搞错,最简单的方法就是把窑体的窜动方向、窑体的转动方向和托轮轴向中心线应该歪斜的方向集中在人的两只手上。
不管用左手还是右手,手心都要向上,即仰手判别。
人们把这种方法的规律称为仰手律。
利用这种方法判断托轮轴向中心线应该偏斜的方向时,首先将双手握紧,大姆指直伸,手心向上,即仰手,如图7所示。
然后,将大姆指指向窑体需要或使其要窜动的方向,其余四指卷曲的方向与窑体的回转方向相同,则四指中间关节顶点的连线1便与大姆指平行的窑体纵向中心线2交成一个角度θ,斜线1的歪斜方向就是托轮轴向中心线应该歪斜的方向。
注意,在调整托轮时,同一档两个托轮轴向中心线的歪斜方向必须一致,参见图5b。
a.左手仰手律b.右手仰手律图7仰手律在使用仰手律来判别托轮轴向中心线的歪斜方向时,最重要的就是利用左手或右手的选择问题。
若将手选择正确,一般就不会出现错误。
否则,就会导致全错。
将大姆指平行于窑体中心线并指向其需要窜动的方向,若窑体绕中心线顺时针方向转动就用右手参见图7b,若窑体绕其纵向中心线逆时针方向转动就用左手,参见图7a。
用这种方法来判别托轮轴向中心线应该歪斜的方向十分简单,而且还特别容易记忆,所以应用非常广泛。
2.2.1.3采用歪斜托轮调整法应注意的问题歪斜托轮调整法对控制回转窑筒体的窜动是非常有效的,操作也比较简单,所以应用特别广泛。
但由于管理疏忽,往往将托轮调乱,造成窑筒体同心度偏差过大,各挡受力不合理或不均匀,导致托轮和轮带磨损过快,托轮轴承烧瓦,托轮和轮带掉碴、掉块,严重时裂断、筒体和托轮的负荷增大等。
如淮海水泥厂Φ5.8 m×97 m回转窑,四挡支承,曾因托轮调乱,筒体直线度严重超差,造成托轮轴承长期高温不下,严重时烧瓦,托轮边缘已断裂,筒体在轮带两侧也发生多道裂纹等。
将窑体找正后,托轮稍加处理,多年的托轮瓦温过高严重影响生产的问题得到了很好的解决。
因此,指出采用歪斜托轮调整法应注意的几个问题是十分必要的。
(1)调整挡位选择对刚安装的新窑,托轮的调整应从入料端档的支承开始,尽量使窑体出料端或烧成带附近的各挡托轮的轴向中心线与窑体中心线保持平行,尽量避免在靠近大齿圈的支承上进行调整,如图8所示〔5〕。
图8托轮调整时的合理档位顺序利用负荷最大挡的托轮进行调整,如带多筒冷却机回转窑的热端第一挡托轮,虽然调整见效快,使窑体能够迅速窜动,但调整时容易出现事故,同时托轮、轮带、托轮轴和轴瓦等机件均易损伤,因此尽量不用。
(2)应在运转时调整调整托轮时,应在窑运转的情况下进行。
否则,是调不动的,容易破坏机件或工具。
顶动轴承下座的顶丝,每次只允许转动30°~60°,以达到微小移动的目的。
移动的距离按下式计算:(27)式中:Ω—顶丝拧动的角度,°;t—顶丝的螺距,mm。
在调整时,对同一个托轮两侧的轴承组,必须保证上进下退或下进上退,目的是保持托轮的中心位置C点不变。
上式中的轴承下座移动的距离l应等于由(26)式所计算的两个轴承相对位移量e的一半,即:(28)将(28)式代入到(27)式中,则得:(29)在同一挡中的另一个相对的托轮两侧的轴承下座,将其顶丝拧动相同的角度,也必须保证下进上退或上进下退,以使两个托轮的轴向中心线歪斜方向相同,如图9所示。