模式匹配的KMP算法详解
KMP讲解
有了覆盖函数,那么实现kmp算法就是很简单的了,我们的原则还是从左向右匹配,但是当失配发生时,我们不用把target_index向回移动,target_index前面已经匹配过的部分在pattern自身就能体现出来,只要动pattern_index就可以了。
当发生在j长度失配时,只要把pattern向右移动j-overlay(j)长度就可以了。
说了这么半天那么这种方法是什么呢,这种方法是就大名鼎鼎的确定的有限自动机(Deterministic finite state automaton DFA),DFA可识别的文法是3型文法,又叫正规文法或是正则文法,既然可以识别正则文法,那么识别确定的字串肯定不是问题(确定字串是正则式的一个子集)。对于如何构造DFA,是有一个完整的算法,这里不做介绍了。在识别确定的字串时使用DFA实在是大材小用,DFA可以识别更加通用的正则表达式,而用通用的构建DFA的方法来识别确定的字串,那这个overhead就显得太大了。
{
index = overlay_value[index];
}
if(pattern[index+1]==pattern[i])
{
overlay_value[i] = index +1;
KMP 算法可在O(n+m)时间内完成全部的串的模式匹配工作。
ok,最后给出KMP算法实现的c++代码:
#include<iostream>
#include<string>
#include<vector>
using namespace std;
int kmp_find(const string& target,const string& pattern)
kmp的nextval数组
kmp的nextval数组【KMP算法之NextVal数组】KMP算法是一种高效的字符串匹配算法,其核心思想是利用已经匹配的部分字符来跳过不必要的比较,以达到快速匹配的目的。
其中一个重要的优化是使用nextval数组,用于在失配时找到下一次需要比较的位置。
1. KMP算法简介:KMP算法由Knuth、Morris和Pratt三人提出,其核心思想是根据模式串(pattern)自身的特点,预先计算出一个nextval 数组,用于在匹配过程中跳过不必要的比较。
KMP算法的时间复杂度为O(m+n),其中m和n分别为主串(target)和模式串(pattern)的长度。
2. NextVal数组的定义:NextVal数组是在求解next数组时的一种优化,其定义与next 数组略有不同。
NextVal数组的值nextval[i]表示,当模式串的第i个字符与主串的第i个字符失配时,下一个需要比较的位置在哪里。
3. NextVal数组的求解:(1)定义一个辅助数组next[],用于存储当前位置之前的最大相同前后缀长度。
(2)对模式串进行遍历,计算next数组的值:a. 初始化next[0] = -1,next[1] = 0;b. 使用两个指针i和j,分别指向模式串的第i个字符和第j个字符,初始值为i=2,j=0;c. 若p[i-1] == p[j],则next[i] = j + 1,同时i++,j++;d. 若p[i-1] != p[j],则在j = next[j]的基础上,继续比较,直到p[i-1] == p[j]或者j = 0;e. 若j = 0,则next[i] = 0,同时i++;f. 重复步骤c~e,直到遍历完整个模式串。
(3)通过next数组求解nextval数组:a. 初始化nextval[1] = 0;b. 遍历next数组,对于next[i] >= 0的位置,若p[i] ==p[next[i]],则nextval[i+1] = next[i] + 1;c. 若p[i] != p[next[i]],则继续在next数组中找到next[next[i]],直到找到p[i] == p[next[next[i]]]或者next[i] = -1;d. 若找到p[i] == p[next[next[i]]],则nextval[i+1] =next[next[i]] + 1;e. 若next[i] = -1,则nextval[i+1] = 0。
严蔚敏 数据结构 kmp算法详解
当此集合非空时
next[j]= -1 0 当j=0时 其他情况
t=“abab”对应的next数组如下:
j t[j] next[j] 0 a -1 1 b 0 2 a 0 3 b 1
void GetNext(SqString t,int next[]) { int j,k; j=0;k=-1;next[0]=-1; while (j<t.len-1)
既然如此,回溯到si-j+1开始与t匹配可以不做。那 么,回溯到si-j+2 开始与t匹配又怎么样?从上面推理 可知,如果 "t0t1…tj-2"≠"t2t3…tj"
仍然有
"t0t1…tj-2"≠"si-j+2si-j+3…si"
这样的比较仍然“失配”。依此类推,直到对于 某一个值k,使得: "t0t1…tk-2"≠" tj-k+1tj-k+2…tj-1"
b 3
第 1 次匹配
第 2 次匹配
s=aaabaaaa b t=aaaab
第 3 次匹配
s=aaabaaaa b t=aaaab
第 4 次匹配
s=aaabaaaa b t=aaaab
第 5 次匹配
s=aaabaaaa b t=aaaab
上述定义的next[]在某些情况下尚有缺陷。 例如,模式“aaaab”在和主串“aaabaaaab”匹配时, 当i=3,j=3时,s.data[3]≠t.data[3],由next[j]的指示还需 进行i=3、j=2,i=3、j=1,i=3、j=0等三次比较。实际上, 因为模式中的第1、2、3个字符和第4个字符都相等, 因此,不需要再和主串中第4个字符相比较,而可以将模 式一次向右滑动4个字符的位置直接进行i=4,j=0时的 字符比较。
kmp算法python代码
kmp算法python代码摘要:1.KMP 算法简介2.KMP 算法的Python 实现3.KMP 算法的应用示例正文:1.KMP 算法简介KMP(Knuth-Morris-Pratt)算法是一种高效的字符串匹配算法,用于在一个主字符串中查找一个子字符串出现的位置。
该算法的关键在于通过预处理子字符串,减少不必要的字符比较,从而提高匹配速度。
2.KMP 算法的Python 实现以下是KMP 算法的Python 实现:```pythondef compute_prefix_function(pattern):m = len(pattern)prefix_function = [0] * (m + 1)prefix_function[0] = 0i, j = 1, 0while i < m:if pattern[i] == pattern[j]:j += 1prefix_function[i] = ji += 1else:if j!= 0:j = prefix_function[j - 1]else:prefix_function[i] = 0i += 1return prefix_functiondef kmp_search(text, pattern):m, n = len(text), len(pattern)prefix_function = compute_prefix_function(pattern) i, j = 0, 0while i < m:if pattern[j] == text[i]:i += 1j += 1if j == n:return i - jelif i < m and pattern[j]!= text[i]:if j!= 0:j = prefix_function[j - 1]else:i += 1return -1if __name__ == "__main__":text = "我国是一个伟大的国家"pattern = "伟大的"result = kmp_search(text, pattern)if result!= -1:print("子字符串"{}" 在主字符串中第{} 位置出现。
KMP算法(改进的模式匹配算法)——next函数
KMP算法(改进的模式匹配算法)——next函数KMP算法简介KMP算法是在基础的模式匹配算法的基础上进⾏改进得到的算法,改进之处在于:每当匹配过程中出现相⽐较的字符不相等时,不需要回退主串的字符位置指针,⽽是利⽤已经得到的部分匹配结果将模式串向右“滑动”尽可能远的距离,再继续进⾏⽐较。
在KMP算法中,依据模式串的next函数值实现字串的滑动,本随笔介绍next函数值如何求解。
next[ j ]求解将 j-1 对应的串与next[ j-1 ]对应的串进⾏⽐较,若相等,则next[ j ]=next[ j-1 ]+1;若不相等,则将 j-1 对应的串与next[ next[ j-1 ]]对应的串进⾏⽐较,⼀直重复直到相等,若都不相等则为其他情况题1在字符串的KMP模式匹配算法中,需先求解模式串的函数值,期定义如下式所⽰,j表⽰模式串中字符的序号(从1开始)。
若模式串p 为“abaac”,则其next函数值为()。
解:j=1,由式⼦得出next[1]=0;j=2,由式⼦可知1<k<2,不存在k,所以为其他情况即next[2]=1;j=3,j-1=2 对应的串为b,next[2]=1,对应的串为a,b≠a,那么将与next[next[2]]=0对应的串进⾏⽐较,0没有对应的串,所以为其他情况,也即next[3]=1;j=4,j-1=3 对应的串为a,next[3]=1,对应的串为a,a=a,所以next[4]=next[3]+1=2;j=5,j-1=4 对应的串为a,next[4]=2,对应的串为b,a≠b,那么将与next[next[4]]=1对应的串进⾏⽐较,1对应的串为a,a=a,所以next[5]=next[2]+1=2;综上,next函数值为 01122。
题2在字符串的KMP模式匹配算法中,需先求解模式串的函数值,期定义如下式所⽰,j表⽰模式串中字符的序号(从1开始)。
若模式串p为“tttfttt”,则其next函数值为()。
串的两种模式匹配算法
串的两种模式匹配算法 模式匹配(模范匹配):⼦串在主串中的定位称为模式匹配或串匹配(字符串匹配) 。
模式匹配成功是指在主串S中能够找到模式串T,否则,称模式串T在主串S中不存在。
以下介绍两种常见的模式匹配算法:1. Brute-Force模式匹配算法暴风算法,⼜称暴⼒算法。
算法的核⼼思想如下: 设S为⽬标串,T为模式串,且不妨设: S=“s0s1s2…sn-1” , T=“t0t1t2 …tm-1” 串的匹配实际上是对合法的位置0≦i≦n-m依次将⽬标串中的⼦串s[i…i+m-1]和模式串t[0…m-1]进⾏⽐较:若s[i…i+m-1]=t[0…m-1]:则称从位置i开始的匹配成功,亦称模式t在⽬标s中出现;若s[i…i+m-1]≠t[0…m-1]:从i开始的匹配失败。
位置i称为位移,当s[i…i+m-1]=t[0…m-1]时,i称为有效位移;当s[i…i+m-1] ≠t[0…m-1]时,i称为⽆效位移。
算法实现如下: (笔者偷懒,⽤C#实现,实际上C# String类型已经封装实现了该功能)1public static Int32 IndexOf(String parentStr, String childStr)2 {3 Int32 result = -1;4try5 {6if (parentStr.Length > 1 && childStr.Length > 1)7 {8 Int32 i = 0;9 Int32 j = 0;10while (i < parentStr.Length && j < childStr.Length)11 {12if (parentStr[i] == childStr[j])13 {14 i++;15 j++;16 }17else18 {19 i = i - j + 1;20 j = 0;21 }22 }23if (i < parentStr.Length)24 {25 result = i - j;26 }27 }28 }29catch (Exception)30 {31 result = -1;32 }33return result;34 } 该算法的时间复杂度为O(n*m) ,其中n 、m分别是主串和模式串的长度。
不同的模式匹配方法详解(暴力、KMP、Rabin-Karp算法)
不同的模式匹配⽅法详解(暴⼒、KMP、Rabin-Karp算法)1 概述单模式匹配是处理字符串的经典问题,指在给定字符串中寻找是否含有某⼀给定的字串。
⽐较形象的是CPP中的strStr()函数,Java的String 类下的indexOf()函数都实现了这个功能,本⽂讨论⼏种实现单模式匹配的⽅法,包括暴⼒匹配⽅法、KMP⽅法、以及Rabin-Karp⽅法(虽然Rabin-Karp⽅法在单模式匹配中性能⼀般,单其多模式匹配效率较⾼,且采取⾮直接⽐较的⽅法也值得借鉴)。
算法预处理时间匹配时间暴⼒匹配法O(mn)KMP O(m)O(n)Rabin-Karp O(m)O(mn)2 暴⼒匹配模式匹配类的问题做法都是类似使⽤⼀个匹配的滑动窗⼝,失配时改变移动匹配窗⼝,具体的暴⼒的做法是,两个指针分别指向长串的开始、短串的开始,依次⽐较字符是否相等,当不相等时,指向短串的指针移动,当短串指针已经指向末尾时,完成匹配返回结果。
以leetcode为例给出实现代码(下同)class Solution {public int strStr(String haystack, String needle) {int m = haystack.length(), n = needle.length();if (needle.length() == 0) return 0;for (int i = 0; i <= m - n; i++) {for (int j = 0; j < n; j++) {if (haystack.charAt(i + j) != needle.charAt(j))break;if (j == n - 1)return i;}}return -1;}}值得注意的是,Java中的indexO()⽅法即采⽤了暴⼒匹配⽅法,尽管其算法复杂度⽐起下⾯要谈到的KMP⽅法要⾼上许多。
⼀个可能的解释是,⽇常使⽤此⽅法过程中串的长度都⽐较短,⽽KMP⽅法预处理要⽣成next数组浪费时间。
BF算法KMP算法BM算法
BF算法KMP算法BM算法BF算法(Brute-Force Algorithm)是一种简单直接的字符串匹配算法,也称为朴素算法。
BF算法的基本思想是从主串的第一个字符开始,每次移动一个字符,然后和模式串进行逐个字符比较,如果不匹配,则继续下一个位置的比较。
如果字符匹配,则比较下一个字符,直到找到完全匹配的子串或者主串遍历结束。
BF算法的时间复杂度为O(m*n),其中m和n分别为主串和模式串的长度。
当主串和模式串的长度较小时,BF算法是一个简单高效的字符串匹配算法。
然而,当主串和模式串的长度非常大时,BF算法的效率会非常低下。
KMP算法(Knuth-Morris-Pratt Algorithm)是一种改进的字符串匹配算法。
KMP算法的核心思想是利用已经匹配过的部分信息来避免不必要的字符比较。
KMP算法通过构建一个跳转表(也称为失配函数),记录当前位置之前的字符中可能出现的最大公共前后缀长度。
根据跳转表的信息,在模式串和主串不匹配时,可以直接跳过一些字符,继续比较下一个字符。
KMP算法的时间复杂度为O(m+n),其中m和n分别为主串和模式串的长度。
KMP算法在主串长度较大时,相对于BF算法有较高的效率。
它的空间复杂度为O(k),其中k为模式串的长度,用于存储跳转表。
BM算法(Boyer-Moore Algorithm)是一种更为高效的字符串匹配算法。
BM算法的核心思想是尽可能地跳过更多的字符,而不是每次只移动一个字符。
BM算法借助两个启发式规则(坏字符规则和好后缀规则)来确定移动的步长。
坏字符规则根据字符在模式串中的位置,找到离坏字符最近的下标位置,从而确定移动的步长;好后缀规则根据已经匹配的后缀子串,找到离该子串最近的下标位置,从而确定移动的步长。
BM算法的时间复杂度为O(m+n),其中m和n分别为主串和模式串的长度。
BM算法在处理文本串相对固定的情况下有较高的效率,但是在模式串较短,主串较长的情况下,BM算法并不一定比KMP算法更高效。
KMP模式匹配算法
KMP模式匹配算法KMP算法是一种字符串匹配算法,用于在一个主串中查找一个模式串的出现位置。
该算法的核心思想是通过预处理模式串,构建一个部分匹配表,从而在匹配过程中尽量减少不必要的比较。
KMP算法的实现步骤如下:1.构建部分匹配表部分匹配表是一个数组,记录了模式串中每个位置的最长相等前后缀长度。
从模式串的第二个字符开始,依次计算每个位置的最长相等前后缀长度。
具体算法如下:-初始化部分匹配表的第一个位置为0,第二个位置为1- 从第三个位置开始,假设当前位置为i,则先找到i - 1位置的最长相等前后缀长度记为len,然后比较模式串中i位置的字符和模式串中len位置的字符是否相等。
- 如果相等,则i位置的最长相等前后缀长度为len + 1- 如果不相等,则继续判断len的最长相等前后缀长度,直到len为0或者找到相等的字符为止。
2.开始匹配在主串中从前往后依次查找模式串的出现位置。
设置两个指针i和j,分别指向主串和模式串的当前位置。
具体算法如下:-当主串和模式串的当前字符相等时,继续比较下一个字符,即i和j分别向后移动一个位置。
-当主串和模式串的当前字符不相等时,根据部分匹配表确定模式串指针j的下一个位置,即找到模式串中与主串当前字符相等的位置。
如果找到了相等的位置,则将j移动到相等位置的下一个位置,即j=部分匹配表[j];如果没有找到相等的位置,则将i移动到下一个位置,即i=i+13.检查匹配结果如果模式串指针j移动到了模式串的末尾,则说明匹配成功,返回主串中模式串的起始位置;如果主串指针i移动到了主串的末尾,则说明匹配失败,没有找到模式串。
KMP算法的时间复杂度为O(m+n),其中m为主串的长度,n为模式串的长度。
通过预处理模式串,KMP算法避免了在匹配过程中重复比较已经匹配过的字符,提高了匹配的效率。
总结:KMP算法通过构建部分匹配表,实现了在字符串匹配过程中快速定位模式串的位置,减少了不必要的比较操作。
数据结构教学中KMP算法解析
数据结构教学中KMP算法解析摘要:模式匹配是字符串的基本运算之一,也是数据结构教学中的难点之一。
分析了模式匹配KMP算法以及算法中next函数的含义,给出了next函数的两种实现方法,有助于在教学实践中帮助学生更好地理解该算法。
关键词:数据结构;模式匹配;KMP算法0引言模式匹配(Patten Matching)是许多计算机应用领域的基础问题,在数据结构中模式匹配是字符串的基本运算之一。
字符串模式匹配指的是,找出特定的模式串在一个较长的字符串中出现的位置。
有两个字符串S和T,字符串S称为目标串,字符串T称为模式串,要求找出模式T在S中的首次出现的位置。
一旦模式T在目标S中找到,就称发生一次匹配。
有些应用可能会要求找出所有的匹配位置<sup>[1]</sup>。
例如,目标串S= 'Shanghai',模式串T= 'gha',则匹配结果为4。
模式匹配的典型算法包括朴素匹配算法、KMP算法和BM算法等,其中KMP算法是效率较高且经典的模式匹配算法之一<sup>[2]</sup>。
在数据结构教学中,由于KMP算法较难理解,课堂讲授往往很难取得好的效果。
本文通过对传统的朴素匹配算法与KMP算法的比较,分析next函数的含义以及实现方法,来帮助理解KMP算法。
1朴素匹配算法在朴素匹配算法中,S和T分别为目标串和模式串,变量i和j 为两个静态指针,分别表示S和T中当前正待比较的字符位置。
算法的基本思想是:第1趟匹配:从S的第1个字符(序号为0)起和T的第一个字符比较之,如果相等,则继续逐个比较后续字符(i++;j++),否则开始下一趟匹配。
新的一趟匹配:i的初值为上一趟的初值+1 ,j的初值为1,如果比较结果相等,则继续逐个比较后续字符,否则开始下一趟匹配。
依次类推,直至某一趟匹配中,T的每个字符依次和S中的一个连续的字符序列相等,则称匹配成功,否则称匹配不成功。
KMP
KMP算法
next函数的改进 函数的改进
aaabaaaab aaaa ① ② ③
j=4 j=3 j=2 j=1 i=4
j
12345
模式 a a a a b next[j] 0 1 2 3 4 nextval[j] 0 0 0 0 4
aaa aa a
aaaab i = 5; j = 1
next[j] = k,而pj=pk, , 主串中s 不等时, 则 主串中 i和pj不等时, 不需再和p 进行比较, 不需再和 k进行比较, 而直接和p 而直接和 next[k]进行比 较.
第 1 次匹配 s= cddcdc t=cdc 第 2 次匹配 s= cddcdc t=cdc 第 3 次匹配 s= cddcdc t=cdc 第 4 次匹配 s= cddcdc t=cdc i= 3 j= 3 i= 2 j= 1 i= 3 j= 1 i= 6 j= 3 成功 失败 失败 失败
i = i –j +2; j = 1;
KMP算法
j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 模式串 a b c a a b b c a b c a a b d a b next[j] 0 1 1 1 2 2 3 1 1 2 3 4 5 6 7 1 2
nextval[j]
0 1 1 0 2 1 3 1 0 1 1 0 2 1 7 0 1
KMP算法
KMP算法的时间复杂度 KMP算法的时间复杂度 设主串s 的长度为n, 模式串t 长度为m, KMP算 n,模式串 m,在 设主串 s 的长度为 n, 模式串 t 长度为 m, 在 KMP 算 法中求next 数组的时间复杂度为 O(m),在后面的匹 法中求 next数组的时间复杂度为 O(m), 在后面的匹 next 数组的时间复杂度为O(m), 配中因主串s的下标不减即不回溯,比较次数可记为 配中因主串s的下标不减即不回溯, n,所以KMP算法总的时间复杂度为O(n+m). n,所以KMP算法总的时间复杂度为O(n+m). 所以KMP算法总的时间复杂度为O(n+m)
串的模式匹配算法
(2) Brute-Force算法的实现
int BFIndex(DString S, int start, DString T) {
int i = start, j = 0, v; while(i < S.length && j < T.length) {
if(S.str[i] == T.str[j]) {
串的模式匹配算法
串的查找操作也称做串的模式匹配操作,其中 Brute-Force算法和KMP算法是两种最经常使用的顺序 存储结构下的串的模式匹配算法。
1、 Brute-Force算法
(1)Brute-Force算法的设计思想:
将主串S的第一个字符和模式T的第1个字符比较, 若相等,继续逐个比较后续字符; 若不等,从主串S的下一字符起,重新与T第一个字符比较。 直到主串S的一个连续子串字符序列与模式T相等。返回值为S中与T匹配的子序列 第一个字符的序号,即匹配成功。 否则,匹配失败,返回值 –1。
最好的情况是:一配就中!主串的前m个字符刚好等于模式串 的 m个字符,只比较了m次,时间复杂度为O(m)。
最恶劣情况是:模式串的前m-1个字符序列与主串的相应字符序 列比较总是相等,但模式串的第m个字符和主串的相应字符 比较总是不等,此时模式串的m个字符序列必须和主串的相 应字符序列块一共比较n-m+1,所以总次数为:m*(n-m+1), 因此其时间复杂度为O(n×m)。
此时若模式串中不存在可相互重叠的真子串,则说明在模式串t0t1…tj-1”中不 存在任何以t0为首字符的字符串与“si-jsi-j+1…si-1”中以si-1为末字符的字符串匹 配,下一次可直接比较si和t0。
KMP算法-易懂版
KMP算法-易懂版⼀:定义 Knuth-Morris-Pratt 字符串查找算法,简称为 KMP算法,常⽤于快速查找⼀个母串S中是否包含⼦串(模式串)P,以及P出现的位置。
由于简单的暴⼒匹配中,每次遇到不匹配的位置时都要回溯到母串上⼀次的起点 i +1的位置上再次从⼦串的开头进⾏匹配,效率极其低下,故⽽KMP算法应运⽽⽣,减少回溯过程中不必要的匹配部分,加快查找速度。
⼆:kmp算法求解步骤描述 若当前不匹配的位置发⽣在母串位置 i,⼦串位置 j 上,则:1. 寻找⼦串位置 j 之前元素的最长且相等的前后缀,即最长公共前后缀。
记录这个长度。
2. 根据这个长度求 next 数组3. 若 j != 0, 则根据next [j] 中的值,将⼦串向右移动,也就是将公共前缀移到公共后缀的位置上,(代码表⽰为:j=next [j],注意 i 不变),即对位置 j 进⾏了更新,后续⼦串直接从更新后的 j 位置和母串 i 位置进⾏⽐较。
4. 若 j == 0,则 i+1,⼦串从j位置开始和母串 i+1 位置开始⽐较。
综上,KMP的next 数组相当于告诉我们:当⼦串中的某个字符跟母串中的某个字符匹配失败时,⼦串下⼀步应该跳到哪个位置开始和母串当前失配位置进⾏⽐较。
所以kmp算法可以简单解释为:如⼦串在j 处的字符跟母串在i 处的字符失配时,下⼀步就⽤⼦串next [j] 处的字符继续跟⽂本串 i 处的字符匹配,相当于⼦串⼀次向右移动 j - next[j] 位,跳过了⼤量不必要的匹配位置(OK,简单理解完毕之后,下⾯就是求解KMP的关键步骤,Let’s go! ) 三:kmp算法关键步骤之⼀,求最长的公共前后缀! 箭头表⽰当前匹配失败的位置,也就是当前的 j 位置。
⽩框表⽰最长公共前后缀AB!此时长度为2! 再来⼀个,此时最长公共前后缀为ABA!长度为3!四:kmp算法关键步骤之⼆,求next[ ] 数组 由步骤⼀,我们可以得到⼦串每个位置前⾯元素的最长共同前后缀,注意⼦串第⼀个位置是没有前后缀的,所以长度为0! 例:⼦串ABCDABD的最长公共前后缀可表⽰如下。
kmp next算法
kmp next算法KMP算法(Knuth-Morris-Pratt Algorithm)是一种字符串匹配算法,它的核心思想是利用已经得到的匹配结果,尽量减少字符的比较次数,提高匹配效率。
本文将详细介绍KMP算法的原理、实现方法以及应用场景。
一、KMP算法的原理KMP算法的核心是构建next数组,用于指导匹配过程中的回溯操作。
next数组的定义是:对于模式串中的每个字符,记录它前面的子串中相同前缀和后缀的最大长度。
next数组的长度等于模式串的长度。
具体来说,KMP算法的匹配过程如下:1. 初始化主串指针i和模式串指针j为0。
2. 逐个比较主串和模式串对应位置的字符:- 若主串和模式串的字符相等,i和j同时后移一位。
- 若主串和模式串的字符不相等,根据next数组的值,将模式串指针j回溯到合适的位置,继续匹配。
二、KMP算法的实现KMP算法的实现可以分为两个步骤:构建next数组和利用next数组进行匹配。
1. 构建next数组:- 首先,next[0]赋值为-1,next[1]赋值为0。
- 然后,从第2个位置开始依次计算next[i],根据前一个位置的next值和模式串的字符进行判断:- 若前一个位置的next值为-1或模式串的字符与前一个位置的字符相等,则next[i] = next[i-1] + 1。
- 若前一个位置的next值不为-1且模式串的字符与前一个位置的字符不相等,则通过next数组的回溯操作,将模式串指针j回溯到合适的位置,继续判断。
2. 利用next数组进行匹配:- 在匹配过程中,主串指针i和模式串指针j会同时后移:- 若主串和模式串的字符相等,i和j同时后移一位。
- 若主串和模式串的字符不相等,则根据next数组的值,将模式串指针j回溯到合适的位置,继续匹配。
三、KMP算法的应用场景KMP算法在字符串匹配中有广泛的应用,特别是在大规模文本中的模式匹配问题上具有明显的优势。
以下是KMP算法的几个应用场景:1. 子串匹配:判断一个字符串是否是另一个字符串的子串。
字符串匹配kmp算法
字符串匹配kmp算法字符串匹配是计算机科学中的一个基本问题,它涉及在一个文本串中寻找一个模式串的出现位置。
其中,KMP算法是一种更加高效的算法,它不需要回溯匹配过的字符,在匹配失败的时候,根据已经匹配的字符和模式串前缀的匹配关系直接跳跃到下一次匹配的起点。
下面,我将详细介绍KMP算法原理及其实现。
1. KMP算法原理KMP算法的核心思想是:当模式串中的某个字符与文本串中的某个字符不相同时,根据已经匹配的字符和模式串前缀的匹配关系,跳过已经比较过的字符,从未匹配的字符开始重新匹配。
这个过程可以通过计算模式串的前缀函数(即next数组)来实现。
具体地,假设现在文本串为T,模式串为P,它们的长度分别为n和m。
当对于文本串T的第i个字符和模式串P的第j个字符(i和j都是从0开始计数的)进行匹配时:如果T[i]和P[j]相同,则i和j都加1,继续比较下一个字符;如果T[i]和P[j]不同,则j回溯到next[j](next[j]是P[0]到P[j-1]的一个子串中的最长的既是自身的前缀又是后缀的子串的长度),而i不会回溯,继续和P[next[j]]比较。
如果匹配成功,则返回i-j作为P在T中的起始位置;如果匹配失败,则继续执行上述过程,直到文本串T被遍历完或匹配成功为止。
2. KMP算法步骤(1)计算模式串的前缀函数next[j]。
next[j]表示P[0]到P[j-1]的一个子串中的最长的既是自身的前缀又是后缀的子串的长度。
具体计算方式如下:先令next[0]=-1,k=-1(其中k表示相等前缀的长度,初始化为-1),j=0。
从j=1向后遍历整个模式串P:如果k=-1或者P[j]=P[k],则next[j+1]=k+1,k=j,j+1;否则,令k=next[k],再次执行步骤2。
(2)使用next数组进行匹配。
从文本串T的第0个字符开始,从模式串P的第0个字符开始匹配,如果匹配失败,根据next数组进行回溯。
KMP算法
KMP算法KMP算法是一种用于字符串匹配的快速算法,全称为Knuth-Morris-Pratt算法,是由Donald Knuth、Vaughan Pratt和James Morris在1977年共同提出的。
该算法的核心思想是通过利用已经匹配过的部分来避免不必要的字符比较,从而提高匹配效率。
1.暴力匹配算法在介绍KMP算法之前,我们先来了解一下暴力匹配算法。
暴力匹配算法,又称为朴素匹配算法,是最基本的匹配方法,它的思想就是从主串的第一个字符开始,逐个比较主串和模式串的字符,直到匹配成功或者主串和模式串的所有字符都比较完毕。
具体算法如下:```暴力匹配(主串S,模式串P):i=0j=0n = length(S)m = length(P)while i < n and j < m:if S[i] == P[j]: // 匹配成功,继续比较下一个字符i++else: // 匹配失败,模式串向后移动一位i=i-j+1j=0if j == m: // 匹配成功return i - jelse: // 匹配失败return -1```暴力匹配算法的时间复杂度为O(n*m),其中n和m分别为主串和模式串的长度。
2.KMP算法的思想KMP算法的关键在于构建一个部分匹配表,通过这个表来确定模式串在匹配失败时应该移动的位置。
部分匹配表的定义如下:对于模式串P的前缀子串P[0:i],如果存在一个真前缀等于真后缀,则称其长度为i的真前缀的真后缀长度为部分匹配值。
假设有一个模式串P,我们定义一个部分匹配表next,其中next[i]表示在P[i]之前的子串(不包括P[i])中,有多大长度的相同前缀后缀。
例如,P="ABCDABD",则next[7]=2,因为在P[7]之前的子串中,"ABD"是长度为3的前缀,也是长度为3的后缀。
构建部分匹配表的算法如下:构建部分匹配表(P):m = length(P)next = [0] * m // 初始化部分匹配表j=0k=-1next[0] = -1while j < m - 1:if k == -1 or P[j] == P[k]: // P[j]表示后缀的单个字符,P[k]表示前缀的单个字符j++k++next[j] = kelse:k = next[k]```构建部分匹配表的时间复杂度为O(m),其中m为模式串的长度。
kmp百度百科
kmp算法[编辑本段]kmp算法-概述一种改进的字符串匹配算法,由 D.E.Knuth与V.R.Pratt和J.H.Morris同时发现,因此人们称它为克努特——莫里斯——普拉特操作(简称KMP算法)。
[编辑本段]kmp算法-学习介绍完全掌握KMP算法思想学过数据结构的人,都对KMP算法印象颇深。
尤其是新手,更是难以理解其涵义,搞得一头雾水。
今天我们就来面对它,不将它彻底搞懂,誓不罢休。
如今,大伙基本上都用严蔚敏老师的书,那我就以此来讲解KMP 算法。
(小弟正在备战考研,为了节省时间,很多课本上的话我都在此省略了,以后一定补上。
)严老的《数据结构》79页讲了基本的匹配方法,这是基础。
先把这个搞懂了。
80页在讲KMP算法的开始先举了个例子,让我们对KMP的基本思想有了最初的认识。
目的在于指出“由此,在整个匹配的过程中,i指针没有回溯,”。
我们继续往下看:现在讨论一般情况。
假设主串:s: ‘s(1) s(2) s(3) ……s(n)’; 模式串:p: ‘p(1) p(2) p(3)…..p(m)’把课本上的这一段看完后,继续现在我们假设主串第i个字符与模式串的第j(j<=m)个字符‘失配’后,主串第i个字符与模式串的第k(k<j)个字符继续比较此时,s(i)≠p(j), 有主串:S(1)……s(i-j+1)……s(i-1) s(i) ………….|| (相配) || ≠(失配)匹配串:P(1) ……. p(j-1) p(j)由此,我们得到关系式‘p(1) p(2) p(3)…..p(j-1)’= ’s(i-j+1)……s(i-1)’由于s(i)≠p(j),接下来s(i)将与p(k)继续比较,则模式串中的前(k-1)个字符的子串必须满足下列关系式,并且不可能存在k’>k 满足下列关系式:(k<j),‘p(1) p(2) p(3)…..p(k-1)’= ’s(i-k+1)s(i-k+2)……s(i-1)’即:主串:S(1)……s(i-k +1) s(i-k +2) ……s(i-1) s(i) ………….|| (相配) || || ?(有待比较)匹配串:P(1) p(2) ……p(k-1) p(k)现在我们把前面总结的关系综合一下有:S(1)…s(i-j +1)…s(i-k +1) s(i-k +2) ……s(i-1) s(i) ……|| (相配) || || || ≠(失配)P(1) ……p(j-k+1) p(j-k+2) ….... p(j-1) p(j)|| (相配) || || ?(有待比较)P(1) p(2) ……. p(k-1) p(k)由上,我们得到关系:‘p(1) p(2) p(3)…..p(k-1)’= ’s(j-k+1)s(j-k+2)……s(j-1)’接下来看“反之,若模式串中存在满足式(4-4)。
K M P 算 法 详 解
KMP算法详解(转)此前一天,一位MS的朋友邀我一起去与他讨论快速排序,红黑树,字典树,B树、后缀树,包括KMP算法,唯独在讲解KMP算法的时候,言语磕磕碰碰,我想,原因有二:1、博客内的东西不常回顾,忘了不少;2、便是我对KMP算法的理解还不够彻底,自不用说讲解自如,运用自如了。
所以,特再写本篇文章。
由于此前,个人已经写过关于KMP算法的两篇文章,所以,本文名为:KMP算法之总结篇。
本文分为如下六个部分:第一部分、再次回顾普通的BF算法与KMP算法各自的时间复杂度,并两相对照各自的匹配原理;第二部分、通过我此前第二篇文章的引用,用图从头到尾详细阐述KMP算法中的next数组求法,并运用求得的next数组写出KMP算法的源码;第三部分、KMP算法的两种实现,代码实现一是根据本人关于KMP算法的第二篇文章所写,代码实现二是根据本人的关于KMP算法的第一篇文章所写;第四部分、测试,分别对第三部分的两种实现中next数组的求法进行测试,挖掘其区别之所在;第五部分、KMP完整准确源码,给出KMP算法的准确的完整源码;第六步份、一眼看出字符串的next数组各值,通过几个例子,让读者能根据字符串本身一眼判断出其next数组各值。
力求让此文彻底让读者洞穿此KMP算法,所有原理,来龙去脉,让读者搞个通通透透(注意,本文中第二部分及第三部分的代码实现一的字符串下标i从0开始计算,其它部分如第三部分的代码实现二,第五部分,和第六部分的字符串下标i 皆是从1开始的)。
第一部分、KMP算法初解1、普通字符串匹配BF算法与KMP算法的时间复杂度比较KMP算法是一种线性时间复杂的字符串匹配算法,它是对BF算法(Brute-Force,最基本的字符串匹配算法的)改进。
对于给的原始串S 和模式串P,需要从字符串S中找到字符串P出现的位置的索引。
BF算法的时间复杂度O(strlen(S) * strlen(T)),空间复杂度O(1)。
简述kmp算法
KMP算法,即Knuth-Morris-Pratt算法,是一种用于字符串匹配的高效算法。
它的
主要思想是通过利用已经匹配过的部分信息,避免不必要的字符比较,从而提高匹配效率。
以下是对KMP算法的详细解答:
KMP算法的核心在于构建一个部分匹配表(Partial Match Table),这个表用于记
录在匹配过程中,当出现不匹配时应该将模式串移动的位置。
具体步骤如下:
1.构建部分匹配表:对于模式串,从左到右依次计算每个前缀的最长相等前
后缀的长度。
这个信息被记录在部分匹配表中。
例如,对于模式串
"ABABC",部分匹配表为 [0, 0, 1, 2, 0]。
2.匹配过程:在匹配过程中,遍历文本串和模式串,当出现不匹配时,根据
部分匹配表的信息,将模式串移动到正确的位置,而不是回溯到文本串中前
面已经比较过的位置。
KMP算法的优点在于避免了重复比较已经匹配过的部分,通过部分匹配表的信息,可以实现模式串的快速平移。
这使得KMP算法在一些字符串匹配问题中相比朴素
的匹配算法更具有效率。
总体而言,KMP算法是一种高效的字符串匹配算法,其核心思想是通过构建部分
匹配表来优化匹配过程,避免不必要的比较,从而提高匹配效率。
字符串模式匹配算法
字符串模式匹配算法字符串模式匹配算法是计算机科学中的一种基本算法,主要用于在字符串中查找一个模式。
该算法的核心是比较文本串中的每个字符,以找到与模式相同的串。
字符串模式匹配算法可以用于许多不同的应用,例如文本编辑器、搜索引擎、数据库系统等。
常用的字符串匹配算法有暴力匹配算法、KMP算法、Boyer-Moore 算法、Rabin-Karp算法等。
这些算法的时间复杂度不同,适用于不同的场景。
暴力匹配算法是最简单的字符串匹配算法。
该算法的思想是从文本串的第一个字符开始,逐个匹配模式串的字符。
如果匹配失败,则从文本串的下一个字符开始重新匹配。
暴力匹配算法的时间复杂度为O(m*n),其中m和n分别是模式串和文本串的长度。
KMP算法是一种高效的字符串匹配算法。
该算法的核心是利用已经匹配的信息,避免在匹配过程中重复匹配。
KMP算法的时间复杂度为O(m+n),其中m和n分别是模式串和文本串的长度。
Boyer-Moore算法是一种高效的字符串匹配算法。
该算法的核心是利用模式串中的信息,从右往左进行匹配。
当匹配失败时,根据模式串中的信息,选择右移或者左移。
Boyer-Moore算法的时间复杂度为O(m*n),其中m和n分别是模式串和文本串的长度。
Rabin-Karp算法是一种基于哈希算法的字符串匹配算法。
该算法的核心是利用哈希值进行匹配。
Rabin-Karp算法的时间复杂度为O(m+n),其中m和n分别是模式串和文本串的长度。
总之,不同的字符串模式匹配算法有着不同的特点和适用场景。
在实际应用中,应根据具体情况选择合适的算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模式匹配的KMP算法详解
模式匹配的KMP算法详解
这种由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现的改进的模式匹配算法简称为KMP算法。
大概学过信息学的都知道,是个比较难理解的算法,今天特把它搞个彻彻底底明明白白。
注意到这是一个改进的算法,所以有必要把原来的模式匹配算法拿出来,其实理解的关键就在这里,一般的匹配算法:
int Index(String S,String T,int pos)//参考《数据结构》中的程序
{
i=pos;j=1;//这里的串的第1个元素下标是1
while(i<=S.Length && j<=T.Length)
{
if(S[i]==T[j]){++i;++j;}
else{i=i-j+2;j=1;}//**************(1)
}
if(j>T.Length) return i-T.Length;//匹配成功
else return 0;
}
匹配的过程非常清晰,关键是当‘失配’的时候程序是如何处理的?回溯,没错,注意到(1)句,为什么要回溯,看下面的例子:
S:aaaaabababcaaa T:ababc
aaaaabababcaaa
ababc.(.表示前一个已经失配)
回溯的结果就是
aaaaabababcaaa
a.(babc)
如果不回溯就是
aaaaabababcaaa
aba.bc
这样就漏了一个可能匹配成功的情况
aaaaabababcaaa
ababc
为什么会发生这样的情况?这是由T串本身的性质决定的,是因为T串本身有前后'部分匹配'的性质。
如果T为abcdef这样的,大没有回溯的必要。
改进的地方也就是这里,我们从T串本身出发,事先就找准了T自身前后部分匹配的位置,那就可以改进算法。
如果不用回溯,那T串下一个位置从哪里开始呢?
还是上面那个例子,T为ababc,如果c失配,那就可以往前移到aba最后一个a的位置,像这样:
...ababd...
ababc
->ababc
这样i不用回溯,j跳到前2个位置,继续匹配的过程,这就是KMP算法所在。
这个当T[j]失配后,j应该往前跳的值就是j的next值,它是由T串本身固有决定的,与S串无关。
《数据结构》上给了next值的定义:
0 如果j=1
next[j]={Max{k|1<k<j且'p1...pk-1'='pj-k+1...pj-1'
1 其它情况
我当初看到这个头就晕了,其实它就是描述的我前面表述的情况,关于next[1] =0是规定的,这样规定可以使程序简单一些,如果非要定为其它的值只要不和后面的值冲突也是可以的;而那个Max是什么意思,举个例子:
T:aaab
...aaaab...
aaab
->aaab
->aaab
->aaab
像这样的T,前面自身部分匹配的部分不止两个,那应该往前跳到第几个呢?最近的一个,也就是说尽可能的向右滑移最短的长度。
OK,了解到这里,就看清了KMP的大部分内容,然后关键的问题是如何求nex t值?先不管它,先看如何用它来进行匹配操作,也就是说先假设已经有了ne xt值。
将最前面的程序改写成:
int Index_KMP(String S,String T,int pos)
{
i=pos;j=1;//这里的串的第1个元素下标是1
while(i<=S.Length && j<=T.Length)
{
if(j==0 || S[i]==T[j]){++i;++j;} //注意到这里的j==0,和++j的作用就知道为什么规定next[1]=0的好处了
else j=next[j];//i不变(不回溯),j跳动
}
if(j>T.Length) return i-T.Length;//匹配成功
else return 0;
}
OK,是不是非常简单?还有更简单的,求next值,这也是整个算法成功的关键,从next值的定义来求太恐怖了,怎么求?前面说过了,next值表达的就是T 串的自身部分匹配的性质,那么,我只要将T串和T串自身来一次匹配就可以求出来了,这里的匹配过程不是从头一个一个匹配,而是从T[1]和T[2]开始匹配,给出算法如下:
void get_next(String T,int &next[])
{
i=1;j=0;next[1]=0;
while(i<=T.Length)
{
if(j==0 || T[i]==T[j]){++i;++j; next[i]=j;/**********(2)*/}
else j=next[j];
}
}
看这个函数是不是非常像KMP匹配的函数,没错,它就是这么干的!注意到(2)语句逻辑覆盖的时候是T[i]==T[j]以及i前面的、j前面的都匹配的情况下,于是先自增,然后记下来next[i]=j,这样每当i有自增就会求得一个next[i],而j一定会小于等于i,于是对于已经求出来的next,可以继续求后面的nex t,而next[1]=0是已知,所以整个就这样递推的求出来了,方法非常巧妙。
这样的改进已经是很不错了,但算法还可以改进,注意到下面的匹配情况:
...aaac...
aaaa.
T串中的'a'和S串中的'c'失配,而'a'的next值指的还是'a',那同样的比较还是会失配,而这样的比较是多余的,如果我事先知道,当T[i]==T[j],那n ext[i]就设为next[j],在求next值的时候就已经比较了,这样就可以去掉这样的多余的比较。
于是稍加改进得到:
void get_nextval(String T,int &next[])
{
i=1;j=0;next[1]=0;
while(i<=T.Length)
{
if(j==0 || T[i]==T[j])
{ ++i;++j;
if(T[i]!=T[j]) next[i]=j;
else next[i]=next[j];//消去多余的可能的比较,next再向前跳
}
else j=next[j];
}
}
匹配算法不变。
到此就完全弄清楚了,以前老觉得KMP算法好神秘,真不是人想出来的,其实不然,它只不过是对原有的算法进行了改进。
可见基础的经典的东西还是很重要,你有本事‘废’了经典,就创造了进步。