矩阵代码大全(矩阵的逆、乘法、加法、行列式)(c++程序)
c语言中求矩阵运算
c语言中求矩阵运算矩阵运算是一种在数学和计算机科学领域中广泛使用的数学工具。
它通过使用矩阵来表达线性方程组、线性变换和其他几个重要的数学概念。
因此,对于学习计算机科学的人来说,学习矩阵运算是非常重要的。
在C语言中,矩阵运算可以实现很多重要的计算,例如矩阵的加法、减法、乘法以及转置等。
下面将讨论这些运算的实现过程和具体应用。
1. 矩阵加法矩阵加法是矩阵运算中的一种基本运算,它可以将两个矩阵相加。
在C语言中,矩阵加法可以通过for循环来实现。
下面是一个示例代码:```cvoid matrix_add(int row, int column, intmatrix_a[][column], int matrix_b[][column], intresult[][column]) {for(int i=0; i<row; i++) {for(int j=0; j<column; j++) {matrix_b[i][j];}}}```在上面的代码中,matrix_a和matrix_b是两个待相加的矩阵,result是相加后的矩阵。
函数的参数中,row是矩阵的行数,column 是矩阵的列数。
2. 矩阵减法矩阵减法是矩阵运算中的另一种基本运算,它可以将两个矩阵相减。
在C语言中,矩阵减法也可以通过for循环来实现。
下面是一个示例代码:```cvoid matrix_subtract(int row, int column, intmatrix_a[][column], int matrix_b[][column], intresult[][column]) {for(int i=0; i<row; i++) {for(int j=0; j<column; j++) {matrix_b[i][j];}}}```在上面的代码中,matrix_a和matrix_b是两个待相减的矩阵,result是相减后的矩阵。
矩阵运算——C语言实现
#include "stdafx.h"#include <stdlib.h>//结构体typedef struct{double ** mat;int row;int col;}Matrix;void InitialMatrix(Matrix *T, int row,int col); //只分配空间不初始化;void InitialMatrixZero(Matrix *T,int row, int col); //初始化为0void InitialMatrixRand(Matrix *T,int row, int col); //初始化为50以内随机正整数void InputMatrix(Matrix *T); //键盘输入矩阵void DestroyMatrix(Matrix *T); // 释放矩阵空间void PrintfMatrix(Matrix *T); //矩阵输出int AddMatrix(Matrix *A,Matrix *B,Matrix *C); // 矩阵加int MinusMatrix(Matrix *A,Matrix *B,Matrix *C); // 矩阵减int MultiMatrix(Matrix *A,Matrix *B,Matrix *C); //矩阵乘法double MeanMatrix(Matrix *T); //矩阵元素均值int SubMatrix(Matrix *T1,Matrix *T2,int BeginRow,int BeginCol,int EndRow,int EndCol); //求T1的子矩阵T2;测试程序参考界面如下所示:矩阵函数测试,请选择功能,输入对应的数字:***************************************************1:输入一个矩阵,求矩阵均值;2:产生一个随机数矩阵,求矩阵均值;3:输入两个个矩阵,求矩阵和;4:输入两个个矩阵,求矩阵差;5:输入两个个矩阵,求矩阵积;6:产生两个个随机数矩阵,求矩阵和;7:产生两个个随机数矩阵,求矩阵差;8:产生两个个随机数矩阵,求矩阵积;9:求矩阵的子阵,如矩阵的2-4行,1-3列的子阵;0:结束!#include <stdio.h>#include <stdlib.h>//结构体typedef struct {double **mat;int row;int col;} Matrix;//函数声明void InitialMatrix(Matrix *T, int row, int col);void InitialMatrixZero(Matrix *T, int row, int col);void InitialMatrixRand(Matrix *T, int row, int col);void InputMatrix(Matrix *T);void DestroyMatrix(Matrix *T); // 释放矩阵空间void PrintfMatrix(Matrix *T); //矩阵输出int AddMatrix(Matrix *A, Matrix *B, Matrix *C); // 矩阵加int MinusMatrix(Matrix *A, Matrix *B, Matrix *C); // 矩阵减int MultiMatrix(Matrix *A, Matrix *B, Matrix *C); //矩阵乘法double MeanMatrix(Matrix *T); //矩阵元素均值//int SubMatrix(Matrix *T1, Matrix *T2, int BeginRow, int BeginCol, int EndRow, int EndCol); //求T1的子矩阵T2;void NMatrix(void);//求逆矩阵//主函数int main(){int inputevent;//int i, j;int row, col;Matrix T;Matrix A;Matrix B;Matrix C;printf(" 矩阵函数测试,请选择功能,输入对应的数字:\n");printf(" ***************************************************\n\n"); printf("1:输入一个矩阵,求矩阵均值;\n");printf("2:产生一个随机数矩阵,求矩阵均值;\n");printf("3:输入两个个矩阵,求矩阵和;\n");printf("4:输入两个个矩阵,求矩阵差;\n");printf("5:输入两个矩阵,求矩阵积;");printf("\n6:产生两个随机数矩阵,求矩阵和;\n");printf("7:产生两个随机数矩阵,求矩阵差;\n");printf("8:产生两个随机数矩阵,求矩阵积;\n");printf("9:求矩阵的子阵,如矩阵的2-4行D,1-3列的子阵;\n");printf("10:输入一个方阵,求其逆矩阵\n");printf("0:结束!\n");printf("\n\n选择:");scanf("%d", &inputevent);while (inputevent != 0){if (inputevent == 1) {printf("您要输入的矩阵的行数和列数e.g:5,6:");scanf("%d,%d", &row, &col);InitialMatrix(&T, row, col);InitialMatrixZero(&T, T.row, T.col);InputMatrix(&T);printf("\n矩阵的平均值为:\n%lf\n\n", MeanMatrix(&T));DestroyMatrix(&T);}if (inputevent == 2) {printf("输入您要产生的矩阵的行数和列数e.g:5,6:");scanf("%d,%d", &row, &col);InitialMatrix(&T, row, col);InitialMatrixRand(&T, row, col);MeanMatrix(&T);PrintfMatrix(&T);printf("\n矩阵的平均值为:\n%lf\n\n", MeanMatrix(&T));DestroyMatrix(&T);}if (inputevent == 3) {printf("您要输入的矩阵A的行数和列数e.g:5,6:");scanf("%d,%d", &row, &col);InitialMatrix(&A, row, col);InitialMatrixZero(&A, A.row, A.col);InputMatrix(&A);printf("您要输入的矩阵B的行数和列数e.g:5,6:");scanf("%d,%d", &row, &col);InitialMatrix(&B, row, col);InitialMatrixZero(&B, B.row, B.col);InputMatrix(&B);InitialMatrix(&C, B.row, B.col);InitialMatrixZero(&C, C.row, C.col);if (AddMatrix(&A, &B, &C) == 1) {printf("\n\n矩阵的和为:A*B\n\n");PrintfMatrix(&C);}else printf("\n\n无法计算!\n\n");DestroyMatrix(&A);DestroyMatrix(&B);DestroyMatrix(&C);}if (inputevent == 4) {printf("您要输入的矩阵A的行数和列数e.g:5,6:");scanf("%d,%d", &row, &col);InitialMatrix(&A, row, col);InitialMatrixZero(&A, A.row, A.col);InputMatrix(&A);printf("您要输入的矩阵B的行数和列数e.g:5,6:");scanf("%d,%d", &row, &col);InitialMatrix(&B, row, col);InitialMatrixZero(&B, B.row, B.col);InputMatrix(&B);InitialMatrix(&C, B.row, B.col);InitialMatrixZero(&C, C.row, C.col);if (MinusMatrix(&A, &B, &C) == 1) {printf("\n矩阵的差为:A-B=\n\n");PrintfMatrix(&C);}else printf("\n\n无法计算!\n\n");DestroyMatrix(&A);DestroyMatrix(&B);DestroyMatrix(&C);}if (inputevent == 5) {int able;printf("您要输入的矩阵A的行数和列数e.g: 5,6: ");scanf("%d,%d", &row, &col);InitialMatrix(&A, row, col);InitialMatrixZero(&A, A.row, A.col);InputMatrix(&A);printf("您要输入的矩阵B的行数和列数e.g:5,6: ");scanf("%d,%d", &row, &col);InitialMatrix(&B, row, col);InitialMatrixZero(&B, B.row, B.col);InputMatrix(&B);InitialMatrix(&C, A.row, B.col);InitialMatrixZero(&C, C.row, C.col);able = MultiMatrix(&A, &B, &C);if (able == 1) {printf("\n积为:A*B\n\n");PrintfMatrix(&C);}else printf("\n\n无法计算!\n\n");DestroyMatrix(&A);DestroyMatrix(&B);DestroyMatrix(&C);}if (inputevent == 6) {printf("您要产生的矩阵A的行数和列数e.g:5,6: ");scanf("%d,%d", &row, &col);InitialMatrix(&A, row, col);InitialMatrixRand(&A, row, col);printf("A为:\n\n");PrintfMatrix(&A);printf("您要产生的矩阵B的行数和列数e.g:5,6: ");scanf("%d,%d", &row, &col);InitialMatrix(&B, row, col);InitialMatrixRand(&B, row, col);printf("B为:\n\n");PrintfMatrix(&B);InitialMatrix(&C, A.row, A.col);InitialMatrixZero(&C, C.row, C.col);if (AddMatrix(&A, &B, &C) == 1) {printf("\n矩阵的和为:A+B=\n\n");PrintfMatrix(&C);}else printf("\n\n无法计算!\n\n");DestroyMatrix(&A);DestroyMatrix(&B);DestroyMatrix(&C);}if (inputevent == 7) {printf("您要产生的矩阵A的行数和列数e.g:5,6: ");scanf("%d,%d", &row, &col);InitialMatrix(&A, row, col);InitialMatrixRand(&A, row, col);printf("您要产生的矩阵B的行数和列数e.g:5,6: ");scanf("%d,%d", &row, &col);InitialMatrix(&B, row, col);InitialMatrixRand(&B, row, col);InitialMatrix(&C, A.row, A.col);InitialMatrixZero(&C, C.row, C.col);if (MinusMatrix(&A, &B, &C) == 1) {printf("\n矩阵的差为:A-B=\n\n");PrintfMatrix(&C);}else printf("\n\n无法计算!\n\n");DestroyMatrix(&A);DestroyMatrix(&B);DestroyMatrix(&C);}if (inputevent == 8) {printf("您要产生的矩阵A的行数和列数e.g:5,6: \n");scanf("%d,%d", &row, &col);InitialMatrix(&A, row, col);InitialMatrixRand(&A, row, col);printf("A为:\n\n");PrintfMatrix(&A);printf("您要产生的矩阵B的行数和列数e.g:5,6: \n");scanf("%d,%d", &row, &col);InitialMatrix(&B, row, col);InitialMatrixRand(&B, row, col);printf("B为:\n\n");PrintfMatrix(&B);InitialMatrix(&C, A.row, A.col);InitialMatrixZero(&C, C.row, C.col);if (MultiMatrix(&A, &B, &C) == 1) {printf("\n积为:A*B=\n\n");PrintfMatrix(&C);;}else printf("\n\n无法计算;\n\n");DestroyMatrix(&A);DestroyMatrix(&B);DestroyMatrix(&C);}if (inputevent == 9) printf("对不起,该函数尚在完善中\n\n");if (inputevent == 10) NMatrix();if (inputevent == 0)break;printf(" 矩阵函数测试,请选择功能,输入对应的数字:\n");printf(" ***************************************************\n\n"); printf("1:输入一个矩阵,求矩阵均值;\n");printf("2:产生一个随机数矩阵,求矩阵均值;\n");printf("3:输入两个个矩阵,求矩阵和;\n");printf("4:输入两个个矩阵,求矩阵差;\n");printf("5:输入两个矩阵,求矩阵积;");printf("\n6:产生两个随机数矩阵,求矩阵和;\n");printf("7:产生两个随机数矩阵,求矩阵差;\n");printf("8:产生两个随机数矩阵,求矩阵积;\n");printf("9:求矩阵的子阵,如矩阵的2-4行D,1-3列的子阵;\n");printf("10:输入一个方阵,求其逆矩阵\n");printf("0:结束!\n");printf("\n\n选择:");scanf("%d", &inputevent);}return 0;}//其他函数void InitialMatrix(Matrix *T, int row, int col){//printf("分配内存中......\n");int i;int succ = 1;//T=(Matrix *)malloc(sizeof(Matrix));T->row = row;T->col = col;T->mat = (double **)malloc(T->row * sizeof(double *));if (T->mat == NULL) {succ = 0;}else {for (i = 0; i < T->row; i++) {T->mat[i] = (double *)malloc(T->col * sizeof(double));if (T->mat[i] == NULL) {succ = 0;break;}}//if(succ==1)// printf("内存分配成功|;?\n");//else printf("内存分配失败;\n");}}void InitialMatrixZero(Matrix *T, int row, int col) { //printf("矩阵初始化为零中......\n");int i, j;for (i = 0; i < row; i++)for (j = 0; j < col; j++)T->mat[i][j] = 0;//printf("矩阵初始化为零矩阵成功;\n"); }void InitialMatrixRand(Matrix *T, int row, int col) { int i, j;for (i = 0; i < row; i++)for (j = 0; j < col; j++)(*T).mat[i][j] = rand() % 50;}void InputMatrix(Matrix *T) {printf("输入矩阵:\n");int i, j;for (i = 0; i < (*T).row; i++)for (j = 0; j < (*T).col; j++)scanf("%lf", &(*T).mat[i][j]);}void DestroyMatrix(Matrix *T){int i;for (i = 0; i < (*T).row; i++)free((*T).mat[i]);}void PrintfMatrix(Matrix *T){int i, j;for (i = 0; i < (*T).row; i++){for (j = 0; j < (*T).col; j++)printf("%lf ", (*T).mat[i][j]);printf("\n");}}int AddMatrix(Matrix *A, Matrix *B, Matrix *C){int i, j;if ((*A).row == (*B).row && (*A).col == (*B).col){for (i = 0; i < (*A).row; i++)for (j = 0; j < (*A).col; j++)(*C).mat[i][j] = (*A).mat[i][j] + (*B).mat[i][j];for (i = 0; i < (*A).row; i++)for (j = 0; j < (*A).col; j++)return 1;}else {printf("这两个矩阵不能相加!\n");return 0;}}int MinusMatrix(Matrix *A, Matrix *B, Matrix *C){int i, j;if ((*A).row == (*B).row && (*A).col == (*B).col){for (i = 0; i < (*A).row; i++)for (j = 0; j < (*A).col; j++)(*C).mat[i][j] = (*A).mat[i][j] - (*B).mat[i][j];return 1;}elseprintf("这两个矩阵不能相减!\n");return 0;}int MultiMatrix(Matrix *A, Matrix *B, Matrix *C){int i=0, j=0;int k = 0;if ((*A).col == (*B).row){for (i = 0; i < (*A).row; i++) {for (j = 0; j < (*B).col; j++)for(k=0;k <(A->col);k++)(*C).mat[i][j] += (*A).mat[i][k] * (*B).mat[k][j];}return 1;}elseprintf("这两个矩阵不能相乘!\n");return 0;}double MeanMatrix(Matrix *T) //矩阵元素均值{double mean;double sum = 0;int i, j;for (i = 0; i < (*T).row; i++)for (j = 0; j < (*T).col; j++)sum += (*T).mat[i][j];mean = sum / ((*T).row*(*T).col);return mean;}void NMatrix(void){#define M 20#define N 20int i,j,m,n;float y=1.0;float a[M][2 * M];float b[N][2 * N];float t, x;int k, T;printf("输入方阵的维数:\n"); //请输入方阵,即行和列相等的矩阵。
矩阵的逆C语言代码及报告
矩阵的逆,一,问题分析设原矩阵是C,其逆矩阵是B首先将B置为单位矩阵,然后用C和B构造一个新的矩阵(C,B), 用初等列变换, 将左边(即C)化为单位矩阵, 右半块(即B)就是原来C矩阵的逆。
首先我们需要先检验矩阵是否可逆二,源程序及注释。
#include <iostream.h>#define M 3#define N (2*M)int main(){int i,j,k;double a[M][M]={1,2,3,2,2,1,3,4,3};double result[M][M];double b[M][N];cout<<"请输入矩阵的值(默认大小为3*3的矩阵):"<<endl;for(i=0;i<M;i++){for(j=0;j<M;j++){cin>>a[i][j]; //输入矩阵b[i][j]=a[i][j];}}for(i=0;i<M;i++){for(j=M;j<N;j++){if(i==(j-M)){b[i][j]=1; //在矩阵右侧加一个特征矩阵(单位矩阵)}else{b[i][j]=0;}}} for(i=0;i<M;i++){if(b[i][i]==0){for(k=i;k<M;k++){if(b[k][k]!=0){for(int j=0;j<N;j++){double temp;temp=b[i][j];b[i][j]=b[k][j];b[k][j]=temp;}break;}}if(k==M){cout<<"该矩阵不可逆!"<<endl; }}for(j=N-1;j>=i;j--){b[i][j]/=b[i][i];}for(k=0;k<M;k++){if(k!=i){double temp=b[k][i];for(j=0;j<N;j++){b[k][j]-=temp*b[i][j];}}}} for(i=0;i<M;i++){for(j=3;j<N;j++){result[i][j-3]=b[i][j];}}for(i=0;i<M;i++){for(j=0;j<M;j++){cout<<result[i][j]<<" ";}cout<<endl;}return 0;}三,运行结果显示四,调试和运行程序过程中产生的问题及采取的措施:。
矩阵运算——C语言实现
矩阵运算——C语言实现矩阵运算是线性代数中非常重要的一部分,它涉及到矩阵的加法、减法、乘法、转置等操作。
在C语言中,我们可以使用二维数组来表示和操作矩阵。
首先,我们需要定义一个表示矩阵的结构体,可以包含矩阵的行数、列数以及矩阵的元素值。
代码如下:```ctypedef structint rows; // 行数int cols; // 列数double **data; // 矩阵元素} Matrix;```在此结构体中,我们使用一个二维指针来表示矩阵的元素,其中每个指针指向一个一维数组,表示矩阵的一行。
接下来,我们可以实现一些常用的矩阵运算函数,比如矩阵的创建、销毁、加法、减法、乘法等。
1.矩阵的创建和销毁函数如下所示:```cMatrix *createMatrix(int rows, int cols)Matrix *matrix = (Matrix *)malloc(sizeof(Matrix));matrix->rows = rows;matrix->cols = cols;matrix->data = (double **)malloc(rows * sizeof(double *));for (int i = 0; i < rows; ++i)matrix->data[i] = (double *)malloc(cols * sizeof(double));}return matrix;void destroyMatrix(Matrix *matrix)for (int i = 0; i < matrix->rows; ++i)free(matrix->data[i]);}free(matrix->data);free(matrix);```这里我们使用了动态内存分配,先分配一维数组的内存,再分配二维数组的内存。
2.矩阵的加法和减法函数如下所示:```cMatrix *addMatrix(Matrix *matrix1, Matrix *matrix2)if (matrix1->rows != matrix2->rows , matrix1->cols != matrix2->cols)return NULL;}Matrix *result = createMatrix(matrix1->rows, matrix1->cols);for (int i = 0; i < matrix1->rows; ++i)for (int j = 0; j < matrix1->cols; ++j)result->data[i][j] = matrix1->data[i][j] + matrix2->data[i][j];}}return result;Matrix *subtractMatrix(Matrix *matrix1, Matrix *matrix2)if (matrix1->rows != matrix2->rows , matrix1->cols != matrix2->cols)return NULL;}Matrix *result = createMatrix(matrix1->rows, matrix1->cols);for (int i = 0; i < matrix1->rows; ++i)result->data[i][j] = matrix1->data[i][j] - matrix2->data[i][j];}}return result;```这里我们首先判断两个矩阵是否具有相同的行数和列数,如果不相同则无法进行加法或减法运算。
c语言实现矩阵的加减乘除求逆运算
#include〈stdio.h>#include〈stdlib。
h〉#define col 3#define row 3class matrix//类的定义{private:double m[col][row];//矩阵设置为私有的,public:matrix(){}//无参数的构造函数matrix(double a[col][row]);//有参数的构造函数matrix Add(matrix &b);//加法运算声明matrix Sub(matrix &b);//减法运算声明matrix Mul(matrix &b);//乘法运算声明matrix Div(matrix &b);//除法运算声明matrix Inverse();//求逆运算声明~matrix();//析构函数声明void display();//显示函数声明};matrix::matrix(double a[col][row])//构造函数的定义{int i,j;for(i=0;i<col;i++)for(j=0;j〈row;j++)m[i][j]=a[i][j];}matrix matrix::Add(matrix &b)//加法运算{int i,j;matrix*c=(matrix*)malloc(sizeof(matrix));for(i=0;i<col;i++)for(j=0;j<row;j++)c—〉m[i][j]=m[i][j]+b.m[i][j];return(*c);}matrix matrix::Sub(matrix &b)//减法运算{int i,j;matrix*c=(matrix*)malloc(sizeof(matrix));for(i=0;i〈col;i++)for(j=0;j<row;j++)c->m[i][j]=m[i][j]—b。
m[i][j];return *c;}matrix matrix::Mul(matrix &b)//乘法运算{int i,j,k;double sum=0;matrix*c=(matrix*)malloc(sizeof(matrix));for(i=0;i<col;i++){for(j=0;j〈row;j++){for(k=0;k〈row;k++)sum+=m[i][k]*(b.m[k][j]);c-〉m[i][j]=sum;sum=0;}}return(*c);}matrix matrix::Div(matrix &b)//除法运算{//除法直接求解,参见主函数matrix c;return(c);}matrix matrix::Inverse()//求逆运算{//参考博客:http:///rollenholt/articles/2050662。
矩阵计算C语言源代码
矩阵计算C语言源代码下面是一个简单的矩阵计算的C语言源代码:```c#include <stdio.h>//函数声明void addMatrix(int rows, int columns, int matrixA[][columns], int matrixB[][columns], int result[][columns]);void multiplyMatrix(int rows, int columnsA, int columnsB,int matrixA[][columnsA], int matrixB[][columnsB], intresult[][columnsB]);void printMatrix(int rows, int columns, intmatrix[][columns]);int maiint rows, columns;//输入矩阵的行数和列数printf("Enter the number of rows in the matrices: ");scanf("%d", &rows);printf("Enter the number of columns in the matrices: ");scanf("%d", &columns);int matrixA[rows][columns], matrixB[rows][columns], sumMatrix[rows][columns], productMatrix[rows][columns];//输入矩阵A的元素printf("Enter the elements of matrix A:\n");for (int i = 0; i < rows; i++)for (int j = 0; j < columns; j++)scanf("%d", &matrixA[i][j]);}}//输入矩阵B的元素printf("Enter the elements of matrix B:\n");for (int i = 0; i < rows; i++)for (int j = 0; j < columns; j++)scanf("%d", &matrixB[i][j]);}}//计算两个矩阵的和addMatrix(rows, columns, matrixA, matrixB, sumMatrix);//计算两个矩阵的乘积multiplyMatrix(rows, columns, columns, matrixA, matrixB, productMatrix);printf("Sum of the matrices:\n");printMatrix(rows, columns, sumMatrix);printf("Product of the matrices:\n");printMatrix(rows, columns, productMatrix);return 0;//函数定义:将两个矩阵相加void addMatrix(int rows, int columns, int matrixA[][columns], int matrixB[][columns], int result[][columns])for (int i = 0; i < rows; i++)for (int j = 0; j < columns; j++)result[i][j] = matrixA[i][j] + matrixB[i][j];}}//函数定义:将两个矩阵相乘void multiplyMatrix(int rows, int columnsA, int columnsB,int matrixA[][columnsA], int matrixB[][columnsB], intresult[][columnsB])for (int i = 0; i < rows; i++)for (int j = 0; j < columnsB; j++)result[i][j] = 0;for (int k = 0; k < columnsA; k++)result[i][j] += matrixA[i][k] * matrixB[k][j];}}}//函数定义:打印矩阵void printMatrix(int rows, int columns, intmatrix[][columns])for (int i = 0; i < rows; i++)for (int j = 0; j < columns; j++)printf("%d ", matrix[i][j]);}printf("\n");}```该程序首先要求用户输入两个矩阵的行数和列数,然后用户根据提示分别输入两个矩阵的元素。
用c语言编写矩阵乘法
用c语言编写矩阵乘法矩阵乘法是一种基本的线性代数运算,在计算机程序中也经常用到。
本文将介绍如何用C语言编写矩阵乘法。
矩阵乘法的基本原理是,两个矩阵相乘的结果是第一个矩阵的行向量和第二个矩阵的列向量的内积。
具体实现时,我们需要按照矩阵乘法的定义,使用两层循环来计算每个元素的值。
以下是用C语言实现矩阵乘法的示例代码:```c#include <stdio.h>#define ROWS 3#define COLS 3void matrix_multiply(int a[][COLS], int b[][COLS], int c[][COLS]){int i, j, k;for(i = 0; i < ROWS; i++){for(j = 0; j < COLS; j++){c[i][j] = 0;for(k = 0; k < COLS; k++){c[i][j] += a[i][k] * b[k][j];}}}}int main(){int a[ROWS][COLS] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}; int b[ROWS][COLS] = {{9, 8, 7}, {6, 5, 4}, {3, 2, 1}}; int c[ROWS][COLS] = {{0}};matrix_multiply(a, b, c);int i, j;for(i = 0; i < ROWS; i++){for(j = 0; j < COLS; j++){printf('%d ', c[i][j]);}printf('');}return 0;}```在这个示例程序中,我们首先定义了三个三行三列的数组,分别存储两个矩阵和它们相乘的结果。
然后我们调用了`matrix_multiply` 函数来计算两个矩阵的乘积,并将结果存储在数组 `c` 中。
C矩阵基本运算代码
C#矩阵的运算代码#region 矩阵运算/// <summary>/// 矩阵对应行列式的值/// </summary>/// <param ></param>/// <returns></returns>private double MatrixValue(double[,] MatrixList){int Level = MatrixList.GetLength(1);double[,] dMatrix = new double[Level, Level];for (int i = 0; i < Level; i++){for (int j = 0; j < Level; j++){dMatrix[i, j] = MatrixList[i, j];}}int sign = 1;for (int i = 0, j = 0; i < Level && j < Level; i++, j++){//判断改行dMatrix[i, j]是否为0,若是,则寻找i后的行(m,m>i,切dMatrix[m, j]!=0)进行交换if (dMatrix[i, j] == 0){if (i == Level - 1){return 0;}int m = i + 1;//获取一个dMatrix[m, j]不为为0的行for (; dMatrix[m, j] == 0; m++){if (m == Level - 1){return 0;}}//判断是否达到矩阵的最大行,若是,则返回0//把i行和m行调换double temp;for (int n = j; n < Level; n++){temp = dMatrix[i, n];dMatrix[i, n] = dMatrix[m, n];dMatrix[m, n] = temp;}sign *= (-1);}//把当前行以后的行所对应的列变成0double tmp;for (int s = Level - 1; s > i; s--){tmp = dMatrix[s, j];//j行后面的所有行for (int t = j; t < Level; t++){dMatrix[s, t] -= dMatrix[i, t] * (tmp / dMatrix[i, j]);}}}double result = 1;for (int i = 0; i < Level; i++){if (dMatrix[i, i] != 0){result *= dMatrix[i, i];}else{return 0;}}return sign * result;}/// <summary>/// 矩阵减法/// </summary>/// <param ></param>/// <param ></param>/// <param ></param>/// <param ></param>private double[] SubMatrix(double[] A1, double[] A2) {//判断矩阵的长短是否一致int a1 = A1.GetLength(0);int a2 = A2.GetLength(0);if (a1 != a2){return null;}//矩阵相减double[] B = new double[a1];for (int i = 0; i < a1; i++){B[i] = A1[i] - A2[i];}return B;}/// <summary>/// 矩阵乘法/// </summary>/// <param ></param>/// <param ></param>/// <returns></returns>private double[,] MultiplyMatrix(double[,] firstMatrix, double[,] secondMatrix){double[,] resultMatrix = new double[firstMatrix.GetLength(0), secondMatrix.GetLength(1)]; //判断相乘矩阵是否合法,即第一个矩阵的列要等于第二个矩阵的行if (firstMatrix.GetLength(1) != secondMatrix.GetLength(0)){return null;}//求结果矩阵for (int rowIndex = 0; rowIndex < firstMatrix.GetLength(0); rowIndex++){for (int colIndex = 0; colIndex < secondMatrix.GetLength(1); colIndex++){//初始化结果矩阵的元素resultMatrix[rowIndex, colIndex] = 0;for (int i = 0; i < firstMatrix.GetLength(1); i++){//求结果矩阵的元素值resultMatrix[rowIndex, colIndex] += firstMatrix[rowIndex, i] * secondMatrix[i, colIndex];}}}return resultMatrix;}/// <summary>/// 求逆矩阵/// </summary>/// <param ></param>/// <returns></returns>private double[,] Athwart(double[,] dMatrix){//获取矩阵的行数int Level = dMatrix.GetLength(1);double[,] dReverseMatrix = new double[Level, 2 * Level]; //初始化矩阵Level×(2*Level)for (int i = 0; i < Level; i++){for (int j = 0; j < 2 * Level; j++){if (j < Level){dReverseMatrix[i, j] = dMatrix[i, j];}else{if (j - Level == i){dReverseMatrix[i, j] = 1;}else{dReverseMatrix[i, j] = 0;}}}}for (int i = 0, j = 0; i < Level && j < Level; i++, j++){if (dReverseMatrix[i, j] == 0){if (i == Level - 1){return null;}int m = i + 1;for (; dMatrix[m, j] == 0; m++){if (m == Level - 1){return null;}if (m == Level){return null;}else{//把i行和m行相加for (int n = j; n < 2 * Level; n++){dReverseMatrix[i, n] += dReverseMatrix[m, n];}}}double temp = dReverseMatrix[i, j];if (temp != 1){//把i行数据,变成以1开始的一行数据for (int n = j; n < 2 * Level; n++){if (dReverseMatrix[i, n] != 0){dReverseMatrix[i, n] /= temp;}}}//把i行后的所有行的j列变成0for (int s = Level - 1; s > i; s--){temp = dReverseMatrix[s, j];for (int t = j; t < 2 * Level; t++){dReverseMatrix[s, t] -= (dReverseMatrix[i, t] * temp);}}}//把矩阵Level×(2*Level)前Level×Level转变为单位矩阵for (int i = Level - 2; i >= 0; i--){for (int j = i + 1; j < Level; j++){if (dReverseMatrix[i, j] != 0)double tmp = dReverseMatrix[i, j];for (int n = j; n < 2 * Level; n++){dReverseMatrix[i, n] -= (tmp * dReverseMatrix[j, n]); }}}}//返回逆矩阵double[,] dReturn = new double[Level, Level];for (int i = 0; i < Level; i++){for (int j = 0; j < Level; j++){dReturn[i, j] = dReverseMatrix[i, j + Level];}}return dReturn;}#endregion第二份:1using System;2using System.IO;3using System.Diagnostics;456namespace Adjust7{8///<summary>9///Matrix 的摘要说明。
矩阵计算C语言源代码
//#include "matrix.h"#define EX_TRUE (0)#define EX_FALSE (1)#define EX_MALLOC (2)typedefstruct tagMatrix{unsignedchar ucRow;unsignedchar ucCol;unsignedshort usRev;float *pfDataAdd;}Matrix_s;externint InputRowColInfo(unsignedchar *pucRow, unsignedchar *pucCol); externint CreateMatrixMem(void *pvData);externint InputMatrixData(void *pvData);externint PrintMatrixData(void *pvData);externint PrintInverseMatrixData(void *pvData);externint Show_matrix(Matrix_s *pstMatrixA, Matrix_s *pstMatrixB);//#include "operate_matrix.h"#define EX_MA TRIX_INIT (1)#define EX_MA TRIX_UNINIT (0)typedefenum{EX_INPUT_MATRIX = 1,EX_ADD_MA TRIX,EX_SUBTRACT_MATRIX,EX_MULTIPL Y_MA TRIX,EX_INVERSE_MA TRIX,EX_QUIT_MATRIX,EX_BOTTOM_MATRIX}Matrix_opcode_en;externint OperateMatrix(int iOpCode, Matrix_s *pstMatrixA, Matrix_s *pstMatrix);externint ShowMatrixMenu();externint CheckMatrix(int iOpCode, Matrix_s *pstMatrixA, Matrix_s *pstMatrixB);externint AddMatrix(int iOpCode, Matrix_s *pstMatrixA, Matrix_s *pstMatrixB, Matrix_s *pstMatrixC);externint SubtractMatrix(int iOpCode, Matrix_s *pstMatrixA, Matrix_s *pstMatrixB, Matrix_s *pstMatrixC);externint MultiplyMatrix(int iOpCode, Matrix_s *pstMatrixA, Matrix_s *pstMatrixB, Matrix_s *pstMatrixC);externint CreateResultMatrix(unsignedchar ucRow, unsignedchar ucCol, void *pvData); externint InverseMatrix(float a[], int n);/*Guanlin Luo ID:10529749*/#include<stdio.h>#include<stdlib.h>#include<memory.h>#include<math.h>#include"matrix.h"/*We have already done this header.*/#include"operate_matrix.h"/*We have already done this header.*/char g_cFlag = EX_MATRIX_UNINIT;int main (){int iInputOpCode;int iRet = EX_FALSE;Matrix_s stMatrixA, stMatrixB;memset(&stMatrixA, 0, sizeof(stMatrixA));memset(&stMatrixB, 0, sizeof(stMatrixB));while(1){/* show menu */(void)ShowMatrixMenu();/* operete matrix */scanf("%d", &iInputOpCode);iRet = OperateMatrix(iInputOpCode, &stMatrixA, &stMatrixB);if (EX_TRUE == iRet){if (EX_QUIT_MATRIX == iInputOpCode){break;}}}if (NULL != stMatrixA.pfDataAdd){free(stMatrixA.pfDataAdd);}if (NULL != stMatrixB.pfDataAdd){free(stMatrixB.pfDataAdd);}return EX_TRUE;}int ShowMatrixMenu()/*choices for users.*/{printf("1 - Enter matrices A & B\r\n");printf("2 - Add matrices\r\n");printf("3 - Subtract matrices\r\n");printf("4 - Multiply matrices\r\n");printf("5 - Inverse of A\r\n");printf("6 - Quit program\r\n");printf("Option: ");return EX_TRUE;}int OperateMatrix(int iOpCode, Matrix_s *pstMatrixA, Matrix_s *pstMatrixB) {int iRet = EX_FALSE;Matrix_s stMatrixC;float *pfTmpBuf = NULL;memset(&stMatrixC, 0, sizeof(Matrix_s));switch (iOpCode){case EX_INPUT_MA TRIX:iRet = Show_matrix(pstMatrixA, pstMatrixB);if (EX_FALSE == iRet){printf("err input matrix info!\n");return iRet;}else{/* at first, we need input matrix data */g_cFlag = EX_MA TRIX_INIT;}break;case EX_ADD_MATRIX:/*Addition part.*/iRet = AddMatrix(EX_ADD_MATRIX, pstMatrixA, pstMatrixB, &stMatrixC);if (EX_TRUE != iRet)/*For checking.*/{printf("err multiply matrix operation!\n");if (EX_MALLOC == iRet){;}else{free(stMatrixC.pfDataAdd);}return iRet;}printf("\r\nA + B =: \r\n");iRet = PrintMatrixData(&stMatrixC);if (iRet == EX_FALSE){printf("err print Matrix result!\r\n");free(stMatrixC.pfDataAdd);return iRet;}free(stMatrixC.pfDataAdd);break;case EX_SUBTRACT_MA TRIX:/*Subtract two matrices*/iRet = SubtractMatrix(EX_SUBTRACT_MATRIX, pstMatrixA, pstMatrixB, &stMatrixC);if (EX_TRUE != iRet)/*For checking.*/{printf("err subtract matrix operation!\r\n");if (EX_MALLOC == iRet){;}else{free(stMatrixC.pfDataAdd);}return iRet;}printf("\r\nA - B =: \r\n");iRet = PrintMatrixData(&stMatrixC);if (iRet == EX_FALSE){printf("err print Matrix result!\r\n");free(stMatrixC.pfDataAdd);return iRet;}free(stMatrixC.pfDataAdd);break;case EX_MULTIPL Y_MATRIX:/*multiplication part.*/iRet = MultiplyMatrix(EX_MULTIPL Y_MATRIX, pstMatrixA, pstMatrixB, &stMatrixC);if (EX_TRUE != iRet)/*For checking.*/{printf("\r\nerr multiply matrix operation!\r\n");if (EX_MALLOC == iRet){;}else{free(stMatrixC.pfDataAdd);}return iRet;}printf("\r\nA * B =: \r\n");iRet = PrintMatrixData(&stMatrixC);if (EX_TRUE != iRet){printf("err print Matrix result!\r\n");free(stMatrixC.pfDataAdd);return iRet;}free(stMatrixC.pfDataAdd);break;case EX_INVERSE_MATRIX:/*inverse.*/if (EX_MATRIX_UNINIT == g_cFlag)/*For checking the input.*/{printf("please choose 1 operation at first.\r\n");return EX_FALSE;}pfTmpBuf = (float*)malloc(pstMatrixA->ucRow * pstMatrixA->ucCol * sizeof(float));if (pfTmpBuf == NULL)/*For checking.*/{printf("err malloc memory.\r\n");return EX_MALLOC;}else{memset(pfTmpBuf, 0, (pstMatrixA->ucRow * pstMatrixA->ucCol * sizeof(float)));memcpy(pfTmpBuf, pstMatrixA->pfDataAdd, (pstMatrixA->ucRow * pstMatrixA->ucCol * sizeof(float)));}stMatrixC.ucCol = pstMatrixA->ucCol;stMatrixC.ucRow = pstMatrixA->ucRow;stMatrixC.pfDataAdd = pfTmpBuf;iRet = InverseMatrix(stMatrixC.pfDataAdd, stMatrixC.ucRow);if (EX_TRUE != iRet)/*For checking.*/{printf("\r\nerr inverse matrix operation!\r\n");if (EX_MALLOC == iRet){;}else{free(stMatrixC.pfDataAdd);}return iRet;}printf("\r\nInverse of A =: \r\n");iRet = PrintInverseMatrixData(&stMatrixC);if (EX_TRUE != iRet)/*For checking.*/{printf("err print Matrix result!\r\n");free(stMatrixC.pfDataAdd);return iRet;}free(stMatrixC.pfDataAdd);break;case EX_QUIT_MA TRIX:/*users chose to end this program.*/printf("will quit matrix menu!\r\n");break;default:/*For checking.*/printf("err operate code!\r\n");return EX_FALSE;}return EX_TRUE;}int CheckMatrix(int iOpCode, Matrix_s *pstMatrixA, Matrix_s *pstMatrixB) {if ((pstMatrixA == NULL) || (pstMatrixB == NULL)){printf("matrix para is null.\r\n");return EX_FALSE;}if (EX_MATRIX_UNINIT == g_cFlag){printf("please choose 1 operation at first.\r\n");return EX_FALSE;}switch (iOpCode){case EX_ADD_MATRIX:case EX_SUBTRACT_MA TRIX:if ((pstMatrixA->ucCol == pstMatrixB->ucCol)&& (pstMatrixA->ucRow == pstMatrixB->ucRow)) {;}else{/* ADD / Subtract operation */printf("\r\nAdd/Subtract operation is invalid!\r\n"); return EX_FALSE;}break;case EX_INVERSE_MATRIX:if ((2 == pstMatrixA->ucRow)&& (2 == pstMatrixA->ucCol)){;}else{/* Inverse operation */printf("\r\nMultiply/Inverse operation is invalid!\r\n"); return EX_FALSE;}break;case EX_MULTIPL Y_MATRIX:if ((pstMatrixA->ucRow == pstMatrixB->ucCol)&& (pstMatrixA->ucCol == pstMatrixB->ucRow)) {;}else{/* Multiply operation */printf("\r\nMultiply operation is invalid!\r\n");return EX_FALSE;}break;default:printf("err operate code!\r\n");return EX_FALSE;}return EX_TRUE;}int AddMatrix(int iOpCode, Matrix_s *pstMatrixA, Matrix_s *pstMatrixB, Matrix_s *pstMatrixC){int iRet = EX_FALSE;unsignedchar ucRow;unsignedchar ucCol;unsignedchar i, j;float fTmpData = 0.0;if ((pstMatrixA == NULL) || (pstMatrixB == NULL)){printf("matrix para is null.\r\n");return EX_FALSE;}iRet = CheckMatrix(iOpCode, pstMatrixA, pstMatrixB);if (EX_FALSE == iRet){return iRet;}else{ucRow = pstMatrixA->ucRow;ucCol = pstMatrixA->ucCol;}/* create result matrix C */iRet = CreateResultMatrix(ucRow, ucCol, pstMatrixC);if (iRet != EX_TRUE){return iRet;}for (i = 0; i < ucRow; i++){for (j = 0; j < ucCol; j++){fTmpData = (*(pstMatrixA->pfDataAdd + i * ucCol + j) + *(pstMatrixB->pfDataAdd + i * ucCol + j));*(pstMatrixC->pfDataAdd + i * ucCol + j) = fTmpData;}}return EX_TRUE;}int SubtractMatrix(int iOpCode, Matrix_s *pstMatrixA, Matrix_s *pstMatrixB, Matrix_s *pstMatrixC){int iRet = EX_FALSE;unsignedchar ucRow;unsignedchar ucCol;unsignedchar i, j;float fTmpData = 0.0;if ((pstMatrixA == NULL) || (pstMatrixB == NULL)){printf("matrix para is null.\r\n");return EX_FALSE;}iRet = CheckMatrix(iOpCode, pstMatrixA, pstMatrixB);if (EX_FALSE == iRet){return iRet;}else{ucRow = pstMatrixA->ucRow;ucCol = pstMatrixA->ucCol;}/* create result matrix C */iRet = CreateResultMatrix(ucRow, ucCol, pstMatrixC);if (iRet != EX_TRUE){return iRet;}for (i = 0; i < ucRow; i++){for (j = 0; j < ucCol; j++){fTmpData = (*(pstMatrixA->pfDataAdd + i * ucCol + j) - *(pstMatrixB->pfDataAdd + i * ucCol + j));*(pstMatrixC->pfDataAdd + i * ucCol + j) = fTmpData;}}return EX_TRUE;}int MultiplyMatrix(int iOpCode, Matrix_s *pstMatrixA, Matrix_s *pstMatrixB, Matrix_s *pstMatrixC){int iRet = EX_FALSE;unsignedchar ucRow;unsignedchar ucCol;unsignedchar i, j, k;float fTmpData = 0.0;if ((pstMatrixA == NULL) || (pstMatrixB == NULL)){printf("matrix para is null.\r\n");return EX_FALSE;}iRet = CheckMatrix(iOpCode, pstMatrixA, pstMatrixB);if (EX_FALSE == iRet){return iRet;}else{ucRow = pstMatrixA->ucRow;ucCol = pstMatrixB->ucCol;}/* create result matrix C */iRet = CreateResultMatrix(ucRow, ucCol, pstMatrixC);if (iRet != EX_TRUE){return iRet;}for (i = 0; i < ucRow; i++){for (j = 0; j < ucCol; j++){for (k = 0; k < pstMatrixA->ucCol; k++){fTmpData += (float)(*(pstMatrixA->pfDataAdd + i * ucCol + k) * *(pstMatrixB->pfDataAdd + j + k * ucCol));}*(pstMatrixC->pfDataAdd + i * ucCol + j) = fTmpData;fTmpData = 0;}}return EX_TRUE;}int CreateResultMatrix(unsignedchar ucRow, unsignedchar ucCol, void *pvData){Matrix_s *pstTmpData = NULL;int iRet = EX_FALSE;if (pvData == NULL){printf("para is null.\r\n");return EX_FALSE;}else{pstTmpData = (Matrix_s *)pvData;}/* create result matrix C */memset(pstTmpData, 0, sizeof(Matrix_s));pstTmpData->ucRow = ucRow;pstTmpData->ucCol = ucCol;iRet = CreateMatrixMem(pstTmpData);if (iRet != EX_TRUE){printf("err create result Matrix C!\r\n"); return iRet;}return EX_TRUE;}int InverseMatrix(float a[], int n){int *is,*js;int i,j,k,l,u,v;float d, p;is = (int *)malloc(n * sizeof(int));js = (int *)malloc(n * sizeof(int));for (k = 0; k <= n-1; k++){d = 0.0;for (i = k; i <= n-1; i++){ for (j = k; j <= n-1; j++){l = i * n + j;p = (float)fabs(a[l]);if (p > d){d = p;is[k] = i;js[k] = j;}}}if (d + 1.0 == 1.0){free(is);free(js);printf("err not inverse!\r\n"); return EX_FALSE;}if (is[k] != k){ for (j=0; j<=n-1; j++){u = k * n + j;v = is[k] * n +j;p = a[u];a[u] = a[v];a[v] = p;}}if (js[k] != k){for (i=0; i<=n-1; i++){u = i*n+k;v = i*n+js[k];p = a[u];a[u] = a[v];a[v] = p;}}l = k * n + k;a[l] = (float)(1.0 / a[l]);for (j = 0; j <= n-1; j++){if (j != k){u = k * n + j;a[u] = a[u] * a[l];}}for (i = 0; i <= n-1; i++){if (i != k){for (j = 0; j <= n-1; j++){if (j != k){u = i * n + j;a[u] = a[u] - a[i * n + k] * a[k * n + j];}}for (i = 0; i <= n-1; i++){if (i != k){u = i * n + k;a[u] = -a[u] * a[l];}}}}}for (k = n-1; k >= 0; k--){if (js[k] != k)for (j = 0; j <= n-1; j++){u = k * n + j;v = js[k] * n + j;p = a[u];a[u] = a[v];a[v] = p;}if (is[k] != k)for (i = 0; i <= n-1; i++){u = i * n + k;v = i * n + is[k];p = a[u];a[u] = a[v];a[v] = p;}}free(is);free(js);return EX_TRUE;}。
C语言矩阵操作范文
C语言矩阵操作范文在C语言中,矩阵操作是一项非常常见且重要的任务。
矩阵是一个二维数组,由行和列组成。
矩阵操作通常包括矩阵的创建、初始化、遍历、计算以及转置等。
下面将详细介绍一些常见的矩阵操作。
1.矩阵的创建和初始化:在C语言中,可以通过使用二维数组来创建和初始化一个矩阵。
例如,我们可以使用以下语句创建一个3x3的矩阵并进行初始化:```cint matrix[3][3] = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} };```这将创建一个3x3的矩阵,并将其初始化为数字1到92.矩阵的遍历:要遍历矩阵中的每个元素,可以使用两个嵌套的循环结构,一个用于遍历行,另一个用于遍历列。
例如,以下代码将遍历并打印一个3x3的矩阵:```cint i, j;for(i = 0; i < 3; i++)for(j = 0; j < 3; j++)printf("%d ", matrix[i][j]); // 打印当前元素}printf("\n"); // 换行```这将产生下面的输出:```c123456789```3.矩阵的转置:矩阵的转置是指将矩阵的行和列交换。
例如,给定以下矩阵:```cint matrix[3][3] = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} };```我们可以通过以下代码来实现矩阵的转置:```cint i, j;int transpose[3][3];for(i = 0; i < 3; i++)transpose[j][i] = matrix[i][j];}```转置后的矩阵将是:```c147258369```4.矩阵的相加和相乘:在C语言中,可以通过嵌套循环来对两个矩阵的对应元素进行相加或相乘。
例如,以下代码将两个3x3的矩阵相加并将结果存储在另一个矩阵中:```cint matrix1[3][3] = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} };int matrix2[3][3] = { {9, 8, 7}, {6, 5, 4}, {3, 2, 1} };int result[3][3];int i, j;for(j = 0; j < 3; j++)result[i][j] = matrix1[i][j] + matrix2[i][j];}```相加后的矩阵将是:```c101010101010101010```同样地,两个矩阵的相乘也可以通过类似的方法实现。
c语言编写矩阵及其运算
c语言编写矩阵及其运算矩阵是线性代数中的重要概念,它可以用来表示线性方程组、线性变换以及向量空间等。
在C语言中,我们可以通过数组来实现矩阵的表示和运算。
本文将介绍如何使用C语言编写矩阵及其运算的相关代码。
1. 矩阵的表示在C语言中,可以使用二维数组来表示矩阵。
二维数组是由多个一维数组组成的,每个一维数组表示矩阵的一行或一列。
例如,我们可以使用以下代码定义一个3x3的矩阵:```int matrix[3][3] = {{1, 2, 3},{4, 5, 6},{7, 8, 9}};```2. 矩阵的运算矩阵的运算包括加法、减法、乘法等。
下面分别介绍这些运算在C 语言中的实现方法。
2.1 矩阵加法矩阵加法的规则是将两个矩阵对应元素相加。
例如,给定两个相同大小的矩阵A和B,它们的和矩阵C的第i行第j列的元素可表示为:C[i][j] = A[i][j] + B[i][j]。
下面是一个实现矩阵加法的代码示例:```void matrixAddition(int A[][3], int B[][3], int C[][3], int rows, int cols) {for (int i = 0; i < rows; i++) {for (int j = 0; j < cols; j++) {C[i][j] = A[i][j] + B[i][j];}}}```2.2 矩阵减法矩阵减法的规则与矩阵加法类似,只是将对应元素相减。
例如,给定两个相同大小的矩阵A和B,它们的差矩阵C的第i行第j列的元素可表示为:C[i][j] = A[i][j] - B[i][j]。
下面是一个实现矩阵减法的代码示例:```void matrixSubtraction(int A[][3], int B[][3], int C[][3], int rows, int cols) {for (int i = 0; i < rows; i++) {for (int j = 0; j < cols; j++) {C[i][j] = A[i][j] - B[i][j];}}}```2.3 矩阵乘法矩阵乘法的规则是将第一个矩阵的每一行与第二个矩阵的每一列进行点乘,然后将结果相加。
c语言实现矩阵运算
c语言实现矩阵运算以C语言实现矩阵运算矩阵运算是线性代数中的重要概念,它可以用来解决各种实际问题,如图像处理、信号处理、机器学习等。
在C语言中,我们可以通过使用数组和循环结构来实现矩阵的各种运算。
本文将介绍如何使用C语言实现矩阵的加法、减法、乘法和转置运算。
1. 矩阵的表示在C语言中,我们可以使用二维数组来表示矩阵。
例如,一个m行n列的矩阵可以用一个m*n的二维数组来表示。
下面是一个3行2列的矩阵的表示方式:```cint matrix[3][2] = {{1, 2},{3, 4},{5, 6}};```2. 矩阵的加法矩阵的加法是指两个矩阵对应元素相加得到一个新的矩阵。
要实现矩阵的加法,我们可以使用两层循环遍历两个矩阵的对应元素,并将其相加得到新的矩阵。
下面是一个实现矩阵加法的示例代码:```cvoid matrix_add(int m, int n, int matrix1[m][n], int matrix2[m][n], int result[m][n]) {for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {result[i][j] = matrix1[i][j] + matrix2[i][j];}}}```3. 矩阵的减法矩阵的减法与加法类似,只需要将相加的操作改为相减即可。
下面是一个实现矩阵减法的示例代码:```cvoid matrix_subtract(int m, int n, int matrix1[m][n], int matrix2[m][n], int result[m][n]) {for (int i = 0; i < m; i++) {for (int j = 0; j < n; j++) {result[i][j] = matrix1[i][j] - matrix2[i][j];}}}```4. 矩阵的乘法矩阵的乘法是指两个矩阵相乘得到一个新的矩阵。
C语言实现常见的矩阵运算函数
C语言实现常见的矩阵运算函数矩阵运算是数学和计算机科学中的重要部分。
C语言提供了很多用于实现常见矩阵运算的函数。
在本文中,我们将讨论如何使用C语言来实现矩阵加法、矩阵减法、矩阵乘法、矩阵转置等常见的矩阵运算函数。
首先,我们需要定义一个表示矩阵的数据结构。
一个矩阵可以被表示为一个二维数组,其中每个元素都是一个实数。
我们可以使用C语言中的二维数组来表示一个矩阵。
下面是一个示例的矩阵数据结构定义:```ctypedef structint rows; // 矩阵的行数int cols; // 矩阵的列数double** data; // 指向二维数组的指针} Matrix;```接下来,我们将逐个讨论如何实现矩阵运算函数。
1.矩阵加法:对于两个具有相同维度的矩阵,可以将它们的对应元素相加得到一个新的矩阵。
下面是一个示例的矩阵加法函数的实现:```cMatrix add(Matrix m1, Matrix m2)Matrix result;result.rows = m1.rows;result.cols = m1.cols;result.data = malloc(result.rows * sizeof(double*));for (int i = 0; i < result.rows; i++)result.data[i] = malloc(result.cols * sizeof(double));for (int j = 0; j < result.cols; j++)result.data[i][j] = m1.data[i][j] + m2.data[i][j];}}return result;```2.矩阵减法:与矩阵加法类似,对于两个具有相同维度的矩阵,可以将它们的对应元素相减得到一个新的矩阵。
下面是一个示例的矩阵减法函数的实现:```cMatrix subtract(Matrix m1, Matrix m2)Matrix result;result.rows = m1.rows;result.cols = m1.cols;for (int i = 0; i < result.rows; i++)result.data[i] = malloc(result.cols * sizeof(double));for (int j = 0; j < result.cols; j++)result.data[i][j] = m1.data[i][j] - m2.data[i][j];}}return result;```3.矩阵乘法:矩阵乘法是两个矩阵相乘的过程,得到一个新的矩阵。
矩阵代码大全(矩阵的逆、乘法、加法、行列式)(c++程序).wps
班级:数学112班学号:201112010222姓名:吕文辉报告日期:2012/12/17 实验代码:1.输入10个数进行排序:#include<iostream>using namespace std;int main(){int a[10],i,j,t;cout<<"input 10 numbers"<<endl;for(i=0;i<10;i++)cin>>a[i];for(i=0;i<10;i++)for(j=i+1;j<10;j++)if(a[i]>a[j]){t=a[j];a[j]=a[i];a[i]=t;}for(i=0;i<10;i++)cout<<a[i]<<" ";cout<<endl;return 0;}2.输入一个矩阵,输出一个矩阵:#include <iostream>#include <iomanip>using namespace std;const int m=2,n=3;int main(){int a[m][n],i,j,k=0;cout<<"input a array"<<endl;for(i=0;i<m;i++)for(j=0;j<n;j++)cin>>a[i][j];for(i=0;i<m;i++)for(j=0;j<n;j++){ cout<<a[i][j]<<" ";k=k+1;if(k%(m+1)==0)cout<<endl;}cout<<endl;return 0;}3.矩阵转置的程序代码:#include <iostream>using namespace std;int const m=2,n=3;int main(){int i,j,k=0,kk=0;int a[m][n],b[n][m];for(i=0;i<m;i++)for(j=0;j<n;j++)cin>>a[i][j];for(i=0;i<m;i++)for(j=0;j<n;j++)b[j][i]=a[i][j];cout<<"原来的矩阵a为:"<<endl;for(i=0;i<m;i++)for(j=0;j<n;j++){ cout<<a[i][j]<<" ";kk=kk+1;if(kk%n==0) cout<<endl; }cout<<"原来矩阵a的转置b矩阵是:"<<endl;for(i=0;i<n;i++)for(j=0;j<m;j++){ cout<<b[i][j]<<" ";k=k+1;if(k%m==0) cout<<endl; }cout<<endl;return 0;}4.矩阵乘法的代码程序:#include <iostream>#include <iomanip>using namespace std;int const m=3,n=3,q=3;int main(){ double a[m][n],b[n][q],c[m][q];int i,j,k,kk=0;cout<<"输入矩阵a"<<endl;for(i=0;i<m;i++)for(j=0;j<n;j++)cin>>a[i][j];cout<<"输入矩阵b:"<<endl;for(i=0;i<n;i++)for(j=0;j<q;j++)cin>>b[i][j];for(i=0;i<m;i++)for(j=0;j<q;j++){ c[i][j]=0;for(k=0;k<n;k++)c[i][j]=c[i][j]+a[i][k]*b[k][j];}cout<<"矩阵c为矩阵a与b的乘积"<<endl;for(i=0;i<m;i++)for(j=0;j<q;j++){ cout<<setw(7)<<c[i][j];kk=kk+1;if(kk%q==0) cout<<endl;}return 0;}5求矩阵的行列式(即矩阵必须为方阵(n×n));原理:将一个矩阵经过初等行变换化为上三角矩阵。
矩阵运算代码
矩阵运算代码下面是 Python 中矩阵运算的基本代码:1. 创建矩阵```pythonimport numpy as np# 通过列表创建矩阵mat1 = np.array([[1, 2], [3, 4]])mat2 = np.array([[5, 6], [7, 8]])# 通过函数创建矩阵mat3 = np.zeros((2, 2)) # 创建一个2x2的全0矩阵mat4 = np.eye(3) # 创建一个3x3的单位矩阵```2. 矩阵乘法```python# 矩阵乘法res1 = np.dot(mat1, mat2)res2 = mat1 @ mat2```3. 加减标量```python# 加减标量res3 = mat1 + 2 res4 = mat1 - 2```4. 加减矩阵```python# 加减矩阵res5 = mat1 + mat2 res6 = mat1 - mat2 ```5. 点乘```python# 点乘res7 = mat1 * mat2 ```6. 矩阵转置```python# 矩阵转置res8 = mat1.T```7. 矩阵求逆```python# 矩阵求逆res9 = np.linalg.inv(mat1)```8. 矩阵求迹```python# 矩阵求迹res10 = np.trace(mat1)```9. 矩阵的行列式```python# 矩阵的行列式res11 = np.linalg.det(mat1)```10. 矩阵特征值和特征向量```python# 矩阵特征值和特征向量eig_val, eig_vec = np.linalg.eig(mat1)```这些是矩阵运算的基本代码,您可以根据具体需求进行修改和完善。
矩阵计算小程序源码
矩阵计算小程序源码矩阵计算小程序,可以进行矩阵转置、矩阵加法、矩阵乘法、矩阵的逆计算,样式及效果如下:矩阵加法计算矩阵求逆源码:using System;using System.Collections.Generic;using ponentModel;using System.Data;using System.Drawing;using System.Text;using System.Windows.Forms;using diyMatrix;namespace jzjs{public partial class 行列式计算: Form{public 行列式计算(){InitializeComponent();}private void button1_Click(object sender, EventArgs e){Matrix mx1=new Matrix(), mx2=new Matrix(),mx3=new Matrix();if (fuhao.Text == "") { return; }switch (fuhao.Text[0]){case '+':if (tiquM(ref mx1, textBox1.Text) == false) { return; }if (tiquM(ref mx2, textBox2.Text) == false) { return; }mx3 = Matrix.Add(mx1, mx2);break;case '*':if (tiquM(ref mx1, textBox1.Text) == false) { return; }if (tiquM(ref mx2, textBox2.Text) == false) { return; }mx3 = Matrix.Mutiply(mx1, mx2);break;case 't':if (tiquM(ref mx1, textBox1.Text) == false) { return; }mx3 = mx1.Transpose();break;case 'n'://if (textBox1.Text == "") { return; }if (tiquM(ref mx1, textBox1.Text) == false) { return; }mx3 = Matrix.Inverse(mx1);break;default:return;}dis(mx3);}public Boolean tiquM(ref Matrix mx,String str){String[] Arr1, Arr2;Arr1 = str.Split(new String[] { "\r\n", ";" }, StringSplitOptions.RemoveEmptyEntries);if (Arr1.Length==0) { return false; }Arr2 = Arr1[0].Split(new Char[] { ',','\t',' '}, StringSplitOptions.RemoveEmptyEntries);mx = new Matrix(Arr1.Length, Arr2.Length);for (int i = 0; i < Arr1.Length; i++){Arr2 = null;Arr2 = Arr1[i].Split(new Char[] { ',', '\t', ' ' }, StringSplitOptions.RemoveEmptyEntries);for (int j = 0; j < Arr2.Length; j++){mx.SetNum(i, j, Convert.ToDouble(Arr2[j]));}}return true;}public void dis(Matrix mx){for (int i = 0; i < mx.row; i++){for (int j = 0; j < mx.col; j++){if (j != 0) { textBox3.AppendText("\t"); }textBox3.AppendText(mx.getNum(i, j).ToString());}textBox3.AppendText("\r\n");}}}}using System;namespace diyMatrix{public class Matrix{double[,] matrix;public int row = 0, col = 0;//int i=0,j=0;//int count=1;//定义三个不同情况下的构造函数public Matrix(){}public Matrix(int row){matrix = new double[row, row];}public Matrix(int row, int col){this.row = row;this.col = col;matrix = new double[row, col];}//复制构造函数public Matrix(Matrix m){int row = m.row;int col = m.col;matrix = new double[row, col];for (int i = 0; i < row; i++)for (int j = 0; j < col; j++)matrix[i, j] = m.getNum(i, j);}//输入相应的值,对矩阵进行设置public void SetNum(int i, int j, double num){matrix[i, j] = num;}//得到相应的矩阵某个数public double getNum(int i, int j){return matrix[i, j];}/* //输出矩阵public void OutputM(){Console.WriteLine("矩阵为:");for (int p = 0; p < row; p++){for (int q = 0; q < col; q++){Console.Write("\t" + matrix[p, q]);}Console.Write("\n");}}//输入矩阵具体数字实现public void InputM(int Row, int Col){for (int a = 0; a < Col; a++){for (int b = 0; b < Col; b++){Console.WriteLine("第{0}行,第{1}列", a + 1, b + 1);double value = Convert.ToDouble(Console.ReadLine());this.SetNum(a, b, value);}}}*///输入矩阵具体数字实现//得到、设置matrixpublic double[,] Detail{get { return matrix; }set{matrix = value;row = matrix.GetLength(0);col = matrix.GetLength(1);}}//矩阵转置实现public Matrix Transpose(){Matrix another = new Matrix(col, row);for (int i = 0; i < row; i++){for (int j = 0; j < col; j++){another.SetNum(j, i, matrix[i, j]);}}return another;}//矩阵相加实现public static Matrix Add(Matrix lm, Matrix rm){//行出错if (lm.row != rm.row){System.Exception e = new Exception("相加的两个矩阵的行数不等");throw e;}//列出错if (lm.col != rm.col){System.Exception e = new Exception("相加的两个矩阵的列数不等");throw e;}Matrix another = new Matrix(lm.row, lm.col);for (int i = 0; i < lm.row; i++){for (int j = 0; j < lm.col; j++){double temp = lm.getNum(i, j) + rm.getNum(i, j);another.SetNum(i, j, temp);}}return another;}//矩阵相乘实现public static Matrix Mutiply(Matrix m1, Matrix m2){double temp = 0;Matrix ret;if (m1.col != m2.row){System.Exception e = new Exception("前者列数不等于后者行数,无法相乘");throw e;}ret = new Matrix(m1.row, m2.col);for (int i = 0; i < m1.row; i++){for (int j = 0; j < m2.col; j++){for (int p = 0; p < m1.col; p++){temp += m1.getNum(i, p) * m2.getNum(p, j);}ret.SetNum(i, j, temp);temp = 0;}}return ret;}//矩阵求逆实现public static Matrix Inverse(Matrix M){int m = M.row;int n = M.col;if (m != n){Exception myException = new Exception("求逆的矩阵不是方阵");throw myException;}Matrix ret = new Matrix(m, n);double[,] a0 = M.Detail;double[,] a = (double[,])a0.Clone();double[,] b = ret.Detail;int i, j, row, k;double max, temp;//单位矩阵for (i = 0; i < n; i++){b[i, i] = 1;}for (k = 0; k < n; k++){max = 0; row = k;//找最大元,其所在行为rowfor (i = k; i < n; i++){temp = Math.Abs(a[i, k]);if (max < temp){max = temp;row = i;}}if (max == 0){Exception myException = new Exception("该矩阵无逆矩阵");throw myException;}//交换k与row行if (row != k){for (j = 0; j < n; j++){temp = a[row, j];a[row, j] = a[k, j];a[k, j] = temp;temp = b[row, j];b[row, j] = b[k, j];b[k, j] = temp;}}//首元化为1for (j = k + 1; j < n; j++) a[k, j] /= a[k, k];for (j = 0; j < n; j++) b[k, j] /= a[k, k];a[k, k] = 1;//k列化为0//对afor (j = k + 1; j < n; j++){for (i = 0; i < k; i++) a[i, j] -= a[i, k] * a[k, j];for (i = k + 1; i < n; i++) a[i, j] -= a[i, k] * a[k, j];}//对bfor (j = 0; j < n; j++){for (i = 0; i < k; i++) b[i, j] -= a[i, k] * b[k, j];for (i = k + 1; i < n; i++) b[i, j] -= a[i, k] * b[k, j];}for (i = 0; i < n; i++) a[i, k] = 0;a[k, k] = 1;}return ret;}}}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
3.矩阵转置的程序代码: #include <iostream> using namespace std; int const m=2,n=3; int main() {
int i,j,k=0,kk=0; int a[m][n],b[n][m]; for(i=0;i<m;i++)
double det1=1,yin; for(ii=0;ii<n;ii++) { if(array[ii][ii]==0)
for(jj=ii;jj<n;jj++) { if(array[jj][ii]!=0) temp(array[ii],array[jj],n); }
for(k=ii+1;k<n;k++) { yin=-1*array[k][ii]/array[ii][ii];
cout<<"a 矩阵的逆矩阵为 c 矩阵:"<<endl;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{ cout<<setw(15)<<c[i][j];
kk=kk+1;
if(kk%n==0) cout<<endl;
}
}
return 0;
}
void temp(double aa[],double bb[],int n)
for(u=0;u<n;u++) { array[k][u]=array[k][u]+array[ii][u]*yin; } } } for(ii=0;ii<n;ii++) det1=det1*array[ii][ii]; return (det1); } 6.矩阵求逆的程序代码(此时矩阵也必须为方阵): #include<iostream> #include<iomanip> using namespace std; //注意在程序运行过程中那些量是变化的。 int const n=3; int main() { void temp(double aa[],double bb[],int n);
for(i=0;i<n;i++)
for(j=0;j<n;j++)
cin>>a[i][j];
for(i=0;i<n;i++)
for(j=0;j<n;j++)
b[i][j]=a[i][j];
for(j=0;j<n;j++)
b[j][n+j]=1;
// cout<<"a 所对应的 at 矩阵 b 为:"<<endl;
{ int i;
double temp1;
for(i=0;i<n;i++)
{temp1=aa[i];aa[i]=bb[i];bb[i]=temp1; }
}
double fun(double array[n][n])
{ int ii,jj,k,u;
double det1=1,yin;
for(ii=0;ii<n;ii++) { if(array[ii][ii]==0)
cin>>a[i]; for(i=0;i<10;i++)
for(j=i+1;j<10;j++) if(a[i]>a[j]) {t=a[j];a[j]=a[i];a[i]=t;}
for(i=0;i<10;i++) cout<<a[i]<<" ";
cout<<endl; return 0; }
2.输入一个矩阵,输出一个矩阵: #include <iostream> #include <iomanip> using namespace std; const int m=2,n=3; int main() {
}
det1=fun(a);
if(det1==0)
cout<<"此矩阵不可逆:"<<endl;
if(det1!=0)
{
for(i=0;i<n;i++)
{bb=b[i][i];
for(j=0;j<2*n;j++) b[i][j]=b[i][j]/bb;
} for(i=n-1;i>0;i--) for(k=0;k<i;k++) {bb=b[k][i];
for(j=0;j<n;j++) cin>>a[i][j]; det=fun(a); cout<<"矩阵的行列式的值为:"<<det<<endl; for(i=0;i<n;i++)
for(j=0;j<n;j++) {cout<<setw(7)<<a[i][j]; kk=kk+1;
if(kk%n==0) cout<<endl; }
for(j=i;j<n;j++)
{ if(b[j][i]!=0)
temp(b[i],b[j],n);
}
for(k=i+1;k<n;k++)
{ yinzhi=-1*b[k][i]/b[i][i];
for(u=0;u<2*n;u++)
{ b[k][u]=b[k][u]+b[i][u]*yinzhi;
}
}
for(j=0;j<n;j++) cin>>a[i][j];
for(i=0;i<m;i++) for(j=0;j<n;j++) b[j][i]=a[i][j];
cout<<"原来的矩阵 a 为:"<<endl; for(i=0;i<m;i++) for(j=0;j<n;j++) { cout<<a[i][j]<<" "; kk=kk+1; if(kk%n==0) cout<<endl; }
for(jj=ii;jj<n;jj++) { if(array[jj][ii]!=0) temp(array[ii],array[jj],n); } for(k=ii+1;k<n;k++) { yin=-1*array[k][ii]/array[ii][ii];
for(u=0;u<n;u++) { array[k][u]=array[k][u]+array[ii][u]*yin; } } } for(ii=0;ii<n;ii++) det1=det1*array[ii][ii]; return (det1); }
cout<<"原来矩阵 a 的转置 b 矩阵是:"<<endl; for(i=0;i<n;i++) for(j=0;j<m;j++) { cout<<b[i][j]<<" "; k=k+1; if(k%m==0) cout<<endl; }
cout<<endl; return 0; }
4.矩阵乘法的代码程序: #include <iostream> #include <iomanip> using namespace std; int const m=3,n=3,q=3; int main() { double a[m][n],b[n][q],c[m][q];
for(i=0;i<m;i++)
for(j=0;j<n;j++)
cin>>a[i][j];
max=a[0][0];
for(i=0;i<m;i++)
for(j=0;j<n;j++)
{ if(a[i][j]>max)
max=a[i][j];
if(a[i][j]<=max)
max=max;
}
for(i=0;i<m;i++)
int a[m][n],i,j,k=0; cout<<"input a array"<<endl; for(i=0;i<m;i++)
for(j=0;j<n;j++) cin>>a[i][j];
for(i=0;i<m;i++) for(j=0;j<n;j++) { cout<<a[i][j]<<" "; k=k+1; if(k%(m+1)==0) cout<<endl;
// if(kk%(2*n)==0) cout<<endl;
//
}
// cout<<endl;