2014年湖南省常德市中考数学试卷
【真题】湖南省常德市中考数学试卷含答案解析()
湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.2﹣1D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2的相反数是:2.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.3.(3分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0 D.﹣a>b【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.【点评】本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.4.(3分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2 B.k>2 C.k>0 D.k<0【分析】根据一次函数的性质,可得答案.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.【点评】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大.5.(3分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,他们的平均成绩都是86.5分,方差分别是S甲你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【解答】解:∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故选:A.【点评】此题主要考查了方差,关键是掌握方差越小,稳定性越大.6.(3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.7.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.8.(3分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为【分析】分别根据行列式的定义计算可得结论.【解答】解:A、D==﹣7,正确;B、D x==﹣2﹣1×12=﹣14,正确;C、D y==2×12﹣1×3=21,不正确;D、方程组的解:x===2,y===﹣3,正确;故选:C.【点评】本题是阅读理解问题,考查了2×2阶行列式和方程组的解的关系,理解题意,直接运用公式计算是本题的关键.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.(3分)分式方程﹣=0的解为x=﹣1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣2﹣3x=0,解得:x=﹣1,经检验x=1是分式方程的解.故答案为:﹣1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.11.(3分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为 1.5×108千米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1 5000 0000=1.5×108,故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是1.【分析】将数据按照从小到大重新排列,根据中位数的定义即可得出答案.【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1,故答案为:1.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(3分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b 的值可能是6(只写一个).【分析】根据方程的系数结合根的判别式△>0,即可得出关于b的一元二次不等式,解之即可得出b的取值范围,取其内的任意一值即可得出结论.【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,∴△=b2﹣4×2×3>0,解得:b<﹣2或b>2.故答案可以为:6.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.14.(3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为0.35.视力x频数4.0≤x<4.3204.3≤x<4.6404.6≤x<4.9704.9≤x≤5.2605.2≤x<5.510【分析】直接利用频数÷总数=频率进而得出答案.【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:=0.35.故答案为:0.35.【点评】此题主要考查了频率求法,正确把握频率的定义是解题关键.15.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C 落在点H处,已知∠DGH=30°,连接BG,则∠AGB=75°.【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.(3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是9.【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.【点评】本题属于阅读理解和探索规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.本题还可以根据报2的人心想的数可以是6﹣x,从而列出方程x﹣12=6﹣x求解.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(5分)求不等式组的正整数解.【分析】根据不等式组解集的表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.【点评】本题考查了解一元一次不等式组,利用解一元一次不等式组的解集的表示方法是解题关键.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再求值:(+)÷,其中x=.【分析】直接将括号里面通分运算,再利用分式混合运算法则计算得出答案.【解答】解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.20.(6分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征可求出k2的值,进而可得出反比例函数的解析式,由点B的纵坐标结合反比例函数图象上点的坐标特征可求出点B的坐标,再由点A、B的坐标利用待定系数法,即可求出一次函数的解析式;(2)根据两函数图象的上下位置关系,找出y1<y2时x的取值范围.【解答】解:(1)∵反比例函数y2=(k2≠0)的图象过点A(4,1),∴k2=4×1=4,∴反比例函数的解析式为y2=.∵点B(n,﹣2)在反比例函数y2=的图象上,∴n=4÷(﹣2)=﹣2,∴点B的坐标为(﹣2,﹣2).将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,,解得:,∴一次函数的解析式为y=x﹣1.(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,∴y1<y2时x的取值范围为x<﹣2或0<x<4.【点评】本题考查了待定系数法求一次函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点B的坐标;(2)根据两函数图象的上下位置关系,找出不等式y1<y2的解集.五、(本大题2个小题,每小题7分,满分14分)21.(7分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.22.(7分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)【分析】作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.∵AB=CD,AB+CD=AD=2,∴AB=CD=1.在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B与C之间的距离约为1.4米.【点评】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,构造直角三角形,利用勾股定理求出BC的长度是解题的关键.六、(本大题2个小题,每小题8分,满分16分)23.(8分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.【分析】(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用500乘以样本中喜欢排球的百分比可根据估计全校500名学生中最喜欢“排球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.【解答】解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3),篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24.(8分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE是⊙O的切线;(2)先根据等边三角形性质得:AB=AC,∠BAC=∠ABC=60°,由四点共圆的性质得:∠ADF=∠ABC=60°,得△ADF是等边三角形,证明△BAD≌△CAF,可得结论.【解答】证明:(1)连接OD,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAF=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.【点评】本题考查了全等三角形的性质和判定,等边三角形及外接圆,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x ﹣12,直线MN的解析式为y=2x﹣2t,再通过解方程组得N(t,t),接着利用三角形面积公式,利用S △AMN =S △AOM ﹣S △NOM 得到S △AMN =•4•t ﹣•t•t ,然后根据二次函数的性质解决问题;(3)设Q (m ,m 2﹣m ),根据相似三角形的判定方法,当=时,△PQO ∽△COA ,则|m 2﹣m |=2|m |;当=时,△PQO ∽△CAO ,则|m 2﹣m |=|m |,然后分别解关于m 的绝对值方程可得到对应的P 点坐标.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B 点坐标为(6,0),设抛物线解析式为y=ax (x ﹣6),把A (8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x (x ﹣6),即y=x 2﹣x ;(2)设M (t ,0),易得直线OA 的解析式为y=x ,设直线AB 的解析式为y=kx +b ,把B (6,0),A (8,4)代入得,解得,∴直线AB 的解析式为y=2x ﹣12,∵MN ∥AB ,∴设直线MN 的解析式为y=2x +n ,把M (t ,0)代入得2t +n=0,解得n=﹣2t ,∴直线MN 的解析式为y=2x ﹣2t , 解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM =•4•t ﹣•t•t=﹣t 2+2t=﹣(t ﹣3)2+3,当t=3时,S有最大值3,此时M点坐标为(3,0);△AMN(3)设Q(m,m2﹣m),∵∠OPQ=∠ACO,∴当=时,△PQO∽△COA,即=,∴PQ=2PO,即|m2﹣m|=2|m|,解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28);解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4);∴当=时,△PQO∽△CAO,即=,∴PQ=PO,即|m2﹣m|=|m|,解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.【分析】(1)先判断出OD=OA,∠AOM=∠DON,再利用同角的余角相等判断出∠ODN=∠OAM,判断出△DON≌△AOM即可得出结论;(2)先判断出四边形DENM是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;(3)设CE=a,进而表示出EN=CE=a,CN=a,设DE=b,进而表示AD=a+b,根据勾股定理得,AC=(a+b),同(1)的方法得,∠OAM=∠ODN,得出∠EDN=∠DAE,进而判断出△DEN∽△ADE,得出,进而得出a=b,即可表示出CN=b,AC=b,AN=AC﹣CN=b,即可得出结论.【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O,∴OD=OA,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND,∴∠ANH+∠ODN=90°,∵DH⊥AE,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM,∴△DON≌△AOM,∴OM=ON;(2)连接MN,∵EN∥BD,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,∴EN=CN,同(1)的方法得,OM=ON,∵OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形DENM是平行四边形,∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,设DE=b(b>0),∴AD=CD=DE+CE=a+b,根据勾股定理得,AC=AD=(a+b),同(1)的方法得,∠OAM=∠ODN,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,∴△DEN∽△ADE,∴,∴,∴a=b(已舍去不符合题意的)∴CN=a=b,AC=(a+b)=b,∴AN=AC﹣CN=b,∴AN2=2b2,AC•CN=b•b=2b2∴AN2=AC•CN.【点评】此题是相似形综合题,主要考查了正方形的性质,平行四边形,菱形的判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出四边形DENM是菱形是解(2)的关键,判断出△DEN∽△ADE是解(3)的关键.21 / 21。
(2021年整理)湖南常德数学解湖南永州数学解析-2014初中毕业学业考试试卷
(完整版)湖南常德数学解湖南永州数学解析-2014初中毕业学业考试试卷编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)湖南常德数学解湖南永州数学解析-2014初中毕业学业考试试卷)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)湖南常德数学解湖南永州数学解析-2014初中毕业学业考试试卷的全部内容。
(完整版)湖南常德数学解湖南永州数学解析—2014初中毕业学业考试试卷编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)湖南常德数学解湖南永州数学解析—2014初中毕业学业考试试卷这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)湖南常德数学解湖南永州数学解析—2014初中毕业学业考试试卷> 这篇文档的全部内容。
2014年湖南省永州市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分,每小题只有一个正确的答案) 1.(3分)(2014•永州)据统计我国2014年前四月已开工建造286万套保障房,其中286万用科学记数法表示为( )A.2.86×106B.2。
86×107C.28.6×105D.0.286×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:286万=2。
往年湖南省常德市中考数学真题及答案
往年湖南省常德市中考数学真题及答案一.填空题 (本大题8个小题 ,每小题3分满分24分) 1.(2013湖南常德,1,3)-4的相反数是 . 【答案】42. (2013湖南常德,2,3)打开百度搜索栏,输入“数学学习方法”,百度为你找到的相关信息有12 000 000条.请用科学记数法表示12 000 000= . 【答案】71.210⨯3. (2013湖南常德,3,3)因式分解2x x +=_______. 【答案】()1x x +4. (2013湖南常德,4,3)如图1,已知a∥b 分别相交于点E 、F,若∠1=30,则∠2=_______. 【答案】30°图121F Eb a5. (2013湖南常德,5,3)请写一个图象在第二,第四象限的反比例函数解析式:_________. 【答案】答案不唯一,如1y x-=6. (2013湖南常德,6,3)如图2,已知⊙O 是△ABC 的外接圆,若∠BOC=100°,则∠BAC=___图2O CBA【答案】50°7. (2013湖南常德,7,3)分式方程312x x=+的解为_________. 【答案】1x =8. (2013湖南常德,8,3)小明在做数学题时,发现下面有趣的结果:321876541514131211109242322212019181716-=+--=++---=+++----=根据以上规律可知第100行左起第一个数是_________. 【答案】10200二.选择题(本大题8个小题,每个小题3分,满分24分)9. (2013湖南常德,9,3)在图3中,既是中心对称图形又是轴对称图形的是( )【答案】B10. (2013湖南常德,10,3)函数31x y x+=-中自变量的取值范围是( ) A. 3x ≥- B. 3x ≥ C. 0,1x x ≥≠且 D. 3,1x x ≥-≠且【答案】D11. (2013湖南常德,11,3)小伟5次引体向上的测试成绩(单位:个)分别为:16,18,20,18,18,对此成绩描述错误的是( )A. 平均数为18B. 众数为18C. 方差为0D. 极差为4 【答案】C12. (2013湖南常德,12,3)下面计算正确的是( )A. 330x x ÷= B. 32x x x -= C. 236x x x = D. 32x x x ÷= 【答案】D13. (2013湖南常德,13,3)下列一元二次方程中无实数解的方程是( )A. 2210x x ++= B. 210x += C. 221x x =- D. 2450x x --= 【答案】B14. (2013湖南常德,14,3)计算32827⨯+-的结果为( ) A. -1 B. 1 C. 433- D. 7【答案】B15. (2013湖南常德,15,3)如图4,将方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在D ′ 处,若AB =3,AD =4,则ED 的长为( )A.32 B. 3 C. 1 D. 43【答案】A 16. (2013湖南常德,16,3)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图5(扇形、菱形、直角梯形、红十字图标)中“直径” 最小的是( )【答案】C 三.(本大题2个小题,每个小题5分,满分10分) 17. (2013湖南常德,17,5)计算:()()2201312412π-⎛⎫-+-- ⎪⎝⎭【答案】1214 =2=+---解:原式18. (2013湖南常德,18,5)求不等式组21025x x x +>⎧⎨>-⎩的正整数解.【答案】解:由不等式①得12x >-由不等式②得5x < 则不等式组的解集为152x -<< ∴此不等式组的正整数解为1,2,3,4.四.(本大题2个小题,每个小题6分,满分12分) 19. (2013湖南常德,19,6)先化简再求值:222222322a bb b a a ab b a b a b -+⎛⎫+÷⎪-+--⎝⎭,其中5, 2.a b ==【答案】()()()()()()()()()()()223223223321a b ba b a b a b b aa b a b b a b a b a b a b a b b a a b a b a b a b b aa b ⎡⎤--=+⎢⎥+-+-⎢⎥⎣⎦⎡⎤+-=+⎢⎥+-+-+⎣⎦+-=+-+=+解:原式当5,2a b ==时,原式=17五.(本大题2个小题,每个小题7分,满分14分) 20. (2013湖南常德,20,6)某书店参加某校读书活动,并为每班准备了A,B 两套名著,赠予各班甲、乙两名优秀读者,以资鼓励,。
历年湖南省常德市中考数学试题(含答案)
历年湖南省常德市中考数学试题(含答案)2016年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)(2016?常德)4的平方根是()A.2 B.﹣2 C.±D.±22.(3分)(2016?常德)下面实数比较大小正确的是()A.3>7 B. C.0<﹣2 D.22<33.(3分)(2016?常德)如图,已知直线a∥b,∠1=100°,则∠2等于()A.80°B.60°C.100°D.70°4.(3分)(2016?常德)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.5.(3分)(2016?常德)下列说法正确的是()A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上6.(3分)(2016?常德)若﹣x3y a与x b y是同类项,则a+b 的值为()A.2 B.3 C.4 D.57.(3分)(2016?常德)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.48.(3分)(2016?常德)某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)(2016?常德)使代数式有意义的x的取值范围是.10.(3分)(2016?常德)计算:a2?a3=.11.(3分)(2016?常德)如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P 到OA的距离为.12.(3分)(2016?常德)已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式.13.(3分)(2016?常德)张朋将连续10天引体向上的测试成绩(单位:个)记录如下:16,18,18,16,19,19,18,21,18,21.则这组数据的中位数是.14.(3分)(2016?常德)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是.15.(3分)(2016?常德)如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D 落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=.16.(3分)(2016?常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.三、(本大题2个小题,每小题5分,满分10分)17.(5分)(2016?常德)计算:﹣14+sin60°+()﹣2﹣()0.18.(5分)(2016?常德)解不等式组,并把解集在是数轴上表示出来..四、(本大题2个小题,每小题6分,满分12分)19.(6分)(2016?常德)先化简,再求值:(),其中x=2.20.(6分)(2016?常德)如图,直线AB与坐标轴分别交于A (﹣2,0),B(0,1)两点,与反比例函数的图象在第一象限交于点C(4,n),求一次函数和反比例函数的解析式.五、(本大题2个小题,每小题7分,满分14分)21.(7分)(2016?常德)某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?22.(7分)(2016?常德)南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732,=1.732,=1.414)六、(本大题2个小题,每小题8分,满分16分)23.(8分)(2016?常德)今年元月,国内一家网络诈骗举报平台发布了《2015年网络诈骗趋势研究报告》,根据报告提供的数据绘制了如下的两幅统计图:(1)该平台2015年共收到网络诈骗举报多少例?(2)2015年通过该平台举报的诈骗总金额大约是多少亿元?(3)2015年每例诈骗的损失年增长率是多少?(4)为提高学生的防患意识,现准备从甲、乙、丙、丁四人中随机抽取两人作为受骗演练对象,请用树状图或列表法求恰好选中甲、乙两人的概率是多少?24.(8分)(2016?常德)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.(1)求证:BE是⊙O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.七、(本大题2个小题,每小题10分,满分20分)25.(10分)(2016?常德)已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.26.(10分)(2016?常德)如图,已知抛物线与x轴交于A (﹣1,0),B(4,0),与y轴交于C(0,﹣2).(1)求抛物线的解析式;(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH 与△AOC相似时,求符合条件的P点的坐标(求出两点即可);(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD 上的一动点,作直线MN 与线段AC交于点N,与x轴交于点E,且∠BME=∠BDC,当CN的值最大时,求点E的坐标.2016年湖南省常德市中考数学试卷参考答案与试题解析一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)(2016?常德)4的平方根是()A.2 B.﹣2 C.±D.±2【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:D.【点评】此题主要考查了平方根的定义,正确掌握相关定义是解题关键.2.(3分)(2016?常德)下面实数比较大小正确的是()A.3>7 B. C.0<﹣2 D.22<3【分析】根据实数比较大小的法则对各选项进行逐一分析即可.【解答】解:A、3<7,故本选项错误;B、∵≈1.7,≈1.4,∴>,故本选项正确;C、0>﹣2,故本选项错误;D、22>3,故本选项错误.故选B.【点评】本题考查的是实数的大小比较,熟知实数比较大小的法则是解答此题的关键.3.(3分)(2016?常德)如图,已知直线a∥b,∠1=100°,则∠2等于()A.80°B.60°C.100°D.70°【分析】先根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:如图,∵∠1与∠3是对顶角,∴∠3=∠1=100°,∵a∥b,∴∠2=180°﹣∠3=180°﹣100°=80°.故选A.【点评】本题考查了平行线的性质,对顶角相等的性质,是基础题,熟记性质是解题的关键.4.(3分)(2016?常德)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(3分)(2016?常德)下列说法正确的是()A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上【分析】根据概率的意义对各选项进行逐一分析即可.【解答】解:A、袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球的概率是,故本选项错误;B、天气预报“明天降水概率10%”,是指明天有10%的概率会下雨,故本选项错误;C、某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,可能会中奖,故本选项错误;D、连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,故本选项正确.故选D.【点评】本题考查的是概率的意义,熟知一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率是解答此题的关键.6.(3分)(2016?常德)若﹣x3y a与x b y是同类项,则a+b 的值为()A.2 B.3 C.4 D.5【分析】根据同类项中相同字母的指数相同的概念求解.【解答】解:∵﹣x3y a与x b y是同类项,∴a=1,b=3,则a+b=1+3=4.故选C.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母指数相同的概念.7.(3分)(2016?常德)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.4【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).8.(3分)(2016?常德)某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天【分析】根据题意设有x天早晨下雨,这一段时间有y天;有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,①总天数﹣早晨下雨=早晨晴天;②总天数﹣晚上下雨=晚上晴天;列方程组解出即可.【解答】解:设有x天早晨下雨,这一段时间有y天,根据题意得:①+②得:2y=22y=11所以一共有11天,故选B.【点评】本题以天气为背景,考查了学生生活实际问题,恰当准确设未知数是本题的关键;根据生活实际可知,早晨和晚上要么下雨,要么晴天;本题也可以用算术方法求解:(9+6+7)÷2=11.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)(2016?常德)使代数式有意义的x的取值范围是x≥3.【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【解答】解:∵代数式有意义,∴2x﹣6≥0,解得:x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.10.(3分)(2016?常德)计算:a2?a3=a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2?a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.11.(3分)(2016?常德)如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P 到OA的距离为3.【分析】过P作PD⊥OA于D,根据角平分线上的点到角的两边的距离相等可得PD=PC,从而得解.【解答】解:如图,过P作PD⊥OA于D,∵OP为∠AOB的平分线,PC⊥OB,∴PD=PC,∵PC=3,∴PD=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.12.(3分)(2016?常德)已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式y=﹣.【分析】由反比例函数的图象在每一个象限内y随x的增大而增大,结合反比例函数的性质即可得出k<0,随便写出一个小于0的k 值即可得出结论.【解答】解:∵反比例函数y=的图象在每一个象限内y随x的增大而增大,∴k<0.故答案为:y=﹣.【点评】本题考查了反比例函数的性质,解题的关键是找出k<0.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的单调性结合反比例函数的性质得出k的取值范围是关键.13.(3分)(2016?常德)张朋将连续10天引体向上的测试成绩(单位:个)记录如下:16,18,18,16,19,19,18,21,18,21.则这组数据的中位数是18.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:先对这组数据按从小到大的顺序重新排序:16,16,18,18,18,18,19,19,21,21.位于最中间的两个数都是18,所以这组数据的中位数是18.故答案为:18.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.14.(3分)(2016?常德)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是3π.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算可得.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=3π,故答案为:3π.【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.15.(3分)(2016?常德)如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D 落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=55°.【分析】由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可.【解答】解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°;故答案为:55°.【点评】本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.16.(3分)(2016?常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是(1,8)或(﹣3,﹣2)或(3,2).【分析】以O,A,B,C四点为顶点的四边形是“和点四边形”,分3种情况讨论:①C为点A、B的“和点”;②B为A、C的“和点”;③A为B、C的“和点”,再根据点A、B的坐标求得点C的坐标.【解答】解:∵以O,A,B,C四点为顶点的四边形是“和点四边形”,①当C为A、B的“和点”时,C点的坐标为(2﹣1,5+3),即C(1,8);②当B为A、C的“和点”时,设C点的坐标为(x1,y1),则,解得C(﹣3,﹣2);③当A为B、C的“和点”时,设C点的坐标为(x2,y2),则,解得C(3,2);∴点C的坐标为(1,8)或(﹣3,﹣2)或(3,2).故答案为:(1,8)或(﹣3,﹣2)或(3,2).【点评】本题主要考查了点的坐标,解决问题的关键是掌握“和点”的定义和“和点四边形”的定义.坐标平面内的点与有序实数对是一一对应的关系.三、(本大题2个小题,每小题5分,满分10分)17.(5分)(2016?常德)计算:﹣14+sin60°+()﹣2﹣()0.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式﹣14+sin60°+()﹣2﹣()0的值是多少即可.【解答】解:﹣14+sin60°+()﹣2﹣()0=﹣1+2×+4﹣1=﹣1+3+3=5【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.18.(5分)(2016?常德)解不等式组,并把解集在是数轴上表示出来..【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x≥﹣,由②得:x<4,∴不等式组的解集为﹣≤x<4,【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.四、(本大题2个小题,每小题6分,满分12分)19.(6分)(2016?常德)先化简,再求值:(),其中x=2.【分析】先算括号里面的,再算除法,最后把x的值代入进行计算即可.【解答】解:原式=[+]÷[﹣]=÷=÷=?=,当x=2时,原式==.【点评】本题考查的是分式的化简求值,在解答此类问题时要注意把分式化为最简形式,再代入求值.20.(6分)(2016?常德)如图,直线AB与坐标轴分别交于A (﹣2,0),B(0,1)两点,与反比例函数的图象在第一象限交于点C(4,n),求一次函数和反比例函数的解析式.【分析】设一次函数的解析式为y=kx+b,把A(﹣2,0),B (0,1)代入得出方程组,解方程组即可;求出点C的坐标,设反比例函数的解析式为y=,把C(4,3)代入y=求出m即可.【解答】解:设一次函数的解析式为y=kx+b,把A(﹣2,0),B(0,1)代入得:,解得:,∴一次函数的解析式为y=x+1;设反比例函数的解析式为y=,把C(4,n)代入得:n=3,∴C(4,3),把C(4,3)代入y=得:m=3×4=12,∴反比例函数的解析式为y=.【点评】本题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.五、(本大题2个小题,每小题7分,满分14分)21.(7分)(2016?常德)某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?【分析】(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x﹣10)元,再根据等量关系:第二批进的件数=×第一批进的件数可得方程;(2)设第二批衬衫每件售价y元,由利润=售价﹣进价,根据这两批衬衫售完后的总利润不低于1950元,可列不等式求解.【解答】解:(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x﹣10)元,根据题意可得:,解得:x=150,经检验x=150是原方程的解,答:第一批T恤衫每件进价是150元,第二批每件进价是140元,(件),(件),答:第一批T恤衫进了30件,第二批进了15件;(2)设第二批衬衫每件售价y元,根据题意可得:30×(200﹣150)+15(y﹣140)≥1950,解得:y≥170,答:第二批衬衫每件至少要售170元.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.22.(7分)(2016?常德)南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732,=1.732,=1.414)【分析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.【解答】解:过B作BD⊥AC,∵∠BAC=75°﹣30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理得:BD=AD=×20=10(海里),在Rt△BCD中,∠C=15°,∠CBD=75°,∴tan∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.【点评】此题考查了解直角三角形的应用﹣方向角问题,熟练掌握直角三角形的性质是解本题的关键.六、(本大题2个小题,每小题8分,满分16分)23.(8分)(2016?常德)今年元月,国内一家网络诈骗举报平台发布了《2015年网络诈骗趋势研究报告》,根据报告提供的数据绘制了如下的两幅统计图:(1)该平台2015年共收到网络诈骗举报多少例?(2)2015年通过该平台举报的诈骗总金额大约是多少亿元?(保留三个有效数字)(3)2015年每例诈骗的损失年增长率是多少?(4)为提高学生的防患意识,现准备从甲、乙、丙、丁四人中随机抽取两人作为受骗演练对象,请用树状图或列表法求恰好选中甲、乙两人的概率是多少?【分析】(1)利用条形统计图求解;(2)利用2015年每例诈骗的损失乘以2015年收到网络诈骗举报的数量即可;(3)用2015年每例诈骗的损失减去2014年每例诈骗的损失,然后用其差除以2014年每例诈骗的损失即可;(4)画树状图(用A、B、C、D分别表示甲乙丙丁)展示所有12种等可能的结果数,再找出选中甲、乙两人的结果数,然后根据概率公式求解.【解答】解:(1)该平台2015年共收到网络诈骗举报24886例;(2)2015年通过该平台举报的诈骗总金额大约是24886×5.106≈1.27亿元;(3)2015年每例诈骗的损失年增长率=(5106﹣2070)÷2070=147%;(4)画树状图为:(用A、B、C、D分别表示甲乙丙丁)共有12种等可能的结果数,其中选中甲、乙两人的结果数为2,所以恰好选中甲、乙两人的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.24.(8分)(2016?常德)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.(1)求证:BE是⊙O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.【分析】(1)先根据等弦所对的劣弧相等,再结合∠EBD=∠CAB 从而得到∠BAD=∠EBD,最后用直径所对的圆周角为直角即可;(2)利用三角形的中位线先求出OF,再用平行线分线段成比例定理求出半径R,最后根据相似求出BE即可.【解答】解:如图,连接OB,∵BD=BC,∴∠CAB=∠BAD,∵∠EBD=∠CAB,∴∠BAD=∠EBD,∵AD是⊙O的直径,∴∠ABD=90°,OA=BO,∴∠BAD=∠ABO,∴∠EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABD+∠OBD=∠ABD=90°,∵点B在⊙O上,∴BE是⊙O的切线,(2)如图2,设圆的半径为R,连接CD,∵AD为⊙O的直径,∴∠ACCD=90°,∵BC=BD,∴OB⊥CD,∴OB∥AC,∵OA=OD,∴OF=AC=,∵四边形ACBD是圆内接四边形,∴∠BDE=∠ACB,∵∠DBE=∠ACB,∴△DBE∽△CAB,∴,∴,∴DE=,∵∠OBE=∠OFD=90°,∴DF∥BE,∴,∴,∵R>0,∴R=3,∴AB==∵=,∴BE=.【点评】此题是切线的判定,主要考查了圆周角的性质,切线的判定,平行线分线段成比例定理,相似三角形的判定和相似,圆内接四边形的性质,解本题的关键是作出辅助线.七、(本大题2个小题,每小题10分,满分20分)25.(10分)(2016?常德)已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.【分析】(1)①利用SAS证全等;②易证得:BC∥FH和CH=HE,根据平行线分线段成比例定理得BF=EF,也可由三角形中位线定理的推论得出结论.(2)作辅助线构建平行线和全等三角形,首先证明△MAE≌△DAC,得AD=AM,根据等量代换得AB=AM,根据②同理得出结论.【解答】证明:(1)①如图1,∵AB⊥AD,AE⊥AC,∴∠BAD=90°,∠CAE=90°,∴∠1=∠2,在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS);②如图1,∵△ABC≌△ADE,∴∠AEC=∠3,在Rt△ACE中,∠ACE+∠AEC=90°,∴∠BCE=90°,∵AH⊥CD,AE=AC,∴CH=HE,∵∠AHE=∠BCE=90°,∴BC∥FH,∴==1,∴BF=EF;(2)结论仍然成立,理由是:如图2所示,过E作MN∥AH,交BA、CD延长线于M、N,∵∠CAE=90°,∠BAD=90°,∴∠1+∠2=90°,∠1+∠CAD=90°,∴∠2=∠CAD,∵MN∥AH,∴∠3=∠HAE,∵∠ACH+∠CAH=90°,∠CAH+∠HAE=90°,。
2014年常德市中考数学试卷及答案
2014年常德市初中毕业学业考试数学试题一、选择题(本大题8个小题,每小题3分,满分24分) 1.2-等于A .2B .2-C .12D .12-2.如图1所示的几何体的主视图是3.下列各数:,,0,3p 13无理数的个数是A .1个B .2个C .3个D .4个4ABCD5.如图2,已知AC ∥BD ,∠CAE =30°, ∠DBE =45,则∠AEB 等于A .30°B .45°C .60°D .75°6.某班体育委员记录了7位女生1分钟仰卧起坐的个数分别为28,38,38,35,35,38,48,这组数据的中位数和众数分别是 A .35,38B .38,35C .38,38D .35,357.下面分解因式正确的是A .221(2)1x x x x ++=++B .23(4)4x x x x -=-C .()ax bx a b x +=+D .2222()m mn n m n -+=+8.阅读理解:如图3,在平面内选一定点O ,引一条有方向的射线Ox ,再选定一个单位长度,那么平面上任一点M的位置可由MOx Ð的度数θ与OM 的长度m 确定,有序数对(θ,m )称为M 点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图4的极坐标系下,如果正六边形的边长为2,有一边OA 在射线Ox 上,则正六边形的顶点C 的极坐标应记为 A .(60°,4)B .(45°,4)C .(60°,)D .(50°,)图3 图4图1 A . B . C .D . 图2二、填空题(本大题8个小题,每小题3分,满分24分)9x 的取值范围是________________.10.古生物学家发现350 000 000年前,地球上每年大约是400天,用科学记数法表示350 000000=_______________. 11.下列关于反比例函数21y x=的三个结论:①它的图象经过点(7,3);②它的图象在每一个象限内,y 随x 的增大而减小;③它的图象在二、四象限内.其中正确的是________________. 12.计算:2111aa a ---=___________. 13.一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________________.14.如图5所示,AB 为⊙O 的直径,CD ⊥AB ,若AB =10,CD =8,则圆心O 到弦CD 的距离为_________.15.如图6,已知△ABC 三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC =BC ,AD =AO ,若∠BAC =80°,则∠BCA 的度数为 . 16.已知:22222221143+211= =21343+215------;; 计算:22222265+43+21= 65+43+21------ ;猜想:22222222[(22)(21)]++65+(43)+(21)=[(22)(21)]65)+(43)+(21)n n n n +-+---+-+---()++( . 三、 (本大题2个小题,每小题5分,满分10分) 17.计算: ()21022(sin301)---+?- 18.解方程:21224x x =-- 四、(本大题2个小题,每小题6分,满分12分)19.解不等式组51341233x x x x ì->-ïïïíï--ïïî① ≤ ② 20.小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A 、B 、C 、D 、E 五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的. 规定①玩家只能将小兔从A 、B 两个出入口放入,②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩具,否则应付费3元.(1)问小美得到小兔玩具的机会有多大?(2)假设有100人次玩此游戏, 估计游戏设计者可赚多少元? 五、(本大题2个小题,每小题7分,满分14分)21.2014年5月12日,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农民工收入持续快图6图5速增长.某地区农民工人均月收入增长率如图7所示,并将人均月收入绘制成如图8所示的不完整的条形统计图.图7 图8根据以上统计图解答下列问题:(1)2013年农民工人均月收入的增长率是多少? (2)2011年农民工人均月收入是多少?(3)小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了.”你认为小明的说法正确吗?请说明理由.22.如图9,A ,B ,C 表示修建在一座山上的三个缆车站的位置,AB ,BC 表示连接缆车站的钢缆.已知A ,B ,C所处位置的海拔AA 1,BB 1,CC 1,分别为160米,400米,1000米,钢缆AB ,BC 分别与水平线AA 2,BB 2所成的夹角为30°,45°,求钢缆AB 和BC 的总长度.(结果精确到1米) 六、(本大题2个小题,每小题8分,满分16分)23.如图10,已知⊙O 的直径为AB ,AC ⊥AB 于点A ,BC 与⊙O 相交于点D ,在AC 上取一点E ,使得ED =EA . (1)求证:ED 是⊙O 的切线.(2)当OA =3,AE =4时,求BC 的长度.24.在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x ,购票总价为y ):方案一: 提供8 000元赞助后,每张票的票价为50元; 方案二: 票价按图11中的折线OAB 所表示的函数关系确定.(1)若购买120张票时, 按方案一和方案二分别应付的购票款是多少? (2)求方案二中y 与x 的函数关系式; (3)至少买多少张票时选择方案一比较合算? 七、(本大题2个小题,每小题10分,满分20分)25.如图12, 已知二次函数的图像过点O(0,0), A (4,0),B(2,),M 是OA 的中点. (1)求此二次函数的解析式;(2)设P 是抛物线上的一点,过P 作x 轴的平行线与抛物线交于另一点Q ,要使四边形PQAM 是菱形,求P 点的坐标;(3)将抛物线在x 轴下方的部分沿x 轴向上翻折,得曲线OB ′A (B ′为B 关于x 轴的对称点),在原抛物线x 轴的上方部分取一点C ,连接CM ,CM 与翻折后的曲线OB ′A 交于点D ,若△CDA 的面积是△MDA 面积的2倍,这样的点C 是否存在?若存在求出C 点的坐标,若不存在,请说明理由.图12图11图9 图10图926.如图13,14,已知四边形ABCD为正方形,在射线AC上有一动点P,作PE⊥AD(或延长线)于E,作PF⊥DC(或延长线)于F,作射线BP交EF于G.(1)在图13中,设正方形ABCD的边长为2, 四边形ABFE的面积为y, AP=x,求y关于x的函数表达式.(2)结论GB⊥EF对图13,图14都是成立的,请任选一图形给出证明;(3)请根据图14证明:△FGC∽△PFB.图13 图142014年常德市初中毕业学业考试数学参考答案一、选择题(本大题8个小题,每小题3分,满分24分) 1.A 2.B 3.B 4.D 5.D 6.C 7.C 8.A 二、填空题(本大题8个小题,每小题3分,满分24分) 9.12x ≥ 10.3.5×108 11.①② 12.211a - 13.98k < 14.315.60°16.17,123n + 注:16题对一空记2分,对二空记3分. 三、 (本大题2个小题,每小题5分,满分10分) 17.解:原式=412-+1- 4 …………………………………………4分 =12…………………………………………5分 注:第一个等号每算对一个运算给1分,共4分 18.解:方程两边同乘以(2)(2)x x +-,得22x += ……………………………2分0x = ……………………………4分 经检验:0x =是原方程的根所以原方程的解是0x =. ……………………………5分 四、 (本大题2个小题,每小题6分,满分12分) 19.解:解不等式①,得32x >-……………………………2分 解不等式②,得1x ≤ ……………………………4分 所以不等式组的解集是312x -<≤ ……………………………6分 20.解:(1)画树状图(或列表略)……………………………2分小美得到小兔玩具的概率=21105=……………………………4分(2)100人次玩此游戏,估计有1100205?人次会获得玩具,花费20×5=100元, 估计将有100-20=80人次要付费,估计游戏设计者可赚80×3-100=140(元). ……………………………6分五、 (本大题2个小题,每小题7分,满分14分)开始入口 A B 出口 A B C D E A B C D E21.解:(1)10%……………………………2分 (2)2205元 ……………………………4分 (3)不正确……………………………5分2012的人均月收入=2205(120%)26462205.?=> …………7分22.解:在Rt △ABD 中, BD =400-160=240, ∠BAD =30° ……………………………1分 则AB =2BD =480 m. ……………………………3分在Rt △BCB 2中, CB 2=1000-400=600,∠CBB 2=45° ……………………………4分则CBm. ……………………………6分 所以AB +BC≈1328 (米)答:钢缆AB 和BC 的总长度约为1328米. ……………………………7分 六、 (本大题2个小题,每小题8分,满分16分) 23.解:(1)证明:连结OD .∵OD =OA ,EA =ED ,∴∠3=∠4, ∠1=∠2 ……………2分 ∴∠1+∠3=∠2+∠4 , 即∠ODE =∠OAE ∵AB ⊥AC , ∠OAE =90°∴∠ODE =90°∴DE 是⊙O 的切线. ………4分 (2)∵OA =3, AE =4 ∴OE =5 ………5分又∵AB 是直径, ∴AD ⊥BC ∴∠1+∠5=90°,∠2+∠6=90°又∵∠1=∠2 ∴∠5=∠6 ,∴DE =EC , ……………………………6分 ∴E 是AC 的中点. ∴OE ∥BC 且 OE =12BC ∴BC =10……………………………8分24.解:(1)按方案一购120张票时,80005012014000y =+⨯=(元);按方案二购120张票时,由图知13200y =(元)……………………2分 (2)当0100x <≤时,设y kx =,则12000100,120k k =\=,∴120y x =.……………………………3分100x ≥时, 设y kx b =+,解得60,6000k b ==, ∴606000.y x =+综合上面所得120(0100)606000(100)xx y x x ì<ïï=íï+>ïî≤ …………………………5分ABE图10(3)由(1)知, 购120张票时,按方案一购票不合算.即选择方案一比较合算时,x 应超过120.…………………………6分设至少购买x 张票时选择方案一比较合算 则应有800050x +≤606000x +, 解得:200x ≥(张)∴至少买200张时选方案一.…………………………8分 七、 (本大题2个小题,每小题10分,满分20分)25.解: (1)方法一:设二次函数的解析式为2y ax=则00164042a c a b c bc a b c ìïïì=ïïïïïïïï=ïïïï镲=++?眄镲镲镲镲=-=++镲镲ïïîïïî∴2(4)y x =-=- ……3分方法二:∵图像过点O (0,0), A (4,0),∴设(4y ax x =-), 又B (2,-)在曲线上,∴2(24a -=-)∴(4)y x x =-……………………………………3分(2)∵M 是OA 的中点,OA =4,∴MA =2,若四边形PQAM 是菱形,则PQ =2,又根据抛物线关于对称轴2x =对称,即P 、Q 关于直线2x =对称, ∴P 的横坐标为1, Q 的横坐标为3.……………………………………5分∴P 的坐标为(1,-, Q 的横坐标为(3,-.而计算PM 2,故所求的P (1,满足四边形PQAM 是菱形 ………6分(3)设存在这样的C 点.设C 、D 的坐标分别为1122(,),(,)x y x y∵二次函数在x 轴下方的部分向上翻折,得曲线OB ′A , ∴曲线OB ′A 的解析式为(4)y x =--……………………………………7分 若△CDA 的面积是△MDA 面积的2倍, ∴△CMA 的面积是△MDA 面积的3倍,∴1212312MA y MA y =, ∴123y y =,11(4)3x -,∴1122(4)3(4)x x x x -=--……………①…………………………8分过D ,C 分别作DD 1,CC 1垂直于x 轴, ∴△MD 1D ∽△MC 1C , ∴11113MC CC MD DD ==,∴1223,2x x -=- 即1243x x +=………………② …………………………9分将②代入①得:211480x x --=22x =?代入二次函数的解析式得2y =故C的坐标为(2+,或(2-. ………………………10分26.解:(1)∵EP ^AD ,PF ^DC ,∴四边形EPFD 是矩形,∵AP=x , ∴AE =EP =DF=2x ,2DE PF FC ===-,…………………………1分∴11422ABFE S ED DF BC FC =-??四边形 2124x =+………………………………3分(2)在图13中证明GB ⊥EF .①证法一:延长FP 交AB 于H , ∵PF ⊥DC ,PE ⊥AD ,∴PF ⊥PE ,PH ⊥HB , 即∠BHP =90° ………………………………4分 ∴在Rt △FPE 与Rt △BHP 中 因 ABCD 是正方形, ∴易知PF =FC =HB ,EP =PH∴Rt △FPE ≌Rt △BHP ……………………………5分 ∴∠PFE =∠PBH , 又∠FPG =∠BPH , ∴△FPG ∽ △BPH ,∴∠FGP =∠BHP =90°,即GB ⊥EF………………………………6分分析: 要GB ⊥EF ,只要∠5 +∠3=90°,而∠5 +∠4=90°,只要证∠3=∠4,ABCEP FG D答案图13-1H而∠2 =∠3, ,只要证∠4=∠2,而∠4=∠1,故只要∠1=∠2.证法二: 如答案图13-2,连接PD ,延长FP 交AB 于H ,延长EP 交BC 于M ,易知DC =BC , ∠DCP =∠BCP =45°,PC =PC , ∴△DPC ≌△BP C ……………………4分 ∴∠DPC =∠BPC ,即∠1+45°=45°+∠2, ∴∠1=∠2,……………………………5分 而∠1=∠4, ∠2 =∠3,∴∠3=∠4,而∠5 +∠4=90°,∴∠5 +∠3=90°, ∴∠PGE=180°-(∠5 +∠3)=90°,即GB ⊥EF .……………………………6分 注:在图14中证法与上面类似. (3)证法一: ∵GB ⊥EF ,∴,BPFCFG ??…①……7分连接PD ,在△DPC 和△BPC 中 ∵DC =BC , ∠DCP =∠BCP =135°,PC =PC , ∴ △DPC ≌△BP C ,∴PD =PB .………………………8分而PD =EF , ∴EF =PB .又∵GB ⊥EF ,∴2,PF FG EF =? ∴2,PF FG PB =? 而PF =FC , ∴,PF FC FG PB ?? ………………………9分∴,PF FGPB FC=………② ∴由①②得△FGC ∽△PFB .………………………10分证法二:∵GB ⊥EF ,∴,BPFCFG ??………① ………………………7分又∵,,BG FG BC CF ^^ 取BF 的中点M ,则有:∴B,C,G,F 四点在以M 为圆心,MB 为半径的圆上. …………………………9分∴,PBFFCG ??………②∴由①②得△FGC ∽△PFB .…………………………10分CFDA BEPG答案图13-2HM3 2415。
湖南省常德市中考数学真题试卷(含解析)
湖南省常德市中考数学真题试卷一、选择题(共8小题).1.4的倒数为()A.B.2 C.1 D.﹣4 2.下面几种中式窗户图形既是轴对称又是中心对称的是()A.B.C.D.3.如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A.70°B.65°C.35°D.5°4.下列计算正确的是()A.a2+b2=(a+b)2B.a2+a4=a6C.a10÷a5=a2D.a2•a3=a55.下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个6.一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A.4 B.3 C.2 D.18.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F二、填空题(本大题8个小题,每小题3分,满分24分)9.分解因式:xy2﹣4x=.10.若代数式在实数范围内有意义,则x的取值范围是.11.计算:﹣+=.12.如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k=.13.4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如表:阅读时间(x小时)x≤3.5 3.5<x≤5 5<x≤6.5 x>6.5 人数12 8 6 4 若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为.14.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是次.15.如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为.16.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.三、(本大题2个小题,每小题5分,满分10分)17.计算:20+()﹣1•﹣4tan45°.18.解不等式组.四、(本大题2个小题,每小题6分,满分12分)19.先化简,再选一个合适的数代入求值:(x+1﹣)÷.20.第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?五、(本大题2个小题,每小题7分,满分14分)21.已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.22.如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41)六、(本大题2个小题,每小题8分,满分16分)23.今年2﹣4月某市出现了200名新冠肺炎患者,市委根据的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.24.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE 交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.七、(本大题2个小题,每小题10分,满分20分)25.如图,已知抛物线y=ax2过点A(﹣3,).(1)求抛物线的解析式;(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.26.已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.参考答案一、选择题(本大题8个小题,每小题3分,满分24分)1.4的倒数为()A.B.2 C.1 D.﹣4【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,求倒数的方法,是把一个数的分子和分母互换位置即可,是带分数的化成假分数,再把分子分母互换位置,据此解答.解:4的倒数为.故选:A.2.下面几种中式窗户图形既是轴对称又是中心对称的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、不是轴对称图形,也不是中心对称图形,故本选项不合题意;C、既是轴对称图形,又是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故本选项不合题意;故选:C.3.如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A.70°B.65°C.35°D.5°【分析】根据平行线的性质和∠1=30°,∠2=35°,可以得到∠BCE的度数,本题得以解决.解:作CF∥AB,∵AB∥DE,∴CF∥DE,∴AB∥DE∥DE,∴∠1=∠BCF,∠FCE=∠2,∵∠1=30°,∠2=35°,∴∠BCF=30°,∠FCE=35°,∴∠BCE=65°,故选:B.4.下列计算正确的是()A.a2+b2=(a+b)2B.a2+a4=a6C.a10÷a5=a2D.a2•a3=a5【分析】根据完全平方公式、合并同类项法则、同底数幂的乘除法计算得到结果,即可作出判断.解:A、a2+2ab+b2=(a+b)2,原计算错误,故此选项不符合题意;B、a2与a4不是同类项不能合并,原计算错误,故此选项不符合题意;C、a10÷a5=a5,原计算错误,故此选项不符合题意;D、a2•a3=a5,原计算正确,故此选项符合题意;故选:D.5.下列说法正确的是()A.明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B.抛掷一枚质地均匀的硬币两次,必有一次正面朝上C.了解一批花炮的燃放质量,应采用抽样调查方式D.一组数据的众数一定只有一个【分析】根据必然事件的概念、众数的定义、随机事件的概率逐项分析即可得出答案.解:A、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误;B、抛掷一枚质地均匀的硬币两次,正面朝上的概率是,故本选项错误;C、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确;D、一组数据的众数不一定只有一个,故本选项错误;故选:C.6.一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100πB.200πC.100πD.200π【分析】先利用勾股定理计算出母线长,然后利用扇形的面积公式计算这个圆锥的侧面积.解:这个圆锥的母线长==10,这个圆锥的侧面积=×2π×10×10=100π.故选:C.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b2﹣4ac>0;②abc<0;③4a+b=0;④4a﹣2b+c>0.其中正确结论的个数是()A.4 B.3 C.2 D.1【分析】先由抛物线与x周董交点个数判断出结论①,利用抛物线的对称轴为x=2,判断出结论②,先由抛物线的开口方向判断出a<0,进而判断出b>0,再用抛物线与y轴的交点的位置判断出c>0,判断出结论③,最后用x=﹣2时,抛物线在x轴下方,判断出结论④,即可得出结论.解:由图象知,抛物线与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,故①正确,由图象知,抛物线的对称轴直线为x=2,∴﹣=2,∴4a+b=0,故②正确,由图象知,抛物线开口方向向下,∴a<0,∵4a+b=0,∴b>0,而抛物线与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故③正确,由图象知,当x=﹣2时,y<0,∴4a﹣2b+c<0,故④错误,即正确的结论有3个,故选:B.8.如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F【分析】设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.解:经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)﹣7p格,这时P是整数,且使0≤k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤,设k=7+t(t=1,2,3)代入可得,k(k+1)﹣7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.二、填空题(本大题8个小题,每小题3分,满分24分)9.分解因式:xy2﹣4x=x(y+2)(y﹣2).【分析】原式提取x,再利用平方差公式分解即可.解:原式=x(y2﹣4)=x(y+2)(y﹣2),故答案为:x(y+2)(y﹣2)10.若代数式在实数范围内有意义,则x的取值范围是x>3 .【分析】根据二次根式有意义的条件可得2x﹣6>0,再解即可.解:由题意得:2x﹣6>0,解得:x>3,故答案为:x>3.11.计算:﹣+=3.【分析】直接化简二次根式进而合并得出答案.解:原式=﹣+2=3.故答案为:3.12.如图,若反比例函数y=(x<0)的图象经过点A,AB⊥x轴于B,且△AOB的面积为6,则k=﹣12 .【分析】根据反比例函数比例系数的几何意义即可解决问题.解:∵AB⊥OB,∴S△AOB==6,∴k=±12,∵反比例函数的图象在二四象限,∴k<0,∴k=﹣12,故答案为﹣12.13.4月23日是世界读书日,这天某校为了解学生课外阅读情况,随机收集了30名学生每周课外阅读的时间,统计如表:阅读时间(x小时)x≤3.5 3.5<x≤5 5<x≤6.5 x>6.5 人数12 8 6 4 若该校共有1200名学生,试估计全校每周课外阅读时间在5小时以上的学生人数为400人.【分析】用总人数×每周课外阅读时间在5小时以上的学生人数所占的百分比即可得到结论.解:1200×=400(人),答:估计全校每周课外阅读时间在5小时以上的学生人数为400人.14.今年新冠病毒疫情初期,口罩供应短缺,某地规定:每人每次限购5只.李红出门买口罩时,无论是否买到,都会消耗家里库存的口罩一只,如果有口罩买,他将买回5只.已知李红家原有库存15只,出门10次购买后,家里现有口罩35只.请问李红出门没有买到口罩的次数是 4 次.【分析】设李红出门没有买到口罩的次数是x,买到口罩的次数是y,根据买口罩的次数是10次和家里现有口罩35只,可列出关于x和y的二元一次方程组,求解即可.解:设李红出门没有买到口罩的次数是x,买到口罩的次数是y,由题意得:,整理得:,解得:.故答案为:4.15.如图1,已知四边形ABCD是正方形,将△DAE,△DCF分别沿DE,DF向内折叠得到图2,此时DA与DC重合(A、C都落在G点),若GF=4,EG=6,则DG的长为12 .【分析】设正方形ABCD的边长为x,由翻折及已知线段的长,可用含x的式子分别表示出BE、BF及EF的长;在Rt△BEF中,由勾股定理得关于x的方程,解得x的值,即为DG的长.解:设正方形ABCD的边长为x,由翻折可得:DG=DA=DC=x,∵GF=4,EG=6,∴AE=EG=6,CF=GF=4,∴BE=x﹣6,BF=x﹣6,EF=6+4=10,如图1所示:在Rt△BEF中,由勾股定理得:BE2+BF2=EF2,∴(x﹣6)2+(x﹣4)2=102,∴x2﹣12x+36+x2﹣8x+16=100,∴x2﹣10x﹣24=0,∴(x+2)(x﹣12)=0,∴x1=﹣2(舍),x2=12.∴DG=12.故答案为:12.16.阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为x=2或x=﹣1+或x=﹣1﹣.【分析】将原方程左边变形为x3﹣4x﹣x+2=0,再进一步因式分解得(x﹣2)[x(x+2)﹣1]=0,据此得到两个关于x的方程求解可得.解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣1+或x=﹣1﹣.三、(本大题2个小题,每小题5分,满分10分)17.计算:20+()﹣1•﹣4tan45°.【分析】先计算20、、()﹣1、tan45°,再按运算顺序求值即可.解:原式=1+3×2﹣4×1=1+6﹣4=3.18.解不等式组.【分析】首先分别解出两个不等式的解集,再根据解集的规律确定不等式组的解集.解:,由①得:x<5,由②得:x≥﹣1,不等式组的解集为:﹣1≤x<5.四、(本大题2个小题,每小题6分,满分12分)19.先化简,再选一个合适的数代入求值:(x+1﹣)÷.【分析】根据分式的减法和除法可以化简题目中的式子,然后选取一个使得原分式有意义的值代入化简后的式子即可解答本题.解:(x+1﹣)÷====,当x=2时,原式==﹣.20.第5代移动通信技术简称5G,某地已开通5G业务,经测试5G下载速度是4G下载速度的15倍,小明和小强分别用5G与4G下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G与5G的下载速度分别是每秒多少兆?【分析】首先设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,根据题意可得等量关系:4G下载600兆所用时间﹣5G下载600兆所用时间=140秒.然后根据等量关系,列出分式方程,再解即可.解:设该地4G的下载速度是每秒x兆,则该地5G的下载速度是每秒15x兆,由题意得:﹣=140,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,15×4=60,答:该地4G的下载速度是每秒4兆,则该地5G的下载速度是每秒60兆.五、(本大题2个小题,每小题7分,满分14分)21.已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.【分析】(1)直接把(3,18),(﹣2,8)代入一次函数y=kx+b中可得关于k、b的方程组,再解方程组可得k、b的值,进而求出一次函数的解析式;(2)联立一次函数解析式和反比例函数解析式,根据题意得到△=0,解方程即可得到结论.解:(1)把(3,18),(﹣2,8)代入一次函数y=kx+b(k≠0),得,解得,∴一次函数的解析式为y=2x+12;(2)∵一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,∴只有一组解,即2x2+12x﹣m=0有两个相等的实数根,∴△=122﹣4×2×(﹣m)=0,∴m=﹣18.把m=﹣18代入求得该方程的解为:x=﹣3,把x=﹣3代入y=2x+12得:y=6,即所求的交点坐标为(﹣3,6).22.如图1是自动卸货汽车卸货时的状态图,图2是其示意图.汽车的车厢采用液压机构、车厢的支撑顶杆BC的底部支撑点B在水平线AD的下方,AB与水平线AD之间的夹角是5°,卸货时,车厢与水平线AD成60°,此时AB与支撑顶杆BC的夹角为45°,若AC=2米,求BC的长度.(结果保留一位小数)(参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.41)【分析】直接过点C作CF⊥AB于点F,利用锐角三角函数关系得出CF的长,进而得出BC的长.【解答】方法一:解:如图1,过点C作CF⊥AB于点F,在Rt△ACF中,∵sin∠CAB=sin(60°+5°)=sin65°=,∴CF=AC•sin65°≈2×0.91=1.82,在Rt△BCF中,∵∠ABC=45°,∴CF=BF,∴BC=CF=1.41×1.82=2.5662≈2.6,答:所求BC的长度约为2.6米.方法二:解:如图2,过点A作AE⊥BC于点E,在Rt△ACE中,∵∠C=180°﹣65°﹣45°=70°,∴cos C=cos70°=,即CE=AC×cos70°≈2×0.34=0.68,sin C=sin70°=,即AE=AC×sin70°≈2×0.94=1.88,又∵在Rt△AEB中,∠ABC=45°,∴AE=BE,∴BC=BE+CE=0.68+1.88=2.56≈2.6,答:所求BC的长度约为2.6米.六、(本大题2个小题,每小题8分,满分16分)23.今年2﹣4月某市出现了200名新冠肺炎患者,市委根据的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.【分析】(1)因为总人数已知,由轻症患者所占的百分比即可求出其的人数;(2)求出该市危重症患者所占的百分比,即可求出其共花费的钱数;(3)用加权平均数公式求出各种患者的平均费用即可;(4)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中B、D两位同学的情况,再利用概率公式即可求得答案.解:(1)轻症患者的人数=200×80%=160(人);(2)该市为治疗危重症患者共花费钱数=200×(1﹣80%﹣15%)×10=100(万元);(3)所有患者的平均治疗费用==2.15(万元);(4)列表得:A B C D EA(B,A)(C,A)(D,A)(E,A)B(A,B)(C,B)(D,B)(E,B)C(A,C)(B,C)(D,C)(E,C)D(A,D)(B,D)(C,D)(E,D)E(A,E)(B,E)(C,E)(D,E)由列表格,可知:共有20种等可能的结果,恰好选中B、D两位同学的有2种情况,∴P(恰好选中B、D)==.24.如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE 交BC于F,且EF=EC.(1)求证:EC是⊙O的切线;(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.【分析】(1)连接OC,由等腰三角形的性质和直角三角形的性质可得∠OCB+∠ECF=90°,可证EC是⊙O的切线;(2)由勾股定理可求AC=6,由锐角三角函数可求BF=5,可求CF=3,通过证明△OAC ∽△ECF,可得,可求解.解:(1)连接OC,∵OC=OB,∴∠OBC=∠OCB,∵DE⊥AB,∴∠OBC+∠DFB=90°,∵EF=EC,∴∠ECF=∠EFC=∠DFB,∴∠OCB+∠ECF=90°,∴OC⊥CE,∴EC是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,∵OB=5,∴AB=10,∴AC===6,∵cos∠ABC=,∴,∴BF=5,∴CF=BC﹣BF=3,∵∠ABC+∠A=90°,∠ABC+∠BFD=90°,∴∠BFD=∠A,∴∠A=∠BFD=∠ECF=∠EFC,∵OA=OC,∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,∴△OAC∽△ECF,∴,∴EC===.七、(本大题2个小题,每小题10分,满分20分)25.如图,已知抛物线y=ax2过点A(﹣3,).(1)求抛物线的解析式;(2)已知直线l过点A,M(,0)且与抛物线交于另一点B,与y轴交于点C,求证:MC2=MA•MB;(3)若点P,D分别是抛物线与直线l上的动点,以OC为一边且顶点为O,C,P,D的四边形是平行四边形,求所有符合条件的P点坐标.【分析】(1)利用待定系数法即可解决问题.(2)构建方程组确定点B的坐标,再利用平行线分线段成比例定理解决问题即可.(3)如图2中,设P(t,t2),根据PD=CD构建方程求出t即可解决问题.解:(1)把点A(﹣3,)代入y=ax2,得到=9a,∴a=,∴抛物线的解析式为y=x2.(2)设直线l的解析式为y=kx+b,则有,解得,∴直线l的解析式为y=﹣x+,令x=0,得到y=,∴C(0,),由,解得或,∴B(1,),如图1中,过点A作AA1⊥x轴于A1,过B作BB1⊥x轴于B1,则BB1∥OC∥AA1,∴===,===,∴=,即MC2=MA•MB.(3)如图2中,设P(t,t2)∵OC为一边且顶点为O,C,P,D的四边形是平行四边形,∴PD∥OC,PD=OC,∴D(t,﹣t+),∴|t2﹣(﹣t+)|=,整理得:t2+2t﹣6=0或t2+2t=0,解得t=﹣1﹣或﹣1=或﹣2或0(舍弃),∴P(﹣1﹣,2+)或(﹣1+,2﹣)或(﹣2,1).26.已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.【分析】(1)①证明△CBP是直角三角形,根据直角三角形斜边中线可得结论;②根据同位角相等可得BC∥EF,由平行线的性质得BP⊥EF,可得EF是线段BP的垂直平分线,根据等腰三角形三线合一的性质可得∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,证明△QEP≌△DEC(SAS),则PQ=DC=DB,由QE=DE,∠DEF=90°,知EF是DQ的垂直平分线,证明△FQP≌△FDB (SAS),再由EF是DQ的垂直平分线,可得结论.【解答】证明(1)①∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,同理∠EDF=60°,∴∠A=∠EDF=60°,∴AC∥DE,∴∠DMB=∠ACB=90°,∵D是Rt△ABC斜边AB的中点,AC∥DM,∴,即M是BC的中点,∵EP=CE,即E是PC的中点,∴ED∥BP,∴∠CBP=∠DMB=90°,∴△CBP是直角三角形,∴BE=PC=EP;②∵∠ABC=∠DFE=30°,∴BC∥EF,由①知:∠CBP=90°,∴BP⊥EF,∵EB=EP,∴EF是线段BP的垂直平分线,∴PF=BF,∴∠PFE=∠BFE=30°;(2)如图2,延长DE到Q,使EQ=DE,连接CD,PQ,FQ,∵EC=EP,∠DEC=∠QEP,∴△QEP≌△DEC(SAS),则PQ=DC=DB,∵QE=DE,∠DEF=90°∴EF是DQ的垂直平分线,∴QF=DF,∵CD=AD,∴∠CDA=∠A=60°,∴∠CDB=120°,∴∠FDB=120°﹣∠FDC=120°﹣(60°+∠EDC)=60°﹣∠EDC=60°﹣∠EQP=∠FQP,∴△FQP≌△FDB(SAS),∴∠QFP=∠BFD,∵EF是DQ的垂直平分线,∴∠QFE=∠EFD=30°,∴∠QFP+∠EFP=30°,∴∠BFD+∠EFP=30°.。
2014年湖南省常德市中考数学试卷(含解析版)
2014年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)(2014•常德)|﹣2|等于()A.2B.﹣2 C.D.2.(3分)(2014•常德)如图的几何体的主视图是()A.B.C.D.3.(3分)(2014•常德)下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个4.(3分)(2014•常德)下列各式与是同类二次根式的是()A.B.C.D.5.(3分)(2014•常德)如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A.30°B.45°C.60°D.75°6.(3分)(2014•常德)某班体育委员记录了7位女生1分钟仰卧起坐的个数分别为28,38,38,35,35,38,48,这组数据的中位数和众数分别是()A.35,38 B.38,35 C.38,38 D.35,357.(3分)(2014•常德)下面分解因式正确的是()A.x2+2x+1=x(x+2)+1 B.(x2﹣4)x=x3﹣4xC.ax+bx=(a+b)x D.m2﹣2mn+n2=(m+n)28.(3分)(2014•常德)阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m 确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2)D.(50°,2)二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)(2014•常德)要使式子在实数范围内有意义,则x的取值范围是.10.(3分)(2014•常德)古生物学家发现350 000 000年前,地球上每年大约是400天,用科学记数法表示350 000 000=.11.(3分)(2014•常德)下列关于反比例函数y=的三个结论:①它的图象经过点(7,3);②它的图象在每一个象限内,y随x的增大而减小;③它的图象在二、四象限内.其中正确的是.12.(3分)(2014•常德)计算:﹣=.13.(3分)(2014•常德)一元二次方程2x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是.14.(3分)(2014•常德)如图,AB为⊙O的直径,CD⊥AB,若AB=10,CD=8,则圆心O到弦CD的距离为.15.(3分)(2014•常德)如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为.16.(3分)(2014•常德)已知:=;=;计算:=;猜想:=.三、(本大题2个小题,每小题5分,满分10分)17.(5分)(2014•常德)计算:(﹣2)2﹣2﹣1+(sin30°﹣1)0﹣.18.(5分)(2014•常德)解方程:=.四、(本大题2个小题,每小题6分,满分12分)19.(6分)(2014•常德)求不等式组的解集.20.(6分)(2014•常德)小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A、B两个出入口放入;②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩具,否则应付费3元.(1)问小美得到小兔玩具的机会有多大?(2)假设有100人次玩此游戏,估计游戏设计者可赚多少元?五、(本大题2个小题,每小题7分,满分14分)21.(7分)(2014•常德)2014年5月12日,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如图2的不完整的条形统计图.根据以上统计图解答下列问题:(1)2013年农民工人均月收入的增长率是多少?(2)2011年农民工人均月收入是多少?(3)小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了.”你认为小明的说法正确吗?请说明理由.22.(7分)(2014•常德)如图,A,B,C表示修建在一座山上的三个缆车站的位置,AB,BC表示连接缆车站的钢缆.已知A,B,C所处位置的海拔AA1,BB1,CC1分别为160米,400米,1000米,钢缆AB,BC分别与水平线AA2,BB2所成的夹角为30°,45°,求钢缆AB和BC的总长度.(结果精确到1米)六、(本大题2个小题,每小题8分,满分16分)23.(8分)(2014•常德)如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线.(2)当OA=3,AE=4时,求BC的长度.24.(8分)(2014•常德)在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):方案一:提供8000元赞助后,每张票的票价为50元;方案二:票价按图中的折线OAB所表示的函数关系确定.(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?(2)求方案二中y与x的函数关系式;(3)至少买多少张票时选择方案一比较合算?七、(本大题2个小题,每小题10分,满分20分)25.(10分)(2014•常德)如图,已知二次函数的图象过点O(0,0),A(4,0),B(2,﹣),M是OA的中点.(1)求此二次函数的解析式;(2)设P是抛物线上的一点,过P作x轴的平行线与抛物线交于另一点Q,要使四边形PQAM 是菱形,求P点的坐标;(3)将抛物线在x轴下方的部分沿x轴向上翻折,得曲线OB′A(B′为B关于x轴的对称点),在原抛物线x轴的上方部分取一点C,连接CM,CM与翻折后的曲线OB′A交于点D.若△CDA的面积是△MDA面积的2倍,这样的点C是否存在?若存在求出C点的坐标,若不存在,请说明理由.26.(10分)(2014•常德)如图1、2,已知四边形ABCD为正方形,在射线AC上有一动点P,作PE⊥AD(或延长线)于E,作PF⊥DC(或延长线)于F,作射线BP交EF于G.(1)在图1中,设正方形ABCD的边长为2,四边形ABFE的面积为y,AP=x,求y关于x的函数表达式;(2)结论:GB⊥EF对图1,图2都是成立的,请任选一图形给出证明;(3)请根据图2证明:△FGC∽△PFB.2014年湖南省常德市中考数学试卷参考答案与试题解析一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)(2014•常德)|﹣2|等于()A.2B.﹣2 C.D.分析:根据绝对值的性质可直接求出答案.解答:解:根据绝对值的性质可知:|﹣2|=2.故选:A.点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2014•常德)如图的几何体的主视图是()考点:简单几何体的三视图.分析:主视图是分别从物体正面看,所得到的图形.解答:解:从几何体的正面看可得,故选:B.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3分)(2014•常德)下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:据无理数定义得有,π和是无理数.故选:B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.(3分)(2014•常德)下列各式与是同类二次根式的是()A.B.C.D.考点:同类二次根式.分析:利用同类二次根式的性质与定义分别化简二次根式进而判断得出即可.解答:解:A、=2,故不与是同类二次根式,故此选项错误;B、=2,故不与是同类二次根式,故此选项错误;C、=5,故不与是同类二次根式,故此选项错误;D、=2,故,与是同类二次根式,故此选项正确;故选:D.点评:此题主要考查了同类二次根式的定义,正确化简二次根式是解题关键.5.(3分)(2014•常德)如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A.30°B.45°C.60°D.75°考点:平行线的性质.分析:过E作EF∥AC,然后根据平行线的传递性可得EF∥BD,再根据平行线的性质可得∠B=∠2=45°,∠1=∠A=30°,进而可得∠AEB的度数.解答:解:过E作EF∥AC,∵AC∥BD,∴EF∥BD,∴∠B=∠2=45°,∵AC∥EF,∴∠1=∠A=30°,∴∠AEB=30°+45°=75°,故选:D.点评:此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.6.(3分)(2014•常德)某班体育委员记录了7位女生1分钟仰卧起坐的个数分别为28,38,38,35,35,38,48,这组数据的中位数和众数分别是()A.35,38 B.38,35 C.38,38 D.35,35考点:众数;中位数.分析:出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.解答:解:38出现的次数最多,38是众数.排序后位于中间位置的数是38,所以中位数为38.故选C.点评:本题考查了众数及中位数的知识,掌握各部分的概念是解题关键.7.(3分)(2014•常德)下面分解因式正确的是()A.x2+2x+1=x(x+2)+1 B.(x2﹣4)x=x3﹣4x C.a x+bx=(a+b)x D.m2﹣2mn+n2=(m+n)2考点:因式分解-运用公式法;因式分解-提公因式法.分析:直接利用因式分解法的定义以及提取公因式法和公式法分解因式得出即可.解答:解:A、x2+2x+1=x(x+2)+1,不是因式分解,故此选项错误;B、(x2﹣4)x=x3﹣4x,不是因式分解,故此选项错误;C、ax+bx=(a+b)x,是因式分解,故此选项正确;D、m2﹣2mn+n2=(m﹣n)2,故此选项错误.故选:C.点评:此题主要考查了提取公因式法和公式法分解因式等知识,正确把握因式分解的方法是解题关键.8.(3分)(2014•常德)阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m 确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2)D.(50°,2)考点:正多边形和圆;坐标确定位置.专题:新定义.分析:设正六边形的中心为D,连接AD,判断出△AOD是等边三角形,根据等边三角形的性质可得OD=OA,∠AOD=60°,再求出OC,然后根据“极坐标”的定义写出即可.解答:解:如图,设正六边形的中心为D,连接AD,∵∠ADO=360°÷6=60°,OD=AD,∴△AOD是等边三角形,∴OD=OA=2,∠AOD=60°,∴OC=2OD=2×2=4,∴正六边形的顶点C的极坐标应记为(60°,4).故选A.点评:本题考查了正多边形和圆,坐标确定位置,主要利用了正六边形的性质,读懂题目信息,理解“极坐标”的定义是解题的关键.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)(2014•常德)要使式子在实数范围内有意义,则x的取值范围是x≥.考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,2x﹣1≥0,解得x≥.故答案为:x≥.点评:本题考查的知识点为:二次根式的被开方数是非负数.10.(3分)(2014•常德)古生物学家发现350 000 000年前,地球上每年大约是400天,用科学记数法表示350 000 000= 3.5×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将350 000 000用科学记数法表示为:3.5×108.故答案为:3.5×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(3分)(2014•常德)下列关于反比例函数y=的三个结论:①它的图象经过点(7,3);②它的图象在每一个象限内,y随x的增大而减小;③它的图象在二、四象限内.其中正确的是①②.考点:反比例函数的性质.分析:根据反比例函数图象上点的坐标特点可得①正确;根据反比例函数的性质:当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小可得②正确,③错误.解答:解:①∵7×3=21,∴它的图象经过点(7,3),故①正确;②∵k=21>0,∴它的图象在每一个象限内,y随x的增大而减小,故②正确;③它的图象应在第一三象限,故③错误;故答案为:①②.点评:此题主要考查了反比例函数的性质,关键是掌握反比例函数图象上的点的坐标特征:横纵坐标之积=k.12.(3分)(2014•常德)计算:﹣=.考点:分式的加减法.专题:计算题.分析:原式通分并利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣==.故答案为:.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.(3分)(2014•常德)一元二次方程2x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是k<.考点:根的判别式.专题:计算题.分析:根据判别式的意义得到△=(﹣3)2﹣4×2×k>0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4×2×k>0,解得k<.故答案为k<.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.(3分)(2014•常德)如图,AB为⊙O的直径,CD⊥AB,若AB=10,CD=8,则圆心O到弦CD的距离为3.考点:垂径定理;勾股定理.分析:连接OC,由AB=10得出OC的长,再根据垂径定理求出CE的长,根据勾股定理求出OE即可.解答:解:连接OC,∵AB为⊙O的直径,AB=10,∴OC=5,∵CD⊥AB,CD=8,∴CE=4,∴OE===3.故答案为:3.点评:本题考查了勾股定理和垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.(3分)(2014•常德)如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为60°.考点:全等三角形的判定与性质;等腰三角形的性质.分析:可证明△COD≌△COB,得出∠D=∠CBO,再根据∠BAC=80°,得∠BAD=100°,由角平分线可得∠BAO=40°,从而得出∠DAO=140°,根据AD=AO,可得出∠D=20°,即可得出∠CBO=20°,则∠ABC=40°,最后算出∠BCA=60°解答:解:∵△ABC三个内角的平分线交于点O,∴∠ACO=∠BCO,在△COD和△COB中,,∴△COD≌△COB,∴∠D=∠CBO,∵∠BAC=80°,∴∠BAD=100°,∴∠BAO=40°,∴∠DAO=140°,∵AD=AO,∴∠D=20°,∴∠CBO=20°,∴∠ABC=40°,∴∠BCA=60°,故答案为60°.点评:本题考查了全等三角形的判定和性质以及等腰三角形的性质,证明三角形全等是解决此题的关键.16.(3分)(2014•常德)已知:=;=;计算:=;猜想:=.考规律型:数字的变化类.点:分析:由=;=;=;…由此看出分子是从n个1相加,结果等于n;分母是(4n+3)+(4n﹣1)+…+11+7+3==n(2n+3),故猜想=.解答:解:已=;=;=;…分子为n个1相加,结果等于n;分母为n项相加:(4n+3)+(4n﹣1)+…+11+7+3==n(2n+3)∴猜想= =.故答案为:;.点此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.评:三、(本大题2个小题,每小题5分,满分10分)17.(5分)(2014•常德)计算:(﹣2)2﹣2﹣1+(sin30°﹣1)0﹣.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题涉及乘方、特殊角的三角函数值、二次根式化简、负指数幂等四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=4﹣+1﹣4=.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟悉乘方、特殊角的三角函数值、二次根式化简、负指数幂等考点的运算.18.(5分)(2014•常德)解方程:=.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x+2=2,解得:x=0,经检验x=0是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.四、(本大题2个小题,每小题6分,满分12分)19.(6分)(2014•常德)求不等式组的解集.考点:解一元一次不等式组.分析:要求不等式组的解,只需要求出这两个不等式得解,然后根据不等式的解的公共部分确定不等式组的解.解答:解:由(1)得:,(3分)由(2)得:x≤1,(3分)所以原不等式组的解集为﹣<x≤1.(4分)点评:本题考查了解一元一次不等式组,要求学生熟练一元一次不等式组的解集确定的方法.同大取大,同小取小,大小小大中间找,大大小小无处找.20.(6分)(2014•常德)小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A、B两个出入口放入;②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩具,否则应付费3元.(1)问小美得到小兔玩具的机会有多大?(2)假设有100人次玩此游戏,估计游戏设计者可赚多少元?考点:列表法与树状图法.专题:计算题.分析:(1)根据五个出入口的兔笼中一个出口得奖,确定出所求概率即可;(2)求出获奖概率与没有获奖概率,确定出100人次玩此游戏,游戏设计者可赚的钱即可.解答:解:(1)根据题意得:小美得到小兔玩具的机会是;(2)根据题意得:一个人玩此游戏,游戏设计者可赚的钱为﹣×5+×3=(元),则有100人次玩此游戏,估计游戏设计者可赚100×=140(元).点评:此题考查了列表法与树状图法,弄清题意是解本题的关键.五、(本大题2个小题,每小题7分,满分14分)21.(7分)(2014•常德)2014年5月12日,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如图2的不完整的条形统计图.根据以上统计图解答下列问题:(1)2013年农民工人均月收入的增长率是多少?(2)2011年农民工人均月收入是多少?(3)小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了.”你认为小明的说法正确吗?请说明理由.考点:折线统计图;条形统计图.分析:(1)直接利用折线统计图得出答案即可;(2)直接利用条形统计图得出答案即可;(3)利用2012年农民工人均月收入增长率进而求出2012年的月平均收入,进而得出答案.解答:解:(1)由折线统计图可得出:2013年农民工人均月收入的增长率是:10%;(2)由条形统计图可得出:2011年农民工人均月收入是:2205元;(3)不正确,理由:∵2012年农民工人均月收入是:2205×(1+20%)=2646(元)>2205元,∴农民工2012年的人均月收入比2011年的少了,是错误的.点评:此题主要考查了条形统计图以及折线统计图的应用,利用图形获取正确信息是解题关键.22.(7分)(2014•常德)如图,A,B,C表示修建在一座山上的三个缆车站的位置,AB,BC表示连接缆车站的钢缆.已知A,B,C所处位置的海拔AA1,BB1,CC1分别为160米,400米,1000米,钢缆AB,BC分别与水平线AA2,BB2所成的夹角为30°,45°,求钢缆AB和BC的总长度.(结果精确到1米)考点:解直角三角形的应用-坡度坡角问题.分析:先根据题意得到BD,CB2的长,在Rt△ABD中,由三角函数可得AB的长度,在Rt△BCB2中,由三角函数可得BC的长度,再相加即可得到答案.解答:解:BD=400﹣160=240米,CB2=1000﹣400=600米,在Rt△ABD中,AB==480米,在Rt△BCB2中,BC==600米,AB+BC=480+600≈1328米.答:钢缆AB和BC的总长度大约是1328米.点评:考查了解直角三角形的应用,关键是根据三角函数得到AB和BC的长度.六、(本大题2个小题,每小题8分,满分16分)23.(8分)(2014•常德)如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线.(2)当OA=3,AE=4时,求BC的长度.考点:切线的判定.分析:(1)如图,连接OD.通过证明△AOE≌△DOE得到∠OAE=∠ODE=90°,易证得结论;(2)利用圆周角定理和垂径定理推知OE∥BC,所以根据平行线分线段成比例求得BC的长度即可.解答:(1)证明:如图,连接OD.∵AC⊥AB,∴∠BAC=90°,即∠OAE=90°.在△AOE与△DOE中,,∴△AOE≌△DOE(SSS),∴∠OAE=∠ODE=90°,即OD⊥ED.又∵OD是⊙O的半径,∴ED是⊙O的切线;(2)解:如图,在△OAE中,∠OAE=90°,OA=3,AE=4,∴由勾股定理易求OE=5.∵AB是直径,∴∠ADB=90°,即AD⊥BC.又∵由(1)知,△AOE≌△DOE,∴∠AEO=∠DEO,又∵AE=DE,∴OE⊥AD,∴OE∥BC,∴==.BC=2OE=10,即BC的长度是10.点评:本题考查了切线的判定与性质.解答(2)题时,也可以根据三角形中位线定理来求线段BC的长度.24.(8分)(2014•常德)在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):方案一:提供8000元赞助后,每张票的票价为50元;方案二:票价按图中的折线OAB所表示的函数关系确定.(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?(2)求方案二中y与x的函数关系式;(3)至少买多少张票时选择方案一比较合算?考点:一次函数的应用.分析:(1)方案一中,总费用y=8000+50x,代入x=120求得答案;由图可知方案二中,当x=120时,对应的购票总价为13200元;(2)分段考虑当x≤100时,当x≥100时,设出一次函数解析式,把其中两点的坐标代入即可求得相应的函数解析式;(3)由(1)(2)的解析式建立不等式,求得答案即可.解答:解:(1)若购买120张票时,方案一购票总价:y=8000+50x=14000元,方案二购票总价:y=13200元.(2)当0<x≤100时,设y=kx,代入(100,12000)得12000=100k,解得k=120,∴y=120x;当x>100时,设y=kx+b,代入(100,12000)、(120,13200)得,解得,∴y=60x+6000.(3)由(1)可知,要选择方案一比较合算,必须超过120张,由此得8000+50x≤60x+6000,解得x≥200,所以至少买200张票时选择方案一比较合算.点评:此题考查了一次函数的应用,一元一次不等式的运用;根据自变量不同的取值分情况进行探讨是解决本题的关键.七、(本大题2个小题,每小题10分,满分20分)25.(10分)(2014•常德)如图,已知二次函数的图象过点O(0,0),A(4,0),B(2,﹣),M是OA的中点.(1)求此二次函数的解析式;(2)设P是抛物线上的一点,过P作x轴的平行线与抛物线交于另一点Q,要使四边形PQAM 是菱形,求P点的坐标;(3)将抛物线在x轴下方的部分沿x轴向上翻折,得曲线OB′A(B′为B关于x轴的对称点),在原抛物线x轴的上方部分取一点C,连接CM,CM与翻折后的曲线OB′A交于点D.若△CDA的面积是△MDA面积的2倍,这样的点C是否存在?若存在求出C点的坐标,若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出二次函数的解析式;(2)由四边形PQAM是菱形,可知PQ=2且PQ∥x轴,因此点P、Q关于对称轴x=2对称,可得点P横坐标为1,从而求出点P的坐标;(3)假设存在满足条件的点C.由△CDA的面积是△MDA面积的2倍,可得点C 纵坐标是点D纵坐标的3倍,由此列方程求出点C的坐标.解答:解:(1)∵抛物线过原点,∴设其解析式为:y=ax2+bx.∵抛物线经过点A(4,0),B(2,﹣),∴,解得,∴二次函数解析式为:y=x2﹣x.(2)∵y=x2﹣x=(x﹣2)2﹣,∴抛物线对称轴为直线:x=2.∵四边形PQAM是菱形,∴PQ=MA=2,PQ∥x轴.∴点P、Q关于对称轴x=2对称,∴点P横坐标为1.当x=1时,y=﹣=﹣.∴P(1,﹣).(3)依题意,翻折之后的抛物线解析式为:y=﹣x2+x.假设存在这样的点C,∵△CDA的面积是△MDA面积的2倍,∴CD=2MD,∴CM=3MD.如答图所示,分别过点D、C作x轴的垂线,垂足分别为点E、点F,则有DE∥CF.∴,∴CF=3DE,MF=3ME.设C(x,x2﹣x),则MF=x﹣2,ME=MF=(x﹣2),OE=ME+OM=x+∴D(x+,﹣(x+)2+(x+)).∵CF=3DE,∴x2﹣x=3[﹣(x+)2+(x+)],整理得:x2﹣4x﹣8=0,解得:x1=2+2,x2=2﹣2.∴y1=,y2=,∴存在满足条件的点C,点C的坐标为(2+2,)或(2﹣2,).点评:本题为二次函数综合题型,考查了二次函数的图象与性质、解方程、相似三角形、菱形、翻折变换等知识点.第(2)问中,解题关键是紧扣菱形的定义及二次函数的对称性;第(3)问是存在型问题,解题关键得到点C纵坐标是点D的3倍.26.(10分)(2014•常德)如图1、2,已知四边形ABCD为正方形,在射线AC上有一动点P,作PE⊥AD(或延长线)于E,作PF⊥DC(或延长线)于F,作射线BP交EF于G.(1)在图1中,设正方形ABCD的边长为2,四边形ABFE的面积为y,AP=x,求y关于x的函数表达式;(2)结论:GB⊥EF对图1,图2都是成立的,请任选一图形给出证明;(3)请根据图2证明:△FGC∽△PFB.考点:四边形综合题.分析:(1)根据题意得出S四边形ABFE=4﹣ED×DF﹣BC×FC进而得出答案;(2)首先利用正方形的性质进而证明△FPE≌△BHP(SAS),即可得出△FPG∽△BPH,求出即可;(3)首先得出△DPC≌△BPC(SAS),进而利用相似三角形的判定得出△FGC∽△PFB.解答:(1)解:∵PE⊥AD,PF⊥DC,∴四边形EPFD是矩形,∵AP=x,∴AE=EP=DF=x,DE=PF=FC=2﹣,∴S四边形ABFE=4﹣ED•DF﹣BC•FC=4﹣×x(2﹣x)﹣×2×(2﹣x)=x2+2;(2)证明:如图1,延长FP交AB于H,∵PF⊥DC,PE⊥AD,∴PF⊥PE,PH⊥HB,即∠BHP=90°,∵四边形ABCD是正方形,∴AC平分∠DAB,∴可得PF=FC=HB,EP=PH,在△FPE与△BHP中,∴△FPE≌△BHP(SAS),∴∠PFE=∠PBH,又∵∠FPG=∠BPH,∴△FPG∽△BPH,∴∠FGP=∠BHP=90°,即GB⊥EF;(3)证明:如图2,连接PD,∵GB⊥EF,∴∠BPF=∠CFG①,在△DPC和△BPC中,∴△DPC≌△BPC(SAS),∴PD=PB,而PD=EF,∴EF=PB,又∵GB⊥EF,∴PF2=FG•EF,∴PF2=FG•PB,而PF=FC,∴PF•FC=FG•PB,∴=②,∴由①②得△FGC∽△PFB.点评:此题主要考查了正方形的性质以及全等三角形的判定和相似三角形的判定与性质等知识,熟练应用正方形的性质得出对应角以及对应边的关系是解题关键.。
【真题】湖南省常德市中考数学试卷含答案解析(2)
湖南省常德市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.下列各数中无理数为( )A .2B .0C .12017D .﹣1 【答案】A .考点:无理数.2.若一个角为75°,则它的余角的度数为( )A .285°B .105°C .75°D .15° 【答案】D . 【解析】试题分析:它的余角=90°﹣75°=15°,故选D . 考点:余角和补角.3.一元二次方程23410x x -+=的根的情况为( ) A .没有实数根 B .只有一个实数根 C .两个相等的实数根 D .两个不相等的实数根 【答案】D . 【解析】试题分析:∵△=(﹣4)2﹣4×3×1=4>0,∴方程有两个不相等的实数根.故选D . 考点:根的判别式.4.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )A .30,28B .26,26C .31,30D .26,22 【答案】B .考点:中位数;加权平均数.5.下列各式由左到右的变形中,属于分解因式的是( )A .a (m +n )=am +anB .2222()()a b c a b a b c --=-+- C .21055(21)x x x x -=- D .2166(4)(4)6x x x x x -++=+-+ 【答案】C . 【解析】试题分析:A .该变形为去括号,故A 不是因式分解;B .该等式右边没有化为几个整式的乘积形式,故B 不是因式分解; D .该等式右边没有化为几个整式的乘积形式,故D 不是因式分解; 故选C .考点:因式分解的意义.6.如图是一个几何体的三视图,则这个几何体是( )A .B .C .D .【答案】B . 【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B . 考点:由三视图判断几何体.7.将抛物线22x y =向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( ) A.5)3(22--=x y B .5)3(22++=x y C .5)3(22+-=x y D .5)3(22-+=x y 【答案】A .考点:二次函数图象与几何变换;几何变换.8.如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是( )302sin60° 22 ﹣3 ﹣2 ﹣sin45° 0 |﹣5| 6 23()﹣14()﹣1A .5B .6C .7D .8 【答案】C .【解析】试题分析:∵第一行为1,2,3,4;第二行为﹣3,﹣2,﹣1,0;第四行为3,4,5,6,∴第三行为5,6,7,8,∴方阵中第三行三列的“数”是7,故选C .考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.二、填空题(本小题共8小题,每小题3分,共24分)9.计算:328-- = . 【答案】0. 【解析】试题分析:原式=2﹣2=0.故答案为:0. 考点:实数的运算;推理填空题. 10.分式方程xx 412=+的解为 . 【答案】x =2.考点:解分式方程.11.据统计:我国微信用户数量已突破887000000人,将887000000用科学记数法表示为 .【答案】8.87×108. 【解析】试题分析:887000000=8.87×108.故答案为:8.87×108. 考点:科学记数法—表示较大的数.12.命题:“如果m 是整数,那么它是有理数”,则它的逆命题为: . 【答案】“如果m 是有理数,那么它是整数”.【解析】试题分析:命题:“如果m 是整数,那么它是有理数”的逆命题为“如果m 是有理数,那么它是整数”. 故答案为:“如果m 是有理数,那么它是整数”.考点:命题与定理.13.彭山的枇杷大又甜,在今年5月18日“彭山枇杷节”期间,从山上5棵枇杷树上采摘到了200千克枇杷,请估计彭山近600棵枇杷树今年一共收获了枇杷 千克. 【答案】24000. 【解析】试题分析:根据题意得:200÷5×600=24000(千克).故答案为:24000. 考点:用样本估计总体.14.如图,已知Rt △ABE 中∠A =90°,∠B =60°,BE =10,D 是线段AE 上的一动点,过D 作CD 交BE 于C ,并使得∠CDE =30°,则CD 长度的取值范围是 .【答案】0≤CD ≤5.考点:含30度角的直角三角形;直角三角形斜边上的中线.15.如图,正方形EFGH 的顶点在边长为2的正方形的边上.若设AE =x ,正方形EFGH 的面积为y ,则y 与x 的函数关系为 .【答案】2244y x x =-+(0<x <2).考点:根据实际问题列二次函数关系式;正方形的性质.16.如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为.【答案】12n -.【解析】试题分析:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴A n(4n﹣4,0).∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,∴点A n+1(4n,0)在直线y=kx+2上,∴0=4nk+2,解得:k=12n-.故答案为:12n-.考点:一次函数图象上点的坐标特征;坐标与图形变化﹣平移;规律型;综合题.三、解答题(本题共2小题,每小题5分,共10分.)17.甲、乙、丙三个同学站成一排进行毕业合影留念,请用列表法或树状图列出所有可能的情形,并求出甲、乙两人相邻的概率是多少? 【答案】23. 【解析】试题分析:用树状图表示出所有情况,再根据概率公式求解可得. 试题解析:用树状图分析如下:∴一共有6种情况,甲、乙两人恰好相邻有4种情况,∴甲、乙两人相邻的概率是46=23. 考点:列表法与树状图法.18.求不等式组⎪⎩⎪⎨⎧⋯-≤-⋯+≤-+②①)23(2352513)1(4x x x x 的整数解. 【答案】0,1,2.考点:一元一次不等式组的整数解.四、解答题:本大题共2小题,每小题6分,共12分.19.先化简,再求值:⎪⎪⎭⎫⎝⎛--+-+-⎪⎪⎭⎫ ⎝⎛---+-22231231334222x x x x x x x x x ,其中x =4. 【答案】x ﹣2,2.考点:分式的化简求值.20.在“一带一路”倡议下,我国已成为设施联通,贸易畅通的促进者,同时也带动了我国与沿线国家的货物交换的增速发展,如图是湘成物流园通过“海、陆(汽车)、空、铁”四种模式运输货物的统计图.请根据统计图解决下面的问题:(1)该物流园货运总量是多少万吨?(2)该物流园空运货物的总量是多少万吨?并补全条形统计图;(3)求条形统计图中陆运货物量对应的扇形圆心角的度数?【答案】(1)240;(2)36;(3)18°.(2)空运货物的总量是240×15%=36吨,条形统计图如下:(3)陆运货物量对应的扇形圆心角的度数为12240×360°=18°. 考点:条形统计图;扇形统计图.五、解答题:本大题共2小题,每小题7分,共14分.21.如图,已知反比例函数xky =的图象经过点A (4,m ),AB ⊥x 轴,且△AOB 的面积为2. (1)求k 和m 的值;(2)若点C (x ,y )也在反比例函数xky =的图象上,当﹣3≤x ≤﹣1时,求函数值y 的取值范围.【答案】(1)k =4,m =1;(2)﹣4≤y ≤﹣43. 【解析】试题分析:(1)根据反比例函数系数k 的几何意义先得到k 的值,然后把点A 的坐标代入反比例函数解析式,可求出k 的值;(2)先分别求出x =﹣3和﹣1时y 的值,再根据反比例函数的性质求解.考点:反比例函数系数k 的几何意义;反比例函数图象上点的坐标特征. 22.如图,已知AB 是⊙O 的直径,CD 与⊙O 相切于C ,BE ∥CO . (1)求证:BC 是∠ABE 的平分线;(2)若DC =8,⊙O 的半径OA =6,求CE 的长.【答案】(1)证明见解析;(2)4.8. 【解析】试题分析:(1)由BE ∥CO ,推出∠OCB =∠CBE ,由OC =OB ,推出∠OCB =∠OBC ,可得∠CBE =∠CBO ; (2)在Rt △CDO 中,求出OD ,由OC ∥BE ,可得DC DOCE OB=,由此即可解决问题;试题解析:(1)证明:∵DE 是切线,∴OC ⊥DE ,∵BE ∥CO ,∴∠OCB =∠CBE ,∵OC =OB ,∴∠OCB =∠OBC ,∴∠CBE =∠CBO ,∴BC 平分∠ABE .(2)在Rt △CDO 中,∵DC =8,OC =0A =6,∴OD =22CD OC +=10,∵OC ∥BE ,∴DC DO CE OB =,∴8106CE =,∴EC =4.8.考点:切线的性质.六、解答题:本大题共2小题,每小题8分,共16分.23.收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1)到甜甜和她妹妹在六一收到红包的年增长率是多少?(2)六一甜甜和她妹妹各收到了多少钱的微信红包?【答案】(1)10%;(2)甜甜在六一收到微信红包为150元,则她妹妹收到微信红包为334元.试题解析:(1)设到甜甜和她妹妹在六一收到红包的年增长率是x,依题意得:400(1+x)2=484,解得x1=0.1=10%,x2=﹣2.1(舍去).答:到甜甜和她妹妹在六一收到红包的年增长率是10%;(2)设甜甜在六一收到微信红包为y元,依题意得:2y+34+y=484,解得y=150,所以484﹣150=334(元).答:甜甜在六一收到微信红包为150元,则她妹妹收到微信红包为334元.考点:一元一次方程的应用;一元二次方程的应用;增长率问题.24.如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,3≈1.732,2≈1.414)【答案】3.05.答:篮框D到地面的距离是3.05米.考点:解直角三角形的应用.七、解答题:每小题10分,共20分.25.如图,已知抛物线的对称轴是y轴,且点(2,2),(1,54)在抛物线上,点P是抛物线上不与顶点N重合的一动点,过P作P A⊥x轴于A,PC⊥y轴于C,延长PC交抛物线于E,设M是O关于抛物线顶点N 的对称点,D是C点关于N的对称点.(1)求抛物线的解析式及顶点N的坐标;(2)求证:四边形PMDA是平行四边形;(3)求证:△DPE∽△P AM3P的坐标.【答案】(1)2114y x =+, N (0,1);(2)证明见解析;(3)证明见解析,P (23,4)或(﹣23,4). 试题解析:(1)解:∵抛物线的对称轴是y 轴,∴可设抛物线解析式为2y ax c =+ ,∵点(2,2),(1,54)在抛物线上,∴4254a c a c +=⎧⎪⎨+=⎪⎩,解得:141a c ⎧=⎪⎨⎪=⎩,∴抛物线解析式为2114y x =+,∴N 点坐标为(0,1); (2)证明:设P (t ,2114t +),则C (0,2114t +),P A =2114t +,∵M 是O 关于抛物线顶点N 的对称点,D 是C 点关于N 的对称点,且N (0,1),∴M (0,2),∵OC =2114t +,ON =1,∴DM =CN =2114t +﹣1=214t ,∴OD =2114t -,∴D (0,2114t -+),∴DM =2﹣(2114t -+)=2114t +=P A ,且PM ∥DM ,∴四边形PMDA 为平行四边形;(3)解:同(2)设P (t ,2114t +),则C (0,2114t +),P A =2114t +,PC =|t |,∵M (0,2),∴CM =2114t +﹣2=2114t -,在Rt △PMC 中,由勾股定理可得PM =22PC CM +2221(1)4t t +- =221(1)4t +=2114t +=P A ,且四边形PMDA 为平行四边形,∴四边形PMDA 为菱形,∴∠APM =∠ADM =2∠PDM ,∵PE ⊥y 轴,且抛物线对称轴为y 轴,∴DP =DE ,且∠PDE =2∠PDM ,∴∠PDE =∠APM ,且PD DE PA PM=,∴△DPE ∽△P AM ;∵OA =|t |,OM =2,∴AM =24t +,且PE =2PC =2|t |,当相似比为3时,则AM PE =3,即224tt + =3,解得t =23或t =﹣23,∴P 点坐标为(23,4)或(﹣23,4).考点:二次函数综合题;压轴题.26.如图,直角△ABC 中,∠BAC =90°,D 在BC 上,连接AD ,作BF ⊥AD 分别交AD 于E ,AC 于F .(1)如图1,若BD =BA ,求证:△ABE ≌△DBE ;(2)如图2,若BD =4DC ,取AB 的中点G ,连接CG 交AD 于M ,求证:①GM =2MC ;②AG 2=AF •AC .【答案】(1)证明见解析;(2)①证明见解析;②证明见解析.试题解析:(1)在Rt △ABE 和Rt △DBE 中,∵BA =BD ,BE =BE ,∴△ABE ≌△DBE ;(2)①过G 作GH ∥AD 交BC 于H ,∵AG =BG ,∴BH =DH ,∵BD =4DC ,设DC =1,BD =4,∴BH =DH =2,∵GH ∥AD ,∴21GM HD MC DC ==,∴GM =2MC ;考点:相似三角形的判定与性质;全等三角形的判定与性质;和差倍分.。
专题 压轴题--湖南省2014-2017年中考数学试题分项解析(解析版)
一、选择题1.(2014年,湖南省长沙市,3分)函数y=ax与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是()【考点】1.二次函数的图象;2.反比例函数的图象.2.(2014年湖南省株洲市,3分)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)3.(2016年湖南省娄底市,3分)如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小【答案】C.考点:锐角三角函数的增减性.4.(2016年湖南省永州市,4分)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:3根据上表规律,某同学写出了三个式子:①log 216=4,②log 525=5,③log 2=﹣1.其中正确的是( ) A .①② B .①③ C .②③ D .①②③ 【答案】B. 【解析】试题分析:根据表格中的规律可得:①因为24=16,此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=21,所以此选项正确;故答案选B . 考点:实数的运算.5. (2016年湖南省岳阳市,3分)对于实数a ,b ,我们定义符号max{a ,b}的意义为:当a ≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b]=b ;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y=max{x+3,﹣x+1},则该函数的最小值是( ) A .0B .2C .3D .4【答案】B 【解析】考点:分段函数6.(2016年湖南省长沙市,3分)已知抛物线y=ax 2+bx+c (b >a >0)与x 轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y 轴左侧; ②关于x 的方程ax 2+bx+c+2=0无实数根; ③a ﹣b+c ≥0; ④的最小值为3.其中,正确结论的个数为( ) A .1个 B .2个 C .3个 D .4个 【答案】D .考点:二次函数的图象与系数的关系.1.(2014年,湖南省衡阳市,3分)如图,在平面直角坐标系xOy中,已知点M0的坐标为(1,0),将线段OM0绕原点O逆时针方向旋转45°,再将其延长到M1,使得M1M0⊥OM0,得到线段OM1;又将线段OM1绕原点O逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2;如此下去,得到线段OM3,OM4,OM5,…根据以上规律,请直接写出OM2014的长度为▲ .2.(2015·湖南常德)取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1。
湖南省常德市中考数学试卷(word版,含答案解析)
湖南省常德市中考数学试卷一.选择题(本大题8个小题,每小题3分,满分24分)1.(3分)﹣2相反数是()A.2B.﹣2C.2﹣1D.﹣【分析】直接利用相反数定义分析得出答案.【解答】解:﹣2相反数是:2.故选:A.【点评】此题主要考查了相反数,正确把握相反数定义是解题关键.2.(3分)已知三角形两边长分别是3和7,则此三角形第三边长可能是()A.1B.2C.8D.11【分析】根据三角形三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.【点评】此题主要考查了三角形三边关系,关键是掌握三角形两边之和大于第三边.三角形两边差小于第三边.3.(3分)已知实数a,b在数轴上位置如图所示,下列结论中正确是()A.a>bB.|a|<|b|C.ab>0D.﹣a>b【分析】根据数轴可以判断a.b正负,从而可以判断各个选项中结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.【点评】本题考查实数与数轴.绝对值,解答本题关键是明确题意,利用数形结合思想解答.4.(3分)若一次函数y=(k﹣2)x+1函数值y随x增大而增大,则()A.k<2B.k>2C.k>0D.k<0【分析】根据一次函数性质,可得答案.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.【点评】本题考查了一次函数性质,y=kx+b,当k>0时,函数值y随x增大而增大.5.(3分)从甲.乙.丙.丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你平均成绩都是86.5分,方差分别是S甲认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【分析】根据方差是反映一组数据波动大小一个量.方差越大,则平均值离散程度越大,稳定性也越小;反之,则它与其平均值离散程度越小,稳定性越好可得答案.【解答】解:∵1.5<2.6<3.5<3.68,∴甲成绩最稳定,∴派甲去参赛更好,故选:A.【点评】此题主要考查了方差,关键是掌握方差越小,稳定性越大.6.(3分)如图,已知BD是△ABC角平分线,ED是BC垂直平分线,∠BAC=90°,AD=3,则CE长为()A.6B.5C.4D.3【分析】根据线段垂直平分线性质得到DB=DC,根据角平分线定义.三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形性质解答.【解答】解:∵ED是BC垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查是线段垂直平分线性质.直角三角形性质,掌握线段垂直平分线上点到线段两端点距离相等是解题关键.7.(3分)把图1中正方体一角切下后摆在图2所示位置,则图2中几何体主视图为()A. B. C. D.【分析】根据从正面看得到图形是主视图,可得答案.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.【点评】本题考查了简单组合体三视图,从正面看得到图形是主视图.8.(3分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面方法解二元一次方程组时,下面说法错误是()A.D==﹣7 B.D x=﹣14C.D y=27D.方程组解为【分析】分别根据行列式定义计算可得结论.【解答】解:A.D==﹣7,正确;B.D x==﹣2﹣1×12=﹣14,正确;C.D y==2×12﹣1×3=21,不正确;D.方程组解:x===2,y===﹣3,正确;故选:C.【点评】本题是阅读理解问题,考查了2×2阶行列式和方程组解关系,理解题意,直接运用公式计算是本题关键.二.填空题(本大题8个小题,每小题3分,满分24分)9.(3分)﹣8立方根是﹣2.【分析】利用立方根定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根概念.如果一个数x立方等于a,即x三次方等于a(x3=a),那么这个数x就叫做a立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.(3分)分式方程﹣=0解为x=﹣1.【分析】分式方程去分母转化为整式方程,求出整式方程解得到x值,经检验即可得到分式方程解.【解答】解:去分母得:x﹣2﹣3x=0,解得:x=﹣1,经检验x=1是分式方程解.故答案为:﹣1【点评】此题考查了解分式方程,利用了转化思想,解分式方程注意要检验. 11.(3分)已知太阳与地球之间平均距离约为150000000千米,用科学记数法表示为 1.5×108千米.【分析】科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数.确定n值时,要看把原数变成a时,小数点移动了多少位,n绝对值与小数点移动位数相同.当原数绝对值>10时,n是正数;当原数绝对值<1时,n是负数.【解答】解:1 5000 0000=1.5×108,故答案为:1.5×108.【点评】此题考查科学记数法表示方法.科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a值以及n值.12.(3分)一组数据3,﹣3,2,4,1,0,﹣1中位数是1.【分析】将数据按照从小到大重新排列,根据中位数定义即可得出答案.【解答】解:将数据重新排列为﹣3.﹣1.0.1.2.3.4,所以这组数据中位数为1,故答案为:1.【点评】本题考查了中位数概念:将一组数据按照从小到大(或从大到小)顺序排列,如果数据个数是奇数,则处于中间位置数就是这组数据中位数;如果这组数据个数是偶数,则中间两个数据平均数就是这组数据中位数.13.(3分)若关于x一元二次方程2x2+bx+3=0有两个不相等实数根,则b值可能是6(只写一个).【分析】根据方程系数结合根判别式△>0,即可得出关于b一元二次不等式,解之即可得出b取值范围,取其内任意一值即可得出结论.【解答】解:∵关于x一元二次方程2x2+bx+3=0有两个不相等实数根,∴△=b2﹣4×2×3>0,解得:b<﹣2或b>2.故答案可以为:6.【点评】本题考查了根判别式,牢记“当△>0时,方程有两个不相等实数根”是解题关键.14.(3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围频率为0.35.视力x频数4.0≤x<4.3204.3≤x<4.6404.6≤x<4.9704.9≤x≤5.2605.2≤x<5.510【分析】直接利用频数÷总数=频率进而得出答案.【解答】解:视力在4.9≤x<5.5这个范围频数为:60+10=70,则视力在4.9≤x<5.5这个范围频率为:=0.35.故答案为:0.35.【点评】此题主要考查了频率求法,正确把握频率定义是解题关键.15.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上点G处,点C 落在点H处,已知∠DGH=30°,连接BG,则∠AGB=75°.【分析】由折叠性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点评】本题主要考查翻折变换,解题关键是熟练掌握翻折变换性质:折叠前后图形形状和大小不变,位置变化,对应边和对应角相等.16.(3分)5个人围成一个圆圈做游戏,游戏规则是:每个人心里都想好一个实数,并把自己想好数如实地告诉他相邻两个人,然后每个人将他相邻两个人告诉他数平均数报出来,若报出来数如图所示,则报4人心里想数是9.【分析】设报4人心想数是x,则可以分别表示报1,3,5,2人心想数,最后通过平均数列出方程,解方程即可.【解答】解:设报4人心想数是x,报1人心想数是10﹣x,报3人心想数是x ﹣6,报5人心想数是14﹣x,报2人心想数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.【点评】本题属于阅读理解和探索规律题,考查知识点有平均数相关计算及方程思想运用.规律与趋势:这道题解决方法有点奥数题思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选方法,而且,多设几个未知数,把题中等量关系全部展示出来,再结合题意进行整合,问题即可解决.本题还可以根据报2人心想数可以是6﹣x,从而列出方程x﹣12=6﹣x求解.三.(本大题2个小题,每小题5分,满分10分)17.(5分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.【分析】本题涉及零指数幂.负指数幂.二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数运算法则求得计算结果.【解答】解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点评】本题主要考查了实数综合运算能力,是各地中考题中常见计算题型.解决此类题目关键是熟练掌握负整数指数幂.零指数幂.二次根式.绝对值等考点运算.18.(5分)求不等式组正整数解.【分析】根据不等式组解集表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组解集是﹣2<x≤,不等式组正整数解是1,2,3,4.【点评】本题考查了解一元一次不等式组,利用解一元一次不等式组解集表示方法是解题关键.四.(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再求值:(+)÷,其中x=.【分析】直接将括号里面通分运算,再利用分式混合运算法则计算得出答案.【解答】解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.【点评】此题主要考查了分式化简求值,正确掌握分式混合运算法则是解题关键.20.(6分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数解析式;(2)请根据图象直接写出y1<y2时x取值范围.【分析】(1)由点A坐标利用反比例函数图象上点坐标特征可求出k2值,进而可得出反比例函数解析式,由点B纵坐标结合反比例函数图象上点坐标特征可求出点B坐标,再由点A.B坐标利用待定系数法,即可求出一次函数解析式;(2)根据两函数图象上下位置关系,找出y1<y2时x取值范围.【解答】解:(1)∵反比例函数y2=(k2≠0)图象过点A(4,1),∴k2=4×1=4,∴反比例函数解析式为y2=.∵点B(n,﹣2)在反比例函数y2=图象上,∴n=4÷(﹣2)=﹣2,∴点B坐标为(﹣2,﹣2).将A(4,1).B(﹣2,﹣2)代入y1=k1x+b,,解得:,∴一次函数解析式为y=x﹣1.(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,∴y1<y2时x取值范围为x<﹣2或0<x<4.【点评】本题考查了待定系数法求一次函数解析式以及反比例函数图象上点坐标特征,解题关键是:(1)利用反比例函数图象上点坐标特征求出点B坐标;(2)根据两函数图象上下位置关系,找出不等式y1<y2解集.五.(本大题2个小题,每小题7分,满分14分)21.(7分)某水果店5月份购进甲.乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果数量与5月份都相同,将多支付货款300元,求该店5月份购进甲.乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果3倍,则6月份该店需要支付这两种水果货款最少应是多少元?【分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x.y二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付货款为w元,则购进乙种水果(120﹣a)千克,根据总价=单价×购进数量,即可得出w关于a函数关系式,由甲种水果不超过乙种水果3倍,即可得出关于a一元一次不等式,解之即可得出a取值范围,再利用一次函数性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果货款最少应是1500元.【点评】本题考查了二元一次方程组应用.一元一次不等式应用以及一次函数应用,解题关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间关系,找出w关于a函数关系式.22.(7分)图1是一商场推拉门,已知门宽度AD=2米,且两扇门大小相同(即AB=CD),将左边门ABB1A1绕门轴AA1向里面旋转37°,将右边门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)【分析】作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE.Rt△CDF中可求出AE.BE.DF.FC长度,进而可得出EF长度,再在Rt△MEF中利用勾股定理即可求出EM长,此题得解.【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.∵AB=CD,AB+CD=AD=2,∴AB=CD=1.在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B与C之间距离约为1.4米.【点评】本题考查了解直角三角形应用.勾股定理以及平行四边形判定与性质,构造直角三角形,利用勾股定理求出BC长度是解题关键.六.(本大题2个小题,每小题8分,满分16分)23.(8分)某校体育组为了解全校学生“最喜欢一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制不完整统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球学生所占百分比是多少?并请补全条形统计图(图2);(2)请你估计全校500名学生中最喜欢“排球”项目有多少名?(3)在扇形统计图中,“篮球”部分所对应圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目甲.乙.丙.丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取两人恰好是甲和乙概率.【分析】(1)先利用喜欢足球人数和它所占百分比计算出调查总人数,再计算出喜欢乒乓球人数,然后补全条形统计图;(2)用500乘以样本中喜欢排球百分比可根据估计全校500名学生中最喜欢“排球”项目写生数;(3)用360°乘以喜欢篮球人数所占百分比即可;(4)画树状图展示所有12种等可能结果数,再找出抽取两人恰好是甲和乙结果数,然后根据概率公式求解.【解答】解:(1)调查总人数为8÷16%=50(人),喜欢乒乓球人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球学生所占百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目有60名;(3),篮球”部分所对应圆心角=360×40%=144°;(4)画树状图为:共有12种等可能结果数,其中抽取两人恰好是甲和乙结果数为2,所以抽取两人恰好是甲和乙概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能结果n,再从中选出符合事件A或B结果数目m,然后利用概率公式计算事件A 或事件B概率.也考查了统计图.24.(8分)如图,已知⊙O是等边三角形ABC外接圆,点D在圆上,在CD延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O切线;(2)求证:BD=CF.【分析】(1)根据等边三角形性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE是⊙O切线;(2)先根据等边三角形性质得:AB=AC,∠BAC=∠ABC=60°,由四点共圆性质得:∠ADF=∠ABC=60°,得△ADF是等边三角形,证明△BAD≌△CAF,可得结论.【解答】证明:(1)连接OD,∵⊙O是等边三角形ABC外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A.B.C.D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAF=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.【点评】本题考查了全等三角形性质和判定,等边三角形及外接圆,四点共圆等知识点综合运用,属于基础题,熟练掌握等边三角形性质是关键.七.(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知二次函数图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数解析式;(2)若M是OB上一点,作MN∥AB交OA于N,当△ANM面积最大时,求M 坐标;(3)P是x轴上点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点三角形与以O,A,C为顶点三角形相似时,求P点坐标.【分析】(1)先利用抛物线对称性确定B (6,0),然后设交点式求抛物线解析式;(2)设M (t ,0),先其求出直线OA 解析式为y=x ,直线AB 解析式为y=2x ﹣12,直线MN 解析式为y=2x ﹣2t ,再通过解方程组得N (t ,t ),接着利用三角形面积公式,利用S △AMN =S △AOM ﹣S △NOM 得到S △AMN =•4•t ﹣•t•t ,然后根据二次函数性质解决问题;(3)设Q (m ,m 2﹣m ),根据相似三角形判定方法,当=时,△PQO ∽△COA ,则|m 2﹣m |=2|m |;当=时,△PQO ∽△CAO ,则|m 2﹣m |=|m |,然后分别解关于m 绝对值方程可得到对应P 点坐标.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B 点坐标为(6,0),设抛物线解析式为y=ax (x ﹣6),把A (8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x (x ﹣6),即y=x 2﹣x ;(2)设M (t ,0),易得直线OA 解析式为y=x ,设直线AB 解析式为y=kx +b ,把B (6,0),A (8,4)代入得,解得,∴直线AB 解析式为y=2x ﹣12,∵MN ∥AB ,∴设直线MN 解析式为y=2x +n ,把M (t ,0)代入得2t +n=0,解得n=﹣2t ,∴直线MN 解析式为y=2x ﹣2t , 解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM =•4•t ﹣•t•t=﹣t 2+2t=﹣(t ﹣3)2+3,当t=3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)设Q (m ,m 2﹣m ),∵∠OPQ=∠ACO , ∴当=时,△PQO ∽△COA ,即=,∴PQ=2PO ,即|m 2﹣m |=2|m |, 解方程m 2﹣m=2m 得m 1=0(舍去),m 2=14,此时P 点坐标为(14,28); 解方程m 2﹣m=﹣2m 得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,4); ∴当=时,△PQO ∽△CAO ,即=,∴PQ=PO ,即|m 2﹣m |=|m |, 解方程m 2﹣m=m 得m 1=0(舍去),m 2=8(舍去), 解方程m 2﹣m=﹣m 得m 1=0(舍去),m 2=2,此时P 点坐标为(2,﹣1); 综上所述,P 点坐标为(14,28)或(﹣2,4)或(2,﹣1).【点评】本题考查了二次函数综合题:熟练掌握二次函数图象上点坐标特征和二次函数性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间关系;会运用分类讨论思想解决数学问题.26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.【分析】(1)先判断出OD=OA,∠AOM=∠DON,再利用同角余角相等判断出∠ODN=∠OAM,判断出△DON≌△AOM即可得出结论;(2)先判断出四边形DENM是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;(3)设CE=a,进而表示出EN=CE=a,CN=a,设DE=b,进而表示AD=a+b,根据勾股定理得,AC=(a+b),同(1)方法得,∠OAM=∠ODN,得出∠EDN=∠DAE,进而判断出△DEN∽△ADE,得出,进而得出a=b,即可表示出CN=b,AC=b,AN=AC﹣CN=b,即可得出结论.【解答】解:(1)∵正方形ABCD对角线AC,BD相交于O,∴OD=OA,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND,∴∠ANH+∠ODN=90°,∵DH⊥AE,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM,∴△DON≌△AOM,∴OM=ON;(2)连接MN,∵EN∥BD,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,∴EN=CN,同(1)方法得,OM=ON,∵OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形DENM是平行四边形,∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,设DE=b(b>0),∴AD=CD=DE+CE=a+b,根据勾股定理得,AC=AD=(a+b),同(1)方法得,∠OAM=∠ODN,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,∴△DEN∽△ADE,∴,∴,∴a=b(已舍去不符合题意)∴CN=a=b,AC=(a+b)=b,∴AN=AC﹣CN=b,∴AN2=2b2,AC•CN=b•b=2b2∴AN2=AC•CN.【点评】此题是相似形综合题,主要考查了正方形性质,平行四边形,菱形判定,全等三角形判定和性质,相似三角形判定和性质,勾股定理,判断出四边形DENM 是菱形是解(2)关键,判断出△DEN∽△ADE是解(3)关键.。
常德中考数学试卷真题
常德中考数学试卷真题六年的初中学习生活即将结束,中考是每个初中学生的重要节点。
为了帮助同学们熟悉中考数学试题,以下是常德中考数学试卷的真题,希望能对各位同学的备考有所帮助。
第一部分:选择题(共30小题,每小题1.5分,共45分)在每小题给出的四个选项中,只有一项是符合题目要求的。
请将正确答案填写在答题纸上。
1. 若a:b = 2:3,b:c = 4:5,则a:c = ?2. 已知等差数列{an}的通项公式为an = 3n - 4,其中n为正整数,那么a1 + a2 + a3 + ... + a100 = ?3. 已知直角三角形ABC中,∠C = 90°,AC = 16 cm,BC = 12 cm,那么AB = ?4. 经过点A(3, 4)和点B(-1, -2)的直线的斜率为?5. 若2x + 5y = 10,3x - y = 7,则x + y = ?6. 下面哪个数是3/4的整数倍?A) 8 B) 12 C) 16 D) 217. 小明将圆形蛋糕均匀分成16片,他吃了5片后,小红吃了剩下的蛋糕的1/4,小明最后吃的蛋糕占原来的几分之几?8. 若已知平行四边形的一条对角线的长为8 cm,且比另一条对角线长12 cm,那么平行四边形的周长为?9. 在等腰梯形ABCD中,AB // CD,AB = 6 cm,CD = 12 cm,AD= BC = 10 cm,那么这个等腰梯形的面积为?10. 若tanA = 1/√3,那么sinA的值为?11. 若(x - 1)(x + 3) = 0,则x的值为?12. 已知直角三角形ABC的斜边为10 cm,AC = 6 cm,那么BC的值为多少?13. 设集合A = {1, 2, 3, 4, 5},集合B = {3, 4, 5, 6},那么A ∩ B = ?14. 若a:b:c = 2:3:4,且b = 9,那么a + c = ?15. 若x = -1/2,那么x² - 2x的值为多少?16. 下列运算中,哪个结果是负数?A) 17 + 8 B) 21 - 10 C) 8 × (-5) D) (-9) × (-4)17. 设x为实数,若2(x - 3) > -5,那么x的取值范围为?18. 方程2x + 3 = 4x - 5的解为?19. 若a^2 + b^2 = 10,且a - b = 2,那么a的值为多少?20. 已知直角三角形ABC中,∠A = 90°,AB = 12 cm,AC = 5 cm,那么BC的值为?21. 某数按照1:2:3的比例分成三份,第一份是1/8,那么这个数是多少?22. 甲、乙两车同时从A点出发,甲车的速度为40 km/h,乙车的速度为50 km/h,经过2小时后,乙车离A点80 km,在这段时间内,甲车离A点多少公里?23. 若x + 5 > 0,那么x的取值范围是?24. 若2x + 5 = 3x - 1,那么x的值为?25. 用24个火柴棍排列成一个等边三角形,若火柴棍长度相等,则总共需要的火柴棍数量为?26. 一个数的百分之一是10,那么这个数是?27. 等差数列{an}的首项是1,公差是3,若a8 = 22,那么a1 = ?28. 已知集合A = {1, 2, 3, 4, 5},集合B = {3, 4, 5, 6},那么A ∪ B = ?29. 若36 ÷ (√4 + √16 - √9) = ?30. 若m:n = 3:4,n:p = 2:5,那么m:p = ?第二部分:解答题(共6小题,每小题10分,共60分)请在答题纸上写出解题过程和最终结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省常德市2014年中考数学试卷参考答案与试题解析一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)(2014•佛山)|﹣2|等于()A.2B.﹣2 C.D.分析:根据绝对值的性质可直接求出答案.解答:解:根据绝对值的性质可知:|﹣2|=2.故选:A.点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2014•常德)如图的几何体的主视图是()A.B.C.D.考点:简单几何体的三视图.分析:主视图是分别从物体正面看,所得到的图形.解答:解:从几何体的正面看可得,故选:B.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3分)(2014•常德)下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:据无理数定义得有,π和是无理数.故选:B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.(3分)(2014•常德)下列各式与是同类二次根式的是()A.B.C.D.考点:同类二次根式.分析:利用同类二次根式的性质与定义分别化简二次根式进而判断得出即可.解答:解:A、=2,故不与是同类二次根式,故此选项错误;B、=2,故不与是同类二次根式,故此选项错误;C、=5,故不与是同类二次根式,故此选项错误;D、=2,故,与是同类二次根式,故此选项正确;故选:D.点评:此题主要考查了同类二次根式的定义,正确化简二次根式是解题关键.5.(3分)(2014•常德)如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A.30°B.45°C.60°D.75°考点:平行线的性质.分析:过E作EF∥AC,然后根据平行线的传递性可得EF∥BD,再根据平行线的性质可得∠B=∠2=45°,∠1=∠A=30°,进而可得∠AEB的度数.解答:解:过E作EF∥AC,∵AC∥BD,∴EF∥BD,∴∠B=∠2=45°,∵AC∥EF,∴∠1=∠A=30°,∴∠AEB=30°+45°=75°,故选:D.点评:此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.6.(3分)(2014•常德)某班体育委员记录了7位女生1分钟仰卧起坐的个数分别为28,38,38,35,35,38,48,这组数据的中位数和众数分别是()A.35,38 B.38,35 C.38,38 D.35,35考点:众数;中位数.分析:出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.解答:解:38出现的次数最多,38是众数.排序后位于中间位置的数是38,所以中位数为38.故选C.点评:本题考查了众数及中位数的知识,掌握各部分的概念是解题关键.7.(3分)(2014•常德)下面分解因式正确的是()A.x2+2x+1=x(x+2)+1 B.(x2﹣4)x=x3﹣4x C.a x+bx=(a+b)x D.m2﹣2mn+n2=(m+n)2考点:因式分解-运用公式法;因式分解-提公因式法.分析:直接利用因式分解法的定义以及提取公因式法和公式法分解因式得出即可.解答:解:A、x2+2x+1=x(x+2)+1,不是因式分解,故此选项错误;B、(x2﹣4)x=x3﹣4x,不是因式分解,故此选项错误;C、ax+bx=(a+b)x,是因式分解,故此选项正确;D、m2﹣2mn+n2=(m﹣n)2,故此选项错误.故选:C.点评:此题主要考查了提取公因式法和公式法分解因式等知识,正确把握因式分解的方法是解题关键.8.(3分)(2014•常德)阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m 确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2)D.(50°,2)考点:正多边形和圆;坐标确定位置.专题:新定义.分析:设正六边形的中心为D,连接AD,判断出△AOD是等边三角形,根据等边三角形的性质可得OD=OA,∠AOD=60°,再求出OC,然后根据“极坐标”的定义写出即可.解答:解:如图,设正六边形的中心为D,连接AD,∵∠ADO=360°÷6=60°,OD=AD,∴△AOD是等边三角形,∴OD=OA=2,∠AOD=60°,∴OC=2OD=2×2=4,∴正六边形的顶点C的极坐标应记为(60°,4).故选A.点评:本题考查了正多边形和圆,坐标确定位置,主要利用了正六边形的性质,读懂题目信息,理解“极坐标”的定义是解题的关键.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)(2014•常德)要使式子在实数范围内有意义,则x的取值范围是x≥.考点:二次根式有意义的条件.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,2x﹣1≥0,解得x≥.故答案为:x≥.点评:本题考查的知识点为:二次根式的被开方数是非负数.10.(3分)(2014•常德)古生物学家发现350 000 000年前,地球上每年大约是400天,用科学记数法表示350 000 000= 3.5×108.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将350 000 000用科学记数法表示为:3.5×108.故答案为:3.5×108.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(3分)(2014•常德)下列关于反比例函数y=的三个结论:①它的图象经过点(7,3);②它的图象在每一个象限内,y随x的增大而减小;③它的图象在二、四象限内.其中正确的是①②.考点:反比例函数的性质.分析:根据反比例函数图象上点的坐标特点可得①正确;根据反比例函数的性质:当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小可得②正确,③错误.解答:解:①∵7×3=21,∴它的图象经过点(7,3),故①正确;②∵k=21>0,∴它的图象在每一个象限内,y随x的增大而减小,故②正确;③它的图象应在第一三象限,故③错误;故答案为:①②.点评:此题主要考查了反比例函数的性质,关键是掌握反比例函数图象上的点的坐标特征:横纵坐标之积=k.12.(3分)(2014•常德)计算:﹣=.考点:分式的加减法.专题:计算题.分析:原式通分并利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣==.故答案为:.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.13.(3分)(2014•常德)一元二次方程2x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是k<.考点:根的判别式.专题:计算题.分析:根据判别式的意义得到△=(﹣3)2﹣4×2×k>0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4×2×k>0,解得k<.故答案为k<.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.14.(3分)(2014•常德)如图,AB为⊙O的直径,CD⊥AB,若AB=10,CD=8,则圆心O到弦CD的距离为3.考点:垂径定理;勾股定理.分析:连接OC,由AB=10得出OC的长,再根据垂径定理求出CE的长,根据勾股定理求出OE即可.解答:解:连接OC,∵AB为⊙O的直径,AB=10,∴OC=5,∵CD⊥AB,CD=8,∴CE=4,∴OE===3.故答案为:3.点评:本题考查了勾股定理和垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.(3分)(2014•常德)如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为60°.考点:全等三角形的判定与性质;等腰三角形的性质.分析:可证明△COD≌△COB,得出∠D=∠CBO,再根据∠BAC=80°,得∠BAD=100°,由角平分线可得∠BAO=40°,从而得出∠DAO=140°,根据AD=AO,可得出∠D=20°,即可得出∠CBO=20°,则∠ABC=40°,最后算出∠BCA=60°解答:解:∵△ABC三个内角的平分线交于点O,∴∠ACO=∠BCO,在△COD和△COB中,,∴△COD≌△COB,∴∠D=∠CBO,∵∠BAC=80°,∴∠BAD=100°,∴∠BAO=40°,∴∠DAO=140°,∵AD=AO,∴∠D=20°,∴∠CBO=20°,∴∠ABC=40°,∴∠BCA=60°,故答案为60°.点评:本题考查了全等三角形的判定和性质以及等腰三角形的性质,证明三角形全等是解决此题的关键.16.(3分)(2014•常德)已知:=;=;计算:=;猜想:=.规律型:数字的变化类.考点:分析:由=;=;=;…由此看出分子是从n个1相加,结果等于n;分母是(4n+3)+(4n﹣1)+…+11+7+3==n(2n+3),故猜想=.解答:解:已=;=;=;…分子为n个1相加,结果等于n;分母为n项相加:(4n+3)+(4n﹣1)+…+11+7+3==n(2n+3)∴猜想= =.故答案为:;.点此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.评:三、(本大题2个小题,每小题5分,满分10分)17.(5分)(2014•常德)计算:(﹣2)2﹣2﹣1+(sin30°﹣1)0﹣.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:本题涉及乘方、特殊角的三角函数值、二次根式化简、负指数幂等四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=4﹣+1﹣4=.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟悉乘方、特殊角的三角函数值、二次根式化简、负指数幂等考点的运算.18.(5分)(2014•常德)解方程:=.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x+2=2,解得:x=0,经检验x=0是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.四、(本大题2个小题,每小题6分,满分12分)19.(6分)(2014•常德)求不等式组的解集.考点:解一元一次不等式组.分析:要求不等式组的解,只需要求出这两个不等式得解,然后根据不等式的解的公共部分确定不等式组的解.解答:解:由(1)得:,(3分)由(2)得:x≤1,(3分)所以原不等式组的解集为﹣<x≤1.(4分)点评:本题考查了解一元一次不等式组,要求学生熟练一元一次不等式组的解集确定的方法.同大取大,同小取小,大小小大中间找,大大小小无处找.20.(6分)(2014•常德)小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A、B两个出入口放入;②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值5元小兔玩具,否则应付费3元.(1)问小美得到小兔玩具的机会有多大?(2)假设有100人次玩此游戏,估计游戏设计者可赚多少元?考点:列表法与树状图法.专题:计算题.分析:(1)根据五个出入口的兔笼中一个出口得奖,确定出所求概率即可;(2)求出获奖概率与没有获奖概率,确定出100人次玩此游戏,游戏设计者可赚的钱即可.解答:解:(1)根据题意得:小美得到小兔玩具的机会是;(2)根据题意得:一个人玩此游戏,游戏设计者可赚的钱为﹣×5+×3=(元),则有100人次玩此游戏,估计游戏设计者可赚100×=140(元).点评:此题考查了列表法与树状图法,弄清题意是解本题的关键.五、(本大题2个小题,每小题7分,满分14分)21.(7分)(2014•常德)2014年5月12日,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如图2的不完整的条形统计图.根据以上统计图解答下列问题:(1)2013年农民工人均月收入的增长率是多少?(2)2011年农民工人均月收入是多少?(3)小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了.”你认为小明的说法正确吗?请说明理由.考点:折线统计图;条形统计图.分析:(1)直接利用折线统计图得出答案即可;(2)直接利用条形统计图得出答案即可;(3)利用2012年农民工人均月收入增长率进而求出2012年的月平均收入,进而得出答案.解答:解:(1)由折线统计图可得出:2013年农民工人均月收入的增长率是:10%;(2)由条形统计图可得出:2011年农民工人均月收入是:2205元;(3)不正确,理由:∵2012年农民工人均月收入是:2205×(1+20%)=2646(元)>2205元,∴农民工2012年的人均月收入比2011年的少了,是错误的.点评:此题主要考查了条形统计图以及折线统计图的应用,利用图形获取正确信息是解题关键.22.(7分)(2014•常德)如图,A,B,C表示修建在一座山上的三个缆车站的位置,AB,BC表示连接缆车站的钢缆.已知A,B,C所处位置的海拔AA1,BB1,CC1分别为160米,400米,1000米,钢缆AB,BC分别与水平线AA2,BB2所成的夹角为30°,45°,求钢缆AB和BC的总长度.(结果精确到1米)考点:解直角三角形的应用-坡度坡角问题.分析:先根据题意得到BD,CB2的长,在Rt△ABD中,由三角函数可得AB的长度,在Rt△BCB2中,由三角函数可得BC的长度,再相加即可得到答案.解答:解:BD=400﹣160=240米,CB2=1000﹣400=600米,在Rt△ABD中,AB==480米,在Rt△BCB2中,BC==600米,AB+BC=480+600≈1328米.答:钢缆AB和BC的总长度大约是1328米.点评:考查了解直角三角形的应用,关键是根据三角函数得到AB和BC的长度.六、(本大题2个小题,每小题8分,满分16分)23.(8分)(2014•常德)如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线.(2)当OA=3,AE=4时,求BC的长度.考点:切线的判定.分析:(1)如图,连接OD.通过证明△AOE≌△DOE得到∠OAE=∠ODE=90°,易证得结论;(2)利用圆周角定理和垂径定理推知OE∥BC,所以根据平行线分线段成比例求得BC的长度即可.解答:(1)证明:如图,连接OD.∵AC⊥AB,∴∠BAC=90°,即∠OAE=90°.在△AOE与△DOE中,,∴△AOE≌△DOE(SSS),∴∠OAE=∠ODE=90°,即OD⊥ED.又∵OD是⊙O的半径,∴ED是⊙O的切线;(2)解:如图,在△OAE中,∠OAE=90°,OA=3,AE=4,∴由勾股定理易求OE=5.∵AB是直径,∴∠ADB=90°,即AD⊥BC.又∵由(1)知,△AOE≌△DOE,∴∠AEO=∠DEO,又∵AE=DE,∴OE⊥AD,∴OE∥BC,∴==.BC=2OE=10,即BC的长度是10.点评:本题考查了切线的判定与性质.解答(2)题时,也可以根据三角形中位线定理来求线段BC的长度.24.(8分)(2014•常德)在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):方案一:提供8000元赞助后,每张票的票价为50元;方案二:票价按图中的折线OAB所表示的函数关系确定.(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?(2)求方案二中y与x的函数关系式;(3)至少买多少张票时选择方案一比较合算?考点:一次函数的应用.分析:(1)方案一中,总费用y=8000+50x,代入x=120求得答案;由图可知方案二中,当x=120时,对应的购票总价为13200元;(2)分段考虑当x≤100时,当x≥100时,设出一次函数解析式,把其中两点的坐标代入即可求得相应的函数解析式;(3)由(1)(2)的解析式建立不等式,求得答案即可.解答:解:(1)若购买120张票时,方案一购票总价:y=8000+50x=14000元,方案二购票总价:y=13200元.(2)当0<x≤100时,设y=kx,代入(100,12000)得12000=100k,解得k=120,∴y=120x;当x>100时,设y=kx+b,代入(100,12000)、(120,13200)得,解得,∴y=60x+6000.(3)由(1)可知,要选择方案一比较合算,必须超过120张,由此得8000+50x≤60x+6000,解得x≥200,所以至少买200张票时选择方案一比较合算.点评:此题考查了一次函数的应用,一元一次不等式的运用;根据自变量不同的取值分情况进行探讨是解决本题的关键.七、(本大题2个小题,每小题10分,满分20分)25.(10分)(2014•常德)如图,已知二次函数的图象过点O(0,0),A(4,0),B(2,﹣),M是OA的中点.(1)求此二次函数的解析式;(2)设P是抛物线上的一点,过P作x轴的平行线与抛物线交于另一点Q,要使四边形PQAM 是菱形,求P点的坐标;(3)将抛物线在x轴下方的部分沿x轴向上翻折,得曲线OB′A(B′为B关于x轴的对称点),在原抛物线x轴的上方部分取一点C,连接CM,CM与翻折后的曲线OB′A交于点D.若△CDA的面积是△MDA面积的2倍,这样的点C是否存在?若存在求出C点的坐标,若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出二次函数的解析式;(2)由四边形PQAM是菱形,可知PQ=2且PQ∥x轴,因此点P、Q关于对称轴x=2对称,可得点P横坐标为1,从而求出点P的坐标;(3)假设存在满足条件的点C.由△CDA的面积是△MDA面积的2倍,可得点C 纵坐标是点D纵坐标的3倍,由此列方程求出点C的坐标.解答:解:(1)∵抛物线过原点,∴设其解析式为:y=ax2+bx.∵抛物线经过点A(4,0),B(2,﹣),∴,解得,∴二次函数解析式为:y=x2﹣x.(2)∵y=x2﹣x=(x﹣2)2﹣,∴抛物线对称轴为直线:x=2.∵四边形PQAM是菱形,∴PQ=MA=2,PQ∥x轴.∴点P、Q关于对称轴x=2对称,∴点P横坐标为1.当x=1时,y=﹣=﹣.∴P(1,﹣).(3)依题意,翻折之后的抛物线解析式为:y=﹣x2+x.假设存在这样的点C,∵△CDA的面积是△MDA面积的2倍,∴CD=2MD,∴CM=3MD.如答图所示,分别过点D、C作x轴的垂线,垂足分别为点E、点F,则有DE∥CF.∴,∴CF=3DE,MF=3ME.设C(x,x2﹣x),则MF=x﹣2,ME=MF=(x﹣2),OE=ME+OM=x+∴D(x+,﹣(x+)2+(x+)).∵CF=3DE,∴x2﹣x=3[﹣(x+)2+(x+)],整理得:x2﹣4x﹣8=0,解得:x1=2+2,x2=2﹣2.∴y1=,y2=,∴存在满足条件的点C,点C的坐标为(2+2,)或(2﹣2,).点评:本题为二次函数综合题型,考查了二次函数的图象与性质、解方程、相似三角形、菱形、翻折变换等知识点.第(2)问中,解题关键是紧扣菱形的定义及二次函数的对称性;第(3)问是存在型问题,解题关键得到点C纵坐标是点D的3倍.26.(10分)(2014•常德)如图1、2,已知四边形ABCD为正方形,在射线AC上有一动点P,作PE⊥AD(或延长线)于E,作PF⊥DC(或延长线)于F,作射线BP交EF于G.(1)在图1中,设正方形ABCD的边长为2,四边形ABFE的面积为y,AP=x,求y关于x的函数表达式;(2)结论:GB⊥EF对图1,图2都是成立的,请任选一图形给出证明;(3)请根据图2证明:△FGC∽△PFB.考点:四边形综合题.分析:(1)根据题意得出S=4﹣ED×DF﹣BC×FC进而得出答案;四边形ABFE(2)首先利用正方形的性质进而证明△FPE≌△BHP(SAS),即可得出△FPG∽△BPH,求出即可;(3)首先得出△DPC≌△BPC(SAS),进而利用相似三角形的判定得出△FGC∽△PFB.解答:(1)解:∵PE⊥AD,PF⊥DC,∴四边形EPFD是矩形,∵AP=x,∴AE=EP=DF=x,DE=PF=FC=2﹣,∴S四边形ABFE=4﹣ED•DF﹣BC•FC=4﹣×x(2﹣x)﹣×2×(2﹣x)=x2+2;(2)证明:如图1,延长FP交AB于H,∵PF⊥DC,PE⊥AD,∴PF⊥PE,PH⊥HB,即∠BHP=90°,∵四边形ABCD是正方形,∴AC平分∠DAB,∴可得PF=FC=HB,EP=PH,在△FPE与△BHP中,∴△FPE≌△BHP(SAS),∴∠PFE=∠PBH,又∵∠FPG=∠BPH,∴△FPG∽△BPH,∴∠FGP=∠BHP=90°,即GB⊥EF;(3)证明:如图2,连接PD,∵GB⊥EF,∴∠BPF=∠CFG①,在△DPC和△BPC中,∴△DPC≌△BPC(SAS),∴PD=PB,而PD=EF,∴EF=PB,又∵GB⊥EF,∴PF2=FG•EF,∴PF2=FG•PB,而PF=FC,∴PF•FC=FG•PB,∴=②,∴由①②得△FGC∽△PFB.点评:此题主要考查了正方形的性质以及全等三角形的判定和相似三角形的判定与性质等知识,熟练应用正方形的性质得出对应角以及对应边的关系是解题关键.。