基于ABAQUS平台的扩展有限元方法

合集下载

abaqus中xfem扩展有限元教程

abaqus中xfem扩展有限元教程

abaqus 中xfem扩展有限元教程part模块中的操作:1.生成一个新的part,取名为plate,本part 选取3D deformable solid extrusion 类型(如图1)2.通过Rectangle 工具画出一长3,高6的矩形。

考虑使用工具栏add-dimension 和edit dimension 来画出精确长度的模型。

强烈建议此矩形的左上角坐标为(0, 3),右下角坐标为(3,-3)(如图2)3D '、2D Planw I ' AxisymmetricTyre Options” Di scr^te ri gi >1f'■ Analytical ri<id0 Euler i anBaseShapeSolidC? Shello灿电0 FeintApproKimat色size: 20Cancel3.完成后拉伸此矩形,深度为 1.(如图3)4.生成一个新的 part ,取名为 crack ,本 part 选取 3D deformable shell extrusion 类型(如图4) 叩刊网扌 rr Ack M ud-el L iLg. Spa-j-e(*) 3D { ' 29 Pl war ( ) Ajci symmetri c Typ« @ H 栏 £oir.ahle: :;Di 5«r «tc ari gi dCj An>lytic41 rigid ■.. j Euler i an Opti QKS None available Q hl 迥⑥*1】■:.\ Wire (.PoiittBase FeatureTypePlanar Ez trusi on Rezolution SwsepXppr^MiTatt =it eCine el5.生成一条线,此线的左端点坐标为( 0, 0.08 ),右端点坐标为(1.5 , 0.08 )6 .完成后拉伸此线,深度为 1.(如图6)7.保存此模型为XFEMtutor (如图7 ),以后经常保存模型,不再累述。

ABAQUS平台的扩展有限元方法模拟裂纹实现

ABAQUS平台的扩展有限元方法模拟裂纹实现

ABAQUS平台的扩展有限元方法模拟裂纹实现1.1 扩展有限元方法(XFEM)在ABAQUS上的实现ABAQUS中XFEM的实现,两个步骤最为关键:1、选择模型中可能出现的裂纹区域,将其单元设为具有扩展有限元性质的enrichment element.2、其次重要的是选择恰当的破坏准则,使单元在达到给定的条件破坏,裂纹扩展。

在ABAQUS中模拟裂纹扩展的操作中,需要注意的是:1、在Property模块,添加损伤演化参数、破坏法则、损伤稳定性参数2、在Interaction模块,主菜单Special中创建XFEM的enrichment element对于固定的裂纹模型,采用ABAQUS/STANDARD中使用奇异渐进函数。

针对移动的裂纹问题,在XFEM中,有一种方法基于traction-separation cohesive behavior,即使用虚拟节点连续片段法进行移动裂纹建模,ABAQUS/STANDAR D 中用于计算脆性或韧性材料的裂纹初始化和扩展过程的模拟。

另外一种cohesive segments method (粘性片段方法)可用于bulk material中的任意路径的裂纹初始化模拟扩展过程,由于裂纹扩展不依赖于单元边界,在XFEM中,裂纹每扩展一次需要通过一个完整单元,避免尖端应力奇异性。

除此之外,ABAQUS为拥护提供了自定义子程序,来满足不同建模的需要。

ABAQUS/STANDARD中的任意力学本构模型均可用来模拟扩展裂纹的力学特性。

由于XFEM采用的形函数在求解过程中,很容易造成逼近线性相关,极大的增加了收敛难度,到目前为止,能够实现扩展有限元的商业软件只有ABAQUS,但是ABAQUS为了减少求解难度,做了大量简化,因此用ABAQUS 扩展有限元模拟裂纹扩展时,有一些局限[16]:1.扩展单元内不能同时存在两条裂纹,所以ABAQUS不能模拟分叉裂纹;2.在裂纹扩展分析过程中,每一个增量步的裂纹转角不允许超过90度;3.自适应的网格是不被支持的;4.固定裂纹中,只有各向同性材料的裂纹尖端渐进场才被考虑。

ABAQUS中扩展有限元(XFEM)功能简介

ABAQUS中扩展有限元(XFEM)功能简介

ABAQUS中扩展有限元(XFEM)功能简介扩展有限元(Extended Finite Element Method)是一种解决断裂力学问题的新的有限元方法,其理论最早于1999年,由美国西北大学的教授Belyschko和Black首次提出,主要是采用独立于网格剖分的思想解决有限元中的裂纹扩展问题,在保留传统有限元所有优点的同时,并不需要对结构内部存在的裂纹等缺陷进行网格划分。

ABAQUS基于在非线性方面的突出优势,在其6.9的版本中开始加入了扩展有限元功能,到6.13做了一些修正,加入了一些可以被CAE支持的关键字。

目前为止,除了手动编程,能够实现扩展有限元常用的商业软件只有ABAQUS,今天,我们就来谈谈ABAQUS 中如何实现扩展有限元。

1. XFEM理论在XFEM理论出现之前,所有对裂纹的静态模拟(断裂)都基本上是采用预留裂缝缺角,通过细化网格仿真裂缝的轮廓。

而动态的模拟(损伤)基本上都是基于统计原理的Paris 方法。

然而,断裂和损伤的结合问题却一直没有得到有效的解决,究其原因,在于断裂力学认可裂纹尖端的应力奇异现象(就是在靠近裂尖的区域应力值会变无穷大),并且尽可能的绕开这个区域。

而损伤力学又没有办法回避这个问题(裂纹都是从尖端开裂的)。

从理论上讲,其实单元内部的位移函数(形函数)可以是任意形状的,但大多数的计算软件都采用了多项式或者插值多项式作为手段来描述单元内部的位移场,这是因为采用这种方法更加便于在编程中进行处理。

但是这种方法的缺点就是,由于形函数的连续性,导致单元内部不可能存在间断。

直到Belytschko提出采用水平集函数作为手段,其基本形式为和上面左边的等式描述了单元内裂缝的位置,右边的等式描述了裂尖的位置。

与之对应的形函数便是和其中H(x)是阶跃函数。

想要了解更深的内容,大家可以参考《Extended Finite Element Method》和庄老师的《扩展有限单元法》这种扩充形函数能够描述单元内位移场在裂缝两边的跳跃性,同时,由于裂缝存在于单元内部,其扩展独立与其他单元,使得计算变得高效。

裂纹扩展的扩展有限元(xfem)模拟实例详解

裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。

断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。

如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。

这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。

损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。

这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。

1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。

debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。

cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。

cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。

这样就避免了裂纹尖端的奇异性。

Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。

Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。

此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。

基于ABAQUS平台的扩展有限元法_方修君

基于ABAQUS平台的扩展有限元法_方修君

Abstract:
A virtual node method for coupling the eXtended Finite Element Method (XFEM) with commercial
finite element software ABAQUS is presented. The relationship between the subdomain integration and the Heaviside function is formulated, and a subtriangle integration algorithm is improved. The brittle fracture process of a 3-point bending beam was simulated. The computational results demonstrate the capacity of the presented method to simulate the moving discontinuities. Crack path is not necessary to coincide with element boundaries in XFEM and re-meshing can be avoided. The coupling with commercial finite element software proposes an efficient way for solving practical complex problem using XFEM. Key words: partition of unity; extended finite element method; virtual node; fracture process; moving discontinuities 传统的有限元方法模拟混凝土开裂过程通常 基于两大类模型:分离裂纹模型 和弥散裂纹模 型[2]。对于模拟裂纹扩展过程的这类移动非连续问 题的模拟,使用分离裂纹模型需要对裂纹扩展路径 有良好地预测,否则需要不断调整有限元网格来适 应演化的非连续界面。弥散裂纹模型模拟移动非连 续问题不需要进行网格调整,但如何避免由于其近 似位移场中非连续位移模式的缺失而导致的应力

裂纹扩展的扩展有限元(xfem)模拟实例详解

裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。

断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。

如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。

这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。

损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。

这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。

1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。

debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。

cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。

cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。

这样就避免了裂纹尖端的奇异性。

Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。

Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。

此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。

基于ABAQUS的VUEL扩展有限元法模拟水力压裂_王涛

基于ABAQUS的VUEL扩展有限元法模拟水力压裂_王涛

基于ABAQUS的VUEL扩展有限元法模拟水力压裂王涛1柳占立庄茁(清华大学航天航空学院, 100084)摘要 本文基于abaqus的显式子程序vuel,采用扩展有限元方法,实现了对于水力压裂过程的模拟。

通过在常规的C3D8单元中引入扩充的自由度,实现了在单元内引入不连续的位移场,来达到模拟水力压裂裂纹的目的,而无需像传统的重分网格法那样在裂纹的扩展过程中重画网格。

我们在传统扩展有限元法的基础上进行改进,引入虚拟节点,从而可以在显式方法中简化处理基于单元的裂纹。

由于采用了虚拟节点法,可以在扩充的8节点六面体单元中使用一点积分和沙漏控制,极大地提高了程序的运行效率。

关键词:扩展有限元法,VUEL,水力压裂, 虚拟节点法一、 简介水力压裂自上世纪五六十年代就被提出并加以应用了,然而,由于技术上和设备上的缺陷,水力压裂技术一直处于缓慢的发展阶段,无法给工业上带来有效的经济效益,因而不能在商业模式下采用。

直到近几年水力压裂技术以及其他一些方面的技术上的突破,才使得水力压裂技术被广泛采用了。

由于水力压裂技术在工程中的重要应用,以及计算机数值模拟技术的迅猛发展,水力压裂技术的计算机模拟成为了一个研究水力压裂过程的主要的和非常有效的手段。

近年来,人们对水力压裂过程进行了大量的数值模拟,很好地指导了实际工程中的压裂作业,带来了一定的经济效益。

本文首先在ABAQUS中开发了一套建立水力压裂模型的插件,可以快速的生成裂纹网络模型并得到满足ABAQUS的vuel程序要求的inp文件和裂纹信息。

插件界面如图1。

图1 生成复杂裂缝网络的abaqus插件界面采用扩展有限元方法,引入扩充自由度来模拟位移场的不连续性[1]。

并运用虚拟节1报告人简介:1990.2-,计算固体力学,研究生:wangtao3924@点法来重组扩展有限元的基本格式,使得离散方程在空间上的积分可以采用一点积分和沙漏控制。

实现水力压裂的模拟,模拟结果如下:图2、压裂过程中裂纹的扩展云图二、 结论本文采用扩展有限元方法在ABAQUS中实现了水力压裂裂缝扩展的过程,模拟结果说明了方法的有效性。

XFEM实现裂纹扩展

XFEM实现裂纹扩展

---因为专注,所以卓越!
网格划分
焊缝在管道的上下起始位置,造成几何模型的急剧变化, 导致网格不容易划分,因此,使用专业的的前处理软件 ANSA进行网格划分,使得焊缝的网格密度大于其他位置 的网格密度。
初始裂纹在焊缝中的位置

---因为专注,所以卓越!
分析过程

---因为专注,所以卓越!
I型裂纹扩展过程的动画演示

---因为专注,所以卓越!
II型裂纹扩展过程的动画演示

---因为专注,所以卓越!
ABAQUS采用XFEM模 案例2 块实现压力容器的裂纹 过程的模拟,如果图所 示,压力容器与外部连 接的接口处存在初始微 裂纹,当容器内压力达 到一定程度,裂纹开始 启裂并扩展。 模型的建模与应用针对 工程实例,很好的展现 了XFEM强大的裂纹扩 展功能。
石油管道的裂纹扩展模拟
利用ABAQUS的XFEM方法实现石油管道的裂纹扩展,在 已知起始裂纹尺寸的情况下,根据外部载荷模拟裂纹的起 裂和扩展过程。 由于裂纹的尺寸较整体模型尺寸较小,因此采用用户子模 型的方法对局部进行更加细致的分析。
一、XFEM模块功能简述
ABAQUS V6.9及其以后的版本将拓展有限元方法引入到 其分析中,并增加了新的模块XFEM,该方法可以认为是 有限元方法处理不连续问题的革命性变革。这是第一个将 XFEM商用化的软件。 固体力学中存在两类典型的不连续问题,一类是因材料特 性突变引起的弱不连续问题,这类问题以双材料问题和夹 杂问题为代表,其复杂性由物理界面处的应变不连续性引 起;另一类是因物体内部几何突变引起的强不连续问题, 这类问题以裂纹问题为代表,其复杂性由几何界面处的位 移不连续性和端部的奇异性引起。物体内部物理界面的脱 粘或起裂,是上述两类问题的混合。

裂纹扩展的扩展有限元xfem模拟实例详解

裂纹扩展的扩展有限元xfem模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。

断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。

如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。

这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。

损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。

这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。

1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。

debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。

cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。

cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。

这样就避免了裂纹尖端的奇异性。

Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。

Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。

此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。

基于ABAQUS平台的扩展有限元方法

基于ABAQUS平台的扩展有限元方法

基于ABAQUS平台的扩展有限元方法断裂是一种失效模式。

在工程领域中,经常发生起源于断裂或终结于裂纹扩展的灾难性破坏事故,如压力管道的裂纹失稳扩展,机械构件的断裂,地震引起的地面开裂和房屋倒塌等,这些事故对我们的生命和生活造成了很大的影响。

由于产生裂纹的原因难以量化,因此裂纹出现后是否会继续扩展或发生止裂的断裂力学具有很重要的意义。

传统的断裂力学在剖分单元网格的时候必须考虑物体内部的缺陷,如裂纹,界面等,使单元边界与几何界面一致,这也就会形成局部网格加密,而其余区域稀疏的非均匀网格分布。

ABAQUS中单元的最小尺寸决定了显示计算时间增量的临界步长,过小的最小尺寸无疑会增加计算的成本;再有就是需要预先给定裂纹的扩展路径,裂纹只能沿单元边界扩展,难以形成任意裂纹路径。

扩展有限元方法(XFEM,extended finite element method,以下简称XFEM)的核心思想是用扩充的带有不连续性质的形函数基来代表计算域内的间断,因此在计算过程中,不连续场的描述完全独立于网格边界,这使其在处理断裂问题上具有很大的优势。

XFEM可以充分利用已知解析解答构造形函数基,在较粗网格上即能得到较精确的解答。

利用XFEM,还可以方便地模拟裂纹沿任意路径扩展。

ABAQUS中的XFEM可以用来研究裂纹的产生及模拟沿任意路径的裂纹扩展,而无需对模型进行网格重构。

XFEM可以用于三维实体模型、二维平面模型,不能用于三维的壳模型。

ABAQUS在Interaction模中定义XFEM裂纹,可以指定裂纹的初始位置,也可以不指定,让ABAQUS在分析过程中根据计算断裂区域的最大初始应力或应变确定裂纹的位置。

在ABAQUS中执行XFEM断裂分析,必须指定:断裂区域,裂纹生长(可选),裂纹初始位置(可选),富集半径,接触交互属性,损伤起始准则和分析类型,如静态分析,或隐式动态分析。

下面以一个例子演示ABAQUS中使用XFEM方法对平板中的边缘裂纹进行动态裂纹扩展预测。

扩展有限元的ABAQUS实现

扩展有限元的ABAQUS实现

扩展有限元的ABACUS实现绪论常规有限元方法(CEFM)和其他数值方法相比,具有一些无法比拟的优点, 但仍存在一些缺陷。

比如在解决类似裂纹这样的强不连续问题,山于裂纹尖端处的应力奇异性,导致计算量巨大而且精度不高。

然而扩展有限元方法(extended finite element method, XFEM)的出现,和常规有限元方法相比具有显著的优势, 使得我们可以在裂尖和应力、变形集中处划分高密度的网格,也可以方便的模拟裂纹的扩展,使讣算量不那么巨大,保留了常规有限元法的所有优点。

因此,扩展有限元得到了快速发展和应用,而且在裂纹的扩展研究中要的意义。

本文开展对扩展有限元方法和裂纹问题的研究,并且基于限元ABAQUS平台,对扩展有限元方法针对裂纹扩展问题进行模拟实现。

21世纪以来,计算机硬件和数值仿真的快速发展以及工业工程实践与科学研究中存在的大量运算需求,世界上涌现出一批大型科研运算及科学模拟软件,能够极大的简化运算问题以及计算机模拟实验,使我们能够更加方便地研究虚拟工程及相关科学问题。

有限元方法的出现为数值分析方法的研究带来了新的曙光,力学学科本来就是连接理工学科的桥梁,计算力学是U前力学发展的一个重要分支。

有限元软件则是我们到达工程科学领域彼岸的非常重要的工具和桥梁之一。

ABAQUS软件是世界上最强大的大型有限元计算分析软件之一,具有不同种类的单元类型、材料类型和不同的分析过程,拥有很好的计算功能和模拟性能。

ABAQUS软件不但可以进行一种部件和复杂物理场的分析,而且可以处理多系统的部件分析;不仅可以分析简单的线弹性问题,还可以处理复朵的非线性组合问题等,相比其它软件具有无可比拟的优势“】。

固体力学中存在的两类不连续问题之一则是因为物体内部儿何结构突变引起的强不连续问题,裂纹问题就是这类问题的代表。

山于儿何界面处的位移不连续性和裂纹尖端的应力奇异性使得这类问题的处理变得比较复杂。

有限元方法、无单元方法、边界元方法等是解决不连续问题的重要的数值方法⑶。

扩展有限元法的研究

扩展有限元法的研究

学位论文作者签名:谢海
日期: 2009 年 1 月 14 日
上海交通大学 学位论文版权使用授权书
本学位论文作者完全了解学校有关保留、 使用学位论文的规定, 同意学校保留并向国家 有关部门或机构送交论文的复印件和电子版, 允许论文被查阅和借阅。 本人授权上海交 通大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、 缩印或扫描等复制手段保存和汇编本学位论文。
上海交通大学 硕士学位论文 扩展有限元法的研究 姓名:谢海 申请学位级别:硕士 专业:固体力学 指导教师:冯淼林 20090101
上海交通大学硕士学位论文
扩展有限元法的研究 摘 要
扩展有限元法(the extended finite element method, XFEM)是解决以裂纹问题 为代表的不连续力学问题的有效方法,由于其在保留常规有限元(CFEM)所有优 点的基础上,解决了常规有限元需在应力集中区高密度划分单元的所带来的困 难,模拟裂纹生长时也无需网格重划分,而得到了快速的发展。本文介绍了扩展 有限元的基本理论,并通过编写 ABAQUS 用户子程序 UEL ,在商业软件 ABAQUS 平台的基础上实现了线弹性扩展有限元功能。 本文先介绍了有关单位分解法,水平集法的理论,然后论述了基于这两个方 法的扩展有限元法; 接着对 ABAQUS 用户子程序 UEL 进行简单的介绍, 并阐述 如果应用 UEL 在 ABAQUS 平台上实现 XFEM。 最后, 通过三个算例的比较可以 看出 XFEM 能在较粗糙的网格前提下,实现了较高的精度和准确度。
保密□,在 本学位论文属于 不保密□。√ (请在以上方框内打“√” )
年解密后适用本授权书。
学位论文作者签名: 谢海
指导教师签名:冯淼林

基于ABAQUS平台的扩展有限元方法

基于ABAQUS平台的扩展有限元方法

基于ABAQUS平台的扩展有限元方法扩展有限元方法(XFEM)是一种能够有效处理裂纹、接触、损伤等大变形、大变位问题的计算方法。

该方法扩展了传统有限元方法(FEM),使其能够更准确地模拟物体的断裂行为。

ABAQUS是一款常用的有限元分析软件,提供了XFEM功能,可以在其平台上进行XFEM分析。

XFEM的主要思想是在有限元网格中引入额外的自由度,这些自由度可以用来描述物体内部的裂纹、接触等特征。

通过在网格中引入额外的基函数,XFEM能够通过有限元分析获取到界面上的开裂和断裂行为,从而更准确地预测物体的破坏。

XFEM在ABAQUS平台上的应用主要包括以下几个方面。

1.裂纹模拟:XFEM能够准确地模拟裂纹的扩展行为。

在ABAQUS中,用户可以通过定义裂纹路径和裂纹扩展准则,来模拟裂纹在不同加载条件下的扩展过程。

同时,用户还可以对裂纹的形状、长度、位置等进行控制,以得到更准确的结果。

2.接触分析:XFEM可以模拟接触问题,包括刚性接触和非线性接触。

在ABAQUS中,用户可以通过定义接触面和接触行为,来模拟物体之间的接触行为。

XFEM能够考虑接触面的开裂和闭合,从而更准确地模拟接触问题。

3.损伤模拟:XFEM可以模拟材料的损伤行为,包括塑性、弹塑性和弹性损伤。

在ABAQUS中,用户可以通过定义损伤模型和损伤准则,来模拟材料的损伤行为。

XFEM能够考虑材料中的裂纹行为,从而更准确地模拟损伤问题。

4.多物理场耦合:XFEM可以模拟多个物理场的耦合问题,如固体力学和热传导、固体力学和流体力学等。

在ABAQUS中,用户可以通过定义不同物理场的边界条件和耦合关系,来模拟多物理场耦合问题。

XFEM能够考虑多物理场之间的相互作用,从而更准确地模拟多物理场问题。

总之,基于ABAQUS平台的扩展有限元方法可以更准确地模拟物体的断裂、接触、损伤等问题。

通过在有限元网格中引入额外的自由度,XFEM 能够更准确地描述物体内部的裂纹、接触等特征。

基于ABAQUS的钢筋混凝土构件有限元模型的建立

基于ABAQUS的钢筋混凝土构件有限元模型的建立

基于 ABAQUS的钢筋混凝土构件有限元模型的建立摘要:钢筋混凝土结构由钢筋和混凝土两种材料组成。

钢筋一般是包围于混凝土之中的,而且相对体积较小。

因此建立钢筋混凝土结构的有限元模型时,必须考虑到这一特点。

ABAQUS是一套功能非常强大的基于有限元方法的工程模拟软件,它可以解决从相对简单的线性分析到极富挑战性的非线性模拟等各种问题。

本文从模型的选取、单元的选取以及本构关系三个方面研究了如何建立混凝土构件有限元模型。

关键词:钢筋混凝土;ABAQUS;有限元模型1 模型的选取钢筋混凝土结构由钢筋和混凝土两种材料组成。

钢筋一般是包围于混凝土之中的,而且相对体积较小。

因此建立钢筋混凝土结构的有限元模型时,必须考虑到这一特点。

通常构成钢筋混凝土结构的有限元模型主要有三种方式:分离式、组合式和整体式。

1.1 分离式模型分离式模型是把混凝土和钢筋分别作为不同的单元来处理,即将混凝土和钢筋各自划分为足够小的单元。

在平面问题中,可以将混凝土划分为三角形单元或者四边形单元,也可将钢筋划分为三角形单元或四边形单元。

但钢筋作为一种细长材料,一般情况下可以忽略钢筋的横向抗剪强度,即把钢筋视为线性单元,这样不仅可以大大减少单元的数目,而且可以有效的避免钢筋单元划分太细而在钢筋与混凝土交界处应用太多的过渡单元。

1.2 组合式模型组合式模型适用于钢筋和混凝土之间具有较好的粘结性,可近似认为两者之间无相对滑移的情况。

常用两种方式:分层组合式和等参数单元。

分层组合式将构件在横截面上分成许多混凝土层和钢筋层,对对截面的应变作出某些假定(如应变沿截面高度为直线分布等)。

根据材料的实际应力应变关系和平衡条件可以到处单元的刚度表达式,分层组合法在杆件系统,尤其是钢筋混凝土板和壳结构中应用非常广泛。

1.3 整体式模型整体式模型是指将钢筋分布于整个单元中,并把单元作为均匀连续的材料来处理,它与分离式不同之处是,整体式模型求出的刚度矩阵是综合类钢筋与混凝土的矩阵,与组合式不同之处是,它一次求得综合的单元刚度矩阵,而不是先分别求出混凝土与钢筋对单元的贡献然后再进行组合。

Abaqus提取XFEM(扩展有限元)裂缝长度和缝隙面积(精品)

Abaqus提取XFEM(扩展有限元)裂缝长度和缝隙面积(精品)

Abaqus提取XFEM(扩展有限元)裂缝长度【壹讲壹插件】2015-7-20作者:星辰-北极星Abaqus提取XFEM(扩展有限元)裂缝长度 (1)第一部分:Abaqus 扩展有限元方法XFEM (2)1.1概要 (2)1.2这些你有注意到吗? (2)1.3 圆孔内压裂缝模拟实例 (2)1.3.1 部件建立 (2)1.3.2 材料性质定义(part1) (2)1.3.3 分析步定义 (3)1.3.4 参数输出 (3)1.3.5 接触模块定义Crack (3)1.3.6边界条件定义 (4)1.3.7 网格划分 (4)1.3.8初始地应力施加 (4)1.3.9 计算结果: (4)第二部分:扩展有限元裂缝长度求解 (5)2.1 概要 (5)2.2 基本求解思路: (5)第三部分:星辰-北极星插件介绍:POLARIS-XFEMCreckGeo2D (6)3.1 概要 (6)3.2 插件的主要功能 (6)3.3 使用注意事项 (6)3.4 插件使用简介 (7)3.4.1 打开插件 (7)3.4.2 数据获取 (7)3.4.3 裂缝信息获取 (8)3.4.4 示例 (8)第一部分:Abaqus 扩展有限元方法XFEM文章转自:/908754116/blog/14374022441.1概要XFEM即扩展有限元方法,它在标准有限元框架内研究问题,保留了有限元方法的所有优点。

扩展有限元法与有限元法最根本的区别在于所使用的网格与结构内部的几何或物理界面无关,从而克服了在诸如裂纹尖端等高应力和变形集中区进行高密度网格划分所带来的困难,在模拟裂纹扩展时也无需对网格进行重新划分。

如果要正常地使用它,我们首先要了解Abaqus中的扩展有限元方法有哪些特别,它在理论上做了哪些简化等,帮助文档进行了很好的讲解:《Abaqus Analysis User's Manual》10.7.1 Modeling discontinuities as an enriched feature using the extended finite element method。

物流仿真软件的应用现状与发展

物流仿真软件的应用现状与发展

物流仿真软件的应用现状与发展随着全球化和互联网的快速发展,物流行业逐渐成为国民经济的重要组成部分。

而物流仿真软件作为提高物流效率和优化物流方案的重要工具,越来越受到业内人士的。

本文将介绍物流仿真软件的应用现状与发展趋势,希望对大家有所帮助。

物流仿真软件是一种通过计算机技术对物流系统进行模拟和仿真的软件工具。

它可以帮助企业或机构在规划阶段对物流系统进行模拟和测试,以便发现潜在的问题和优化点,从而减少实际运营中的风险和成本。

物流仿真软件的应用范围广泛,涉及生产、流通、运输等多个领域。

物流仿真软件的市场应用已经逐渐成熟。

在国内外众多企业和研究机构的推动下,物流仿真软件的技术水平不断提升,应用领域也日益扩大。

目前,物流仿真软件主要应用于以下方面:市场需求随着企业对于物流效率的重视程度不断提高,物流仿真软件的市场需求也不断增加。

企业需要利用物流仿真软件来优化物流系统,提升物流效率和降低成本。

同时,各级政府也需要通过物流仿真软件来评估区域物流发展的状况,制定合理的政策和规划。

技术特点物流仿真软件的技术特点主要包括仿真模型构建、数据分析和可视化三个方面。

仿真模型构建是物流仿真软件的核心,它通过模拟实际物流系统的运行状态,生成仿真的数据输入。

数据分析则通过对仿真数据进行分析和处理,提取有用的信息和知识,帮助用户做出决策。

可视化则是将仿真结果以图形、图像等形式呈现给用户,提高用户的理解和使用效率。

应用领域物流仿真软件的应用领域非常广泛,几乎涵盖了物流行业的各个方面。

例如,在生产型企业中,可以利用物流仿真软件来优化生产物流系统和库存管理;在商贸企业中,可以利用物流仿真软件来评估销售和采购策略的合理性;在物流企业中,可以利用物流仿真软件来提高运输和配送效率,降低成本。

市场前景随着国内企业对物流效率的重视程度不断提高以及新零售、智能制造等新兴行业的快速发展,物流仿真软件的市场前景非常广阔。

未来,物流仿真软件将渗透到更多的行业中,成为优化物流系统和提升企业竞争力的重要工具。

基于ABAQUS的桥梁三维仿真及分析

基于ABAQUS的桥梁三维仿真及分析

最后,根据仿真分析的结果,可以对重力坝的结构安全性进行评价。根据重 力坝的响应情况,可以对其在地震作用下的稳定性、损伤情况以及可能的破坏模 式进行评估。这些信息对于结构的优化设计、地震灾害的预防和控制具有重要的 意义。
总结来说,基于ABAQUS的混凝土重力坝地震响应仿真分析是一种有效的数值 模拟方法,它可以模拟重力坝在地震作用下的真实响应情况。通过这种方法,我 们可以更好地理解重力坝的地震行为,为其设计和优化提供重要的依据。
裂纹扩展仿真软件基于ABAQUS平台开发,它采用了先进的有限元方法对裂纹 的扩展过程进行模拟。该软件可以处理各种材料的裂纹萌生和扩展问题,包括金 属、混凝土和复合材料等。此外,该软件还支持多种裂纹扩展准则,如最大主应 力准则、能量释放率准则等。
与传统仿真方法相比,该软件具有以下优点:
1、更加精确:该软件考虑了裂纹面的相互作用,可以准确地模拟裂纹的扩 展行为。
其次,在对重力坝进行地震响应分析时,需应用地震波输入。在ABAQUS中, 可以通过地动位移边界或地震波函数来模拟地震输入。根据地震波的特性,可以 将其输入到模型的底部边界,以模拟地震对重力坝的作用。
在模拟过程中,需要对模型进行求解计算。ABAQUS提供了多种求解器选项, 可以要对模型的 响应进行监测,以了解重力坝在地震作用下的变形、裂缝扩展等情况。
2、适用范围广:ABAQUS支持多种物理场的模拟分析,可以广泛应用于各种 类型和规模的桥梁分析。
3、自动化程度高:ABAQUS提供了丰富的用户界面和强大的自动化功能,使 得仿真过程变得简单便捷。
4、定制化程度高:ABAQUS允许用户根据具体需求自定义分析流程和参数设 置,具有很高的灵活性。
5、前后处理功能强大:ABAQUS具备强大的图形处理和可视化功能,可以方 便地创建和修改模型,同时还能直观地展示分析结果。

航空器复合材料胶接接头设计(ABAQUS-XFEM)

航空器复合材料胶接接头设计(ABAQUS-XFEM)

摘要复合材料结构的连接形式主要分为胶接和机械连接,随着复合材料在航空航天领域的广泛应用,胶接因其在复合材料结构连接中的优良特性日益受到结构设计人员的青睐,具有连接效率高、结构轻、抗疲劳、密封性好等优点。

然而胶接设计也具有很大的挑战性,在结构强度计算中,胶接连接接头部位一般为危险部位,需要重点校核。

所以,对复合材料胶接接头的设计分析是十分必要的。

本选题利用成熟的有限元商用软件ABAQUS,使用XFEM(扩展有限元法)对胶层和复合材料层的应力场等进行分析。

通过分析计算这些应力,同时应用相应的失效准则,进而可预测初始裂纹的扩展与否及扩展的长度,为胶接接头设计的选择提供必要的依据。

在文章中,讨论了胶接长度、胶层厚度和初始裂纹的位置对裂纹扩展的影响。

通过对仿真结果的分析,提出了减小胶接长度和胶层厚度的观点,指出裂纹易于产生及扩展的区域,对胶接接头的设计进行了优化。

胶接接头的优化设计对拓宽复合材料在飞机结构上的应用范围,进一步减轻结构重量、提高疲劳性能和降低制造成本具有重要的工程使用价值。

关键词:复合材料板胶接接头扩展有限元裂纹扩展AbstractThe joint methods of composite structure contain cementing and mechanical connection.. With the use of composite in the field of aviation increased a lot in recent years for its high strength and lightness, the cementing is increasingly favored by the structure design staff for its excellent characteristics in the connection field of composite structure. The characteristics are high ligation efficiency, light structure, antifatigue and good sealing. However, glued design also has a great challenge. In the structural strength calculations, glued joints are generally connected to dangerous parts and need to focus on checking. Therefore, the design and analysis of composite bonded joint is very necessary.The topic use the sophisticated and commercial software -ABAQUS, in the field of finite element, and use XFEM ( extended finite element method ) as the foundation to analysis the stress field of bonding layers and composite layers. By analyzing and calculating these stresses, while applying the appropriate failure criterion, we can predict the initial crack extension and the length of the expansion. In this way, it can provide the necessary basis for the design of bonding joints. In the article, we discussed the impact of the bonding length, layer thickness and initial crack location on crack propagation. Through the analysis of simulation results, we presented two standpoints of reducing the length of bonding joint and the thickness of adhesive. Besides, we pointed the areas where cracks are easy to generate and expand. Optimal design of adhesive joints in composite materials has important engineering value to broaden the scope of application of the aircraft structure and further reduce the structural weight, improve the performance of fatigue and reduce manufacturing costs.Keywords:Composite plates, Adhesive joints, XFEM, Crack extension目录摘要 (I)Abstract ....................................................... I I 目录.......................................................... I II 第一章引言.. (1)1.1导言 (1)1.2胶接连接 (2)1.2.1 简介 (2)1.2.2胶接连接应当注意的问题 (3)1.2.3胶接连接研究现状 (3)1.3 胶接接头 (4)1.3.1胶接接头简介 (4)1.3.2胶接接头的基本形式 (5)1.3.3胶接接头的破坏模式 (6)1.3.4胶接接头处可能出现的裂纹及其影响 (7)第二章复合材料损伤和胶接连接的力学模型 (8)2.1导言 (8)2.2复合材料层板强度预测 (8)2.3复合材料和胶层断裂准则 (10)第三章利用ABAQUS建立复合材料胶接接的有限元模型 (13)3.1扩展有限元方法和工程软件ABAQUS简介 (13)3.1.1传统有限元方法 (13)3.1.2扩展有限元方法及基本原理 (14)3.1.3ABAQUS简介 (15)3.2利用ABAQUS建立复合材料板胶接模型的过程 (16)3.2.1几何模型的建立和约束条件 (16)3.2.2材料属性 (17)3.2.3定义接触 (19)3.2.4 对于XFEM定义 (19)第四章基于裂纹扩展分析的单面搭接接头设计 (21)4.1复合材料胶接接头在纵向载荷下的受力分析 (21)4.2不同搭接长度下胶接接头的裂纹扩展情况 (23)4.2.1搭接长度为15mm的情况 (23)4.2.2搭接长度为10mm的情况 (25)4.2.3搭接长度为20mm的情况 (26)4.2.4不同搭接长度下裂纹情况的对比及结论 (28)4.3不同胶层厚度下胶接接头的裂纹扩展情况 (29)4.3.1胶层厚度为0.1mm的情况 (29)4.3.2胶层厚度为0.2mm的情况 (31)4.3.3胶层厚度为0.3mm的情况 (33)4.3.4不同胶层厚度下裂纹情况的对比及结论 (34)带五章基于裂纹扩展的斜面搭接接头设计 (37)5.1斜面搭接接头在纵向载荷下的受力分析 (37)5.2不同裂纹位置下胶接接头的裂纹扩展情况 (38)5.2.1选取的三种不同裂纹位置 (39)5.2.2裂纹的扩展情况 (40)5.2.3三种情况对比及结论 (42)5.3单面搭接和斜面搭接情况的对比 (43)第六章全文总结及展望 (46)6.1全文总结 (46)6.2展望 (47)致谢辞 (49)参考文献 (50)第一章引言1.1导言复合材料作为一种新材料,在最近的半个多世纪中飞速发展,由于复合材料采用纤维加强结构,使得复合材料具有比重小、比强度和比模量大的特点,并且由于采用的是铺层结构,制造过程简单,容易成型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于ABAQUS平台的扩展有限元方法
断裂是一种失效模式。

在工程领域中,经常发生起源于断裂或终结于裂纹扩展的灾难性破坏事故,如压力管道的裂纹失稳扩展,机械构件的断裂,地震引起的地面开裂和房屋倒塌等,这些事故对我们的生命和生活造成了很大的影响。

由于产生裂纹的原因难以量化,因此裂纹出现后是否会继续扩展或发生止裂的断裂力学具有很重要的意义。

传统的断裂力学在剖分单元网格的时候必须考虑物体内部的缺陷,如裂纹,界面等,使单元边界与几何界面一致,这也就会形成局部网格加密,而其余区域稀疏的非均匀网格分布。

ABAQUS中单元的最小尺寸决定了显示计算时间增量的临界步长,过小的最小尺寸无疑会增加计算的成本;再有就是需要预先给定裂纹的扩展路径,裂纹只能沿单元边界扩展,难以形成任意裂纹路径。

扩展有限元方法(XFEM,extended finite element method,以下简称XFEM)的核心思想是用扩充的带有不连续性质的形函数基来代表计算域内的间断,因此在计算过程中,不连续场的描述完全独立于网格边界,这使其在处理断裂问题上具有很大的优势。

XFEM可以充分利用已知解析解答构造形函数基,在较粗网格上即能得到较精确的解答。

利用XFEM,还可以方便地模拟裂纹沿任意路径扩展。

ABAQUS中的XFEM可以用来研究裂纹的产生及模拟沿任意路径的裂纹扩展,而无需对模型进行网格重构。

XFEM可以用于三维实体模型、二维平面模型,不能用于三维的壳模型。

ABAQUS在Interaction模中定义XFEM裂纹,可以指定裂纹的初始位置,也可以不指定,让ABAQUS在分析过程中根据计算断裂区域的最大初始应力或应变确定裂纹的位置。

在ABAQUS中执行XFEM断裂分析,必须指定:断裂区域,裂纹生长(可选),裂纹初始位置(可选),富集半径,接触交互属性,损伤起始准则和分析类型,如静态分析,或隐式动态分析。

下面以一个例子演示ABAQUS中使用XFEM方法对平板中的边缘裂纹进行动态裂纹扩展预测。

1.几何和模型
本文研究的是一个带边缘裂纹的平板,如下图所示,其中L=0.003m,W=0.0015m,初始裂纹长度a=0.0015m,板的下部受到一个沿水平方向的脉冲载荷,载荷作用的速度为:
其中=25m/s,s。

右图为装配完成的模型。

2.材料
富集单元中材料属性的材料数据为:杨氏模量E=3.24GPa,密度=1190kg/m3,泊松比=0.35。

指定模型中富集单元内黏结行为的响应。

使用最大初始应力失效准则作为损伤起始的判据,使用基于能量法断裂准则的损伤演化来模拟裂纹的扩展。

相关的材料数据如下图所示:
3.分析步
创建Dynamic,Implicit分析步,打开几何非线性。

在Field输出里勾选Failure/Fracture>PHILSM,以及State/Field/User/Time>STATUSXFEM,设置后处理中的裂纹显示,否则后处理结果中将不显示裂纹。

4.创建裂纹
进入Interaction界面,选择Special>Crack>Creat来创建裂纹,在弹出的菜单中选择XFEM方式,同时给裂纹命名。

点击Continue,选择断裂区域为整个平板,然后点击中键确认。

接下来选择裂纹,勾选Crack location,手动选择模型中作为裂纹的一条线,中键确认。

点击OK,完成裂纹创建。

5.边界条件
进入Load模块,选择BC,将板的上边缘固定,在板的下部施加沿Y方向的脉冲载荷,载荷数值如1所述。

6.网格
单元类型选择为平面应变单元CPS4,不需要对裂纹划分网格。

7.结果分析
下图所示为t=6.0s时的裂纹轮廓。

可以看到裂纹的扩展独立于网格。

相关文档
最新文档