2014年华师大版七年级下数学知识点
华师大版七年级数学下册电子课本课件【全册】
0002页 0034页 0064页 0077页 0115页 0144页 0158页 0176页 0214页 0248页 0275页 0328页 0348页 0377页 0428页 0508页 0510页
第6章 一元一次方程 6.2 解一元一次方程 2 解一元一次方程 6.3 实践与探索 7.1 二元一次方程组和它的解 *7.3 三元一次方程组及其解法 阅读材料 鸡兔同笼 8.1 认识不等式 1 不等式的解集 3 解一元一次不等式 阅读材料 等于与不等号的由来 第9章 多边形 1 认识三角形 3 三角形的三边关系 9.3 用正多边形铺设地面 2 用多钟正多边形 第10章 轴对称、平移与旋转
第6章 一元一次方程
华师大版七年级数学下册电子课本 课件【全册】
6.1 从实际问题到方程
华师大版七年级数学下册电子课本 课件【全册】
6.2 解一元一次方程
华师大版七年级数学下册电子课本 课件【全册】
1 等式的性质与方程的简单变 形
华师大版七年级数学下册电子课本 课件【全册】
2 解一元一次方程
华师大版七年级数学下册电子课本 课件【全册】
阅读材料 丢番图的墓志铭与方 程
华师大版七年级数学下册电子课本 课件【全册】
七年级数学专题二:绝对值 相反数 倒数华东师大版知识精讲
初一数学专题二:绝对值相反数倒数华东师大版【本讲教育信息】一. 教学内容:专题二:绝对值相反数倒数二、知识要点1. 知识点概要⑴了解有理数的绝对值、相反数、倒数的意义;⑵会求一个有理数的相反数、绝对值、倒数;⑶能借助数轴理解一个数的绝对值、相反数、倒数及完成相关计算.2. 重点难点⑴有理数(特别是负数)绝对值、相反数的意义;⑵数形结合的思想方法.三、考点分析(一)借助于数轴学习有理数的概念数轴不但是研究数形结合的典型的思想方法,而且是学习有理数的重要工具.借助于数轴可以加深对有理数的有关概念的理解和运用.1. 借助于数轴理解正负数数轴的建立,可以将所有的有理数在数轴上表示出来.即零可以用原点表示,正数可以用原点右边的点表示,负数可以用原点左边的点表示出来.如,-0.1,-1,-2,-100等等只能在数轴的左边表示出来,0在数轴的原点表示出来,0. 1,1,2,100等等只能在数轴的右边表示出来.2. 借助于数轴理解绝对值⑴数轴上表示一个数的点与原点的距离,叫做这个数的绝对值.绝对值的几何意义可以由数轴直接知道:一个数a的绝对值就是数轴上表示数a的点与原点的距离.a的绝对值记作|a|.⑵由数轴我们同样可以知道绝对值的代数意义:一个正数的绝对值就是它本身,一个负数的绝对值是它的相反数,零的绝对值是零.用数学式子表示为() ()()0, 00,0.a aaa a⎧⎪=⎨⎪-⎩><⑶绝对值的主要性质:①若a为有理数,则|a|≥ 0;②绝对值为某一正数的有理数有两个,它们互为相反数;互为相反数的两个数的绝对值相等;③若|a|=a¸则a≥ 0;④若|a|+|b|=0¸则a=b=0;⑤绝对值没有最大的数,但有绝对值最小的数:0.3. 借助于数轴理解相反数⑴我们知道,只有符号不同的两个数,我们称它们互为相反数.如212与-212互为相反数,即212是-212的相反数,-212是212的相反数.零的相反数是零.由此可知,互为相反数的两个数表示在数轴上分别在原点的两旁,并且这两个数到原点的距离相等.⑵事实上,我们可以借助于数轴来这样理解相反数的概念,在数轴上,位于原点两旁,且到原点的距离相等的两个点表示的两个数即为互为相反数.如3与-2就不是互为相反数.要注意概念中的“只有”这个字眼,就是说在两个数中,只是符号不同,一个是正号,另一个是负号,其余什么都相同.另外,由数轴上原点两旁,且到原点的距离相等的两个数总是成对出现的,单独一个数或三个数等都不能说成是互为相反数.符号不同的两个数也不能说成是互为相反数,⑶相反数的表示方法:一般地,数a 的相反数是-a ,这里a 表示任意的一个数,可以是正数、0、负数,a 还可以代表任意一个代数式.一般地,在一个数前面添加一个“-”号,就成为原数的相反数.⑷相反数的重要性质:①如果a 、b 互为相反数,则a +b =0,反之,若a +b =0,则a 、b 互为相反数;②如果a 、b 互为相反数,则a 、b 在数轴上对应的点到原点的距离相等,即互为相反数的两个数的绝对值相等. 4. 借助于数轴比较有理数的大小 在数轴上表示的两个数,右边的数总比左边的数大.由此,利用数轴比较有理数的大小,采用数形结合的方法,简单、直观,同学们也一定易于掌握.(二)倒数⑴倒数的意义:乘积为1的两个数互为倒数,其中一个数是另一个数的倒数.即当ab=1时,则a 、b 互为倒数;反之,当a 、b 互为倒数时,则ab=1.⑵倒数与相反数的区别:①互为倒数的两个数的积为1,而互为相反数的两个数的和为0;②0的相反数是0,而0没有倒数;③互为倒数的两个数同号,而互为相反数的两个数(0除外)异号.⑶倒数的求解方法:①求一个整数的倒数时,直接写成这个数分之一即可.如- 3的倒数是 -31;②求一个分数的倒数时,就是把这个分数的分子和分母交换一下即可.如 -53的倒数是 -35;③若求小数的倒数时,先将小数化成分数再求.如求-0.5的倒数,由-0.5 = -21,-21的倒数是-2,则-0.5的倒数是-2。
华师大版七年级数学下册 第10章 知识梳理
课堂小结
对称轴是线段垂直平分线
前后图形全等, 对应角边相等
旋转的 概念
旋 转 旋转的 性质
在解题时如果没有指明旋 转方向通常要分顺时针和 逆时针两种情况讨论.
课堂小结
①要熟练地找出可以作为 旋转角的角;
②要明确旋转中心的确定 方法.
中心对称
中心对称是一种特殊的旋 转;
7 中心对称的特征及中心对称的判定
知识梳理
中心对称的特征:在成中心对称的两个图形
中,连结对称点的线段都经过 对称中心
,
并且被对称中心__平__分____.
中心对称的判定:如果两个图形的所有对应点
连成的线段都经过某一点,并且被该点平分,那么
这两个图形一定关于这一点成中心对称.
8 全等图形的性质与判定
知识梳理
性质:全等多边形的对应边相等,对应角相等. 判定:(1)边、角分别对应相等的两个多边形_全__等_.
(2)一个图形经过翻折、平移和旋转等变换所 得到的图形与原图形__全__等____.
考点1 轴对称与轴对称图形
考点讲练
例 2 如图 10-2,△ABC 与△A′B′C′关于直线 l 对称,则
对应点 (即两个图形重合时互相重合的点)叫
做对称点.
2 轴对称与轴对称图形的性质
知识梳理
轴对称图形(或关于某条直线对称的两个图形)沿对 称轴对折后的两部分是_重__合_的,所以它的对应线段
_相__等_,对应角_相__等_.如果一个图形是轴对称图形,那 么_连__结__对__称__点__的线段的垂_直__线__就是该图形的对称轴.
练习2.如图所示,△DEF经过平移得到△ABC,那么 ∠C的对应角和ED的对应边分别是 ( C )
华师大版七年级数学下册知识点
华师大版七年级数学下册知识点第六章一元一次方程1.会对方程进行适当的变形解一元一次方程:解方程的基本思想就是转化,即对方程进行变形,变形时要注意两点,一时方程两边不能乘以(或除以)含有未知数的整式,否则所得方程与原方程的解可能不同;二是去分母时,不要漏乘没有分母的项,一元一次方程是学习二元一次方程组、一元二次方程、一元一次不等式及函数问题的基本内容。
2.正确理解方程解的定义,并能应用等式性质巧解考题:方程的解应理解为,把它代入原方程是适合的,其方法就是把方程的解代入原方程,使问题得到了转化。
3.理解方程a某=b在不同条件下解的各种情况,并能进行简单应用:(1)a≠0时,方程有唯一解某=;(2)a=0,b=0时,方程有无数个解;(3)a=0,b≠0时,方程无解。
5.几种常见的问题:和差倍分问题、等机变形问题、劳力调配问题、比例分配问题、数字问题、工程问题。
第七章二元一次方程组1.二元一次方程(组)及解的应用:注意:方程(组)的解适合于方程,任何一个二元一次方程都有无数个解,有时考查其整数解的情况,还经常应用方程组的概念巧求代数式的值。
2.解二元一次方程组:解方程组的基本思想是消元,常用方法是代入消元和加减消元,转化思想和整体思想也是本章考查重点。
会用代入消元法解含有未知数系数为1的二元一次方程组。
会运用代入法解未知数系数都不是1的二元一次方程组。
会用加减法求未知数系数相等或互为相反数的二元一次方程组的解。
学会使用方程变形,再用加减消元法解二元一次方程组。
灵活运用代入消元法、加减消元法解题。
第八章一元一次不等式4.列不等式(组)解应用题:注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题。
第九章多边形1.多边形:一般来说,多边形是由一些线段依次首尾相连围成的封闭图形。
我们通常根据多边形的边数将它们分为三角形、四边形、五边形……2.n边形:由n条线段依次首尾相接围成的封闭图形叫做叫做n边形(n为大于或等于3的整数)。
七年级数学下华师版知识点
七年级数学下华师版知识点第一章:初识代数代数是数学的一个重要分支,它用符号和字母代替实际数字或量,使得问题更加简洁明了。
初学代数需要掌握下列知识点:1.1 代数式代数式是由数、未知数和运算符组成的式子。
其中未知数可以表示为字母或者符号$x$,$y$,$z$等。
1.2 同类项同类项是指有相同的未知数和相同次数的代数式。
如$3x+5x$,这两个项就是同类项,合并后可以得到$8x$。
1.3 合并同类项将多个同类项合并成一个新的代数式,首先要将有相同的未知数和次数的项进行合并。
如$3x+5x$可以被合并为$8x$。
1.4 四则运算代数式的四则运算与常规的数学四则运算一样,分别是加减乘除。
要注意将同类项合并再进行运算。
第二章:一次方程一次方程也称为一元一次方程,表示成以下形式:$ax+b=cx+d$。
初学一次方程需掌握以下知识点:2.1 解方程解方程的基本思想是使得方程两边的未知数系数变成1,然后求出未知数的值。
解方程需要注意运用加减消元和等式移项等方法。
2.2 解方程组方程组是由多个方程组成的集合,求解方程组就是找到一个解满足所有的方程同时成立。
第三章:平面几何初步几何是研究在平面或空间中点、线、面、体的位置、分布和相互关系的数学分支。
初学平面几何需掌握以下知识点:3.1 直线直线是空间中长度为无限大的一条连续的、无限延伸的点集合。
直线的特征是两点可以确定一条直线,两条平行线永不相交。
3.2 角角是由两条射线以一个公共点为顶点所夹成的图形。
角的度数可以用度或弧度来表示。
3.3 三角形三角形是三条直线段组成的图形,其中三条直线段相互连接,端点不在一条直线上。
三角形的性质包括内角和为180度,直角三角形的两条直角边的平方和等于斜边的平方等。
第四章:函数初步函数是代表两个数集之间的映射关系,其中一个数集是函数的定义域,第二个数集是函数的值域。
初学函数需掌握以下知识点:4.1 函数的定义函数是指在一个数集内,每一个独立变量都能够被唯一的确定一个函数值。
华师大版七年级下册数学知识点总结
七年级数学下期期末复习提纲第六章 一元一次方程一、基本概念(一)方程的变形法则法则1:方程两边都或同一个数或同一个,方程的解不变。
例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7。
在方程6x=-2x-6左右两边都加上4x ,得到新方程:8x=-6。
移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。
例如:(1)将方程x -5=7移项得:x =7+5即 x =12(2)将方程4x =3x -4移项得:4x -3x =-4即 x =-4法则2:方程两边都除以或同一个的数,方程的解不变。
例如: (1)将方程-5x =2两边都除以-5得:x=-52 (2)将方程32 x =13 两边都乘以32得:x=92 这里的变形通常称为“将未知数的系数化为1”。
注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。
(2)不论上一乘以或除以数时,都要注意结果的符号。
方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。
求不方程的解的过程,叫做解方程。
(二)一元一次方程的概念及其解法1.定义:只含有一个未知数,并且含有未知数的式子都是,未知数的次数是,这样的方程叫做一元一次方程。
例如:方程7-3x=4、6x=-2x-6都是一元一次方程。
而这些方程5x 2-3x+1=0、2x+y =l -3y 、1x-1=5就不是一元一次方程。
2.一元一次方程的一般式为:ax+b=0(其中a 、b 为常数,且a ≠0)一元一次方程的一般式为:ax=b (其中a 、b 为常数,且a ≠0)3.解一元一次方程的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。
注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
(完整版)华师版七年级下册数学知识点总结
七年级数学下期期末复习提纲第六章一元一次方程一、基本概念(一)方程的变形法则法则1:方程两边都或同一个数或同一个,方程的解不变。
例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7。
在方程6x=-2x-6左右两边都加上4x,得到新方程:8x=-6。
移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。
例如:(1)将方程x-5=7移项得:x=7+5即x=12(2)将方程4x=3x-4移项得:4x-3x=-4即x=-4法则2:方程两边都除以或同一个的数,方程的解不变。
例如:(1)将方程-5x=2两边都除以-5得:x=-52(2)将方程32x=13两边都乘以32得:x=92这里的变形通常称为“将未知数的系数化为1”。
注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。
(2)不论上一乘以或除以数时,都要注意结果的符号。
方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。
求不方程的解的过程,叫做解方程。
(二)一元一次方程的概念及其解法1.定义:只含有一个未知数,并且含有未知数的式子都是,未知数的次数是,这样的方程叫做一元一次方程。
例如:方程7-3x=4、6x=-2x-6都是一元一次方程。
而这些方程5x2-3x+1=0、2x+y=l-3y、1x-1=5就不是一元一次方程。
2.一元一次方程的一般式为:ax+b=0(其中a、b 为常数,且a≠0)一元一次方程的一般式为:ax=b(其中a、b 为常数,且a≠0)3.解一元一次方程的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。
注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
(2)“去分母”指去掉方程两边各项系数的分母;去分母时,要求各分母的最小公倍数,去掉分母后,注意添括号。
(华师大版)七年级数学下册:7.3《三元一次方程组及其解法》ppt课件
七年级华师大数学知识点
七年级华师大数学知识点华师大数学,作为一所学科实力强劲的大学,对于数学教育的质量也格外关注。
随着我国教育质量的不断提高,华师大数学教育也日益充实,七年级数学知识点更是被重点关注。
一、基础知识1.1 数的认识整数、有理数、实数等基本概念的介绍。
数轴、坐标系等基本工具的使用。
了解数的四则运算和初等代数(代数式、方程)的概念和方法等。
1.2 等式与不等式区别等式和不等式的概念。
对不等式有形式推导和对数直观感受。
通过练习无法确定变量的不等式(如x+2<0)的解法等方法。
1.3 向量与坐标向量:认识向量的表示方式、平移性质、相等与方向相反、加法、数乘等基本概念和性质。
向量的坐标表示与坐标的相互联系。
二、几何知识2.1 点、线、面的认识点、线、面的名称、表示方法及基本性质等。
2.2 基本画图法和基本制图符号绘制与数表达有关的图形,了解基本制图符号(如角度、直线、圆)的使用。
2.3 三角形、四边形、圆的基本性质三角形的内角和定理、外角和定理、直角三角形和勾股定理等。
四边形的内角和定理等。
圆与圆心角、弧、弦、切线等基本概念和性质。
三、函数知识3.1 函数及函数的图像和性质了解函数的基本定义和基本概念等,掌握一元一次函数y=kx+b、一元二次函数y=ax²+bx+c的图像和性质。
对于解题时运用函数概念有较好的认识。
3.2 实际问题与函数通过实际问题,引导学生认识函数在生活、经济等方面的应用。
同时,训练学生解决实际问题的方法和能力。
四、统计学知识4.1 数据收集与整理初步了解数据收集的方法和整理的基本概念。
学习频数和频率的计数方法。
4.2 数据分析初步了解数据展示与数据分析的基本方法。
如:条形图、折线图、饼图等图表的绘制和分析。
综上所述,七年级华师大数学知识点涉及基础知识、几何知识、函数知识和统计学知识等多个方面。
学生需要全面掌握这些知识,并在实际运用中通过解决问题,提高数学的应用能力。
华师大版七年级数学下册知识点整理
华师大版七年级数学下册知识点整理第六章 一元一次方程一、基本概念(一)方程的变形法则法则1:方程两边都 或 同一个数或同一个 ,方程的解不变。
例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7。
在方程6x=-2x-6左右两边都加上4x ,得到新方程:8x=-6。
移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。
例如:(1)将方程x -5=7移项得:x =7+5 即 x =12(2)将方程4x =3x -4移项得:4x -3x =-4即 x =-4法则2:方程两边都除以或 同一个 的数,方程的解不变。
例如: (1)将方程-5x =2两边都除以-5得:x=-52(2)将方程32 x =13 两边都乘以32得:x=92 这里的变形通常称为“将未知数的系数化为1”。
注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。
(2)不论上一乘以或除以数时,都要注意结果的符号。
方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。
求不方程的解的过程,叫做解方程。
(二)一元一次方程的概念及其解法1.定义:只含有一个未知数,并且含有未知数的式子都是 ,未知数的次数是,这样的方程叫做一元一次方程。
例如:方程7-3x=4、6x=-2x-6都是一元一次方程。
而这些方程5x2-3x+1=0、2x+y=l-3y、1x-1=5就不是一元一次方程。
2.一元一次方程的一般式为:ax+b=0(其中a、b为常数,且a≠0)一元一次方程的一般式为:ax=b(其中a、b为常数,且a≠0)3.解一元一次方程的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。
注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
七年级下册数学第8章知识点归纳(华师大版)
故本题选择 D。
一一元一次不等式组:关于同一个未知数的几个一元一
次不等式合在一起,就组成了一元一次不等式组。一元一次
不等式组的概念可以从以下几个方面理解:
组成不等式组的不等式必须是一元一次不等式 ;
从数量上看,不等式的个数必须是两个或两个以上
;
每个不等式在不等式组中的位置并不固定,它们是并列
的
二一元一次不等式组的解集及解不等式组:在一元一次
七年级下册数学第 8 章知识点归纳(华 师大版)
一般地,用符号 =连接的式子叫做等式。
注意:等式的左右两边是代数式。
一般地,用符号, , 连接的式子叫做不等式不等式中可
以含有未知数,也可以不含。 )
用不等号连接的,含有一个未知数,并且未知数的次数
都是 1,系数不为 0,左右两边为整式的式子叫做一元一次
不等式组中,各个不等式的解集的公共部分就叫做这个一元
一次不等式组的解集。求这个不等式组解集的过程就叫解不
等式组。解一元一次不等式组的步骤:
先分别求出不等式组中各个不等式的解集 ;
利用数轴或口诀求出这些解集的公共部分,也就是得到
了不等式组的解集
三不等式的解集的数轴表示:
一元一次不等式组知识点
用数轴表示不等式的解集,应记住下面的规律:大于向
未知数范围扩大 ;
对含字母的不等式,没有对字母取值进行分类讨论。
时,我们可以不关注这个等号,这样就这类不等式组化归为
上述四种基本不等式组中的某一种类型。但是,在解题的过
程中,这个等号要与不等号相连,不能分开。
四求一些特解:求不等式的正整数解,整数解等特解,
解这类问题的步骤:先求出这个不等式的解集,然后借助于
数轴,找出所需特解。
七年级华师大版几何知识点
七年级华师大版几何知识点几何是数学的一个重要分支,涉及到空间和形状的研究。
在七年级数学中,几何知识点是必不可少的一部分。
下面我们将详细介绍华师大版七年级几何知识点。
1.基本概念几何学中有很多基本概念,比如点、线、面等。
点是几何中最基本的概念,一般用大写字母表示。
线是由多个点组成的集合,一般用小写字母表示。
面是由多个线组成的集合,一般用带箭头的大写字母表示。
2.平面图形平面图形是几何学中最基本的研究对象之一。
主要包括:三角形、矩形、正方形、平行四边形、梯形、菱形等。
其中,三角形是最常见的图形之一,按照角度可分为:直角三角形、锐角三角形、钝角三角形。
矩形和平行四边形的特点是对角线相等,而正方形除了对角线相等外,还有四个直角。
菱形具有对角线相等且互相垂直的特点。
3.空间图形空间图形也是几何学中重要的内容之一。
主要包括:正方体、长方体、圆锥、圆柱、球等。
正方体是六个正方形组成的图形,长方体是由六个矩形组成的图形。
圆锥的底面是一个圆,圆柱的底面和顶面都是圆形。
球体是由无数个半径相等的圆组成的。
4.线段、角度、相似与全等线段是由两个端点组成的一条线段,可以用字母表示。
角度通常用度数来表示,如60度、90度等。
相似与全等是几何学中重要的概念,相似的意思是两个形状的对应边成比例,全等的意思是两个形状的对应边和对应角度都相等。
5.圆的概念圆是平面上距离一个固定点距离相等的所有点的集合。
其中,那个固定点称为圆心,固定距离称为半径。
圆的周长公式为2πr,圆的面积公式为πr²。
总结七年级华师大版几何知识点主要包括基本概念、平面图形、空间图形、线段、角度、相似与全等以及圆的概念等内容。
这些知识点对于学好数学和应用数学都有非常重要的作用。
希望同学们在学习数学时,能够认真掌握这些知识点,从而更好地提升自己的数学水平。
华师大版本初中七年级数学学习知识点学习汇总
1.有理数的分类:(注意0和非正整数)2.规定了原点、正方向和单位长度的直线叫做数轴;在数轴上表示的两个数,右侧的数总比左侧的数大 .正数都大于零,负数都小于零,正数大于负数只有符号不一样的两个数称互为相反数在数轴上表示互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等.0的相反数是0.一个数的相反数就是在它前方添“--”号在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值老是非负数,即|a|≥0有理数的加法法例:同号两数相加,取同样的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.灵巧运用运算律,使用运算简化,往常有以下规律:①互为相反的两个数,能够先相加;②符号同样的数,能够先相加;③分母同样的数,能够先相加;④几个数相加能获得整数,能够先相加。
4、有理数乘法法例:两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同0相乘,都得0.几个:不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.乘法分派律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.a(b+c)=ab+ac. 有理数除法例:除以一个数等于乘上这个数的倒数.注意:0不可以作除数.两数相除,同号得正,异号得负,并把绝对值相除 .0 除以任何一个不等于0的数,都得0.7、乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数;③任何数的偶数次幂都是非负数;④1的任何次幂都得 1,0的任何次幂都得0;⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,第一要确立幂的符号,而后再计算幂的绝对值。
七年级下数学华师大知识点
七年级下数学华师大知识点华师大数学知识点,旨在能让学生们在数学这一门学科上更好的立足。
其中七年级下数学华师大知识点尤为重要,本文将为大家详细介绍。
一、图形的认识1.点,线,面的基本概念点是没有大小和形状的,常表示为大写字母,如A、B。
线是由无数个点连成的,通常用小写字母表示,如a,b。
面是由无数个直线闭合而成的,通常用大写字母表示,如P、Q。
2.图形基本元素直线:有无数个点、无厚度,方向可延伸无限远。
射线:有一个端点,一个方向,无限远延伸。
线段:有两个端点,长度有限,包括两个端点。
角度:两个射线在它们的端点上相交所围成的图形。
三角形:由三条线段和三个角围成的图形。
四边形:由四条线段和四个角围成的图形。
圆形:由一条封闭曲线组成的图形,其中任意两点到圆心的距离相等。
二、分式在学习华师大七年级下数学的过程中,分式是非常重要的一部分。
分式含义:分数的形式,如$\frac{1}{2}$,含义为一份分成了两份。
其中分子表示被分成的部分,分母表示整体中分成的份数。
分式的基本运算:乘法运算:$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b\times d}$除法运算:$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times\frac{d}{c}$加法运算:$\frac{a}{b}+ \frac{c}{d} = \frac{a \times d + b \times c}{b \times d}$减法运算:$\frac{a}{b} - \frac{c}{d} = \frac{a \times d - b \times c}{b \times d}$三、代数式和方程式1.代数式的基本性质代数式可以进行加、减、乘、除四则运算。
代数式的合并同类项,主要是把一些代数式中相同的项合并起来,比如:$2a+3a=5a$。
2.方程式的基本性质方程式是含有未知数的等式,其中的未知量也就是等式中的代数式,常用字母表示。
七年级下册数学书华师大版
七年级下册数学书华师大版《七年级下册数学书华师大版》是一本为中学生量身定做的数学教材,出版者是中国人民大学出版社。
在这本数学书中,重点放在基础知识的掌握,详细的解答如何通过理解和合理的分析解决每一个问题,对中学生的学习有很大帮助。
《七年级下册数学书华师大版》的内容涵盖了广泛的数学教材,包括几何、概率论、统计学、微积分,以及空间想像力的培养等。
这本数学书的第一部分主要讲解几何学,重点讲解了点、线、面、体四个概念,知识涉及直线、圆、三角形、椭圆等。
其中,还涉及了解图形的形状、比例、相似度、尺寸、重心等特性。
第二部分主要讲解概率论,引出了概率论的定义、概率的计算方法等内容。
重点讲解了概率的定义、概率的计算方法、独立性、条件概率等概念,并以实际的概率问题,如从一堆硬币中随机抽出正反面的问题等为例,让学生加深理解。
第三部分主要讲解统计学,讲解了数据分析、图表、曲线拟合和方差等内容。
重点涉及数据分析方法、数据分布、统计表分析等内容,以及如何求出均值、中位数和方差的计算方法,并以实际的案例对各项技术进行了较为全面的讲解。
第四部分主要讲解微积分,讲解了微积分的基本概念、泰勒展开式、微分的基本定义、极限的概念、微分的应用和积分的概念等,并给出了详尽的习题,让学生练习,以便解决实际的概率问题。
最后,《七年级下册数学书华师大版》为了培养学生空间想象力,结合数学例题和拓展练习,涉及了数学模型、几何图形、空间坐标系等,最后让学生运用空间想象力,提高学习效果。
《七年级下册数学书华师大版》是一本优质的教材,每一部分的内容都精心编写,不仅涉及广泛的数学教材,而且详细讲解了各类概念,并提供了大量的习题供学生练习,以便达到更好的学习效果。
此外,教材中还包含大量的拓展练习,让学生有机会掌握空间想象力,帮助学生更好地理解数学知识。
华师大版七年级下册初一数学(提高版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)
华师大版七年级下册数学重难点突破全册知识点梳理及重点题型举一反三巩固练习从实际问题到方程(提高)知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及代数式的区别与联系;2. 理解并掌握等式的两个基本性质;3. 掌握方程的变形规则并能解简单的方程.【要点梳理】【从算式到方程三、解方程的依据——等式的性质】要点一、等式1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边都加(或减去)同一个数(或整式),所得的等式仍然成立.即:如果,那么 (c表示任意数或整式) .等式的性质2:等式两边都乘(或除以)同一个数(除数不能是0),所得的等式仍然成立.即:如果,那么;如果,c≠0,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形;(2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立;如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【从算式到方程一、方程的有关概念】要点二、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它(或它们)是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1)方程是等式;(2)方程中必须含有字母(或未知数).5.方程的变形规则:方程两边都加(或都减去)同一个数或同一个整式,方程的解不变.方程两边都乘以(或都除以)同一个不等于0的数,方程的解不变.6.移项:在解方程的过程中,等号的两边加上(或减去)方程中某一项的变形过程,相当于将这一项改变符号后,从方程的一边移到另一边.这种变形过程叫做移项.要点诠释:移项通常是指把含有未知数的项移到方程的一边,其他项移到方程的另一边,但无论是移含有未知数的项还是其他项都要改变符号,然后再进行移项.【典型例题】类型一、方程的概念1.(2014秋•越秀区期末)下列方程中,是一元一次方程的是()A. x+y=1B. x2﹣x=1C.+1=3xD.+1=3【答案】C解:A、是二元一次方程,故本选项错误;B、是二元二次方程,故本选项错误;C、符合一元一次方程的定义,故本选项正确;D、是分式方程,故本选项错误.【总结升华】方程是含有未知数的等式,方程和等式的关系是从属关系,且具有不可逆性,方程一定是等式,但等式不一定是方程,区别在于是否含有未知数.2.下列各方程后面括号里的数都是方程的解的是( ).A.2x-1=3 (2,-1) B.5118xx+=- (3,-3)C. (x-1)(x-2)=0 (1,2) D.2(y-2)-1=5 (5,4)【答案】C.【解析】把方程后面括号里的数分别代入方程的左、右两边,使左边=右边的是方程的解,若左边≠右边的,则不是方程的解.【总结升华】检验一个数是否为方程的解,只要把这个值分别代入方程的左边和右边:若代入后使左边和右边的值相等,则这个数是方程的解;若代入后使方程左右两边的值不相等,则这个数不是方程的解.举一反三:【变式】(2015•大连)方程3x+2(1﹣x)=4的解是()A.x=B.x=C.x=2 D.x=1【答案】C.类型二、等式的性质3.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪条性质,以及怎样变形得到的.(1)若4a=8a-5,则4a+________=8a.(2)若163x-=,则x=________.(3)13132x y y-=-,则112x+=________.(4)ax+by=-c,则ax=-c________.【思路点拨】根据等式的基本性质观察式子进行判断.【答案与解析】解:(1) 5 ;根据等式性质1,等式两边同时加上5.(2)118-;根据等式性质2,等式两边同时除以-6.(3) 2 ;根据等式性质1,等式两边都加上(1+3y) .(4) –by;根据等式性质1,等式两边都加上-by.【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下面方程变形中,错在哪里?(1)由2+x=-4, 得x=-4+2.(2)由9x=-4, 得94x=-.(3)由5=x-3, 得x=-3-5.(4)由3241155x x-+=-,得3x-2=5-4x+1.(5)方程2x=2y两边都减去x+y,得2x-(x+y)=2y-(x+y), 即x-y=-(x-y). 方程 x-y=-(x-y)两边都除以x-y, 得1=-1.(6)由3721223x xx-+=+,得3(3-7x)=2(2x+1)+2x.【答案】(1)不正确.错在数2从方程的等号左边移到右边时没有变号.(2)不正确,错在被除数与除数颠倒(或分子与分母颠倒了).(3)不正确,错在移项或等号两边的项对调时把符号弄错,正确的变形是:由5=x-3,得5+3=x, 即x=5+3.(4)不正确,没有注意到分数415x+中的“分数线”也起着括号的作用,因此当方程两边的各项都乘以5时,+1没有变号.(5)不正确,错在第二步,方程两边都除以x-y,由等式性质2要除以不为零的数. (6)不正确,错在2x没乘以公分母6.类型三、等式或方程的应用4.观察下面的点阵图形(如图所示)和与之相对应的等式,探究其中的规律:(1)请你在④和⑤后面的横线上分别写出相对应的等式.……(2)通过猜想,写出与第n 个图形相对应的等式.【思路点拨】通过观察图像可得:图形呈放射状,四条线上每变化一次各增加一个点,第n 个图形每条线上应该是n 个点;再观察对应的等式即可求解. 【答案与解析】解:等式的左右两边都是表示对应图形中点的个数,等式的左边是从1个点开始的,第2个图形增加4个点表示为4×1+1,第3个图形又增加4个点,表示为4×2+1,…,第n 个图形共增加(n-1)个4个点,表示为4(n-1)+1;等式的右边,把第一个图形看作4点重合为一个点,表示为4×1-3,第2个图形增加4个点,表示为4×2-3,第3个图形又增加4个点,表示为4×3-3,…,第n 个图形看作n 个4个点少3个点,表示为4n-3,所以有4(n-1)+1=4n-3.(1) ④4×3+1=4×4-3 ⑤4×4+1=4×5-3 (2)4(n-1)+1=4n-3 【总结升华】设出未知量并用此未知量表示出题中的数量关系. 举一反三:【变式】小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km ?设他家到学校的路程是xkm ,则据题意列出的方程是( )A.10515601260x x +=-B. 10515601260x x -=+C. 10515601260x x -=-D. 1051512x x +=-【答案】A类型四、利用方程的变形规则解方程5.解方程:12(31)37xx --+(12)= 【答案与解析】解:方程两边都乘以21,得7(12)32(31)x x --=⨯+ 乘法分配律乘开,得 714186x x -+=+ 移项,得 413x -=方程两边都除以-4,得 134x =-【总结升华】此题主要考查了利用方程的变形规则解一元一次方程,关键是注意此变形规则的依据是等式的基本性质.【巩固练习】 一、选择题1.下列各式是方程的是( ). A .533x y + B .2m-3>1 C .25+7=18+14 D .73852t t -=+ 2.(2015•秦淮区一模)如果用“a=b ”表示一个等式,c 表示一个整式,d 表示一个数,那么等式的第一条性质就可以表示为“a ±c=b ±c ”,以下借助符号正确的表示出等式的第二条性质的是( )A. a •c=b •d ,a ÷c=b ÷dB. a •d=b ÷d ,a ÷d=b •dC. a •d=b •d ,a ÷d=b ÷dD. a •d=b •d ,a ÷d=b ÷d (d ≠0)3.有一养殖专业户,饲养的鸡的只数与猪的头数之和是70,而鸡与猪的腿数之和是196,问该专业户饲养多少只鸡和多少头猪?设鸡的只数为x ,则列出的方程应是( ). A .2x+(70-x)=196 B .2x+4(70-x)=196 C .4x+2(70-x)=196D .2x+4(70-x)=19624.已知关于y 的方程324y m +=与41y +=的解相同,则m 的值是( ). A .9 B .-9 C .7 D .-85. 一件商品按成本价提高40%后标价,再打8折(标价的108)销售,售价为240元,设这件商品的成本价为x 元,根据题意,下面所列的方程正确的是( ).A .x ·40%×108=240B .x (1+40%)×108=240C .240×40%×108=xD .x ·40%=240×1086. 将103.001.05.02.0=+-xx 的分母化为整数,得( ). A .1301.05.02=+-xxB .1003505=+-x x C .100301.05.020=+-xxD .13505=+-x x 二、填空题 7.(2014•嘉峪关校级期末)在 ①2+1=3,②4+x=1,③y 2﹣2y=3x ,④x 2﹣2x+1中,方程有 (填序号)8.已知x=3是方程22(1)6x m x +-=的解,则=m ________.9. 如果关于x 的方程(a 2-1)x=a+1无解,那么实数a= .10.将方程63242-=+x x 的两边同乘以 ______得到3(x+2) =2(2x -3),这种变形的根据是_____ _.11.一个个位数是4的三位数,如果把4换到左边,所得数比原数的3倍还多98,若这个三位数去掉尾数4,剩下的两位数是x ,求原数,则可列方程为__________________. 12. 观察等式:9-1=8, 16-4=12,25-9=16,36-16=20,……这些等式反映自然数间的某种规律,设n(n ≥1)表示自然数,用关于n 的等式表示这个规律为________. 三、解答题13.(2014秋•忠县校级月考)下列方程的变形是否正确?为什么? (1)由3+x=5,得x=5+3. (2)由7x=﹣4,得x=.(3)由,得y=2.(4)由3=x ﹣2,得x=﹣2﹣3. 14.阅读理解:若p 、q 、m 为整数,且三次方程x 3+px 2+qx+m=0有整数解c ,则将c 代入方程得:c 3+pc 2+qc+m=0,移项得:m=﹣c 3﹣pc 2﹣qc ,即有:m=c×(﹣c 2﹣pc ﹣q ),由于﹣c 2﹣pc ﹣q 与c 及m 都是整数,所以c 是m 的因数.上述过程说明:整数系数方程x 3+px 2+qx+m=0的整数解只可能是m 的因数.例如:方程x 3+4x 2+3x ﹣2=0中﹣2的因数为±1和±2,将它们分别代入方程x 3+4x 2+3x ﹣2=0进行验证得:x=﹣2是该方程的整数解,﹣1,1,2不是方程的整数解. 解决问题:(1)根据上面的学习,请你确定方程x 3+x 2+5x+7=0的整数解只可能是哪几个整数?(2)方程x 3﹣2x 2﹣4x+3=0是否有整数解?若有,请求出其整数解;若没有,请说明理由.15.某市为鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨部分按0.45元/吨收费,超过10吨而不超过20吨部分按0.80元/吨收费,超过20吨部分按1.5元/吨收费,现已知老李家六月份缴水费14元,问老李家六月份用水多少吨? 16.观察下面的图形(如图所示)(每个正方形的边长均为1)和相应的等式,探究其中的规律:(1)写出第五个等式,并在下图给出的五个正方形上画出与之对应的图示;(2)猜想并写出与第n 个图形相对应的等式. 【答案与解析】 一、选择题1.【答案】D.【解析】判断一个式子是不是方程,首先看它是不是等式,若是等式,再看它是否含有未知数,两条都满足了就是方程.A 、B 不是等式;C 中没有未知数. 2.【答案】D . 3.【答案】B.【解析】本题的相等关系为:鸡的腿数+猪的腿数=196. 4.【答案】A.【解析】由41y +=得3y =-,将其代入324y m +=可得:9m =.5.【答案】B.【解析】标价=成本(进价)×(1+利润率);实际售价=标价×打折率. 6.【答案】D.【解析】将分母变为整数用的是分数的基本性质而非等式的性质.二、填空题7. 【答案】②、③【解析】∵①不含未知数,①不是方程;∵②、③含有未知数的等式,②、③是方程;④不是等式,④不是方程.8.【答案】-3【解析】将x =3代入原方程得183(1)6m +-=,所以3m =-.9. 【答案】-1【解析】∵方程(a 2-1)x=a+1无解,∴a 2-1=0,且a+1≠0,解得:a=1. 10.【答案】12, 等式的性质2 11.【答案】x x +=++40098)410(3【解析】 原数应表示为:104x +,再根据题意即可得出答案. 12.【答案】 (n+2)2-n 2=4(n+1)【解析】通过观察可以看出:题中各等式左边的数字都是完全平方数,右边的数字都是4的倍数.即:32-12=4×2,42-22=4×3,52-32=4×4,62-42=4×5,….设n(n ≥1)表示自然数,把第一个等式中的l 换成n ,3换成(n+2),2换成(n+1),得(n+2)2-n 2=4(n+1),就是第n 个等式.三、解答题 13.【解析】 解:(1)由3+x=5,得x=5+3,变形不正确, ∵方程左边减3,方程的右边加3, ∴变形不正确; (2)由7x=﹣4,得x=,变形不正确, ∵左边除以7,右边乘,∴变形不正确;(3)由,得y=2,变形不正确,∵左边乘2,右边加2, ∴变形不正确;(4)由3=x ﹣2,得x=﹣2﹣3,变形不正确, ∵左边加x 减3,右边减x 减3, ∴变形不正确.14.【解析】(1)由阅读理解可知:该方程如果有整数解,它只可能是7的因数,而7的因数只有:1,﹣1,7,﹣7这四个数.(2)该方程有整数解.方程的整数解只可能是3的因数,即1,﹣1,3,﹣3,将它们分别代入方程x 3﹣2x 2﹣4x+3=0进行验证得:x=3是该方程的整数解.15.【解析】∵ 0.45×10+0.80×(20-10)=12.5,12.5<14,∴ 老李家六月份用水超过了20吨.设老李家六月份用水x 吨,根据题意得 0.45×10+0.80×(20-10)+1.5(x-20)=14.16.【解析】 (1) 通过观察可以看出:第n 个等式,首起数字是n ,第2个数的分子是n ,分母比分子大1,等式的右边与左边不同的是,左边两数之间是乘号,右边两数之间是减号,同时,有几个小正方形,就把每个小正方形平分为几加1份,其中空白1份. 如图所示:555566⨯=-. (2)11n nn n n n ⨯=-++解一元一次方程(提高)知识讲解【学习目标】1. 了解一元一次方程及其相关概念,熟悉解一元一次方程的一般步骤,理解每步变形的依据;2. 掌握一元一次方程的解法,体会解法中蕴涵的化归思想;3. 会求解含字母系数的一元一次方程及含绝对值的一元一次方程. 【要点梳理】要点一、一元一次方程的有关概念只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程. 要点诠释:(1)“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①是一个方程.②必须只含有一个未知数.③含有未知数的项的最高次数是1.④分母中不含有未知数.(2)一元一次方程的标准形式是:ax+b=0(其中a ≠0,a,b 是常数) . (3)一元一次方程的最简形式是: ax =b (其中a ≠0,a,b 是常数).要点二、解一元一次方程的一般步骤要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点三、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为ax b c +=的形式,然后再分类讨论:(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-. 2.含字母的一元一次方程此类方程一般先化为一元一次方程的最简形式ax =b ,再分三种情况分类讨论: (1)当a ≠0时,b x a=;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0时,方程无解. 【典型例题】类型一、一元一次方程的相关概念1.已知下列方程:①210x +=;②x =0;③13x x +=;④x+y =0;⑤623xx =-;⑥0.2x =4;⑦2x+1-3=2(x-1).其中一元一次方程的个数是( ).A .2B .3C .4D .5 【答案】B【解析】方程①中未知数x 的最高次数是2,所以不是一元一次方程;方程③中的分母含有未知数x ,所以它也不是;方程④中含有两个未知数,所以也不是一元一次方程;⑦经化简后为-2=-2,故它也不是一元一次方程;方程②⑤⑥满足一元一次方程的条件,所以是一元一次方程.【总结升华】方程中的未知数叫做元,只含有一个未知数称为“一元”,“次”是指含有未知数的项中次数最高项的次数,判断一个方程是不是一元一次方程,看它是否具备三个条件:①只含有一个未知数;②经过整理未知数的最高次数是1;③含未知数的代数式必须是整式(即整式方程). 举一反三:【变式】(2014秋•莒县期末)已知x=5是方程ax ﹣8=20+a 的解,则a= . 【答案】7把x=5代入方程ax ﹣8=20+a 得:5a ﹣8=20+a , 解得:a=7. 故答案为:7.类型二、去括号解一元一次方程2. 解方程:112[(1)](1)223x x x --=- 【答案与解析】解法1:先去小括号得:11122[]22233x x x -+=-再去中括号得:1112224433x x x -+=-移项,合并得:5111212x -=-系数化为1,得:115x =解法2:两边均乘以2,去中括号得:14(1)(1)23x x x --=-去小括号,并移项合并得:51166x -=-,解得:115x =解法3:原方程可化为:112[(1)1(1)](1)223x x x -+--=-去中括号,得1112(1)(1)(1)2243x x x -+--=-移项、合并,得51(1)122x--=-解得115 x=【总结升华】解含有括号的一元一次方程时,一般方法是由内到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x-1),因此将方程左边括号内的一项x变为(x-1)后,把(x-1)视为一个整体运算.3.解方程:111111110 2222x⎧⎫⎡⎤⎛⎫----=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭.【答案与解析】解法1:(层层去括号)去小括号11111110 2242x⎧⎫⎡⎤----=⎨⎬⎢⎥⎣⎦⎩⎭,去中括号1111110 2842x⎧⎫----=⎨⎬⎩⎭,去大括号111110 16842x----=,移项、合并同类项,得115168x=,系数化为1,得x=30.解法2:(层层去分母)移项,得11111111 2222x⎧⎫⎡⎤⎛⎫---=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭,两边都乘2,得1111112 222x⎡⎤⎛⎫---=⎪⎢⎥⎝⎭⎣⎦,移项,得111113 222x⎡⎤⎛⎫--=⎪⎢⎥⎝⎭⎣⎦,两边都乘2,得11116 22x⎛⎫--= ⎪⎝⎭移项,得1117 22x⎛⎫-=⎪⎝⎭,两边都乘2,得1114 2x-=,移项,得115 2x=,系数化为1,得x=30.【总结升华】此题既可以按去括号的思路做,也可以按去分母的思路做.类型三、解含分母的一元一次方程4.(2015.三台县期末)解方程:1213 0.20.5x x+-+=【思路点拨】先将方程中的小数化成整数,再去分母,这样可避免小数运算带来的失误.【答案与解析】解:将分母化为整数得:101020103 25x x+-+=去分母,得:50x+50+40x-20=30移项,合并得:x=0.【总结升华】解此题一般是先将分母变为整数,再去分母,移项合并,把系数化为1,求出解.举一反三:【变式】解方程0.40.90.30.210.50.3y y++-=.【答案】解:原方程可化为49321 53y y++-=.去分母,得3(4y+9)-5(3+2y)=15.去括号,得 12y+27-15-10y=15.移项、合并同类项,得 2y=3.系数化为1,得32y=.类型四、解含绝对值的方程5.解方程:|x-1|+|x-3|=3【思路点拨】分别讨论①x<1,②1<x<3,③x>3,根据x的范围去掉绝对值符号,解方程即可.【答案与解析】解:当x<1时,原方程就可化简为:1-x+3-x=3,解得:x=0.5;第二种:当1<x<3时,原方程就可化简为:x-1-x+3=3,不成立;第三种:当x>3时,原方程就可化简为:x-1+x-3=3,解得:x=3.5;故x的解为0.5或3.5.【总结升华】解含绝对值的方程的关键,就是根据绝对值的定义或性质去掉绝对值符号,把它化为为一般的方程,从而解决问题,注意讨论x的取值.举一反三:【变式】关于x的方程||x-2|-1|=a有三个整数解,求a的值.【答案】解:①若|x-2|-1=a,当x≥2时,x-2-1=a,解得:x=a+3,a≥-1;当x<2时,2-x-1=a,解得:x=1-a;a>-1;②若|x-2|-1=-a,当x≥2时,x-2-1=-a,解得:x=-a+3,a≤1;当x <2时,2-x-1=-a ,解得:x=a+1,a <1; 又∵方程有三个整数解,∴可得:a=﹣1或1,根据绝对值的非负性可得:a ≥0. 即a 只能取1.类型五、解含字母系数的方程6. 解关于x 的方程:1mx nx -= 【答案与解析】解:原方程可化为:()1m n x -=当0m n -≠,即m n ≠时,方程有唯一解为:1x m n=-; 当0m n -=,即m n =时,方程无解.【总结升华】解含字母系数的方程时,先化为最简形式ax b =,再根据x 系数a 是否为零进行分类讨论.【一元一次方程的解法388407解含字母系数的方程】 举一反三:【变式】若关于x 的方程(k-4)x=6有正整数解,求自然数k 的值. 【答案】解:∵原方程有解,∴ 40k -≠ 原方程的解为:64x k =-为正整数,∴4k -应为6的正约数,即4k -可为:1,2,3,6 ∴k 为:5,6,7,10答:自然数k 的值为:5,6,7,10.【巩固练习】一、选择题1.若方程(m 2-1)x 2-mx -x+2=0是关于x 的一元一次方程,则代数式|m-1|的值为( ).A .0B .2C .0或2D .-2 2.(2015秋•榆阳区校级期末)关于x 的方程3x+5=0与3x+3k=1的解相同,则k=( )A.-2B.43 C.2 D. 43- 3.下列说法正确的是 ( ).A .由7x =4x -3移项得7x -4x =-3B .由213132x x --=+去分母得2(2x -1)=1+3(x -3) C .由2(2x -1)-3(x -3)=1去括号得4x -2-3x -9=4D .由2(x -1)=x+7移项合并同类项得x =5 4.将方程211123x x ---=去分母得到方程6x -3-2x -2=6,其错误的原因是( ).A .分母的最小公倍数找错B .去分母时,漏乘了分母为1的项C .去分母时,分子部分的多项式未添括号,造成符号错误D .去分母时,分子未乘相应的数5.小明在做解方程作业时,不小心将方程中一个常数污染了看不清楚,被污染的方程是:11222y y -=+■,怎么办呢?小明想了想,便翻看了书后的答案,此方程的解是53y =,于是小明很快补上了这个常数,并迅速完成了作业.同学们,你们能补出这个常数吗?它应是( ).A .1B .2C .3D .46. “△”表示一种运算符号,其意义是2a b a b ∆=-,若(13)2x ∆∆=,则x 等于( ). A .1 B .12 C .32D .2 7.关于x 的方程(38)70m n x ++=无解,则mn 是( ). A .正数 B .非正数 C .负数 D .非负数 二、填空题8. 当x= _____ 时,x -31x+的值等于2. 9.已知关于x 的方程的3322x a x -=+解是4,则2()2a a --=________.10.若关于x 的方程ax+3=4x+1的解为正整数,则整数a 的值是 .11.(2014秋•高新区校级期末)如果5x+3与﹣2x+9是互为相反数,则x ﹣2的值是 .12.a 、b 、c 、d 为有理数,现规定一种新的运算:a bad bc c d =-,那么当241815x =-时,则x =______.13. 设a ,b 是方程||2x -1|-x|=2的两个不相等的根,则22a b a b++的值为 .三、解答题14.解下列方程: (1) 521042345102y y y --+-=-+. (2) 111233234324x x x x ⎧⎫⎡⎤⎛⎫----=+⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭.(3)0.150.1330200.30.110.07300.2x x x +++-=+.15. 解关于x 的方程:(1)48x b ax +=-;(2)(1)(1)(2)m x m m -=--; (3)(1)(2)1m m x m --=-.16. (2015•裕华区模拟)定义一种新运算“⊕”:a ⊕b=a ﹣2b ,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8.(1)求(﹣3)⊕2的值;(2)若(x ﹣3)⊕(x+1)=1,求x 的值.【答案与解析】 一、选择题 1.【答案】A【解析】由已知方程,得(m 2-1)x 2-(m+1)x+2=0.∵方程(m 2-1)x 2-mx -x+2=0是关于x 的一元一次方程,∴m 2-1=0,且-m -1≠0,解得,m=1,则|m -1|=0.故选A . 2.【答案】C .【解析】解第一个方程得:x=﹣,解第二个方程得:x=∴=﹣解得:k=2.3.【答案】 A .【解析】由7x =4x -3移项得7x -4x =-3;B .213132x x --=+去分母得2(2x -1)=6+3(x -3);C .把2(2x -1)-3(x -3)=1去括号得4x -2-3x+9=1;D .2(x -1)=x+7,2x -2=x+7,2x -x =7+2,x =9 4.【答案】C 【解析】把方程211123x x ---=去分母,得3(2x -1)-2(x -1)=6,6x -3-2x+2=6与6x -3-2x -2=6相比较,很显然是符号上的错误.5.【答案】B【解析】设被污染的方程的常数为k ,则方程为11222y y k -=+,把53y =代入方程得1015326k -=+,移项得5110623k -=+-,合并同类项得-k =-2,系数化为1得k =2,故选B . 6.【答案】B【解析】由题意可得:“△”表示2倍的第一个数减去第二个数,由此可得:132131∆=⨯-=-,而(13)(1)212x x x ∆∆=∆-=+=,解得:12x =7.【答案】B【解析】原方程可化为:(38)7m n x +=-,将“38m n +”看作整体,只有380m n +=时原方程才无解,由此可得,m n 均为零或一正一负,所以mn 的值应为非正数. 二、填空题 8.【答案】213=x 9.【答案】24【解析】把x =4代入方程,得344322a -=+,解得a =6,从而(-a )2-2a =24. 10.【答案】2或3【解析】由题意,求出方程的解为:314-=-x ax 2)4(-=-x a , 42--=a x ,因为解为正整数,所以214a --=-或,即2a =或3. 11.【答案】-6.【解析】由题意得:5x+3+(﹣2x+9)=0,解得:x=﹣4, ∴x ﹣2=﹣6.12.【答案】3【解析】由题意,得2×5-4(1-x )=18,解得x =3. 13.【答案】4112【解析】∵||2x -1|-x|=2,∴|2x -1|-x=2或-2,∴|2x -1|=x+2或|2x -1|=x -2, 当2x -1≥0时,2x -1=x+2,解得x=3;当2x -1<0时,2x -1=-x -2,解得x=﹣13; 或当2x -1≥0时,2x -1=x -2,解得x=-1(舍去);当2x -1<0时,2x -1=-x+2,解得x=1(舍去);∴a=3,b=-13,∴224112a b a b +=+. 三、解答题14. 【解析】解:(1)原方程可化为:212y +-=解得: 4y =-(2)原方程可化为: 11233234322x x x x ⎡⎤⎛⎫----=+ ⎪⎢⎥⎝⎭⎣⎦ 移项,合并得: 123943x x x ⎛⎫--=-- ⎪⎝⎭解得: 229x =- (3)原方程可化为:151332311732x x x +++-=+去分母,化简得: 1513x -= 解得: 1315x =- 15. 【解析】解:(1)原方程可化为:(4)8a x b -=+ 当4a ≠时,方程有唯一解:84b x a +=-; 当4a =,8b ≠-时,方程无解;当4a =,8b =-时,原方程的解为任意有理数,即有无穷多解. (2)(1)(1)(2)m x m m -=--当10m -≠,即1m ≠时,方程有唯一的解:2x m =-;当10m -=,即1m =时,原方程变为00x ⋅=.原方程的解为任意有理数,即有无穷多解.(3) (1)(2)1m m x m --=-当1,2m m ≠≠时,原方程有唯一解:12x m =-; 当1m =时,原方程的解为任意有理数,即有无穷多解; 当2m =时,原方程无解. 16.【解析】解:(1)根据题中的新定义得:原式=﹣3﹣4=﹣7; (2)已知等式变形得:x ﹣3﹣2(x+1)=1, 去括号得:x ﹣3﹣2x ﹣2=1, 移项合并得:﹣x=6, 解得:x=﹣6.实际问题与一元一次方程(一)(提高)知识讲解【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤;2.熟悉行程,工程,配套及和差倍分问题的解题思路. 【要点梳理】知识点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答.要点诠释: (1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系; (2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数; (3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.知识点二、常见列方程解应用题的几种类型(待续)1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系:路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一,同地不同时出发:前者走的路程=追者走的路程;第二,第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?【答案与解析】解:设油箱里原有汽油x公斤,由题意得:x(1-25%)(1-40%)+1=25%x+(1-25%)x×40% .解得:x=10.答:油箱里原有汽油10公斤.【总结升华】等量关系为:油箱中剩余汽油+1=用去的汽油. 举一反三:【变式】某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班有多少学生?一共展出了多少张邮票? 【答案】解:设这个班有x 名学生,根据题意得: 3x+24=4x-26 解得:x =50.所以3x+24=3×50+24=174(张).答:这个班有50名学生,一共展出了174张邮票.类型二、行程问题 1.车过桥问题2. 某桥长1200m ,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s ,而整个火车在桥上的时间是30s ,求火车的长度和速度. 【思路点拨】正确理解火车“完全过桥”和“完全在桥上”的不同含义. 【答案与解析】解:设火车车身长为xm ,根据题意,得:120012005030x x+-=, 解得:x =300, 所以12001200300305050x ++==. 答:火车的长度是300m ,车速是30m/s .【总结升华】火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A 点表示火车头):(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长. (2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度. 举一反三:【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟? 【答案】解:设从第一排上桥到排尾离桥需要x 分钟,列方程得:6928611864x ⎛⎫=-⨯+ ⎪⎝⎭,。
华师大版初一数学知识点总结归纳
华师大版初一数学知识点总结归纳华师大版初一数学是中学阶段的第一门数学课程,它为学生打下了数学基础,并培养了他们的数学思维能力和解决实际问题的能力。
本文将对华师大版初一数学的知识点进行总结和归纳,帮助同学们更好地复习和理解这门课程。
一、整数与全体运算整数是我们日常生活中经常使用的数,它包括正整数、负整数和零。
在初一数学中,我们学习了整数的加法、减法、乘法和除法运算规则,并掌握了整数间的大小关系。
同时,还学习了关于整数的绝对值和相反数的概念,这些知识点有助于我们在解决实际问题时进行数值运算和比较。
二、有理数的概念与运算有理数是整数和分数的统称,包括正有理数和负有理数。
初一数学中,我们学习了有理数的加法、减法、乘法和除法运算规则,并掌握了有理数的大小关系。
此外,还学习了有理数的绝对值和相反数的运算性质,这对于我们在进行有理数计算和比较时非常有帮助。
三、分数知识的学习分数是用来表示一个整体被均分成若干份的数,包括真分数、假分数和整数。
在初一数学中,我们学习了分数的基本概念和表示方法,掌握了分数的加法、减法、乘法和除法运算规则。
同时,还学习了分数的化简和比较大小的方法,以及分数与整数的互换。
四、小数的运算与应用小数是用来表示有限或无限不循环小数的数,包括整数部分、小数点和小数部分。
在初一数学中,我们学习了小数的读法、写法和大小关系,并掌握了小数的加法、减法、乘法和除法运算规则。
此外,还学习了小数与分数的互换和应用问题的解决方法。
五、代数基础知识代数是数学的一个重要分支,初一数学中我们学习了一些代数的基础知识。
包括代数式的概念和表示方法,代数式的加法和减法运算规则,以及代数式的系数和次数。
同时,还学习了一元一次方程的基本概念和解法,以及解一元一次方程的应用问题。
六、图形的认识与应用初一数学中,我们学习了一些基本的二维图形和三维图形,包括点、直线、线段、射线、角、多边形、圆、立体图形等。
同时,还学习了图形的性质、分类和测量方法,以及图形的变换和应用问题的解决方法。
(华师大版)七年级数学下册(课件)第7章 一次方程组小结
古今庸人,败于“惰”字;古今才 人,败于“傲”字。
数学问题(二或三
元一次方程组)
解 方
代入消元
程
加减消元
组
检验 数 学 问 题 的 解 ( 二 或三元一次方程组 的解)
例1 解下列方程组:
(1)
1 3
x
y
1,
5x 4 y 4;
(2)56xy 7y 2x Nhomakorabea
40, 8.
如果方程组中未知数的系数不都为整数时,
应该如何操作?
义务教育教科书(华师)七年级数学下册
第7章 一次方程组
二元一次方程的解和一元一次方程的 解有什么区别?
二元一次方程组的解和一元一次方程 的解有什么区别?
解二元一次方程组的主要方法有哪些? 两种方法有着怎样的区别和联系? “代入”与“加减”的目的是什么?
实际问题
实际问题 的答案
设未知数·列方程组
何时选取代入消元法计算简单?何时选取 加减消元法?
例2 某厂甲车间人数比乙车间人数的 多5 人,若从甲车间调10人到乙车间,则乙车间 人数恰好是甲车间人数的2倍,求甲、乙两 车间原来的人数.
在本章中,我们都具体学习了哪些知识?
现在你能否利用章节结构图系统的把这些知 识进行一个简要的说明?
某车间有90名工人,每人每天平 均能生产螺栓15个或螺帽24个, 要使一个螺栓配套两个螺帽,应
如何分配工人才能使螺栓和螺帽 刚好配套?
一张方桌由一个桌面、四条桌腿组成。 如果1立方米木料可以做方桌的桌面50 个或做桌腿300条,现有5立方米木料, 那么用多少立方米木料做桌面、多少立方 米木料做桌腿,做出的桌面和桌腿,恰好 能配成方桌?能配成多少张方桌?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华东师大2014版 数学七(下)复习提纲
第六章 一元一次方程
一、几个概念
1.一元一次方程:
2.方程的解:使方程 的未知数的值叫方程的解。
(1)_________________3.(2)_____________________________________________________
⎧⎨⎩在方程两边同时加上或减去同一个整式,方程的性质
5.移项: 叫做移项。
(切记:移项必须 )。
二、解一元一次方程的一般步骤:
①去分母——方程两边同乘各分母的
( 注意:去分母不漏乘,对分子添括号 ) ② ,③ ,④ ,⑤
三、列方程(组)解应用题的一般步骤
①.设 ,②.列 ,③.解 ,④.检 ,⑤.答
第七章 二元一次方程组
一、几个概念
1.二元一次方程:
2.二元一次方程组:
3.二元一次方程组的解:使二元一次方程组的
的两个未知数的值。
二、二元一次方程组的解法:
1.代入消元的条件:将一个方程化为 的形式。
(当一个方程中有一个未知数系数为±1时,最适合)。
2.加减消元的条件:两个方程中,某一未知数的系数 或 。
(当两个方程中,某一未知数系数成倍数关系时,最适合)。
三*、解三元一次方程组的一般步骤:
①.先用代入法或加减法消去系数较简单的一个未知数,转化为 ; ②.然后再解 ,得到两个未知数的值;
③.最后将上步所得两个未知数的值代回前边某一方程,求出另一未知数的值。
第八章 一元一次不等式
一、几个概念
1.不等式: 叫做不等式。
2.不等式的解: 叫做不等式的解。
3.不等式的解集:
(1)_____________4.(2)___________________________________________________(3)___________________________________________________⎧⎪⎨⎪⎩
在不等式两边同时加上或减去同一个整式,不等式的性质
5.一元一次不等式:
6.一元一次不等式组:
7.一元一次不等式组的解集:
二、一元一次不等式(组)的解法:
1.解一元一次不等式的一般步骤:
①. ,②. ,③. ,④. ,⑤.
2.怎样在数轴上表示不等式的解集:
①先定起点:有等号时用 点;无等号时用 点。
②再画范围:小于号向 画;大于号向 画。
3.一元一次不等式组的解法:
先分别求 ;再求
4.注意:
①.在不等式两边同时乘或除以负数时, 不等号必须
②.求公共部分时:一般将各不等式的解集在同一数轴上表示;还有如下规律:
同大取 ,同小取 ;“大小,小大”取 ,“大大,小小”则
第九章 多边形
一、几个概念
1.三角形的有关概念:
①三角形:是由三条不在同一直线上的 组成的平面 图形,这三条 就是三角形的边。
以A 、B 、C 为顶点的三角形记为 。
②三角形的内角:
③三角形的外角:
()________________________________2.()________________________________()________________________________⎧⎪⎨⎪⎩
1锐角三角形:三角形按角分类2直角三角形:3钝角三角形:
____________________________________3.------------()⎧⎪⎧⎨⎨⎪⎩⎩
不等腰三角形:三角形按边分类一般等腰三角形只有两边相等的三角形。
等腰三角形特殊等腰三角形等边正三角形。
________________________________________4._______________________________________________________________________________⎧⎪⎨⎪⎩
角平分线:三角形的重要线段中线:高:
5.正多边形:
二、多边形的边、角间关系:
1.三角形角间关系:①.内角和为 ;
②.外角等于 ; ③.外角大于 ; ④.三角形的外角和为 。
2.三角形边间关系: < 第三边 <
3. n 边形的内角和等于 ,外角和等于 。
三、用正多边形拼地板
1.用正多边形铺满平面的条件:
围绕一点拼在一起的几个 加在一起恰好组成一个
2.用相同正多边形铺满平面的条件是:360是正多边形一个内角度数的
3.用不同正多边形铺满平面的条件是:拼接点周围各正多边形一个内角的和为
第十章 轴对称、平移与旋转
一、轴对称:
1.轴对称图形:如果一个图形沿一条直线对折,对折后的两部分能 , 那么这个图形就是 ,这条直线就是它的 。
2.两个图形成轴对称:如果一个图形沿一条直线折叠后,它能与另一个图形 那么这两个图形成 ,这条直线就是它们的 , 折叠时重合的对应点就是
3.轴对称的性质:轴对称(成轴对称的两个)图形的对应线段 ,对应角
4.垂直平分线的定义:
5.对称轴的画法:先连结一对 点,再作所连线段的
6.对称点的画法:过已知点作对称轴的 并
二、平移
图形的平移:一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称
为 ,它是由移动的 和 所决定。
平移的特征:经过平移后的图形与原图形对应线段 (或在同一直线上)且 ,
对应角 ,图形的与都没有发生变化,即平移前后的两个图形
连结每对对应点所得的线段 (或在同一直线上)且。
三、旋转
图形的旋转:把一个图形绕一个沿某个旋转一定的变换,叫做,这个定点叫做。
图形的旋转由、和所决定。
注意:①旋转在旋转过程中保持不动.②旋转分为时针和时针。
③旋转一般小于360°。
旋转的特征:图形中每一点都绕着旋转了的角度,对应点到旋转中心的相等,对应线段,对应角,图形的和
都没有发生变化,也就是旋转前后的两个图形。
旋转对称图形:若一个图形绕一定点旋转一定角度(不超过180°)后,能与重合,这种图形就叫。
四、中心对称
中心对称图形:把一个图形绕着某一个点旋转°后,如果能够与重合,那么这个图形叫做图形,这个点就是它的。
成中心对称:把一个图形绕着某一个点旋转°后,如果它能够与重合那么就说这两个图形关于这个点成,这个点叫做。
这两个图形中的对应点叫做关于中心的。
中心对称的性质:关于中心对称的图形,对应点所连线段都经过,而且被对称中心。
(中心对称是旋转对称的特殊情况)。
中心对称点的作法——连结和,并延长一倍。
对称中心的求法——方法①:连结一对对应点,再求其;
方法②:连结两对对应点,找他们的。
五、图形的全等
1.全等图形定义:能够完全的两个图形叫做全等图形。
2.图形变换与全等:一个图形经翻折、平移、旋转变换所得到的新图形与
全等;全等的两个图形经过上述变换后一定能够。
3.全等多边形:⑴有关概念:对应顶点、对应边、对应角等。
⑵性质:全等多边形的、相等;
⑶判定:、分别对应相等的两个多边形全等。
4.全等三角形:⑴性质:全等三角形的、相等;
⑵判定:、分别对应相等的两个三角形全等。