七年级数学下册第一章平行线综合卷浙教版
(完整word)浙教版七年级下册第一章平行线单元测试卷
浙教版七年级下第一章平行线单元测试卷题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,3*10=30)1. 下列结论正确的是()A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不相交的两条射线是平行线D.如果两条直线都与第三条直线平行,那么这两条直线互相平行2. 如图,直线l1,l2被直线l3所截,且l1∥l2,则α的度数是()A.41°B.49°C.51°D.59°3. 已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A.有且仅有一条B.有两条C.不存在D.有一条或不存在4. 如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若要使直线b与直线c平行,则可将直线b绕点A逆时针旋转()A.15°B.30°C.45°D.60°5. 已知:如图,AB∥CD,BC平分∠ABD,且∠C=40°,则∠D的度数是() A.40°B.80°C.90°D.100°6. 如图,点D,E,F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需添加条件()A.∠1=∠2 B.∠1=∠DFEC.∠1=∠AFD D.∠2=∠AFD7. 如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF交CD于点G,∠1=50°,则∠2等于()A.50°B.60°C.65°D.90°8. 如图,将三角形ABC平移到三角形EFG的位置,则图中共有平行线()A.3对B.5对C.6对D.7对9. 如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF等于() A.100°B.115°C.120°D.130°10.如图,AB∥CD,∠1=100°,∠2=120°,则∠α等于()A.100°B.80°C.60°D.40°第Ⅱ卷(非选择题)评卷人得分二.填空题(共6小题,3*6=18)11. 如图,若∠1+∠2=180°,∠3=110°,则∠4=_______.12. 在一块长为a,宽为b的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位长度),则草地的面积为________.13. 如图,为了把△ABC平移得到△A′B′C′,可以先将△ABC向右平移______格,再向上平移______格.14. 如图,直线l1∥l2∥l3,点A,B,C分别在直线l1,l2,l3上,若∠1=70°,∠2=50°,则∠ABC=________.15. 如图,AB∥CD,则∠α,∠β,∠γ之间的关系是__∠α+∠β-∠γ=_______.16. 如图,边长为8 cm的正方形ABCD先向上平移4 cm,再向右平移2 cm,得到正方形A′B′C′D′,此时阴影部分的面积为_________.评卷人得分三.解答题(共7小题,52分)17. (6分) 如图,按要求完成作图.(1)过点P作AB的平行线EF;(2)过点P作CD的平行线MN;(3)过点P作AB的垂线段,垂足为G.18. (6分)如图,直线AB,CD相交于点O,∠AOD=70°,OE平分∠BOC,求∠DOE的度数.19. (6分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC∥DF.20. (8分)如图,已知AB∥CD,∠B=40°,点E在DC的延长线上,CN 是∠BCE的平分线,CM⊥CN,求∠BCM的度数.21. (8分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.(1)AE与FC会平行吗?说明理由;(2)AD与BC的位置关系如何?为什么?(3)BC平分∠DBE吗?为什么?22. (8分)如图,已知EF⊥AC,垂足为点F,DM⊥AC,垂足为点M,DN的延长线交AB 于点A,且∠1=∠C,点N在AD上,且∠2=∠3,证明AB∥MN.22. (8分)如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC 于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)证明:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,证明:DF平分∠AFE.参考答案1-5 DBAAD 6-10 BCCBD11. 110°12. b(a-1) 13. 5 , 3 14. 120°15. 180°16. 24cm217. 解:图略18. 解:∵∠AOD=70°,∴∠BOC=∠AOD=70°.∵OE平分∠BOC,∴∠COE=12∠BOC=12×70°=35°.∴∠DOE=180°-∠COE=180°-35°=145°.19. 解:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴DB∥EC,∴∠C=∠ABD,又∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF20. 解:∵AB∥CD,∴∠B+∠BCE=180°,∴∠BCE=180°-40°=140°.∵CN平分∠BCE,∴∠BCN=70°.∵∠NCM=90°,∴∠BCM=90°-70°=20°.21. 解:(1)AE∥FC,理由:∵∠2+∠CDB=180°,又∠1+∠2=180°,∴∠1=∠CDB,∴AE∥FC.(2)AD∥BC,理由:由(1)得AE∥FC,∴∠A+∠ADC=180°.又∠A=∠C,∴∠C+∠ADC =180°,∴AD∥BC.(3)BC平分∠DBE,理由:∵AB∥CF,∴∠EBC=∠C.∵AD∥BC,得∠DBC=∠ADB,而∠C=∠ADF,∠ADF=∠ADB,∴∠EBC=∠DBC,∴BC平分∠DBE.22. 证明:∵EF⊥AC,DM⊥AC,∴EF∥DM,∴∠3=∠CDM,∵∠3=∠2,∴∠2=∠CDM,∴MN∥CD,∴∠AMN=∠C,∵∠1=∠C,∴∠1=∠AMN,∴AB∥MN23. 证明:(1)∵∠1+∠AFE=180°,∠CFE+∠AFE=180°,∴∠1=∠CFE,∴BC∥EF (2)∵∠BEG=∠EDF,∴DF∥EH,∴∠DFE=∠GEF,由(1)知BC∥EF,∴∠GEF=∠2,∴∠DFE=∠2,∵∠2=∠3,∴∠DFE=∠3,∴DF平分∠AFE∴∠ABC=30°,∠DEF=30°,或∠ABC=110°,∠DEF=70°.。
浙教版七年级下《第1章平行线》检测卷(有答案)
第1章平行线检测卷3.如图,/ 1 = / 2,则下列结论一定成立的是()A. AB //CDB. AD //BC4.如图是小敏作“过已知直线外一点画这条直线的平行线”①两直线平行,同位角相等②两直线平行,内错角相等两直线平行一、选择题(每小题3分,共30分)1.如图,A、B、C、D四个图案中可以由左下图平移得到的是(O第I理圏)D.2.下列所示的四个图形中,/ 1和/ 2不是同位角的是(I)A .①② B.②③ C.③④ D.①④5.如图, AB //CD ,/ D=42。
,/ CBA=64 ° ,则/ CBD 的度数是(42°A.B.D .106°,从图中可知,小敏画平行线的依据是()③同位角相等,两直线平行④内错角相等,6.如图,AB // CD , DB 丄BC,/ 1=40°,则/ 2 的度数是( )B. 50°C. 60°D. 1407. 如图所示,下列判断错误的是(A.若/ 1 = / 3, AD // BC,贝U BD 是/ ABC 的平分线B. 若 AD // BC ,则/ 1= / 2= / 3C. 若/ 3+ / 4+ / C=180。
,贝U AD // BCD. 若/ 2= / 3,贝U AD // BC8. 如图,有一块含45°角的直角三角板的两个顶点放在直尺的对边上.如果/ 2 = 60°,则/ 1=……( )A . 10 ° B.15 ° C.20° D. 25 °9. 如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角/ A 是120°,第二次拐的角/ B 是150°,第三次拐的角是/ C ,这时的道路恰好和第一次拐弯之前的道路平行,则/C 的大小是( ) A .150 ° B . 130° D . 120°已知村庄A 和B 分别在一条河的两岸,现要在河上造一座桥 岸互相垂直),下列示意图中,桥的建造位置能使从村庄10. MN (假定河的两岸彼此平行,且桥与河 A 经桥过河到村庄斗:垂査于亦 A. 12.如图,把一块含/ CEF 的度数是—) b11.如图所示,直线则二、填空题(每小题13. 如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从 C 岛看A 、B 两岛的视角/ACB = _____________ °14. 如图,直线 11 // 12 // 13,点 A ,B ,C 分别在直线 11 ,12,13 上,若/ 1=70°,/ 2=50 °,则/ ABC= _____ .15. 如图,有下列条件:①/ 1 = / 2;②/ 3= / 4;③/ B= / 5;④/ B+ / BAD=180 ° .其中能得到 AB // CD 的是 __________ (填写编号) .20. (6分)如图,已知 CD 丄DA , DA 丄AB , / 1= / 2•试说明DF // AE.请你完成下列填空,把解答过 程补充完整.解:••• CD 丄 DA , DA 丄 AB , A / CDA=90 °,/ DAB=90 ° ().•••/ CDA= / DAB (等量代换).又/ 1 = / 2,从而/ CDA- /仁/ DAB- ____________ (等式的性质).即/ 3= _________ .• DF // AE ( ).16. 如果一个角的两边分别与另一个角的两边平行,若其中一个角为17. 有一条直的宽纸带,按如图所示的方式折叠时,纸带重叠部分中的/40°,则另一个角为 _____________ 18. 一副三角板按如图放置,下列结论:①/1= / 3;②若BC // AD ,则/ 4= / 3;③若/ 2=15°,必有/ 4=2/ D ;④若/ 2=30°,则有 AC // DE.其中正确的有 ______________三、解答题(共46分)19. (6分)如图,在正方形网格中有一个△ ABC ,按要求进行下列作图(只借助于网格,需写出结论)(1) 过点A 画出BC 的平行线;(2) 画出先将厶ABC 向右平移5格,再向上平移 3格后的△ DEF .嬴IX 題團1)(6分)如图,AB // CD , BF // CE ,则/ B 与/ C 有什么关系?请说明理由22. (8分)如图,11 // 12,/ a 是/ B 的2倍,求/ a 的度数.23. ( 8 分)如图所示,/ A+ / D=180。
浙教版七年级下册数学第一章 平行线含答案
浙教版七年级下册数学第一章平行线含答案一、单选题(共15题,共计45分)1、如图,下列推理错误的是()A.∵,B.∵C.D.∵2、如图,在△ABC中AB=AC,D,E两点分别在AC,BC上,BD是∠ABC的平分线,DE∥AB,若BE=5cm,CE=3cm,则△CDE的周长是()A.13cmB.11cmC.9cmD.7cm3、如图,将直角三角形ABC沿着点B到点C的方向平移3cm得到三角形DEF,且DE交AC于点H,AB=6cm.BC=9cm.DH=2cm.那么图中阴影部分的面积为()A.9 cm 2B.10 cm 2C.15 cm 2D.30 cm 24、如图:直线a,b都与直线c相交,给出下列条件:①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠8=180°,其中能判断a∥b的条件有()个A.1B.2C.3D.45、将一副三角板()按如图所示方式摆放,使得,则等于()A. B. C. D.6、如图,在中,,在同一平面内,将绕点A旋转到的位置,连接.若,则的度数为()A. B. C. D.7、如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O 上连接OC,EC,ED,则∠CED 的度数为( )A.30°B.35°C.15°D.45°8、如图,直线都与直线相交,其中不能判定的条件是().A.∠1=∠2B.∠3=∠6C.∠1=∠4D.∠5+∠8=180°9、如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2B.3C.5D.710、如图.已知直线a,b被直线c所截,且a∥b,∠1=48°,那么∠2的度数为()A.42°B.48°C.52°D.132°11、如图,直线,,,则的度数是()A. B. C. D.12、在长为20m,宽为16m的长方形空地上,沿平行于长方形各边的方向割出三个完全相同的小长方形花圃,其示意图如图所示,则花圃的面积是()A.64m 2B.32m 2C.128m 2D.96m 213、如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A.30°B.20°C.10°D.40°14、如图所示,∠B与∠3是一对()A.同位角B.内错角C.同旁内角D.对顶角15、下列四个图形中,不能推出∠2与∠1相等的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,∠1与∠2是直线________和________被直线________所截的一对________角.17、如图,将纸片 ABCD 沿 PR 翻折得到三角形 PC′R,恰好 C′P∥AB,C′R ∥AD.若∠B=120°,∠D=50°,则∠C=________°.18、将一个含的三角尺和一把直尺按如图所示摆放,若,则________ .19、如图,在△ABC中,∠BAC=35°,延长AB到点D,∠CBD=65°,过顶点A 作AE∥BC,则∠CAE=________°.20、将一直角三角板与一直尺如图放置。
2022-2023学年浙教版七年级数学下册第1章平行线 单元综合达标测试题 (含解析)
2022-2023学年浙教版七年级数学下册《第1章平行线》单元综合达标测试题(附答案)一.选择题(共7小题,满分28分)1.如图,下列说法正确的是()A.∠1与∠2是同位角B.∠1与∠2是内错角C.∠1与∠3是同位角D.∠2与∠3是同旁内角2.如图,四边形ABCD中,∠1=∠3,AD∥BC,则下列等式不成立的是()A.∠1=∠2B.∠3=∠4C.∠2=∠3D.∠1+∠2+∠B=180°3.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上,如果∠2=42°,那么∠1的度数是()A.18°B.17°C.16°D.15°4.如图,在弯形管道ABCD中,若AB∥CD,拐角∠ABC=122°,则∠BCD的大小为()A.58°B.68°C.78°D.122°5.直线BD∥EF,两个直角三角板如图摆放,若∠CBD=10°,则∠1=()A.75°B.80°C.85°D.95°6.如图,△ABC沿BC方向平移得到△DEF,已知BC=5,EC=2,则平移的距离是()A.1B.2C.3D.47.如图,直线a∥b,点A在直线a上,点C、D在直线b上,且AB⊥BC,BD平分∠ABC,若∠1=32°,则∠2的度数是()A.13°B.15°C.14°D.16°二.填空题(共7小题,满分28分)8.如图,已知AB∥CD,∠1=55°,则∠2的度数为.9.如图,DE∥BC,CD平分∠ACB,∠ACB=58°,则∠EDC=.10.如图所示,要在竖直高AC为2米,水平宽BC为8米的楼梯表面铺地毯,地毯的长度至少需要米.11.∠1与∠2的两边分别平行,且∠2的度数比∠1的度数的3倍少40°,那么∠2的度数为.12.如图,AB∥CD∥EF,若∠ABC=125°,∠CEF=105°,则∠BCE的度数为.13.如图,AB∥CD,AD与BC相交于点F,BE平分∠ABC,DE平分∠ADC,∠AFB=96°,则∠BED的度数为度.14.太阳灶、卫星信号接收锅、探照灯以及其他很多灯具都与抛物线有关.如图,从点O 照射到抛物线上的光线OB,OC等反射以后沿着与POQ平行的方向射出.图中如果∠BOP=45°,∠QOC=68°,则∠ABO=,∠DCO=.三.解答题(共6小题,满分64分)15.如图,点D、E、F分别是三角形ABC的边BC、CA、AB上的点,且∠B+∠BDE=180°,∠A=∠FDE.求证:DF∥AC.16.如图,FG∥AC,∠1=∠2,DE与FC平行吗?为什么?17.如图,已知DE∥BC,∠3=∠B,则∠1+∠2=180°.下面是小王同学的说明过程,请你在括号内填上理由、依据或内容,请你帮助小王同学完成说明过程:∵DE∥BC(已知),∴∠3=∠EHC(),∵∠3=∠B(),∴∠B=∠EHC(等量代换),∴AB∥EH(),∴∠2+∠4=180°(),又∵∠1=∠4 (),∴∠1+∠2=180°().18.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.19.如图,点E在AB上,点F在CD上,CE、BF分别交AD于点G、H,已知∠A=∠AGE,∠D=∠DGC.(1)AB与CD平行吗?请说明理由;(2)若∠2+∠1=180°,且3∠B=∠BEC+20°,求∠C的度数.20.【提出问题】若两个角的两边分别平行,则这两个角有怎样的数量关系?【解决问题】分两种情况进行探究,请结合如图探究这两个角的数量关系.(1)如图1,AB∥EF,BC∥DE,试证:∠1=∠2;(2)如图2,AB∥EF,BC∥DE,试证:∠1+∠2=180°;【得出结论】由(1)(2)我们可以得到结论:若两个角的两边分别平行,则这两个角的数量关系为;【拓展应用】(3)若两个角的两边分别平行,其中一个角比另一个角的2倍少60°,求这两个角的度数.(4)同一平面内,若两个角的两边分别垂直,则这两个角的数量关系为.参考答案一.选择题(共7小题,满分28分)1.解:A、∠1和∠2不是同位角,故本选项不符合题意;B、∠1和∠2不是内错角,故本选项不符合题意;C、∠1和∠3是内错角,不是同位角,故本选项不符合题意;D、∠2和∠3是同旁内角,故本选项符合题意;故选:D.2.解:∵AD∥BC,∴∠2=∠3,∠1+∠2+∠B=180°,∵∠1=∠3,∴∠1=∠2,故A、C、D成立,不符合题意,根据题意不能判定∠3=∠4,故B不成立,符合题意,故选:B.3.解:如图,∵∠2+∠3=60°,∴∠3=60°﹣∠2=60°﹣42°=18°,根据平行线的性质可得,∠1=∠3=18°.故选:A.4.解:∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=122°,∴∠BCD=180°﹣122°=58°,故选:A.5.解:∵∠ABC=30°,∠CBD=10°,∴∠ABD=∠ABC+∠CBD=30°+10°=40°,∵BD∥EF,∴∠BAF=∠ABD=40°,∵∠EFD=45°,∴∠1=180°﹣∠BAF﹣∠EFD=180°﹣40°﹣45°=95°.故选:D.6.解:点B平移后对应点是点E.∴线段BE就是平移距离,∵已知BC=5,EC=2,∴BE=BC﹣EC=5﹣2=3.故选:C.7.解:延长CB交直线a于点E,如图,∵AB⊥BC,∠1=32°,∴∠ABC=90°,∴∠AEC=90°﹣∠1=58°,∵a∥b,∴∠ECF=∠AEC=58°,∵BD平分∠ABC,∴∠CBD=∠ABC=45°,∵∠ECF是△BCD的外角,∴∠2=∠ECF﹣∠CBD=13°.故选:A.二.填空题(共7小题,满分28分)8.解:∵AB∥CD,∠1=55°,∴∠3=∠1=55°,∴∠2=180°﹣∠3=125°,故答案为:125°.9.解:∵CD平分∠ACB,∠ACB=58°,∴∠ECD=∠ACB=29°,∵DE∥BC,∴∠EDC=∠ECD=29°.故答案为:29°.10.解:由题意可知,地毯的水平长度与BC的长度相等,垂直长度与AC的长度相等,所以地毯的长度至少需要8+2=10(米).故答案为:10.11.解:如图1所示:①当∠1=∠2时,∵∠2=3∠1﹣40°,∴∠1=3∠1﹣40°,解得∠1=20°,∴∠2=20°;如图2:②当∠1+∠2=180°时,∵∠2=3∠1﹣40°,∴∠1+3∠1﹣40°=180°,解得∠1=55°,∴∠2=125°;故答案为:20°或125°.12.解:∵AB∥CD∥EF,∠ABC=125°,∠CEF=105°,∴∠BCD=∠ABC=125°,∠DCE=180°﹣∠CEF=75°,∴∠BCE=∠BCD﹣∠DCE=50°.故答案为:50°.13.解:如图,过点E作EP∥AB,∵AB∥CD,∴AB∥CD∥EP,∴∠ABE=∠BEP,∠CDE=∠DEP,∠ABC=∠BCD,∵∠ABC+∠BAD+∠AFB=180°,∴∠ABC+∠BAD=180°﹣∠AFB=84°,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠ABC,∠CDE=∠ADC,∴∠ABE+∠CDE=(∠ABC+∠BAD)=42°,∴∠BED=∠BEP+∠DEP=∠ABE+∠CDE)=42°,故答案为:42.14.解:∵AB∥PQ,∴∠ABO=∠BOP=45°,∵CD∥PQ,∴∠DCO+∠QOC=180°,即∠DCO+68°=180°,解得∠DCO=112°.故答案为:45°;112°.三.解答题(共6小题,满分64分)15.证明:∵∠B+∠BDE=180°,∴AB∥DE,∴∠BFD=∠FDE,∵∠A=∠FDE,∴∠BFD=∠A,∴DF∥AC.16.解:DE∥FC,理由如下:∵FG∥AC,∴∠1=∠ACF,∵∠1=∠2,∴∠ACF=∠2,∴DE∥FC.17.解:∵DE∥BC(已知),∴∠3=∠EHC(两直线平行,内错角相等),∵∠3=∠B(已知),∴∠B=∠EHC(等量代换),∴AB∥EH(同位角相等,两直线平行),∴∠2+∠4=180°(两直线平行,同旁内角互补),∵∠1=∠4(对顶角相等),∴∠1+∠2=180°(等量代换).18.解:(1)证明:∵FG∥AE,∴∠FGC=∠2,∵∠1=∠2,∴∠1=∠FGC,∴AB∥CD;(2)∵AB∥CD,∴∠ABD+∠D=180°,∴∠ABD=180°﹣112°=68°,∵BC平分∠ABD,∴∠ABC=ABD=34°,∵AB∥CD,∴∠C=∠ABC=34°.所以∠C的度数为34°.19.解:(1)AB∥CD,理由如下:∵∠A=∠AGE,∠D=∠DGC,∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD;(2)∵∠2+∠1=180°,∠CGD+∠2=180°,∴∠1=∠CGD,∴CE∥BF,∴∠C=∠BFD,∠BEC+∠B=180°,∵∠BEC=3∠B+20°,∴∠B=40°,∵AB∥CD,∴∠B=∠BFD,∴∠C=∠B=40°.20.【提出问题】(1)证明:如图1,∵AB∥EF,∴∠1=∠3,又∵BC∥DE,∴∠2=∠3,∴∠1=∠2;(2)证明:如图2,∵AB∥EF,∴∠1=∠4,∴∠2+∠4=180°,∴∠1+∠2=180°;【得出结论】解:由(1)(2)我们可以得到的结论是:若两个角的两边分别平行,则这两个角的数量关系是相等或互补,故答案为:相等或互补;【拓展应用】(3)解:设其中一个角为x,则另一角为2x﹣60°,当x=2x﹣60°时,解得x=60°,此时两个角为60°,60°;当x+2x﹣60°=180°,解得x=80°,则2x﹣60=100°,此时两个角为80°,100°;∴这两个角分别是60°,60°或80°,100°.(4)解:如图,这两个角之间的数量关系是:相等或互补.故答案为:相等或互补.。
七年级数学下册第1章平行线综合测试含答案(新版)浙教版
“平行线”综合测试题满分120分,时间100分钟一、选择题(每题2分,满分20分)1. 如图,∠1和∠2是同位角的是()A.B.C.D.2.在同一平面内,两条直线可能的位置关系是()A.平行 B.相交 C.相交或平行 D.垂直3.下列说法正确的是()A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥cB.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥cD.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c4.若∠1与∠2是内错角,∠1=40°,则()A.∠2=40° B.∠2=140°C.∠2=40°或∠2=140° D.∠2的大小不确定5.如图,在△ABC中,BC=5,∠A=70°,∠B=75°,把△ABC沿直线BC的方向平移到△DEF 的位置,若CF=3,则下列结论中错误的是()A.BE=3 B.∠F=35°C.DF=5 D.AB∥DE6. 下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.7. 如图,B C⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.55° B.45° C.35° D.25°8. 如图,将一块直角三角板的直角顶点放在直尺的一边上.如果∠1=50°,那么∠2的度数是()A.30°B.40°C.50°D.60°9. 如图,AB∥CD,CB平分∠ABD,若∠C=40°,则∠D的度数为()A.90° B.100° C.110° D.120°10. 如图,AB、CD、EF、MN均为直线,∠2=∠3=70°,∠GPC=80°,GH平分∠MGB,则∠1=()A.35°B.40°C.45°D.50°二、填空题(每题4分,满分24分)11.如图,写出图中∠A所有的内错角:.12.如图,直线l1∥l2,∠1=62°,则∠2的度数为.13.如图,请你添加一个条件,使AB∥CD,这个条件是,你的依据是.14.如图,直线a∥b,∠1=125°,则∠2的度数为°.15.如图,直角三角形AOB的周长为100,在其内部有n个小直角三角形,则这n个小直角三角形的周长之和为.16.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=°.三、解答题(满分56分)17. (10分)已知:如图,∠AOB和OB上的一点P.(1)求作直线MN,使直线MN过点P且MN∥OA.(2)写出一对相等的同位角和一对互补的同旁内角.AO BP18. (10分)如图,将三角形ABC沿直线l向右平移2cm.''',将图中相等的线段找出来.(1)平移后所得的为三角形A B C(2)连接AA',BB',CC',这三条直线之间存在着什么关系?19. (12分)已知:如图,AB∥CD,∠1=∠2,试说明:∠B=∠D.20. (12分)如图,直线AB∥CD,BC平分∠ABD,165∠的度数.∠=︒,求221. (12分)(1)把①号图向上平移4个格.(2)把②号图向左平移4个格,再向下平移1个格.(3)把③号图向右平移2个格,再向下平移2个格.(4)移一移,画一画,涂上你喜欢的颜色,看一看像什么?参考答案“平行线”综合测试题一、选择题1.D2.C3.A4.D5.C6.D7.C8.B9.B提示:∵AB∥CD,∴∠C=∠ABC=40°.∵BC是∠ABD的平分线,∴∠ABC=∠DBC=40°.∴∠ABD=80°.又∵AB∥CD,∴∠ABD+∠D=180°.∴∠D=100°.10.D提示:∵∠2=∠3=70°,∴AB∥CD,∴∠BGP=∠GPC,∵∠GPC=80°,∴∠BGP=80°,∴∠BGM=180°-∠BGP=100°,∵GH平分∠MGB,∴∠1=1 2 ∠BGM=50°,故选D.二、填空题(每题4分,满分24分)11. ∠ACD,∠ACE12.62°13.答案不唯一,如:∠CDA=∠DAB;内错角相等,两直线平行14.5515.100提示:如图所示:过小直角三角形的直角定点作AO,BO的平行线,所得四边形都是矩形.则小直角三角形的与AO平行的边的和等于AO,与BO平行的边的和等于BO.因此小直角三角形的周长等于直角△ABC的周长.故这n个小直角三角形的周长为100.16. 140提示:延长AB与直线l2相交于点C,∵直线l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AC∥DE,∴∠3+∠2=180°,∴∠2=140°,故答案为140° .三、解答题(满分56分)17.(1)如图所示:A OBP M N(2)一对相等的同位角:O BPN ∠=∠,一对互补的同旁内角:O OPN ∠=∠.18.解:(1)图中相等的线段有,AB A B ''=,BC B C ''=,AC A C ''=,AA BB CC '''==.(2)直线AA ',BB ',CC '的关系是////AA BB CC '''.19.解:∵∠1=∠2,∴AD ∥BC.∴∠BAD +∠B =180°.又∵AB ∥CD ,∴∠D +∠BAD =180º,∴∠B =∠D .20.∵AB ∥CD ,∴165ABC ∠=∠=︒,180ABD BDC ∠+∠=︒.∵BC ABD ∠平分,∴2130ABD ABC ∠=∠=︒,∴18050BDC ABD ∠=︒-∠=︒,∴250BDC ∠=∠=︒.21. 解:(1)把①号图向上平移4个格(下图).(2)把②号图向左平移4个格,再向下平移1个格(下图).(3)把③号图向右平移2个格,再向下平移2个格(下图).(4)涂上我喜欢的颜色如下(下图),像一棵小松树.。
浙教版七年级下数学第一章平行线单元测试及答案(共7张)
浙教版七年级下第一章平行线单元测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共10小题,3*10=30)1.若∠α与∠β同旁内角,且∠α=50°时,则∠β的度数为()A.50°B.130°C.50°或130°D.无法确定2.已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A.有且仅有一条B.有两条C.不存在D.有一条或不存在3.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行4.如图是用一张长方形纸片折成的,如果∠1=100°,那么∠2的度数是()A.50°B.60°C.70°D.80°5.如图所示,AB∥CD,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°6.如图,AB∥CD,MP∥AB,MN平分∠AMD,∠A=40°,∠D=30°,则∠NMP等于()A.10°B.15°C.5°D.7.5°7.将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A.①②③B.①②④C.③④D.①②③④8.如图,多边形ABCDEFGHIJ的相邻两边互相垂直,要求出它的周长,至少需要知道()条边的边长.A.3 B.4 C.5 D.69.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对10.如图,已知AB∥DE,那么下列结论正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2﹣∠3=180°C.∠1=∠2+∠3 D.∠1﹣∠2+∠3=180°第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二.填空题(共6小题,3*6=18)11.在同一平面内有三条直线,如果其中有两条且只有两条相互平行,那么它们有个交点.12.如图,与∠1构成同位角的是,与∠2构成同旁内角的是.13.经过直线外一点,一条直线与这条直线平行.14.如图,将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C.其中正确的有.(填序号)15.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,则∠FGD的度数是度,再沿BF折叠成图c,则图c中的∠DHF的度数是.16.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在MN的位置上,若∠EFG=55°,则∠2=.三.解答题(共7小题,52分)17.(6分)按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,垂足为E;(2)画∠ABC的平分线,交AC于F;(3)过E画AB的平行线,交AC于点G;(4)过点C画AB所在的直线的垂线段,垂足为H.18.(6分)如图,有四条互相不平行的直线L1、L2、L3、L4所截出的八个角.请你任意选择其中的三个角(不可选择未标注的角),尝试找到它们的关系,并选择其中一组予以证明.19.(6分)如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD()∴∠2=∠CGD(等量代换)∴CE∥BF()∴∠=∠BFD()又∵∠B=∠C(已知)∴∠BFD=∠B(等量代换)∴AB∥CD()20.(8分)(1)如图1,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在线段AB上,则∠1,∠2,∠3之间的等量关系是;如图2,点A在B处北偏东40°方向,在C处的北偏西45°方向,则∠BAC=°.(2)如图3,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°,试说明:AB∥CD;并探究∠2与∠3的数量关系.21.(8分)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM 交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N 的度数.22.(8分)若在方格(每小格正方形边长为1m)上沿着网格线平移,规定:沿水平方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿竖直方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.例如:点A按“平移量”{1,4}可平移至点B.(1)从点C按“平移量”{,}可平移到点B;(2)若点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D,①请在图中标出点D;(用黑色水笔在答题卡上作出点D)②如果每平移1m需要2.5秒,那么按此方法从点B移动至点D需要多少秒?③观察点D的位置,其实点B也可按“平移量”{,}直接平移至点D;观察这两种平移的“平移量”,猜想:点E依次按“平移量”{2a,3b}、{﹣5a,b}、{a,﹣5b}平移至点F,则相当于点E按“平移量”{,}直接平移至点F.23.(10分)如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.参考答案与试题解析一.选择题(共10小题)1.D2.D 3.A 4.A 5.C 6.C 7.B 8.A 9.D 10.B 二.填空题(共6小题)11.2 12.∠B,∠1 13.有且只有.14.①②④15.52,78°16.110°三.解答题(共7小题)17.解:(1)作法利用量角器测得∠AEC=90°,AE即为所求;(2)作法:①以点B为圆心,以任意长为半径画弧,两弧交∠ABC两边于点M,N.②分别以点M,N为圆心,以大于MN的长度为半径画弧,两弧交于点P③作射线BP,则射线BP为角ABC的角平分线;④射线BP交AC于点F;(3)作法:用量角器测得∠ABC=∠GEC,EG即为所求;(4)作法:利用量角器测得∠BHC=90°,CH即为所求.18.解:如∠2+∠4+∠6=360°,∠1+∠5+∠7=180°,∠2=∠5+∠7,∠3=∠1+∠8,已知如图:有四条互相不平行的直线L1、L2、L3、L4所截出的八个角,求证:∠1+∠5+∠7=180°,证明:∵∠DAC+∠7+∠5=180°,又∵∠1=∠DAC,∴∠1+∠5+∠7=180°.19.解:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠C=∠BFD(两直线平行,同位角相等),又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:(对顶角相等),(同位角相等,两直线平行),C,(两直线平行,同位角相等),(内错角相等,两直线平行).20.解:(1)如图1中,作PM∥AC,∵AC∥BD,∴PM∥BD,∴∠1=∠CPM,∠2=∠MPD,∴∠1+∠2=∠CPM+∠MPD=∠CPD=∠3.由题可知:∠BAC=∠B+∠C,∵∠B=40°,∠C=45°,∴∠BAC=40°+45°=85°.故答案为:∠1+∠2=∠3,85°.(2)证明:∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.21.解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.22.解:(1)从C到B,向左2个单位,向下1个单位,所以,平移量为{﹣2,﹣1};(2)①点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D如图所示;②(4+3+2+1)×2.5=10×2.5=25秒;③由图可知,点B到点D,向右2个单位,向下2个单位,所以,平移量为{2,﹣2},∵2a﹣5a+a=﹣2a,3b+b﹣5b=﹣b,∴点E到F的平移量为{﹣2a,﹣b}.故答案为:(1)﹣2,﹣1;(2)③2,﹣2;﹣2a,﹣b.23.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,∴∠O=180°﹣∠B=60°,而∠A=120°,∴∠A+∠O=180°,∴OB∥AC;(2)∵OE平分∠BOF,∴∠BOE=∠FOE,而∠FOC=∠AOC,∴∠EOF+∠COF=∠AOB=×60°=30°,即∠EOC=30°;(3)比值不改变.∵BC∥OA,∴∠OCB=∠AOC,∠OFB=∠AOF,∵∠FOC=∠AOC,∴∠AOF=2∠AOC,∴∠OFB=2∠OCB,即∠OCB:∠OFB的值为1:2;(4)设∠AOC的度数为x,则∠OFB=2x,∵∠OEB=∠AOE,∴∠OEB=∠EOC+∠AOC=30°+x,而∠OCA=180°﹣∠AOC﹣∠A=180°﹣x﹣120°=60°﹣x,∵∠OEB=∠OCA,∴30°+x=60°﹣x,解得x=15°,∴∠OCA=60°﹣x=60°﹣15°=45°.浙教版七年级下第一章平行线单元检测卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
浙教版七年级下册第1章“平行线”综合测试题
“平行线”综合测试题姓名学号得分一、选择题(每题4分,满分24分)1.(2016•福州)如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.对顶角2.(2016•黄浦区三模)在长方体ABCD-EFGH中,与面ABCD平行的棱共有()A.1条B.2条C.3条D.4条3. 下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.4. (2016春•莘县校级期末)图案A-D中能够通过平移图案得到的是()A.B.C.D.5. 如图,一块含30°角的直角三角板ABC的直角顶点A在直线DE上,且BC // DE,则∠CAE等于( )(A) 30°(B) 45°(C) 60°(D) 90°6. 如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是A.75°B.55°C.40°D.35°7. 如图,直线a∥b,直角三角形ABC的顶点B在直线b上,∠C=90°,∠β=55°,则∠α的度数为()A. 15°B.25°C. 35°D.55°B8. 如图,将矩形纸带ABC D,沿EF折叠后,C、D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是A.65°B.55°C.50°D.25°二、填空题(每题6分,满分24分)9. 在同一平面内,若a⊥b,b⊥c,则a与c的位置关系是..10.(2016•漳州)如图,若a∥b,∠1=60°,则∠2的度数为11.(2016 •浦东新区期末)如图,∠2的同旁内角是.12. 下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线a∥b,b∥c,则a∥c;(5)两条直线被第三条直线所截,同位角相等.其中正确的是.13.(2016 •成安县期中)如图∠1=82°,∠2=98°,∠3=80°,则∠4= 度.14. (2016•泰州)如图,△ABC中,BC=5cm,将△ABC沿BC方向平移至△A′B′C′的对应位置时,A′B′恰好经过AC的中点O,则△ABC平移的距离为cm.15. 如图,已知直线AB∥CD,直线EF与AB、CD相交于N、M两点,MG平分∠EMD,若∠BNE=30°,则∠EMG等于.16.(2016 •长春校级期末)某小区有一块长方形的草地(如图),长18米,宽10米,空白m.部分为两条宽度均为2米的小路,则草地的实际面积2三、解答题(满分52分)(本题共5小题,第11~14题,每题10分,第15题12分)17.如图,已知AD⊥BC,EF⊥BC,∠3=∠C,试说明:∠1=∠2.18.已知,如图∠1和∠D互余,CF⊥DF,问AB与CD平行吗?为什么?19.如图所示,BC为固定的木条,且BC=a,AB,AC为可伸缩的橡皮筋.当点A在与BC平行的轨道MN 上滑动时(MN与BC的距离为b),你能说明△ABC的面积将如何变化吗?请说明你的理由.20.如图,已知E、A、B三点在同一直线上,AD是∠EAC的平分线,AD∥BC,∠B=50°,求∠EAD,∠DAC,∠C的度数.21.如图,电讯公司在由西向东埋设通讯电缆线,他们从点A埋设到点B时突然发现碰到了一个具有研究价值的古墓,不得不改变方向绕开古墓,结果改为沿南偏东40°方向埋设到点O,再沿古墓边缘埋设到点C处,测∠BOC=60°.现要恢复原来的正东方向CD,则∠OCD应等于多少度?参考答案1.B2.D3.B4.B5.A6.C7.C8.C9.平行10.120 11.∠4 12. (2)(4)13.80 14.2.5 15. 15° 16.12817.解:∵AD⊥BC,EF⊥BC(已知),∴AD∥EF(垂直于同一条直线的两直线平行),∴∠1=∠4(两直线平行,同位角相等),又∵∠3=∠C(已知),∴AC∥DG(同位角相等,两直线平行),∴∠2=∠4(两直线平行,内错角相等),∴∠1=∠2(等量代换).18.解:∵CF⊥DF,∴∠CFD=90°.∵∠1+∠CFD+∠2=180°,∴∠1+∠2=90.∵∠1与∠D互余,∴∠1+∠D=90°,∴∠2=∠D,∴AB∥CD(内错角相等,两直线平行).19.解:设△ABC的边BC上的高为b.∵轨道与BC平行,即MN∥BC,而两平行线间的距离处处相等,∴MN与BC之间的距离不变,即△ABC中BC边上的高b不变.根据S△ABC= 12ab可知,△ABC的面积保持不变.20.解:∵AD∥BC,∴∠EAD=∠B=50°,又AD是∠EAC的平分线,∴∠DAC=∠EAD=50°,又AD∥BC,∴∠C=∠DAC=50°.21.解:过点O作OE∥BM,过点C作CF∥BM,则BM∥EO∥CF,由沿南偏东40°方向埋设到点O可知,∠MBO=40°,∵BM∥EO∥CF,∴∠BOE=∠MBO=40°,又∵∠BOC=60°,∴∠EOC=∠OCF=20°,∴∠OCD=∠OCF+∠DCF=110°.。
七年级数学下册 第一章平行线单元综合测试 (新版)浙教版
第一章平行线单元测试一.单项选择题〔共10题;共30分〕1.如图,能使BF∥DG的条件是〔〕A. ∠1=∠3 B. ∠2=∠4 C. ∠2=∠3 D. ∠1=∠4 2.如图,在△ABC中,点D、E、F分别是三条边上的点,EF∥AC,DF∥AB,∠B=45°,∠C=60°.那么∠EFD=〔〕A. 80°B. 75°C. 70°D. 65°3.如图,∠1和∠2是一对〔〕A. 同位角B. 内错角C. 同旁内角D. 对顶角4.如下列图的图案中,不能由根本图形通过平移方法得到的图案是〔〕A. B. C. D.5.以下条件不能够证明a∥b的是〔〕A. ∠2+∠3=180°B. ∠1=∠4 C. ∠2+∠4=180° D. ∠2=∠36.如图,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB,要使DF∥BC,只需满足以下条件中的〔〕A. ∠1=∠2B. ∠2=∠AFDC. ∠1=∠AFDD. ∠1=∠DFE7.如图,直线a∥b,∠1=120°,那么∠2的度数是〔〕A. 120°B. 80°C. 60°D. 50°8.如图,以下能判定AB∥CD的条件有〔〕个.①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.A. 1B. 2C. 3D. 49.,如图AB∥CD,∠1=∠2,EP⊥FP,那么以下错误的选项是〔〕A. ∠3=∠4B. ∠2+∠4=90°C. ∠1与∠3互余D. ∠1=∠310.如图,点E在BC的延长线上,由以下条件能得到AD∥BC的是〔〕A. ∠1=∠ 2B. ∠3=∠4 C. ∠B=∠DCE D. ∠D+∠DAB=180°二.填空题〔共8题;共28分〕11.如图,按角的位置关系填空:∠A与∠1是________ ;∠A与∠3是________ ;∠2与∠3是________ .12.如图把三角板的直角顶点放在直线b上,假设∠1=40°,那么当∠2=________ 度时,a ∥b.13.如图,四边形ABCD中,AB∥CD,∠B=60°,当∠D=________°时,AD∥BC.14.完成下面推理过程:如图,DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB的理由:∵DE∥BC〔〕∴∠ADE=________〔________〕∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF= ________〔________〕∠ABE= ________〔________〕∴∠ADF=∠ABE∴________∥________〔________〕∴∠FDE=∠DEB.〔________ 〕15.如图,直线a,b与直线c,d相交,∠1=∠2,∠3=110°,那么∠4的度数为________.16.如图,∠1=∠2,∠2=∠C,那么图中互相平行的直线有________17.如图,超市里的购物车,扶手AB与车底CD平行,∠2比∠3大10°,∠1是∠2的倍,∠2的度数是________.18.如图是一块电脑主板的示意图〔单位:mm〕,其中每个角都是直角,那么这块主板的周长是________mm.三.解答题〔共6题;共40分〕19.如下列图,∠1与∠2,∠3与∠4之间各是哪两条直线被哪一条直线所截而形成的什么角?20.如下列图,AB∥CD,∠1=36°,∠1:∠4=1:2.〔1〕求∠3的度数;〔2〕求证:AB平分∠EBG.21.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?22.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.23.如图,∠1=∠2,∠B=∠C.求证:(1)AB∥CD(2)∠AEC=∠3.24.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.。
2021-2022学年浙教版七年级数学下册《第1章平行线》单元综合达标测试题(附答案)
2021-2022学年浙教版七年级数学下册《第1章平行线》单元综合达标测试题(附答案)一.选择题(共10小题,满分30分)1.已知图①~④,在上述四个图中,∠1与∠2是同位角的有()A.①②③④B.①②③C.①③D.①2.如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠A=∠3B.∠A+∠2=180°C.∠1=∠4D.∠1=∠A3.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为()A.6B.8C.10D.124.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D',C'的位置,若∠EFB=65°,则∠AED'等于()A.50°B.55°C.60°D.65°5.如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于()A.15°B.25°C.30°D.45°6.如图,已知GF⊥AB,∠1=∠2,∠B=∠AGH,则下列结论:①GH∥BC;②∠D=∠F;③HE平分∠AHG;④HE⊥AB,其中正确的有()A.0个B.1个C.2个D.3个7.如图,将Rt△ABC沿着点B到点C的方向平移到△DEF的位置,已知AB=6,HD=2,CF=3,则图中阴影部分的面积为()A.12B.15C.18D.248.学习平行线性质后,老师给小明出了一道题:如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前道路平行,则∠C是多少度?请你帮小明求出()A.120°B.130°C.140°D.150°9.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或10°、10°D.以上都不对10.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°二.填空题(共10小题,满分30分)13.平面上不重合的四条直线,可能产生交点的个数为个.14.如图,将长为5cm,宽为3cm的长方形ABCD先向右平移2cm,再向下平移1cm,得到长方形A'B'C'D',则阴影部分的面积为cm2.15.如图,已知CD∥GH,点B在GH上,点A为平面内一点,AB⊥AD,过点A作AF⊥CD,AE平分∠F AD,AC平分∠F AB,若∠ABC+∠GBC=180°,∠ACB=4∠F AE.则∠ABG=.16.如图,∠AOB的一边OA为平面镜,∠AOB=38°45',在OB边上有一点E,从点E射出一束光线经平面镜反射后,反射光线DC恰好与OB平行,则∠DEB的度数是.17.两块不同的三角板按如图所示摆放,两个直角顶点C重合,∠A=60°,∠D=45°.接着保持三角板ABC不动,将三角板CDE绕着点C旋转,但保证点D在直线AC的上方,若三角板CDE有一条边与斜边AB平行,则∠ACD=.18.如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.19.如图①是长方形纸带,∠DEF=α,将纸带沿EF折叠成图②,再沿BF折叠成图③,则图③中的∠CFE的度数是.20.已知AB∥CD,∠ACD=60°,∠BAE:∠CAE=2:3,∠FCD=4∠FCE,若∠AEC=78°,则∠AFC=.19.如图,AB∥CD,有图中α,β,γ三角之间的关系是.20.如图,AB∥CD,用含∠1,∠2,∠3的式子表示∠4,则∠4的值.三.解答题(共6小题,满分60分)21.如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠F AC,交BC于点Q,且∠Q=15°,求∠ACB的度数.22.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.23.(1)如图(1),已知任意三角形ABC,过点C作DE∥AB,求证:∠DCA=∠A;(2)如图(1),求证:三角形ABC的三个内角(即∠A、∠B、∠ACB)之和等于180°;(3)如图(2),求证:∠AGF=∠AEF+∠F;(4)如图(3),AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF =150°,求∠F.24.如图,AB∥CD,EM是∠AMF的平分线,NF是∠CNE的平分线,EN、MF交于点O.(1)若∠AMF=52°,∠CNE=38°,求∠MEN、∠MFN的度数;(2)若2∠MFN﹣∠MEN=45°,求出∠AMF的度数;(3)探究∠MEN、∠MFN与∠MON之间存在怎样的数量关系.(直接写出结果)25.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.26.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB∥CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF∥AB,则有∠BEF=.∵AB∥CD,∴∥,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a∥b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).参考答案一.选择题(共10小题,满分30分)1.解:图①③中,∠1与∠2是同位角;故选:C.2.解:A、因为∠A=∠3,所以AB∥DF(同位角相等,两直线平行),故本选项不符合题意.B、因为∠A+∠2=180,所以AB∥DF(同旁内角互补,两直线平行),故本选项不符合题意.C、因为∠1=∠4,所以AB∥DF(内错角相等,两直线平行),故本选项不符合题意.D、因为∠1=∠A,所以AC∥DE(同位角相等,两直线平行),不能证出AB∥DF,故本选项符合题意.故选:D.3.解:根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,因为AD=1,BF=BC+CF=BC+1,DF=AC;又因为AB+BC+AC=8,所以,四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选:C.4.解:由折叠可知,∠DEF=∠D′EF,∵AD∥BC,∴∠DEF=∠EFB=65°,∴∠AED′=180°﹣∠DEF﹣∠EFB=50°.故选:A.5.解:∵AB∥CD,∴∠DNM=∠BME=75°,∵∠PND=45°,∴∠PNM=∠DNM﹣∠DNP=30°,故选:C.6.解:∵∠B=∠AGH,∴GH∥BC,故①正确;∴∠1=∠HGF,∵∠1=∠2,∴∠2=∠HGF,∴DE∥GF,∴∠D=∠DMF,根据已知条件不能推出∠F也等于∠DMF,故②错误;∵DE∥GF,∴∠F=∠AHE,∵∠D=∠1=∠2,∴∠2不一定等于∠AHE,故③错误;∵GF⊥AB,GF∥HE,∴HE⊥AB,故④正确;即正确的个数是2,故选:C.7.解:∵△ABC沿着点B到点C的方向平移到△DEF的位置,∴△ABC的面积=△DEF的面积,∴阴影部分面积等于梯形ABEH的面积,由平移的性质得,DE=AB=6,BE=CF=3,∵AB=6,DH=2,∴HE=DE﹣DH=6﹣2=4,∴阴影部分的面积=×(4+6)×3=15.故选:B.8.解:作BD∥AE,如图,∵AE∥CF,∴BD∥CF,∵BD∥AE,∴∠ABD=∠A=120°,∴∠DBC=150°﹣120°=30°,∵BD∥CF,∴∠C+∠DBC=180°,∴∠C=180°﹣30°=150°.故选:D.9.解:如图1,∵AB∥EF,∴∠3=∠2,∵BC∥DE,∴∠3=∠1,∴∠1=∠2.如图2,∵AB∥EF,∴∠3+∠2=180°,∵BC∥DE,∴∠3=∠1,∴∠1+∠2=180°∴如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.设另一个角为x,则这一个角为4x﹣30°,(1)两个角相等,则x=4x﹣30°,解得x=10°,4x﹣30°=4×10°﹣30°=10°;(2)两个角互补,则x+(4x﹣30°)=180°,解得x=42°,4x﹣30°=4×42°﹣30°=138°.所以这两个角是42°、138°或10°、10°.故选:C.10.解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.二.填空题(共10小题,满分30分)13.解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.14.解:由题意,空白部分是矩形,长为5﹣2=3(cm),宽为3﹣1=2(cm),∴阴影部分的面积=5×3×2﹣2×2×3=18(cm2),故答案为:18.15.解:延长F A交GB于点M,如图所示:∵CD∥GH,AF⊥CD,∴AM⊥GH,∵AE平分∠F AD,∴∠F AD=2∠F AE,∠F AE=∠DAE,∵AB⊥AD,∴∠F AD+∠MAB=90°,∵∠MAB+∠ABM=90°,∴∠ABM=∠F AD=2∠F AE,∴∠MAB=90°﹣∠ABM=90°﹣2∠F AE,∵AC平分∠F AB,∴∠BAC=∠F AC=∠F AD+∠DAC=2∠F AE+∠DAC,∵∠BAC+∠DAC=90°,∴2∠F AE+∠DAC+∠DAC=90°,整理得:∠DAC=45°﹣∠F AE,∴∠BAC=90°﹣∠DAC=90°﹣(45°﹣∠F AE)=45°+∠F AE,∵∠ACB=4∠F AE,在△ABC中,∠ABC=180°﹣∠BAC﹣∠ACB=180°﹣(45°+∠F AE)﹣4∠F AE=135°﹣5∠F AE,∵∠ABC+∠GBC=180°,∴∠ABC+∠ABC+∠ABG=180°,2∠ABC+∠ABG=180°,2(135°﹣5∠F AE)+2∠F AE=180°,解得:∠F AE=11.25°,∴∠ABG=2∠F AE=22.5°.故答案为:22.5°.16.解:∵CD∥OB,∴∠ADC=∠AOB,∵∠EDO=∠ADC,∴∠EDO=∠AOB=38°45′,∴∠DEB=∠AOB+∠EDO=38°45′+38°45′=77°30′,故答案为:77°30′.17.解:如图,CD∥AB,∠BCD=∠B=30°,∠ACD=∠ACB+∠BCD=90°+30°=120°;如图2,DE∥AB时,延长EC交AB于F,则∠AFC=∠E=45°,在△ACF中,∠ACF=180°﹣∠A﹣∠AFC,=180°﹣60°﹣45°=75°,则∠BCF=90°﹣∠ACF=90°﹣75°=15°.∴∠ACD=180°﹣∠BCF=180°﹣15°=165°;如图3,CD∥CE∥AB时,∠ACD=30°,故答案为:30°或120°或165°.18.解:∵OP∥QR∥ST,∠2=100°,∠3=120°,∴∠2+∠PRQ=180°,∠3=∠SRQ=120°,∴∠PRQ=180°﹣100°=80°,∴∠1=∠SRQ﹣∠PRQ=40°,故答案是40°.19.解:∵AD∥BC,∴∠BFE=∠DEF=α,∠CFE=180°﹣∠DEF=180°﹣α,∴∠CFG=∠CFE﹣∠BFE=180°﹣α﹣α=180°﹣2α,∴∠CFE=∠CFG﹣∠BFE=180°﹣2α﹣α=180°﹣3α.故答案为:180°﹣3α.20.解:∵AB∥CD,∴∠CAB=180°﹣∠ACD=180°﹣60°=120°,∵∠BAE:∠CAE=2:3,∴∠CAE=120×=72°,∵∠AEC=78°,∴∠ACE=180°﹣∠AEC﹣∠CAE=180°﹣78°﹣72°=30°,设∠FCE=x,则∠FCD=4x,∴∠ACF=∠ACD﹣∠FCD=60°﹣4x,∴∠ACE=∠ACF+∠ECF=60°﹣3x,∴60°﹣3x=30°,∴x=10°,∴∠ACF=60°﹣40°=20°,∴∠AFC=180°﹣∠ACF﹣∠CAE=180°﹣20°﹣72°=88°,故答案是:88°.19.解:如图,延长AE交直线CD于F,∵AB∥CD,∴∠α+∠AFD=180°,∵∠AFD=∠β﹣∠γ,∴∠α+∠β﹣∠γ=180°,20.解:过点E作EG∥AB,过点F作FH∥CD,∵AB∥CD,∴AB∥CD∥EG∥FH,∴∠1=∠AEG,∴∠GEF=∠2﹣∠1,∵EG∥FH,∴∠EFH=180°﹣∠GEF=180°﹣(∠2﹣∠1)=180°﹣∠2+∠1,∴∠CFH=∠3﹣∠EFH=∠3﹣(180°﹣∠2+∠1)=∠3+∠2﹣∠1﹣180°,∵FH∥CD,∴∠4=∠3+∠2﹣∠1﹣180°,三.解答题(共6小题,满分30分)21.解:(1)∵BC∥EG,∴∠E=∠1=50°.∵AF∥DE,∴∠AFG=∠E=50°;(2)作AM∥BC,∵BC∥EG,∴AM∥EG,∴∠F AM=∠AFG=50°.∵AM∥BC,∴∠QAM=∠Q=15°,∴∠F AQ=∠F AM+∠QAM=65°.∵AQ平分∠F AC,∴∠QAC=∠F A Q=65°,∴∠M AC=∠QAC+∠QAM=80°.∵AM∥BC,∴∠ACB=∠MAC=80°.22.解:∠AED=∠ACB.理由:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).23.证明:(1)∵DE∥BC,∴∠DCA=∠A;(2)如图1所示,在△ABC中,∵DE∥BC,∴∠B=∠2,∠1=∠A(内错角相等).∵∠1+∠BCA+∠2=180°,∴∠A+∠B+∠C=180°.即三角形的内角和为180°;(3)∵∠AGF+∠FGE=180°,由(2)知,∠GEF+∠F+∠FGE=180°,∴∠AGF=∠AEF+∠F;(4)∵AB∥CD,∠CDE=119°,∴∠DEB=119°,∠AED=61°,∵GF交∠DEB的平分线EF于点F,∴∠DEF=59.5°,∴∠AEF=120.5°,∵∠AGF=150°,∵∠AGF=∠AEF+∠F,∴∠F=150°﹣120.5°=29.5°.24.解:(1)作EH∥AB,如图,∵AB∥CD,∴EH∥CD,∴∠1=∠AME,∠2=∠CNE,∴∠MEN=∠AME+∠CNE,∵EM是∠AMF的平分线,∴∠AME=∠AMF,∴∠MEN=∠AMF+∠CNE=×52°+38°=64°;同理可得∠MFN=∠AMF+∠CNE=52°+×38°=71°;(2)∵∠MEN=∠AMF+∠CNE,∠MFN=∠AMF+∠CNE,∴2∠MFN=2∠AMF+∠CNE,∴2∠MFN﹣∠MEN=∠AMF,∵2∠MFN﹣∠MEN=45°,∴∠AMF=45°,∴∠AMF=30°;(3)与(1)的证明方法一样可得∠MON=∠AMF+∠CNE,而∠MEN=∠AMF+∠CNE,∠MFN=∠AMF+∠CNE,∴2∠MEN=∠AMF+2∠CNE,2∠MFN=2∠AMF+∠CNE,∴2∠MEN+2∠MFN=3(∠AMF+∠CNE),∴∠AMF+∠CNE=(∠MEN+∠MFN),∴∠MON=(∠MEN+∠MFN).25.解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.26.解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣+.答:∠BED的度数为180°﹣.。
2022-2023学年浙教版七年级数学下册《第1章平行线》单元综合测试题(附答案)
2022-2023学年浙教版七年级数学下册《第1章平行线》单元综合测试题(附答案)一.选择题(共7小题,满分28分)1.如图,在同一平面内过点M且平行于直线a的直线有()A.0条B.1条C.2条D.无数条2.下列说法:①相等的两个角是对顶角;②从直线外一点到这条直线的垂线段叫做点到直线的距离;③两条直线被第三条直线所截,同位角相等;④过一点有且只有一条直线与已知直线平行;⑤两直线的位置关系不是相交就是平行.正确的有()个.A.0B.1C.2D.33.一个含有30°角的直角三角板和直尺放置如图,∠1=40°,则∠2=()A.30°B.40°C.45°D.50°4.在下列图形中,∠1与∠2是同位角的是()A.B.C.D.5.如图将周长为9cm的△ABC沿BC边向右平移3cm,得到△DEF,连接AD,则四边形ABFD的周长为()cm.A.17B.15C.13D.126.如图,将木条a,b与c钉在一起,∠2=48°,若要使木条a与b平行,则∠1的度数应为()A.142°B.90°C.48°D.42°7.如图所示,∠AOB的两边OA,OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠ODE 的度数是()A.20°B.35°C.110°D.120°二.填空题(共7小题,满分28分)8.在以下现象中:①用打气筒打气时,气筒里活塞的运动;②传送带上,瓶装饮料的移动;③在笔直的公路上行驶的汽车;④随风摆动的旗帜;⑤钟摆的摆动,属于平移现象的有(只填序号).9.如图,请你添加一个条件使得AD∥BC,所添的条件是.10.如图,直角三角形DEF是直角三角形ABC沿BC平移得到的,如果AB=8,BE=3,DH=2,则图中阴影部分的面积是.11.生活中常见一种折叠拦道闸,如图1所示.若想求解某些特殊状态下的角度,需将其抽象为几何图形,如图2所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=°.12.如图,直线m与∠AOB的一边射线OB相交,∠3=120°,向上平移直线m得到直线n,与∠AOB的另一边射线OA相交,则∠2﹣∠1=.13.如图,AB∥CD,且∠ABE=70°,∠ECD=150°,则∠BEC的度数为.14.如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=.三.解答题(共6小题,满分64分)15.如图:已知AB∥CD,∠1=∠2=110°,∠A=50°.(1)求证:BC∥DE;(2)求∠C的度数.16.已知:如图,点D是△ABC边CB延长线上的一点,DE⊥AC于点E,点G是边AB一点,∠AGF=∠ABC,∠BFG=∠D,试判断BF与AC的位置关系,并说明理由.17.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠D+∠AED=180°,∠C=∠EFG.(1)求证:AB∥CD;(2)若∠CED=75°,求∠FHD的度数.18.如图,点D,E分别在线段AB,AC上,连接DE,DC,在线段DC上取一点F,连接EF,已知∠BDC+∠EFC=180°.(1)试判断EF与AB的位置关系,并说明理由;(2)若∠DEF=∠B,试判断∠AED与∠ACB的数量关系,并说明理由.19.如图,已知PM∥AN,且∠A=40°,点C是射线AN上一动点(不与点A重合),PB,PD分别平分∠APC和∠MPC,交射线AN于点B,D.(1)求∠BPD的度数;(2)当点C运动到使∠PBA=∠APD时,求∠APB的度数;(3)在点C运动过程中,∠PCA与∠PDA之间是否存在一定的数量关系?若存在,请写出它们之间的数量关系,并说明理由;若不存在,请举出反例.20.已知:AB∥CD.(1)如图1,求证:∠A=∠E+∠C;(2)如图2,点F在AB、CD之间,∠EF A=5∠E,AG平分∠BAF交CD于点G,若EH∥AG,∠E=30°,求∠EHG的大小;(3)如图3,点P、Q分别在AB、CD上,点M在CD下方,点N在两平行线之间.∠APM=3∠APN,∠NQD=3∠MQD,请探究∠M、∠N、∠MPN之间的关系.参考答案一.选择题(共7小题,满分28分)1.解:根据“在同一平面内,过直线外一点有且只有一条直线与已知直线平行”得:只有1条.故选:B.2.解:①相等的两个角不一定是对顶角,故原说法错误;②从直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故原说法错误;③两条直线被第三条直线所截,同位角不一定相等,故原说法错误;④在不同平面上,过一点有无数条直线与已知直线平行,故原说法错误;⑤在同一平面内,任意两条直线的位置关系是相交或平行,故原说法错误;所以正确的有0个.故选:A.3.解:延长EF交CD于点M.∵AB∥CD,∴∠1=∠FMC=40°.∵∠4=90°,∠4=∠3+∠FMC,∴∠2=∠3=∠4﹣∠FMC=90°﹣40°=50°.故选:D.4.解:A选项,∠1和∠2不是同位角,故该选项不符合题意;B选项,∠1和∠2不是同位角,故该选项不符合题意;C选项,∠1和∠2不是同位角,故该选项不符合题意;D选项,∠1和∠2是同位角,故该选项符合题意;故选:D.5.解:∵△ABC的周长为9cm,∴AB+BC+AC=9cm,由平移的性质可知,AD=CF=3cm,DF=AC,∴四边形ABFD的周长=AB+BC+CF+DF+AD=9+6=15(cm),故选:B.6.解:∵∠1=∠2时,a∥b,∴若要使木条a与b平行,∠1=∠2=48°.故选:C.7.解:∵DC∥OB,∴∠ADC=∠AOB=35°,由题意可得∠ODE=∠ADC=35°.故选:B.二.填空题(共7小题,满分28分)8.解:①用打气筒打气时,气筒里活塞的运动符合平移的定义,故正确;②直线传送带上,瓶装饮料的移动符合平移的定义,故正确;③在平直的公路上行驶的汽车符合平移的定义,故正确;④随风摆动的旗帜不在同一条直线上,故错误;⑤钟表的摆动不在同一条直线上,故错误;故答案为:①②③.9.解:根据同位角相等,两条直线平行,可以添加∠EAD=∠B;根据内错角相等,两条直线平行,可以添加∠CAD=∠C;根据同旁内角互补,两条直线平行,可以添加∠BAD+∠B=180°,故答案为:∠EAD=∠B或∠CAD=∠C或∠BAD+∠B=180°.10.解:∵Rt△ABC沿BC方向平移得到Rt△DEF,∴AB=DE=8,S△ABC=S△DEF,∴阴影部分面积=梯形ABEH的面积,∵DH=2,∴EH=8﹣2=6,∴阴影部分面积=×(6+8)×3=21.故答案为21.11.解:过点B作BF∥AE,如图,∵CD∥AE,∴BF∥CD,∴∠BCD+∠CBF=180°,∵AB⊥AE,∴AB⊥BF,∴∠ABF=90°,∠ABC+∠BCD=∠ABF+∠CBF+∠BCD=90°+180°=270°.故答案为:270.12.解:作OC∥m,如图,∵直线m向上平移直线m得到直线n,∴m∥n,∴OC∥n,∴∠1=∠BOC,∠2+∠AOC=180°,∠AOC=∠3﹣∠1,∴∠2+∠3﹣∠1=180°,∴∠2﹣∠1=180°﹣120°=60°,故答案为:60°.13.解:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠ABE,∠CEF+∠ECD=180°,∵∠ABE=70°,∠ECD=150°,∴∠BEF=70°,∠CEF=180°﹣∠ECD=180°﹣150°=30°,∴∠BEC=∠BEF﹣∠CEF=70°﹣30°=40°.故答案为:40°.14.解:如图,过点A作l1的平行线AC,过点B作l2的平行线BD,则∠3=∠1,∠4=∠2,∵l1∥l2,∴AC∥BD,∴∠CAB+∠ABD=180°,∴∠3+∠4=125°+85°﹣180°=30°,∴∠1+∠2=30°,∵∠1=∠2+4°,∴∠1=17°,故答案为:17°.三.解答题(共6小题,满分64分)15.(1)证明:∵∠1+∠AFB=180°,∠1=110°,∴∠AFB=70°,∵∠2+∠FDE=180°,∠2=110°,∴∠FDE=70°,∴∠AFB=∠FDE,∴BC∥DE;(2)解:∵∠A+∠AFB+∠B=180°,∠A=50°,∠AFB=70°,∴∠B=180°﹣∠A﹣∠AFB=60°,∵AB∥CD,∴∠C=∠B=60°.16.解:BF⊥AC,理由如下:∵∠AGF=∠ABC,∴FG∥BC,∴∠GFB=∠FBC,∵∠GFB=∠D,∴∠FBC=∠D,∴BF∥DE,∵DE⊥AC∴BF⊥AC.17.(1)证明:∵∠D+∠AED=180°,∴AB∥CD;(2)解:∵AB∥CD,∴∠DGF=∠EFG,∵∠C=∠EFG,∴∠DGF=∠C,∴CE∥GF,∵∠CED=75°,∴∠DHG=75°,∴∠FHD=105°.18.解:(1)EF∥AB,理由如下:∵∠BDC+∠EFC=180°,∠DFE+∠EFC=180°,∴∠BDC=∠DFE,∴EF∥AB;(2)∠AED=∠ACB,理由如下:∵EF∥AB∴∠DEF=∠ADE.∵∠DEF=∠B,∴∠ADE=∠B,∴DE∥BC,∴∠AED=∠ACB.19.解:(1)∵PM∥AN,∴∠A+∠APM=180°,∵∠A=40°,∴∠APM=140°,∵PB,PD分别平分∠APC和∠MPC,∴∠BPC=∠APC,∠DPC=∠MPC,∴∠BPD=∠BPC+∠DPC=(∠APC+∠MPC)=×140°=70°;(2)∵PM∥AN,∴∠PBA=∠BPM,∵∠PBA=∠APD,∴∠BPM=∠APD,∴∠APB=∠MPD,由(1)得:∠APM=140°,∠BPD=70°,∴∠APB=∠MPD=×70°=35°;(3)存在,∠PCA=2∠PDA,理由如下:∵PM∥AN,∴∠ACP=∠CPM,∠PDA=∠DPM,∵PD平分∠MPC,∴∠CPM=2∠DPM,∴∠PCA=2∠PDA.20.(1)证明:如图1所示,过点E作射线EF∥AB,∵EF∥AB,AB∥CD,∴EF∥CD,∴∠A=∠AEF,∠C=∠CEF,∵∠AEF=∠AEC+∠CEF,即∠A=∠AEC+∠C,∴∠A=∠AEC+∠C;(2)解:如图2所示,过点F作射线FI∥EH,交CD于点J,∵EI∥EH,EH∥AG,∴FI∥AG,∴∠E=∠EFI=30°,∵∠EF A=5∠E=150°,∴∠AFI=∠EF A﹣∠EFI=120°,∴∠F AG=180°﹣∠AFI=60°,∵AG平分∠BAF,∴∠BAG=∠F AG=60°,∵AB∥CD,∴∠AGH=∠BAG=60°,∴∠FJH=∠AGH=60°,∴∠EHG=∠FJH=60°;(3)解:如图3所示,过点N作射线NE∥AB,∵AB∥CD,∴NE∥CD,设∠APN=x,∠MQD=y,∴∠APM=3x,∠NQD=3y,∴∠PNE=∠APN=x,∠QNE=180°﹣3y,∴∠PNQ=∠PNE+∠QNE=180°+x﹣3y,∵∠MPN=∠APM﹣∠APN,∴∠MPN=2x,设PM与CD交于F,∴∠PFQ=180°﹣3x,∵∠PFQ=∠MQD+∠M,∴∠M=180°﹣3x﹣y,∴3∠M=540°﹣9x﹣3y,3∠M﹣∠PNQ=360°﹣10x=360°﹣5∠MPN,∴3∠M﹣∠PNQ+5∠MPN=360°,即3∠M﹣∠N+5∠MPN=360°.。
浙教版七年级下册数学第一章 平行线含答案【参考答案】
浙教版七年级下册数学第一章平行线含答案一、单选题(共15题,共计45分)1、如图,两个形状、大小完全相同的三角形ABC和三角形DEF重叠在一起,固定三角形ABC不动,将三角形DEF向右平移,当点E和点C重合时,停止平移. 连结AE,DC,在整个过程中,图中阴影部分面积和的变化情况是()A.一直增大B.一直减少C.先减少后增大D.一直不变2、如图,已知AB∥CD,∠C=35°,BC平分∠ABE,则∠ABE的度数是( )A.17.5°B.35°C.70°D.105°3、如图,将含30°角的直角三角板ABC放在平行线α和b上,∠C=90°,∠A=30°,若∠1=20°,则∠2的度数等于()A.60°B.50°C.40°D.30°4、如图所示的四个图形中,∠1和∠2一定相等的是()A. B. C. D.5、下列选项中∠1与∠2不是同位角的是()A. B. C.D.6、观察图,在下列四种图形变换中,该图案不包含的变换是()A.旋转B.轴对称C.位似D.平移7、在同一平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.平行、相交或垂直8、小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m、n 上,测得∠α=120°,则∠β的度数是()A.45°B.55°C.65°D.75°9、已知:如图,点D是射线AB上一动点,连接CD,过点D作DE∥BC交直线AC于点E,若∠ABC=84°,∠CDE=20°,则∠ADC的度数为( )A.104°B.76°C.104°或64°D.104°或76°10、下列说法错误的是()A.两直线平行,内错角相等B.两直线平行,同旁内角相等C.对顶角相等D.平行于同一条直线的两直线平行11、如图.已知直线a,b被直线c所截,且a∥b,∠1=48°,那么∠2的度数为()A.42°B.48°C.52°D.132°12、如图,将三角形纸板ABC沿直线AB平移,使点A移到点B,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为()A.50°B.40°C.30°D.100°13、如图,己知l∥AB,AC为角平分线,下列说法错误的是()1A.∠1=∠4B.∠1=∠5C.∠2=∠3D.∠1=∠314、如图,两个全等的直角三角形重叠在一起,将其中沿着点B到C的方向平移到的位置,,平移距离为,则的面积为()A.6B.12C.18D.2415、如图,能判定EB∥AC的条件是()A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE二、填空题(共10题,共计30分)16、如图,AB∥CD,∠1=64°,FG平分∠EFC,则∠EGF=________.17、两个角的两边分别平行,其中一个角是30°,则另一个角是________.18、如图,在中,,,点是的中点,连接,将沿射线方向平移,在此过程中,的边与的边、分别交于点、,当的面积是面积的时,则△BCD 平移的距离是________.19、将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=25°,则∠2的度数为________.20、一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当∠CAE=15°时,BC∥DE.则∠CAE(0°<∠CAE<180°)其它所有可能符合条件的度数为________.21、将一矩形纸条,按如图所示折叠,则∠1=________度.22、完成下面的证明.已知:如图,BC∥DE,BE、DF分别是∠ABC、∠ADE的平分线.求证:∠1=∠2.证明:∵BC∥DE,∴∠ABC=∠ADE(________).∵BE、DF分别是∠ABC、∠ADE的平分线.∴∠3=∠ABC,∠4=∠ADE.∴∠3=∠4.∴________∥________(________).∴∠1=∠2(________).23、如图:已知,AB∥CD,∠1=50°,那么∠2=________°,∠3=________°24、将一副三角板如图放置.若AE∥BC,则∠AFD=________.25、在△ABC中,∠B和∠C的平分线交于点F,过点F作DF∥BC ,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为________.三、解答题(共5题,共计25分)26、如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.27、如图所示,AB∥CD∥EF,∠ABC=55°,∠CEF=150°,求∠BCE的度数.28、如图,矩形ABCD中,点E是CD延长线上一点,且,求证:.29、MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.30、如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,空白的部分种上各种花草.(1)请利用平移的知识求出种花草的面积.(2)若空白的部分种植花草共花费了4620元,则每平方米种植花草的费用是多少元?参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、B5、C6、D7、C8、D9、C10、B11、B12、C13、B14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
(完整word)浙教版七年级下册第一章平行线单元测试卷
浙教版七年级下第一章平行线单元测试卷题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共10 小题, 3*10=30 )1. 以下结论正确的选项是()A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不订交的两条射线是平行线D.假如两条直线都与第三条直线平行,那么这两条直线相互平行2. 如图,直线 l1, l2被直线 l 3所截,且 l1∥l 2,则α的度数是 ()A. 41°B. 49°C. 51° D . 59°3. 已知∠ AOB ,P 是任一点,过点P 画一条直线与OA 平行,则这样的直线()A .有且仅有一条B.有两条C.不存在 D .有一条或不存在4.如图,直线 a 与直线 b 交于点 A ,与直线 c 交于点 B,∠ 1= 120°,∠ 2=45°,若要使直线 b 与直线 c 平行,则可将直线 b 绕点 A 逆时针旋转( )A . 15° B. 30° C. 45° D. 60°5. 已知:如图, AB ∥CD , BC 均分∠ ABD ,且∠ C= 40°,则∠ D 的度数是 ( ) A.40°B. 80°C. 90°D. 100°6. 如图,点 D, E,F 分别在 AB , BC,AC 上,且 EF∥ AB ,要使 DF ∥BC,只要增添条件 ()A .∠ 1=∠ 2 B.∠ 1=∠ DFEC.∠ 1=∠ AFD D .∠ 2=∠ AFD7.如图, AB ∥ CD ,直线 EF 交 AB 于点 E,交 CD 于点 F, EG 均分∠BEF 交 CD 于点 G,∠ 1= 50°,则∠ 2 等于 ()A . 50°B. 60°C. 65°D. 90°8. 如图,将三角形ABC 平移到三角形EFG 的地点,则图中共有平行线()A.3 对B.5 对C.6 对D.7 对9. 如图,把长方形ABCD 沿 EF 对折后使两部分重合,若∠1= 50°,则∠ AEF 等于 ()A . 100°B. 115°C. 120°D. 130°10.如图, AB ∥ CD ,∠ 1= 100°,∠ 2= 120°,则∠α等于 ()A . 100°B. 80°C. 60°D. 40°第Ⅱ卷(非选择题)评卷人得分二.填空题(共 6 小题, 3*6=18 )11.如图,若∠ 1+∠ 2= 180°,∠ 3= 110°,则∠ 4= _______.(小道任何地方的水平宽12. 在一块长为 a,宽为 b 的长方形草地上,有一条曲折的柏油小道度都是 1 个单位长度 ),则草地的面积为 ________.13.如图,为了把△ ABC 平移获得△ A ′ B′ C′,能够先将△ ABC 向右平移 ______格,再向上平移 ______格.14. 如图,直线l1∥ l2∥ l3,点A ,B,C 分别在直线l1,l2,l3 上,若∠ 1= 70°,∠ 2=50°,则∠ ABC = ________.15. 如图, AB ∥ CD ,则∠α,∠β,∠γ之间的关系是__∠α+∠β-∠γ=_______.16. 如图,边长为8 cm 的正方形ABCD 先向上平移 4 cm,再向右平移 2 cm,获得正方形 A ′B′ C′ D′,此时暗影部分的面积为_________.评卷人得分三.解答题(共7 小题, 52 分)17.(6 分 ) 如图 , 按要求达成作图 .(1) 过点 P 作 AB 的平行线 EF ;(2)过点 P作 CD的平行线 MN;(3)过点 P 作 AB 的垂线段,垂足为 G.18.(6 分 )如图,直线 AB , CD 订交于点 O,∠ AOD = 70°, OE 均分∠ BOC,求∠ DOE 的度数.19.(6 分 )如图, E 点为 DF 上的点, B 为 AC 上的点,∠ 1=∠ 2,∠ C =∠ D. 试说明: AC ∥ DF.20. (8 分 )如图,已知是∠ BCE 的均分线,AB ∥ CD,∠ B= 40°,点 E 在CM ⊥ CN,求∠ BCM 的度数.DC 的延伸线上,CN21.(8 分 )如图,∠ 1+∠ 2= 180°,∠ A =∠ C,DA 均分∠ BDF.(1)AE 与 FC 会平行吗?说明原因;(2)AD 与 BC 的地点关系怎样?为何?(3)BC 均分∠ DBE 吗?为何?22.(8 分 )如图,已知 EF⊥ AC ,垂足为点 F, DM ⊥AC ,垂足为点 M , DN 的延伸线交 AB 于点 A ,且∠ 1=∠ C,点 N 在 AD 上,且∠ 2=∠ 3,证明 AB ∥ MN.22. (8 分 )如图①,在三角形 ABC 中,点 E, F 分别为线段 AB , AC 上随意两点, EG 交 BC 于点G,交 AC 的延伸线于点 H ,∠ 1+∠ AFE = 180° .(1)证明: BC ∥ EF;(2)如图②,若∠ 2=∠ 3,∠ BEG =∠ EDF ,证明: DF 均分∠ AFE.参照答案1-5 DBAAD6-10 BCCBD11. 110°12. b(a- 1) 13. 5 , 3 14. 120 °15. 180°16. 24cm217.解:图略18.解:∵∠ AOD = 70°,∴∠ BOC =∠ AOD = 70° .∵OE 均分∠ BOC,∴∠ COE =12∠ BOC = 12× 70°= 35°.∴∠ DOE= 180°-∠ COE =180°- 35°= 145° .19.解:∵∠ 1=∠ 2,∠ 1=∠ 3,∴∠ 2=∠ 3,∴ DB ∥ EC,∴∠ C=∠ ABD ,又∵∠ C=∠D,∴∠ D=∠ ABD ,∴ AC ∥ DF20. 解:∵ AB ∥ CD ,∴∠ B+∠ BCE = 180°,∴∠ BCE = 180°- 40°= 140° .∵CN 均分∠ BCE ,∴∠ BCN = 70° .∵∠ NCM = 90°,∴∠ BCM = 90°- 70°= 20° .21.解: (1)AE ∥ FC,原因:∵∠ 2+∠ CDB = 180°,又∠ 1+∠ 2= 180°,∴∠ 1=∠ CDB ,∴ AE ∥ FC.(2)AD ∥BC ,原因:由(1) 得 AE ∥FC,∴∠ A +∠ ADC =180° .又∠ A =∠ C,∴∠ C+∠ ADC =180°,∴ AD ∥ BC.(3)BC 均分∠ DBE ,原因:∵ AB ∥ CF,∴∠ EBC=∠ C.∵ AD ∥ BC,得∠ DBC =∠ ADB ,而∠ C=∠ ADF ,∠ ADF =∠ ADB ,∴∠ EBC=∠ DBC ,∴ BC 均分∠ DBE.22.证明:∵ EF⊥ AC , DM ⊥ AC ,∴ EF∥DM ,∴∠ 3=∠ CDM ,∵∠ 3=∠ 2,∴∠ 2=∠CDM ,∴ MN ∥ CD ,∴∠ AMN =∠ C,∵∠ 1=∠ C,∴∠ 1=∠ AMN ,∴ AB ∥ MN23. 证明: (1) ∵∠ 1+∠ AFE = 180°,∠ CFE+∠ AFE = 180°,∴∠ 1=∠ CFE,∴ BC∥EF (2)∵∠ BEG =∠ EDF,∴ DF∥ EH ,∴∠ DFE =∠ GEF,由 (1) 知 BC ∥ EF,∴∠ GEF=∠ 2,∴∠ DFE =∠ 2,∵∠ 2=∠ 3,∴∠ DFE =∠ 3,∴ DF 均分∠ AFE∴∠ ABC = 30°,∠DEF = 30°,或∠ ABC = 110°,∠ DEF =70° .。
浙教版七年级下数学第一章平行线综合测评卷及答案
浙教版七年级下数学第一章综合测评卷一、选择题(每题3分,共30分)1.下列各组图形可以通过平移互相得到的是( ).A. B. C. D.2.如图所示,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=70°,则∠2等于( ).A.70°B.80°C.110°D.120°(第2题)(第3题)(第4题)(第5题)3.如图所示,点A,D在射线AE上,AB∥CD,∠CDE=140°,那么∠A的度数为( ).A.140°B.60°C.50°D.40°4.如图所示,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为( ).A.互余B.相等C.互补D.不等5.将一把直角三角尺和一把直尺按如图所示的方式放置,若∠α=44°,则∠β的度数为( ).A.44°B.45°C.46°D.54°6.如图所示,AB∥CD,∠1=50°,∠2=110°,则∠3的度数为( ).A.60°B.50°C.70°D.80°(第6题)(第7题)(第8题)(第9题)7.如图所示,直线AB∥CD,一把含60°角的直角三角尺EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于( ).A.10°B.20°C.30°D.50°8.如图所示,将矩形纸带ABCD沿EF折叠后,点C,D分别落在点C′,D′的位置,经测量得∠EFB=65°,则∠AED′的度数为( ).A.65°B.55°C.50°D.25°9.如图所示,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从点E射出一条光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数为( ).A.74°12′B.74°36′C.75°12′D.75°36′(第10题)10.如图所示,DE∥FG,点A在直线DE上,点C在直线FG上,∠BAC=90°,AB=AC.若∠BCF=20°,则∠EAC的度数为( ).A.25°B.65°C.70°D.75°二、填空题(每题4分,共24分)11.如图所示,∠B的同位角是,内错角是,同旁内角是.(第11题) (第12题)(第13题)12.如图所示,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD 的周长为cm.13.如图所示,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM= .14.如图所示,将三角尺与直尺贴在一起,使三角尺的直角顶点C(∠ACB=90°)在直尺的一边上,若∠2=65°,则∠1= .(第14题)(第15题)(第16题)15.如图所示,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.16.如图所示,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= .三、解答题(共66分)17.(6分)如图所示,已知AD∥BE,∠1=∠2,求证:∠A=∠E.(第17题)18.(8分)如图所示,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么AB是否平分∠EBF,试说明理由.(第18题)19.(8分)如图所示,已知BE平分∠ABD,DE平分∠CDB,且∠1与∠2互余,试判断直线AB,CD 的位置关系,并说明理由.(第19题)20.(10分)如图所示,已知∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.(第20题)21.(10分)已知直线AB和CD被直线MN所截.(1)如图1所示,EG平分∠BEF,FH平分∠DFE,则∠1与∠2满足时,AB∥CD. (2)如图2所示,EG平分∠MEB,FH平分∠DFE,则∠1与∠2满足时,AB∥CD. (3)如图3所示,EG平分∠AEF,FH平分∠DFE,则∠1与∠2满足时,AB∥CD,并说明理由.图1 图2 图3(第21题)22.(12分)等腰三角形是一种特殊的三角形,它的两个底角相等;反之,如果一个三角形有两个角相等,那么它是一个等腰三角形.请利用上述资料解答下列问题:(1)如图1所示,点A在直线MN上,点B在直线MN外,连结AB,过线段AB的中点P作PC∥MN,交∠MAB的平分线AD于点C,连结BC.求证:BC⊥AD.(2)如图2所示,点B在∠MAN内部,连结AB,过线段AB的中点P作PC∥AM,交∠MAB的平分线AD于点C;作PE∥AN,交∠NAB的平分线AF于点E,连结BC,BE.若∠MAN=150°,求∠CBE的度数.图1 图2(第22题)23.(12分)如图1所示,已知直线CD∥EF,点A,B分别在直线CD与EF上,点P为两平行线间一点.(1)求证:∠APB=∠DAP+∠FBP.(2)利用(1)的结论解答:①如图2所示,AP1,BP1分别平分∠DAP,∠FBP,请你直接写出∠APB与∠AP1B的数量关系.②如图3所示,AP2,BP2分别平分∠CAP,∠EBP,若∠APB=80°,求∠AP2B的度数.图1 图2 图3(第23题)参考答案一、选择题(每题3分,共30分)1.下列各组图形可以通过平移互相得到的是(C).A. B. C. D.2.如图所示,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∠1=70°,则∠2等于(C).A.70°B.80°C.110°D.120°(第2题)(第3题)(第4题)(第5题)3.如图所示,点A,D在射线AE上,AB∥CD,∠CDE=140°,那么∠A的度数为(D).A.140°B.60°C.50°D.40°4.如图所示,直线AC∥BD,AO,BO分别是∠BAC,∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为(A).A.互余B.相等C.互补D.不等5.将一把直角三角尺和一把直尺按如图所示的方式放置,若∠α=44°,则∠β的度数为(C).A.44°B.45°C.46°D.54°6.如图所示,AB∥CD,∠1=50°,∠2=110°,则∠3的度数为(A).A.60°B.50°C.70°D.80°(第6题)(第7题)(第8题)(第9题)7.如图所示,直线AB∥CD,一把含60°角的直角三角尺EFG(∠E=60°)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∠AHG=50°,则∠FMD等于(B).A.10°B.20°C.30°D.50°8.如图所示,将矩形纸带ABCD沿EF折叠后,点C,D分别落在点C′,D′的位置,经测量得∠EFB=65°,则∠AED′的度数为(C).A.65°B.55°C.50°D.25°9.如图所示,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从点E射出一条光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数为(C).A.74°12′B.74°36′C.75°12′D.75°36′(第10题)10.如图所示,DE∥FG,点A在直线DE上,点C在直线FG上,∠BAC=90°,AB=AC.若∠BCF=20°,则∠EAC的度数为(B).A.25°B.65°C.70°D.75°二、填空题(每题4分,共24分)11.如图所示,∠B的同位角是∠ACD,内错角是∠BCE,同旁内角是∠BAC和∠ACB .(第11题) (第12题)(第13题)12.如图所示,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为 20 cm.13.如图所示,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM= 30°.14.如图所示,将三角尺与直尺贴在一起,使三角尺的直角顶点C(∠ACB=90°)在直尺的一边上,若∠2=65°,则∠1= 25° .(第14题)(第15题)(第16题)15.如图所示,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80° .16.如图所示,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= 140° .三、解答题(共66分)17.(6分)如图所示,已知AD∥BE,∠1=∠2,求证:∠A=∠E.(第17题)【答案】∵AD∥BE,∴∠A=∠3.∵∠1=∠2,∴DE∥AC.∴∠E=∠3.∴∠A=∠3=∠E.18.(8分)如图所示,已知AB∥CD,∠1∶∠2∶∠3=1∶2∶3,那么AB是否平分∠EBF,试说明理由.(第18题)【答案】BA平分∠EBF.理由如下:∵AB∥CD,∴∠ABE=∠FDB.∵∠1∶∠2∶∠3=1∶2∶3,∴∠3=∠1+∠2.∵∠3=∠1+∠FDB,∴∠2=∠FDB.∴∠2=∠ABE.∴BA平分∠EBF.19.(8分)如图所示,已知BE平分∠ABD,DE平分∠CDB,且∠1与∠2互余,试判断直线AB,CD的位置关系,并说明理由.(第19题)【答案】AB∥CD.理由如下:∵BE平分∠ABD,DE平分∠CDB,又∵∠1+∠2=90°,∴∠ABD+∠CDB=180°.∴AB∥CD.20.(10分)如图所示,已知∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.【答案】∵BE⊥FD,∴∠EGD=90°.∴∠1+∠D=90°.∵∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2.又∵∠C=∠1,∴∠C=∠2.∴AB∥CD.21.(10分)已知直线AB和CD被直线MN所截.(1)如图1所示,EG平分∠BEF,FH平分∠DFE,则∠1与∠2满足∠1+∠2=90°时,AB∥CD.(2)如图2所示,EG平分∠MEB,FH平分∠DFE,则∠1与∠2满足∠1=∠2时,AB∥CD.(3)如图3所示,EG平分∠AEF,FH平分∠DFE,则∠1与∠2满足∠1=∠2时,AB∥CD,并说明理由.图1 图2 图3(第21题)【答案】(1)∠1+∠2=90° (2)∠1=∠2(3)∠1=∠2.理由如下:∵EG平分∠AEF,FH平分∠DFE,∴∠AEF=2∠1,∠DFE=2∠2.∵∠1=∠2,∴∠AEF=∠DFE.∴AB∥CD.22.(12分)等腰三角形是一种特殊的三角形,它的两个底角相等;反之,如果一个三角形有两个角相等,那么它是一个等腰三角形.请利用上述资料解答下列问题:(1)如图1所示,点A在直线MN上,点B在直线MN外,连结AB,过线段AB的中点P作PC∥MN,交∠MAB的平分线AD于点C,连结BC.求证:BC⊥AD.(2)如图2所示,点B在∠MAN内部,连结AB,过线段AB的中点P作PC∥AM,交∠MAB的平分线AD于点C;作PE∥AN,交∠NAB的平分线AF于点E,连结BC,BE.若∠MAN=150°,求∠CBE的度数.图1 图2(第22题)【答案】 (1)∵PC∥MN,∴∠PCA=∠MAC. ∵AD 为∠MAB 的平分线,∴∠MAC=∠PAC. ∴∠PCA=∠PAC.∴PC=PA.∵PA=PB,∴PC=PB.∴∠B=∠BCP. ∵∠B+∠BCP+∠PCA+∠PAC=180°, ∴∠BCA=90°.∴BC⊥AD.(2)∵∠MAB 的平分线为AD ,∠NAB 的平分线为AF ,∠MAN=150°, ∴∠BAC+∠BAE=75°.由(1)的结论可得BC⊥AD,BE⊥AF,∴∠BCA+∠BEA=180°. ∴∠BAC+∠BAE+∠CBA+∠ABE=180°, ∴∠CBE=∠CBA+∠ABE=180°-75°=105°.23.(12分)如图1所示,已知直线CD∥EF,点A ,B 分别在直线CD 与EF 上,点P 为两平行线间一点.(1)求证:∠APB=∠DAP+∠FBP. (2)利用(1)的结论解答:①如图2所示,AP 1,BP 1分别平分∠DAP ,∠FBP,请你直接写出∠APB 与∠AP 1B 的数量关系. ②如图3所示,AP 2,BP 2分别平分∠CAP ,∠EBP,若∠APB=80°,求∠AP 2B 的度数.图1 图2 图3(第23题)【答案】(1)过点P 作PM∥CD,则∠APM=∠DAP.∵CD∥EF,∴PM∥EF.∴∠MPB=∠FBP.∴∠APM+∠MPB=∠DAP+∠FBP ,即∠APB=∠DAP+∠FBP. (2)①∠APB=2∠AP 1B.②由①得∠APB=∠DAP+∠FBP ,∠AP 2B=∠CAP 2+∠EBP 2.∵AP 2,BP 2分别平分∠CAP ,∠EBP ,∴∠CAP 2=21∠CAP ,∠EBP 2=21∠EBP. ∴∠AP 2B=21∠CAP+21∠EBP=21(180°-∠DAP )+21(180°-∠FBP )=180°-21(∠DAP+∠FBP )=180°-40°=140°.。
浙教版七年级数学下册试题第1章 平行线.docx
第1章平行线综合练习一、选择题(每题5分,共35分)1.两条平行线被第三条直线所截,那么一组同位角的平分线的关系是().A.互相垂直B.互相平行C.相交但不垂直D.不能确定2.下列说法正确的是().A.相等的角是对顶角B.两直线平行,同位角相等C.同旁内角互补D.两直线平行,同位角互补3.如图1所示,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,那么∠BDC等于().A.78°B.90°C.88°D.92°4.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是().A.①B.②和③C.④D.①和④5.船向北偏东50°方向航行到某地后,依原航线返回,船返回时方向应该是().A.南偏西40°B.北偏西50°C.北偏西40°D.南偏西50°6.线段AB是由线段CD经过平移得到的,那么线段AC与BD的关系为().A.平行B.相交C.相等D.平行且相等7.如果两个角有一条边在同一条直线上,而另一条边互相平行,那么这两个角的关系是().A.相等B.互补C.相等或互补D.没有关系二、填空题(每题5分,共35分)8. a∥b,a∥c则_______∥_______,根据______.9.经过平移后的图形与原来图形的______.和______.分别相等,图形的______.和______.没有发生改变.10.在同一平面上,如果AB⊥EF,AC⊥EF,那么点C与直线AB的位置关系是______.11.把△ABC向右平移4cm得△A1B1C1,再把△A1B1C1向下平移3cm得△A2B2C2,若把△A 2B2C2看成是由△ABC经一次平移得到的,请量一量,其平移的距离是______.cm.12.船的航向从正北方向依逆时针方向驶向西南方向,它转了_____度.13.已知梯形ABCD,AD∥BC,BC=6,AD=3,AB=4,CD=2,AB平移后到DE处,则△CDE的周长是_____14.如果△ABC经过平移后得到△DEF,若∠A=41°,∠C=32°,EF=3cm,则∠E=______.,BC=______ cm三、解答题(每题10分,共30分)15.如图,AC⊥AB,∠1=30°,∠B=60°,(1)你能确定AD与BC平行吗?(2)能确定AB平行于CD吗?16.如图,AD平分∠EAC,AD∥BC,你能确定∠B与∠C的数量关系吗?17.如图所示,AB∥CD,AD∥BC,∠A的2倍与∠C的3倍互补,求∠A和∠D的度数.参考答案一、1.B2.B3.C4.A5.D6.D7.C二、 8. b,c,平行于同一条直线的两条直线平行9. 对应角、对应边,形状、大小10. 在直线AB上11. 512. 13513. 914. 107°,3三、15.【思考与分析】通过观察图形并结合题中条件我们可以得到:∠ACB=180°-∠BAC-∠ABC=180°-90°-60°=30°.由此可得AD∥BC.但是由题中条件我们求不出∠D或者∠ACD,因此不能判定AB与CD是否平行.解:(1)因为∠BAC=90°,∠B=60°,且∠BAC+∠B+∠ACB=180°,所以∠ACB=180°-∠BAC-∠B=180°-90°-60°=30°.所以AD∥BC(内错角相等,两直线平行).(2)不能确定.因为求不出∠D或者∠ACD,找不到两直线平行的判定条件,所以AB与CD不一定平行.16.【解题思路】我们通过观察图形并结合题中条件可知,要想知道∠B 与∠C的数量关系,就得利用AD∥BC,从而得到∠B=∠1,∠C=∠2.只要∠1=∠2,那么∠B=∠C.而题中给出了AD平分∠EAC,正好得到∠1=∠2!解:因为AD∥BC,所以∠B=∠1(两直线平行,同位角相等).所以∠C=∠2(两直线平行,内错角相等).又因为AD平分∠EAC,所以∠1=∠2.所以∠B=∠C.17.【思考与分析】经过仔细分析我们可知,题目要求∠A和∠D的度数,而条件只给出了∠A和∠C的关系.因此,分清∠A、∠C和∠D三者之间的关系是解题的关键.解:因为AB∥CD,所以∠A+∠D=180°.所以∠A=180°-∠D.因为AD∥BC,所以∠C+∠D=180°.所以∠C=180°-∠D.所以∠A=∠C.再由2∠A+3∠C=180°解得∠A=∠C=36°.所以∠D=144°.初中数学试卷。
浙教版七年级数学下册第一章:平行线 综合考试测试卷(无答案)
第一章平行线第1章综合测试卷(一)选择题(每题3分,共30分)1.下列各组图形可以通过平移互相得到的是()2.如图所示,直线l1∥l2,直线l3与l1,l2分别交于A,B两点,若∥1=70∥,则∥2=( )A.70°B.80°C.110°D.120°3.如图所示,点A,D在射线AE上,AB∥CD,∥CDE=140°,则∥A的度数为()A140° B.60° C.50° D.40°4.如图所示,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么∠BAO 与∠ABO之间的大小关系一定为()A互余 B.相等 C.互补 D.不等5.将一个直角三角尺和一把直尺按如图所示的方式放置.如果∥α=43°,那么∥β的度数为()A44° B.45° C.46° D.54°6.如图所示,AB∥CD,∠1=50°,∠2=110°,则∠3=()A60° B.50° C.70° D.80°7.如图所示,直线AB∥CD,一个含60∥角的直角三角板EFG(∥E=60∥)的直角顶点F在直线AB上,斜边EG与AB相交于点H,CD与FG相交于点M.若∥AHG=50∥,则∥FMD等于( )A10° B.20° C.30° D.50°8.如图所示,将矩形纸带ABCD沿EF折叠后,C、D两点分别落在C′、D′的位置,经测量得∥EFB=65°,则∥AED′的度数为()A65° B.55° C.50° D.25°9.如图所示,∥AOB的一边OA为平面镜,∥AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∥DEB的度数是()A.74°12′B.74°36′C.75°12′D.75°36′10.如图所示,DE∥FG,点A在直线DE上,点C在直线FG上,∥BAC=90∥,AB=AC.若∥BCF=20∥,则∥EAC的度数为()A.25°B.65°C.70°D.75°(二)填空题(每题4分,共24分)11.如图所示,∥B的同位角是_________,内错角是__________,同旁内角是_________.12.如图所示,将∥ABC沿BC方向平移2cm得到∥DEF,若∥ABC的周长为16cm,则四边形ABFD的周长为____________.cm13.如图所示,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45∥角的直角三角尺按如图所示的方式摆放,若∥EMB=75∥,则∥PNM等于______________.14.如图所示,将三角尺与直尺贴在一起,使三角尺的直角顶点C(∥ACB=90°)在直尺的一边上,若∥2=65°,则∥1=_____________.15.如图所示,已知AB∥CD,BC∥DE.若∥A=20∥,∥C=120∥,则∥AED的度数是____________.16.如图所示,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=_____________.(三)解答题(共66分)17.(6分)如图所示,已知:AD∥BE,∥1=∥2,求证:∥A=∥E.18.(8分)如图所示,已知AB∥CD,∥1:∥2:∥3=1:2:3,那么AB是否平分∥EBF,试说明理由.19.(8分)如图所示,已知BE平分∥ABD,DE平分∥CDB,且∥1与∥2互余,试判断直线AB,CD的位置关系,并说明理由.20.(10分)如图所示,已知:∥C=∥1,∥2和∥D互余,BE∥FD于点G.求证:AB∥CD.21.(10分)已知直线AB和CD被直线MN所截。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B C
D
1
23
4
七下第1章平行线综合卷
班级组名姓名
一、选择题(30分)
()1.如图,由∠3=∠4,得出结论AB∥CD,其根据是
A. 同位角相等,两直线平行
B. 内错角相等两直线平行
C. 同旁内角互补,两直线平行
D. 在同一平面内垂直于同一条直线的两条直线平行
()2. 下列图形中,∠1与∠2不是同位角的是()
A. B. C. D.
()3.如图,如果∠D=∠EFC,那么
A.AD∥BC
B.EF∥BC
C.AB∥DC
D.AD∥EF
()4. 将图1所示的图案通过平移后可以得到的图案是()
()5.下列现象中,不属于平移的是
A.滑雪运动员在平坦的雪地上滑行
B.大楼上上下下地迎送来客的电梯
C.钟摆的运动
D.火车在笔直的铁轨上飞驰而过
()6.如图,下列推理不正确
...的是()
A.∵AB∥CD,∴∠ABC+∠C=180°
B.∵∠1=∠2,∴AD∥BC
C.∵AD∥BC,∴∠3=∠4
D.∵∠A+∠ADC=180°,∴AB∥CD
()7.在同一平面内有三条直线,则它们的交点个数有
A.1或3
B.0或1
C.0,1,3
D.0,1,2,3
()8. 若直线a∥b,a⊥c,b∥d,c⊥e,则下列结论错误的是()
A. a∥d
B. a∥e
C. b⊥c
D. a⊥e
()9.下列说法正确的是
A.两条直线被第三条所截,同位角相等
B.不相交的两条直线互相平行
C.垂直于同一条直线的两条直线互相平行
D.平行于同一条直线的两条直线互相平行()10. 一束光线垂直照射在水平地面,在地面上放一个平面镜,欲使这束光线经过平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为()
A. 45º
B. 60º
C. 75º
D. 80º
二、填空题(30分)
11.如图,直线AD,BC被AB所截,则∠B的同旁内角是________.
2
1
2
1
2
1
2
1
F
E
D
C
B
A
12.已知:如图,由∠2=∠3得AB∥CD的理由是;
由AB∥CD得∠2+∠4=180°的理由是 .
2
3
14
D
C
B
A
第12题图第13题图第14题图第16
题图
13. 如图,一个弯形管道ABCD的拐角∠ABC=110º,要使AB∥CD,那么另一个拐角∠BCD应
弯成_______度.
14. 在上图方格纸中,△ABC向右平移_______格后得到△A1B1C1.
15.如图,给出了过直线外一点画已知直线的平行线的方法,其依据是
16. 如图所示,请写出能判定CE∥AB的一个条件.
17. 如图,a∥b,∠1=(2x+10)°,∠4=(3x+20)°,则∠3= 度.
18.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进.
如果第一次向右拐40º,那么第二次向拐(填“左”可“右”)
º .
19. 如图,将边长为2个单位的等边三角形ABC沿边BC向右平移1个单
位得到三角形DEF,则四边形ABFD的周长为 .
20. 如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底
挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、
∠2,则∠1+∠2=度.
三、解答题(40分)
21.(8分)如图,在方格纸中平移三角形ABC,使点A与点D重
合,并请描述这个平移过程.
C
A B
D
E
a b
135
24
F
E
D
C
B
A
G
D
C
A
22.(8分)如图,按要求解答以下各题: (1)过D 作DE ∥AB ,交AC 于E ;
(2)过D 作DF ∥AC ,且F 点在D 点的右侧; (3)请判断∠A 与∠EDF 的关系,并说明理由.
23.(8分)如图,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,求∠ABC 的度数. 24.(8分)如图,点E 在直线AB 上,EF ⊥EH 交CD 于G . 若
∠AEF =30°,∠DGH =60°.请判断AB 与CD 的位置关系,
并说明理由.
25.(8分)如图,DB ∥FG ∥EC ,∠ABD =70°,∠ACE =40°,若AH 平分∠BAC ,求∠GAH 的度数.
D
C
B
A A
B
C
D
E
H
G F E
D
C
B
A
四、附加题(如果前面试题估计不足60分的同学可试做A 组题,但满分最多60分;对于其他同学,请直接做B 组题)
A 组(10分)
1.(4分)如图,在所标识的角中,∠1的内错角是 ,如果AB ∥CD ,∠1=50°,则∠4= 度.
2.(3分)第1题图中下列条件不能判定AB ∥CD 的是( ) A.∠1=∠3 B.∠2=∠ C.∠1=∠54 D.∠1+∠2=180°
3.(3分)平移改变的是图形的( )
A.位置
B.形状
C.大小
D.位置、形状、大小
B 组(20分)
1.(4分)如图,直线a ∥b ,AB ⊥a ,∠ABC =138º,则∠1= 度.
1
C
A
b a
B
E
D
A B C
第1题图 第2题图 第3题图 2.(4分)如图,AB ∥DC ,则θ的值可用含α,β,γ的式子表示为( )
A.αγβ+-
B.βγα+-
C.180γαβ+--o
D.180αβγ++-o 3.(4分)如图,AB ∥CD ,∠E =37°,∠C =62°,求∠EAB 的度数.
4.(8分)一副三角尺按如图所示叠放在一起,若固定△AOB ,改变△ACD 的位置(其中点A 位置始终不变),使△ACD 的一边与△AOB 的某一边平行. 请画出相应的草图,并直接写出∠BAD 的度数. 此题我们在《导学新作业B 》中做过,共有8个答案,请画图并写出答案.
∠BAD= ∠BAD= ∠BAD= ∠BAD= A O
B A O
B
A B
A O
B A O B A O B A O B A O B B (D )
C O
A。