线线,线面,面面垂直关系
立体几何常考定理的总结(八大定理)
lmβααba立体几何的八大定理一、线面平行的判定定理:线线平行⇒线面平行文字语言:如果平面外.的一条直线与平面内.的一条直线平行,则这条直线与平面平行. 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α关键点:在平面内找一条与平面外的直线平行的线...................... 二、线面平行的性质定理:线面平行⇒线线平行文字语言:如果一条直线和一个平面平行,经过..这条直线的平面和这个平面相交..,那么这条直线就和交线..平行. 符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m关键点:需要借助一个经过已知直线的平面,接着找交线。
.......................... 三、面面平行的判定定理:线面平行⇒ 面面平行文字语言:如果一个平面内.有两.条相交..直线都平行..于另一个平面..,那么这两个平面平行. 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。
................................... 四、面面平行的性质定理: 面面平行⇒线线平行、面面平行⇒线面平行 文字语言:如果两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行. 符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭关键点:找第三个平面与已知平面都相.................交,则交线平行.......文字语言:如果两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面.符号语言://,//a a αβαβ⊂⇒ 关键:只要是其中一个平面内的直线就行..................nmAαaBA l βαaβα五、线面垂直的判定定理:线线垂直⇒线面垂直文字语言:如果一条直线和一个平面内.的两.条相交..直线垂直..,那么这条直线垂直于这个平面. 符号语言:,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭关键点:在平面内找两条相交直线与所要证的直线垂直........................ 六、线面垂直的性质定理:线面垂直⇒线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意..一条直线. 符号语言:l l a a αα⊥⎫⇒⊥⎬⊂⎭关键点:往往线面垂直中的线线垂直需要用这个定理推出......................... 七、平面与平面垂直的判定定理:线面垂直⇒面面垂直文字语言:如果一个平面经过..另一个平面的一条垂线,则这两个平面互相垂直. (如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直)符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭关键点:....在需要证明的两个平面中找线面垂直................八、平面与平面垂直的性质定理:面面垂直⇒线面垂直文字语言:如果两个平面互相垂直,那么在一个平面内垂直..于它们的交线..的直线垂直于另一个平面.符号语言:l AB AB AB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭关键点:先找交线,再在其中一个面内找与交线垂直的线。
线面平行垂直知识点
立体几何知识点总结一、平面通常用一个平行四边形来表示.平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:a)A∈l—点A在直线l上;A∉α—点A不在平面α内;b)l⊂α—直线l在平面α内;c)a⊄α—直线a不在平面α内;d)l∩m=A—直线l与直线m相交于A点;e)α∩l=A—平面α与直线l交于A点;f)α∩β=l—平面α与平面β相交于直线l.二、平面的基本性质公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3 经过不在同一直线上的三个点,有且只有一个平面.根据上面的公理,可得以下推论.推论1 经过一条直线和这条直线外一点,有且只有一个平面.推论2 经过两条相交直线,有且只有一个平面.推论3 经过两条平行直线,有且只有一个平面.公理4 平行于同一条直线的两条直线互相平行三、证题方法四、空间线面的位置关系共面平行—没有公共点(1)直线与直线相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有无数个公共点(2)直线和平面直线不在平面内平行—没有公共点(直线在平面外) 相交—有且只有一公共点(3)平面与平面相交—有一条公共直线(无数个公共点)平行—没有公共点五、异面直线的判定证明两条直线是异面直线通常采用反证法.有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”.六、线面平行与垂直的判定(1)两直线平行的判定①定义:在同一个平面内,且没有公共点的两条直线平行.②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,a ∥β④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b(线面垂直的性质定理)⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b(面面平行的性质公理)⑥中位线定理、平行四边形、比例线段……,α∩β=b,则a∥b.(线面平行的判定定理)③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c.(公理4)(2)两直线垂直的判定①定义:若两直线成90°角,则这两直线互相垂直.②一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b∥c,a⊥b,则a⊥c③一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.即若a⊥α,b⊂α,a⊥b.④三垂线定理和逆定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直.⑤如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a∥α,b⊥α,则a⊥b.(3)直线与平面平行的判定①定义:若一条直线和平面没有公共点,则这直线与这个平面平行.②如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.即若a⊄α,b⊂α,a∥b,则a∥α.(线面平行的判定定理)③两个平面平行,其中一个平面内的直线平行于另一个平面,即若α∥β,l⊂α,则l∥β.(4)直线与平面垂直的判定①定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直.②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.即若m⊂α,n⊂α,m∩n=B,l⊥m,l⊥n,则l⊥α.(线面垂直判定定理)③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若l∥a,a⊥α,则l⊥α.④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若α∥β,l⊥β,则l⊥α.⑤如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若α⊥β,a∩β=α,l⊂β,l⊥a,则l⊥α.(面面垂直的性质定理)(5)两平面平行的判定①定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点⇔α∥β.②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b⊂α,a∩b=P,a∥β,b ∥β,则α∥β.(面面平行判定定理)推论:一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,b⊂α,c,d⊂β,a∩b=P,a∥c,b∥d,则α∥β.(6)两平面垂直的判定①定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角α-a-β=90°⇔α⊥β.②如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l⊥β,l⊂α,则α⊥β.(面面垂直判定定理)七、空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.1、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a ′∥a,b ′∥b,则a ′和b ′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小. 2、直线和平面所成的角——斜线和射影所成的锐角 (1)取值范围0°≤θ≤90° (2)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ. ②解含θ的三角形,求出其大小. 3、二面角及二面角的平面角(1)半平面 直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角 条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180° (3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.如图,∠PCD 是二面角α-AB-β的平面角.平面角∠PCD 的大小与顶点C 在棱AB 上的位置无关. ②二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB ⊥平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD ⊥α,平面PCD ⊥β. ③找(或作)二面角的平面角的主要方法.(i)定义法 (ii)垂面法 (iii)三垂线法 (Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值. 八.空间的各种距离 点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离. (2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S ·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.直线和平面的距离、平行平面的距离将线面、面面距离转化为点面距离,然后运用解三角形或体积法求解之.空间直线和平面(一)知识结构(二)平行与垂直关系的论证1、线线、线面、面面平行关系的转化:线线∥线面∥面面∥公理4 (a//b,b//ca//c)线面平行判定αβαγβγ//,//==⇒⎫⎬⎭a ba b面面平行判定1a ba ba//,//⊄⊂⇒⎫⎬⎭ααα面面平行性质a ba b Aa b⊂⊂=⇒⎫⎬⎪⎭⎪ααββαβ,//,////线面平行性质aaba b////αβαβ⊂=⇒⎫⎬⎪⎭⎪面面平行性质1αβαβ////aa⊂⇒⎫⎬⎭面面平行性质αγβγαβ//////⎫⎬⎭⇒A bα aβabα2. 线线、线面、面面垂直关系的转化:a a OA a PO a PO a AO⊂⊥⇒⊥⊥⇒⊥αα在内射影则面面垂直判定线面垂直定义l a l a⊥⊂⇒⊥⎫⎬⎭αα面面垂直性质,推论2αβαββα⊥=⊂⊥⇒⊥⎫⎬⎪⎭⎪ b a a b a , αγβγαβγ⊥⊥=⇒⊥⎫⎬⎪⎭⎪ a a面面垂直定义αβαβαβ =--⇒⊥⎫⎬⎭l l ,且二面角成直二面角3. 平行与垂直关系的转化:面面∥面面平行判定2 线面垂直性质2面面平行性质3a b a b //⊥⇒⊥⎫⎬⎭ααa b a b ⊥⊥⇒⎫⎬⎭αα//a a ⊥⊥⇒⎫⎬⎭αβαβ//αβαβ//a a ⊥⊥⎫⎬⎭a4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。
线线垂直、线面垂直、面面垂直的判定和性质
空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。
推理模式:直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。
2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。
推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 就是圆O 的直径,C 就是圆周上一点,PA ⊥平面ABC.(1)求证:平面PAC ⊥平面PBC;(2)若D 也就是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 就是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 就是棱CC 1的中点 (Ⅰ)求异面直线A 1M 与C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 就是圆O的直径,C就是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F就是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 就是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明您的结论6、S 就是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB⊥平面SBC,求证AB ⊥BC 、7、在四棱锥中,底面ABCD 就是正方形,侧面VAD 就是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD 、求证:AB DE ⊥VDC B A SAB9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD,AB=AD,∠BAD=60°,E 、F 分别就是AP 、AD 的中点求证:(1)直线EF ‖平面PCD;(2)平面BEF ⊥平面PAD10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,、过A 作SB AF ⊥,垂足为F ,点G E ,分别就是棱SC SA ,的中点。
线面垂直、面面垂直的性质与判定定理
a
l
a
a l
作用: 面面垂直线面垂直
垂直体系
判定
判定
线线垂
线面垂直 面面垂直
直
定义
性质
问题2 , a , a ,判断a与位置关系
α
a
a //
l
问题3: β
思考:已知平面,,直线a,且 , AB,
a //, a AB,试判断直线a与平面的位置关系。
α
Aa
β
a⊥β
符号语言:
ab
a ,b a / /b
α
线面垂垂直的性质
温故知新
面面垂直的判定方法: 1、定义法:
找二面角的平面角
说明该平面角是直角。
2、判定定理:
要证两平面垂直,只要在其中一个平面内找到 另一个平面的一条垂线。
(线面垂直面面垂直)
知识探究:
思考1:如果平面α与平面β互相垂直,
S
平面SAB∩平面SBC=SB,
∴AD⊥平面SBC
∵BC 平面SBC
A
C
∴AD⊥BC
∵SA⊥平面ABC,BC 平面ABC
B
∴SA⊥BC
“从已知想性质,从求证
∵SA∩AD=A,
想判定”这是证明几何问
∴BC⊥平面SAB
题的基本思维方法.
∵AB 平面ABC ∴AB⊥BC
课堂小结
1、证题原则:注从已意知想辅性助质,线从求的证作想判用定
B
例3 , a , a ,判断a与位置关系
证明:设 l
α a //
在α内作直线b⊥l
b
a
l
β
b
bl
l
b 又a
线面垂直
a // b 性质
线线-线面-面面垂直关系
已知平面α和β相互垂直,直 线l在平面α内,且与β相交于 点A。过点A作直线m与α平 行。求证:m与β垂直。
由于l在α内且与β相交于点A, 根据面面垂直的性质定理我 们可以得出l与β垂直。又因为 m过点A且与α平行,根据平 行线的性质我们可以得出m与 l平行。因此m也与β垂直。
05 综合应用与拓展延伸
空间中垂直关系综合应用
01
利用线面垂直判定定理证明线面垂直
通过证明一条直线与平面内两条相交直线都垂直,可以判定该直线与平
面垂直。
02
利用面面垂直性质定理证明线面垂直
如果两个平面垂直,那么在一个平面内垂直于它们交线的直线与另一个
平面垂直。
03
利用线面垂直性质定理证明面面垂直
如果一条直线同时垂直于两个平行平面,那么这两个平面互相垂直。
感谢您的观看
典型例题解析
例题1
解析
已知直线l1的方程为Ax+By+C1=0,直线l2 的方程为Ax+By+C2=0,且C1≠C2,求证: l1⊥l2。
由于l1和l2的A、B系数相同,因此它们的法 向量相同,根据直线间垂直的条件,可知 l1⊥l2。
例题2
解析
在三角形ABC中,已知AB⊥AC,AD是BC边 上的高,求证:AD^2=BD×CD。
如果两个平面相互垂直,那么它们的 法线也相互解析
已知平面α和β相互垂直,直 线a在平面α内,直线b在平面 β内,且a与β不垂直,b与α 不垂直。求证:a与b不平行。
假设a与b平行,由于a在α内, b在β内,且α与β相互垂直, 根据面面垂直的性质定理, 我们可以得出a与β也相互垂 直。这与题目中给出的a与β 不垂直相矛盾,因此假设不 成立,所以a与b不平行。
线面平行垂直知识点
立体几何知识点总结一、平面通常用一个平行四边形来表示.平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:a)A∈l—点A在直线l上;A∉α—点A不在平面α内;b)l⊂α—直线l在平面α内;c)a⊄α—直线a不在平面α内;d)l∩m=A—直线l与直线m相交于A点;e)α∩l=A—平面α与直线l交于A点;f)α∩β=l—平面α与平面β相交于直线l.二、平面的根本性质公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3经过不在同一直线上的三个点,有且只有一个平面.根据上面的公理,可得以下推论.推论1经过一条直线和这条直线外一点,有且只有一个平面.推论2经过两条相交直线,有且只有一个平面.推论3经过两条平行直线,有且只有一个平面.公理4 平行于同一条直线的两条直线互相平行三、证题方法四、空间线面的位置关系共面平行—没有公共点(1)直线与直线相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有无数个公共点(2)直线和平面直线不在平面内平行—没有公共点(直线在平面外)相交—有且只有一公共点(3)平面与平面相交—有一条公共直线(无数个公共点)平行—没有公共点五、异面直线的判定证明两条直线是异面直线通常采用反证法.有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线〞.六、线面平行与垂直的判定(1)两直线平行的判定①定义:在同一个平面内,且没有公共点的两条直线平行.②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即假设a∥α,a∥β④垂直于同一平面的两直线平行,即假设a⊥α,b⊥α,那么a∥b〔线面垂直的性质定理〕⑤两平行平面与同一个平面相交,那么两条交线平行,即假设α∥β,α∩γ,β∩γ=b,那么a∥b〔面面平行的性质公理〕⑥中位线定理、平行四边形、比例线段……,α∩β=b,那么a∥b.〔线面平行的判定定理〕③平行于同一直线的两直线平行,即假设a∥b,b∥c,那么a∥c.〔公理4〕(2)两直线垂直的判定①定义:假设两直线成90°角,那么这两直线互相垂直.②一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即假设b∥c,a⊥b,那么a⊥c③一条直线垂直于一个平面,那么垂直于这个平面内的任意一条直线.即假设a⊥α,b⊂α,a⊥b.④三垂线定理和逆定理:在平面内的一条直线,假设和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.⑤如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即假设a∥α,b⊥α,那么a⊥b.(3)直线与平面平行的判定①定义:假设一条直线和平面没有公共点,那么这直线与这个平面平行.②如果平面外一条直线和这个平面内的一条直线平行,那么这条直线与这个平面平行.即假设a⊄α,b⊂α,a ∥b,那么a∥α.〔线面平行的判定定理〕③两个平面平行,其中一个平面内的直线平行于另一个平面,即假设α∥β,l⊂α,那么l∥β.(4)直线与平面垂直的判定①定义:假设一条直线和一个平面内的任何一条直线垂直,那么这条直线和这个平面垂直.②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.即假设m⊂α,n⊂α,m∩n=B,l⊥m,l⊥n,那么l⊥α.〔线面垂直判定定理〕③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即假设l∥a,a⊥α,那么l⊥α.④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即假设α∥β,l⊥β,那么l⊥α.⑤如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即假设α⊥β,a∩β=α,l⊂β,l⊥a,那么l⊥α.(面面垂直的性质定理)(5)两平面平行的判定①定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点⇔α∥β.②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即假设a,b⊂α,a∩b=P,a∥β,b∥β,那么α∥β.〔面面平行判定定理〕推论:一个平面内的两条直线分别平行于另一平面内的两条相交直线,那么这两个平面平行,即假设a,b⊂α,c,d⊂β,a∩b=P,a∥c,b∥d,那么α∥β.(6)两平面垂直的判定①定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角α-a-β=90°⇔α⊥β.②如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即假设l⊥β,l⊂α,那么α⊥β.〔面面垂直判定定理〕七、空间中的各种角等角定理及其推论定理假设一个角的两边和另一个角的两边分别平行,并且方向一样,那么这两个角相等.推论假设两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.1、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a ′∥a,b ′∥b,那么a ′和b ′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值X 围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小. 2、直线和平面所成的角——斜线和射影所成的锐角 (1)取值X 围0°≤θ≤90° (2)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ. ②解含θ的三角形,求出其大小. 3、二面角及二面角的平面角(1)半平面直线把平面分成两个局部,每一局部都叫做半平面.(2)二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.假设两个平面相交,那么以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值X 围是0°<θ≤180° (3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.如图,∠PCD 是二面角α-AB-β的平面角.平面角∠PCD 的大小与顶点C 在棱AB 上的位置无关. ②二面角的平面角具有以下性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB ⊥平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD ⊥α,平面PCD ⊥β. ③找(或作)二面角的平面角的主要方法.(i)定义法 〔ii)垂面法 (iii)三垂线法 (Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值. 八.空间的各种距离 点到平面的距离(1)定义面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离. (2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S ·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造适宜的三棱锥以便于计算.直线和平面的距离、平行平面的距离将线面、面面距离转化为点面距离,然后运用解三角形或体积法求解之.空间直线和平面〔一〕知识构造〔二〕平行与垂直关系的论证1、线线、线面、面面平行关系的转化:线线∥线面∥面面∥公理4 (a//b,b//ca//c)线面平行判定αβαγβγ//,//==⇒⎫⎬⎭a ba b面面平行判定1a ba ba//,//⊄⊂⇒⎫⎬⎭ααα面面平行性质a ba b Aa b⊂⊂=⇒⎫⎬⎪⎭⎪ααββαβ,//,////线面平行性质aaba b////αβαβ⊂=⇒⎫⎬⎪⎭⎪面面平行性质1αβαβ////aa⊂⇒⎫⎬⎭面面平行性质αγβγαβ//////⎫⎬⎭⇒A bα aβabα2. 线线、线面、面面垂直关系的转化:a a OA a PO a PO a AO⊂⊥⇒⊥⊥⇒⊥αα在内射影则面面垂直判定线面垂直定义l a l a⊥⊂⇒⊥⎫⎬⎭αα面面垂直性质,推论2αβαββα⊥=⊂⊥⇒⊥⎫⎬⎪⎭⎪ b a a b a , αγβγαβγ⊥⊥=⇒⊥⎫⎬⎪⎭⎪ a a面面垂直定义αβαβαβ =--⇒⊥⎫⎬⎭l l ,且二面角成直二面角3. 平行与垂直关系的转化:面面∥面面平行判定2 线面垂直性质2面面平行性质3a b a b //⊥⇒⊥⎫⎬⎭ααa b a b ⊥⊥⇒⎫⎬⎭αα//a a ⊥⊥⇒⎫⎬⎭αβαβ//αβαβ//a a ⊥⊥⎫⎬⎭a4. 应用以上“转化〞的根本思路——“由求证想判定,由想性质。
线线垂直线面垂直面面垂直的判定与性质
线线垂直线面垂直面面垂直的判定与性质Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。
推理模式:直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。
2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。
推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC .(1)求证:平面PAC ⊥平面PBC ;(2)若D 也是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点 (Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 是圆O的直径,C是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF 并证明你的结论6、S 是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB ⊥平面SBC,求证AB ⊥BC.7、在四棱锥中,底面ABCD 是正方形,侧面VAD 是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD .求证:AB DE ⊥ 9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点求证:(1)直线EF ‖平面PCD ;(2)平面BEF ⊥平面PADVDCBA SA10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,.过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点。
线面垂直 面面垂直的性质与判定定理
A
又⊥β,∩β=AB
辅助线(面):
所以b⊥β
发展条件的使解题过 程获得突破的
进而a⊥β
【课后自测】4、如图,已知SA⊥平面ABC,
平面SAB⊥平面SBC,求证:AB⊥BC
证明:过点A作AD⊥SB于D, ∵平面SAB⊥平面SBC,
S
平面SAB∩平面SBC=SB,
∴AD⊥平面SBC
符号语言:
ab
a ,b a//b
α
线面垂直关 系
线线平行关 系
平面与平面垂直的性质
温故知新
面面垂直的判定方法: 1、定义法:
找二面角的平面角
说明该平面角是直角。
2、判定定理:
要证两平面垂直,只要在其中一个平面内找到 另一个平面的一条垂线。
(线面垂直面面垂直)
知识探究:
思考1:如果平面α与平面β互相垂直,
a/ / ,aA,B 试判断 a与直 平 的 线 面 位置关
α
Aa
β
a⊥β
B
例3 ,a ,a ,判 断 a 与 位 置 关 系
证明:设 I l
α a //
在α内作直线b⊥l
b
a
l
β
I b b
l
l
b
α 发展条件
转化结论
CB
D β
E 证明:在平面β内过D作直线
A
DE ⊥AB
则 CD 是 E二面 -A B 角 的平面
由 ⊥β 得CD ⊥ DE
又CD ⊥ AB, 且DE ∩ AB =D
所以直线CD⊥平面β
平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线 的直线与另一个平面垂直。
线面垂直、面面垂直的性质与判定定理
垂直体系
判定
判定
线线垂
线面垂直 面面垂直
直
定义
性质
问题2 ,a ,a ,判 断 a 与 位 置 关 系
α
a
a //
l
问题3: β
思考:已 , 知 ,平 直 a,且 面 线 ,A,B
a//,aA,B 试判断 a与 直 平 线 的 面位置关
α
Aa
β
a⊥β
B
例3 ,a ,a ,判 断 a 与 位 置 关 系
∵BC 平面SBC
A
C
∴AD⊥BC
∵SA⊥平面ABC,BC 平面ABC
B
∴SA⊥BC
“从已知想性质,从求证
∵SA∩AD=A,
想判定”这是证明几何问
∴BC⊥平面SAB
题的基本思维方法.
∵AB 平面ABC ∴AB⊥BC
课堂小结
1、证题原则 注从已意知想辅性助质,线从求的证作想判用定
: 2、会利用“转化思想”解决垂直问题
A
DE ⊥AB
则 CD 是 E二面 -A B 角 的平面
由 ⊥β 得CD ⊥ DE
又CD ⊥ AB, 且DE ∩ AB =D
所以直线CD⊥平面β
平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线 的直线与另一个平面垂直。
符号语言:
β
a
l
A α
a
l
a
a l
作用: 面面垂直线面垂直
的位置关系有哪几种可能?
α l
β
平行
α
l
β
相交
α
l β
线在面内
知识探究:
思考2:黑板所在平面与地面所在平面垂 直,在黑板上是否存在直线与地面垂直? 若存在,怎样画线?
线面垂直、面面垂直的性质与判定定理
α
发展条件
转化结论
CB
D β
E 证明:在平面β内过D作直线
A
DE ⊥AB
则 CD 是 E二面 -A B 角 的平面
由 ⊥β 得CD ⊥ DE
又CD ⊥ AB, 且DE ∩ AB =D
所以直线CD⊥平面β
平面与平面垂直的性质定理:
两个平面垂直,则一个平面内垂直于交线 的直线与另一个平面垂直。
又a
a// b
b
性质
a //
a
面面垂直性质
变式:
思考:已 , 知 ,平 直 a,且 面 线 ,A,B a/ / ,aA,B 试判断 a与直 平 的 线 面 位置关
a⊥β
α
b
a
B
γ
证明:过a作平面γ 交于b, 因为直线a//,所以a//b
: 2、会利用“转化思想”解决垂直问题
面面关系
线面关系
线线关系Βιβλιοθήκη 空间问题平面化 面面平行线面平行
线线平行
面面垂直
线面垂直
线线垂直
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!
β 又因为a⊥AB,所以b⊥AB
A
又⊥β ,∩β =AB
辅助线(面):
所以b⊥β
发展条件的使解题过 程获得突破的
进而a⊥β
【课后自测】4、如图,已知SA⊥平面ABC,
平面SAB⊥平面SBC,求证:AB⊥BC
证明:过点A作AD⊥SB于D, ∵平面SAB⊥平面SBC,
S
平面SAB∩平面SBC=SB,
符号语言:
β
线线、线面、面面位置关系
1、直线与直线的位置关系:⑴相交直线——两直线在同一平面内,两直线有且仅有一个公共点。
⑵平面直线——两直线在同一平面内,两直线没有公共点。
⑶异面直线——不存在一个平面同时经过这两条直线。
过平面外一点与平面内一点的直线,和平面内不经过该点的直线异面。
2、直线与平面的位置关系:⑴直线在平面内:直线上两点在一个平面内,那么此直线上所有点都在平面内。
⑵直线在平面外:①直线和平面平行。
②直线和平面相交。
两条平行线中一条与已知平面相交,则另一条也与该平面相交。
3、平面和平面的位置关系:⑴平行——没在公共点。
⑵相交——至少有一公共点(或一公共直线)。
如果两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面一定是平行或相交。
4、直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
5、直线和平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面和此平面的交线与该直线平行。
6、平面与平面平行的判定定理:⑴如果一个平面内的两条相交直线都平行于另一平面,那么这两个平面平行。
⑵如果一个平面内两条相交直线分别平行于另一个平面内的两条相交直线,则这两个平面平行。
7、平面与平面平行的性质定理:⑴如果两个平面平行,那么其中一个平面内的任意直线均平行于另一个平面。
⑵如果两个平行平面同进和第三个平面相交,那么它们的交线平行。
8、直线与平面垂直的判定定理:⑴如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。
⑵如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面。
9、直线与平面垂直的性质定理:⑴直线与平面内所有直线都垂直。
⑵垂直于同一平面的两条直线平行。
10、平面与平面垂直的判定定理:⑴如果两个相交平面所成二面角为直三面角,那么这两个平面互相垂直。
⑵如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
11、平面与平面垂直的性质定理:如果两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
线线垂直、线面垂直、面面垂直的判定和性质
空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。
推理模式:直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。
2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。
两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。
推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。
一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面是判定定理,而从后面推出前面是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 是圆O 的直径,C 是圆周上一点,PA ⊥平面ABC .(1)求证:平面PAC ⊥平面PBC ;(2)若D 也是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 是棱CC 1的中点(Ⅰ)求异面直线A 1M 和C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB是圆O的直径,C是圆周上一点,PA 平面ABC.若AE⊥PC,E为垂足,F是PB上任意一点,求证:平面AEF⊥平面PBC.5、如图,直三棱柱ABC—A1B1C1中,AC=BC=1,∠ACB=90°,AA1=2,D是A1B1中点.(1)求证C1D⊥平面A1B;(2)当点F在BB1上什么位置时,会使得AB1⊥平面C1DF并证明你的结论6、S是△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC,求证AB⊥BC.B7、在四棱锥中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD证明:AB⊥平面VAD8、如图,平行四边形ABCD中,60DAB︒∠=,2,4AB AD==,将CBD∆沿BD折起到EBD∆的位置,使平面EDB⊥平面ABD.求证:AB DE⊥9、如图,在四棱锥ABCDP-中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF‖平面PCD;(2)平面BEF⊥平面PADVD CBA10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,.过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点。
立体几何垂直的证明方法【线线垂直+线面垂直+面面垂直】【20210210】
空间点、线、面的位置关系:垂直【背一背基础知识】1.判定两直线垂直,可供选用的定理有:①若a ∥b ,b ⊥c ,则a ⊥c .②若a ⊥α,b ⊂α,则a ⊥b .2.线面垂直的定义:一直线与一平面垂直⇔这条直线与平面内任意直线都垂直;3.线面垂直的判定定理,可选用的定理有:①若a ⊥b ,a ⊥c ,b ,c ⊂α,且b 与c 相交,则a ⊥α.②若a ∥b ,b ⊥α,则a ⊥α.③若α⊥β,α∩β=b ,a ⊂α,a ⊥b ,则a ⊥β.4.判定两平面垂直,可供选用的定理有:若a ⊥α,a ⊂β,则α⊥β.线面垂直1.如图,在三棱台ABC-DEF 中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=F C=1,BC=2,AC=3.(I)求证:BF⊥平面ACFD;2.如图,在四棱锥P ABCD -中,底面ABCD 是︒=∠60DAB 且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD ⊥底面ABCD ,G 为AD 的中点.求证:BG ⊥平面PAD .线线垂直1、如图,在三棱锥P ABC -中,90PAC BAC ∠=∠=︒,PA PB =,点D ,F 分别为BC ,AB 的中点.(1)求证:PF ⊥AD .2、如图,在三棱柱111ABC A B C -中,面11ABB A 为矩形,11,2,AB BC AA D ===为1AA 的中点,BD与1AB 交于点1,O BC AB ⊥.(Ⅰ)证明:1CD AB ⊥3、下图为一简单组合体,其底面ABCD 为正方形,PD ⊥平面ABCD ,//EC PD ,且22PD AD EC ===,N 为线段PB 的中点.(Ⅰ)证明:NE PD ⊥;4、如图所示,在三棱柱111ABC A B C -中,11AA B B 为正方形,11BB C C 为菱形,1160BB C Ð=°,平面11AA B B ^平面11BB C C 。
线线、线面、面面垂直的证明
例 9. 如图,在四棱锥 S ABCD 中,平面 SAD 平面 ABCD . 四边形 ABCD 为正方形,且 P 为 AD 的中点, Q 为 SB 的中点. (Ⅰ)求证: CD 平面 SAD ; (Ⅱ)求证: PQ // 平面 SCD ;
例 10. 在等腰梯形 ABCD 中, AD / / BC , AD
线线、线面、面面垂直的证明方法
一、线线垂直的常用证明方法 *1.共面垂直的常用方法
(1)勾股定理逆定理
(2)等腰(或等边)三角形的中线
(3)菱形对角线互相垂直 (4)1:1:2的直角梯形中的隐藏垂直关系 (5)特殊的三角形
例 1. 如图,在三棱锥 S ABC 中,侧面 SAB 与 侧面 SAC 均为等边三角形, BAC 90°, O 为 BC 中点. 求证:SO⊥AO
a 平面
ab
b 平面
两个条件
例 3.如图,四棱锥 P ABCD 中, 底面 ABCD 为平行四边形, DAB 60 ,
AB 2 AD , PD 底面 ABCD.
证明: PA BD
例 4. 如图,四棱锥 S ABCD 的底面是正方形,
SD 平面 ABCD , E 是 SD 上的点.
例 2.如图: PD 平面 ABCD ,四边形 ABCD 为直角梯形,
AB // CD , ADC 90 , PD CD 2 AD 2 AB 2
求证:(1) BC ⊥BD
(2) BC ⊥PD
2.异面垂直的证明(重点考察内容)
定理:如果一条直线垂直于一个平面,那么,这条直 线垂直于这个平面内的任意一条直线
求证: AC BE ;
二、线面垂直的常用证明方法 *1.由线线垂直推出线面垂直
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 注意
– 证明过程中推理演绎的运 用 A
B
判定定理:
如果一条直线和一个平面内的两条相交直线都垂直, 如果一条直线和一个平面内的两条相交直线都垂直, 那么这条直线垂直于这个平面。 那么这条直线垂直于这个平面。
如果两条平行直线中的一条垂直于一个平面, 如果两条平行直线中的一条垂直于一个平面,那么 另一条也垂直于同一个平面。 另一条也垂直于同一个平面。
作业:1 、 41页 习题 4 , 5 作业: 页 2、完成数学周报同步达标 、
例2、正方体ABCD-A1B1C1D1中,EF与异面直线AC、A1D都垂直且相 正方体ABCDEF与异面直线AC、 ABCD 与异面直线AC 分别交AC AC、 交,分别交AC、A1D于E、F 求证:EF∥BD1 求证:
请问在空间中有相同或者类似的结论吗? 请问在空间中有相同或者类似的结论吗? 观察右图的长方体: 观察右图的长方体: a⊥α ⇒ a∥b b⊥β
b
a
}
α
一般地,如果直线a⊥平面α 直线b⊥平面α 一般地,如果直线a⊥平面α,直线b⊥平面α , a⊥平面 b⊥平面 那么a∥b a∥b吗 那么a∥b吗?
一般地,如果直线a⊥平面α 直线b⊥平面α a⊥平面 b⊥平面 一般地,如果直线a⊥平面α,直线b⊥平面α , 那么a∥b a∥b吗 那么a∥b吗? a
A E
H
D
C B
• 练习 40页
1 ,2 题
小
结
直线与平面垂直的性质: 直线与平面垂直的性质:
如果两条直线同垂直于一个平面, 1、如果两条直线同垂直于一个平面,那么这两条直 线平行。 线平行。 如果一条直线垂直一个平面, 2、如果一条直线垂直一个平面,那么这条直线垂直 这个平面内的所有直线。 这个平面内的所有直线。
定理6.3 如果两条直线同垂直于一个平面, 如果两条直线同垂直于一个平面, 定理 那么这两条直线平行 直线和平面垂直的性质定理) (直线和平面垂直的性质定理)
a b
a⊥α a⊥α ∥ ⇒ a∥b b⊥α b⊥α
}
α
由这个定理可知:要证明两直线平行,可以寻找 由这个定理可知:要证明两直线平行, 一个平面,使这两条直线同垂 一个平面, 直于这个平面即可
D1 C1
证明:连接A 证明:连接A1C1、C1D、B1D1、AD1 ∵AC∥A1C1 且EF⊥AC A1 ∴EF⊥A1C1 又EF⊥A1D ∴EF⊥平面 平面A ∴EF⊥平面A1C1D ∵AB⊥A1D 且AD1⊥A1D D⊥平面 平面ABD ∴A1D⊥平面ABD1 A 同理可证BD ∴BD1⊥A1D 同理可证BD1⊥A1C1 平面A ∴BD1⊥平面A1C1D ∴EF∥BD1
直线与平面垂直的判定
空间两条直线的位置关系
– 垂直 异面 平行 重合
空间直线和平面的位置关系
– 直线垂直于平面 直线斜交于平面
– 直线平行于平面
直线属于平面
空间直线垂直于平面的定义 定义:
– 如果一条直线垂直于平面内的所有直线,那么就称这 条直线和这个平面垂直
性质:
过一点有且只有一条直线和个平面垂直. 过一点有且只有一个平面和一条直线垂直.
b b’
已知:a⊥α,b⊥α 已知:a⊥α,b⊥α o 求证: 求证:a∥b α 证明:假设a 不平行, 交于点0,b’是经过点0 0,b’是经过点 证明:假设a和b不平行,设b与α交于点0,b’是经过点0 与α平行的直线 a⊥α ∵a∥b’ 且 a⊥α ∴b’⊥ α ∵过一点作一平面的垂线有且只有一条 b’重合 ∴b 与 b’重合 ∴a∥b
都垂直于平面ABC 例2、如图,在几何体ABCDE中,BE和CD都垂直于平面ABC, 如图,在几何体ABCDE中 BE和CD都垂直于平面ABC, ABCDE BE=AB=2,CD=1, AE的中点 且BE=AB=2,CD=1,点F是AE的中点 求证:DF∥平面 平面ABC 求证:DF∥平面ABC 证明: 的中点G,连接FG、 证明:作AB的中点 ,连接 、GC 的中点 ∵BE⊥平面ABC,CD⊥平面 平面ABC 平面ABC ∵BE⊥平面ABC,CD⊥平面ABC ∴BE∥CD GF= 又∵GF∥BE 且GF=1 GF= ∴GF∥CD 且 GF=CD 四边形CDFG CDFG为平行四边形 ∴四边形CDFG为平行四边形 F ∴DF∥GC 且 G GC ⊂ 平面 ABC ∴DF∥平面ABC ∴DF∥平面ABC 平面
B1 E D C F B
• 已知(见右图)
– 长方体ABCD-A1B1C1D1中, 长方体ABCD ABCD且交BC B1G⊥BC1且交BC1于G。过 的平面交BC A1B1的平面交BC1于H,交 AD1于K。
D1
C1
A1
B1
• 求证
– (1)B1G⊥平面ABC1D1; G⊥平面 平面ABC – (2)四边形A1B1HK为矩形 四边形A HK为矩形 K H G D C
• 练习 P 36 页 1,2,3
小结: 一. 线与面垂直的判定方法:
l垂直于α内的任意一条直线 ⇔ l ⊥ α
① 定义法: ② 判定定理:
线⊥线⇒线⊥ 面
二. 数学思想方法: 转化的思想
垂直关系的性质
一、直线与平面的性质 在初中我们学过: 在平面内, 在初中我们学过:“在平面内,如果两条直线同垂直 于另一条直线,那么这两条直线平行。 于另一条直线,那么这两条直线平行。”