2018-2019学年山东省济南市历下区八年级(上)期末数学试卷
山东省济南市历下区2018-2019学年八年级上学期期末考试数学试题含答案
山东省济南市历下区2018-2019学年八年级上学期期末考试数学试题一、选择题(本大题共12小题,共48.0分)1.点的位置在A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知,则下列不等式中不正确的是A. B. C. D.3.如图,直线,将三角尺的直角顶点放在直线b上,若,则等于A. B. C. D.4.不等式的解集在数轴上表示为A. B.C. D.5.满足下列条件的,不是直角三角形的是A. B.C. a:b::4:5D. :::4:56.下列算式中,正确的是A. B.C. D.7.某中学随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是A. 小时B. 小时C. 小时D. 7小时8.函数b为常数,的图象如图所示,则关于x的不等式的解集是A.B.C.D.9.在中,,的角平分线AD交BC于点D,,,则点D到AB的距离是A. 2B. 3C. 4D. 510.如图,已知等腰,,若以点B为圆心,BC长为半径画弧,交腰AC于点D,则下列结论一定正确的是A.B.C.D.11.已知等腰三角形周长为40,则腰长y关于底边长x的函数图象是A. B. C. D.12.如图,已知:,点,,,在射线ON上,点,,,在射线OM上,,,,均为等边三角形,若,则的长为A. B. C. D.二、填空题(本大题共8小题,共34.0分)13.已知点在一次函数的图象上,则______.14.在平面直角坐标系中,点在第三象限,则m的取值范围是______.15.如图,在中,AC的垂直平分线DE交AB于点E,交AC于点D,连接CE,若,,则______.16.省运会举行射击比赛,我市射击队从甲、乙、丙、丁四人中选拔一人参赛,在选拔赛中,每人射击10次,计算他们10次成绩的平均数和方差如下表,请你根据表中数据选一人参加比赛,最适合的人选是______.17.如图,在中,与的平分线相交于点O,过点O作,分别交AB、AC于点M、若的周长为15,,则的周长为______.18.如图,在中,,,D是AB的中点,点E、F分别在AC、BC边上运动点E不与点A、C重合,且保持,连接DE、DF、在此运动变化的过程中,有下列结论:;四边形CEDF的面积随点E、F位置的改变而发生变化;;以上结论正确的是______只填序号.19.如图,,P为射线BC上任意一点点P和点B不重合,分别以AB,AP为边在内部作等边和等边,连结QE并延长交BP于点F,连接EP,若,,则______.20.如图,平面直角坐标系中,已知点,C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转至线段PD,过点D作直线轴,垂足为B,直线AB与直线OP交于点A,且,直线CD与直线OP交于点Q,则点Q的坐标为______.三、计算题(本大题共2小题,共12.0分)21.解二元一次方程组.22.解不等式组,并把它的解集表示在数轴上.四、解答题(本大题共7小题,共66.0分)23.在中,D是BC的中点,,,垂足分别为E、F,且.求证:是等腰三角形.24.为迎接广州市青少年读书活动,某校倡议同学们利于课余时间多阅读为了解同学们的读书情况,在全校随机调查了部分同学在一周内的阅读时间,并用得到的数据绘制了统计图,根据图中信息解答下列问题:被抽查学生阅读时间的中位数为______小时,众数为______小时,平均数为______小时已知全校学生人数为1500人,请你估算该校学生一周内阅读时间不少于三小时的有多少人?25.为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A、B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.若购买这批学习用品用了26000元,则购买A、B两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?26.如图,在中,,,AD是的角平分线,,垂足为E.求证:;已知,求AC的长;求证:.27.已知:如图一次函数与的图象相交于点A.求点A的坐标;若一次函数与的图象与x轴分别相交于点B、C,求的面积.结合图象,直接写出时x的取值范围.28.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:如图1,已知:在中,,,直线m经过点A,直线m,直线m,垂足分别为点D、试猜想DE、BD、CE有怎样的数量关系,请直接写出______;组员小颖想,如果三个角不是直角,那结论是否会成立呢?如图2,将中的条件改为:在中,,D、A、E三点都在直线m上,并且有其中为任意锐角或钝角如果成立,请你给出证明;若不成立,请说明理由.数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,F是角平分线上的一点,且和均为等边三角形,D、E分别是直线m上A点左右两侧的动点、E、A互不重合,在运动过程中线段DE的长度始终为n,连接BD、CE,若,试判断的形状,并说明理由.29.如图1,点A、B、C在坐标轴上,且A、B、C的坐标分别为、、过点A的直线AD与y轴正半轴交于点D,求直线AD和BC的解析式;如图2,点E在直线上且在直线BC上方,当的面积为6时,求E点坐标;在的条件下,如图3,动点M在直线AD上,动点N在x轴上,连接ME、NE、MN,当周长最小时,求周长的最小值.山东省济南市历下区2018-2019学年八年级上学期期末考试数学试题解析一、选择题(本大题共12小题,共48.0分)30.点的位置在A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】解:点,点所在的象限是第二象限.故选:B.根据各象限内点的坐标特点,再根据M点的坐标符号,即可得出答案.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.31.已知,则下列不等式中不正确的是A. B. C. D.【答案】D【解析】解:A、在不等式的两边同时乘以5,不等式仍成立,即,故本选项不符合题意;B、在不等式的两边同时加7,不等式仍成立,即,故本选项不符合题意;C、在不等式的两边同时乘以,不等号方向改变,即,故本选项不符合题意;D、在不等式的两边同时减去6,不等式仍成立,即,故本选项符合题意;故选:D.根据不等式的性质解答.考查了不等式的性质:不等式两边加或减同一个数或整式,不等号的方向不变.不等式两边乘或除以同一个正数,不等号的方向不变.不等式两边乘或除以同一个负数,不等号的方向改变.32.如图,直线,将三角尺的直角顶点放在直线b上,若,则等于A. B. C. D.【答案】B【解析】解:如图,,,,.故选:B.根据平角的定义求出,再根据两直线平行,同位角相等可得.本题考查了平行线的性质,熟记性质并准确识图是解题的关键.33.不等式的解集在数轴上表示为A. B.C. D.【答案】A【解析】解:移项得:,系数化为1得:,即不等式的解集为:,不等式的解集在数轴上表示如下:故选:A.依次移项,系数化为1,即可求得一元一次不等式的解集,再将解集在数轴上表示出来即可.本题考查了解一元一次不等式和在数轴上表示不等式的解集,正确掌握解一元一次不等式和在数轴上表示不等式解集的方法是解题的关键.34.满足下列条件的,不是直角三角形的是A. B.C. a:b::4:5D. :::4:5【答案】D【解析】解:A、,是直角三角形,故此选项不合题意;B、,,,是直角三角形,故此选项不合题意;C、,是直角三角形,故此选项不合题意;D、:::4:5,则,不是直角三角形,故此选项符合题意,故选:D.根据勾股定理逆定理:如果三角形的三边长a,b,c满足,那么这个三角形就是直角三角形;三角形内角和定理进行分析即可.此题主要考查了勾股定理逆定理,以及三角形内角和定理,关键是正确掌握如果三角形的三边长a,b,c 满足,那么这个三角形就是直角三角形.35.下列算式中,正确的是A. B.C. D.【答案】C【解析】解:,此选项错误;B.,此选项错误;C.,此选项正确;D.,此选项错误;故选:C.根据二次根式的混合运算法则逐一计算可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算法则.36.某中学随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是A. 小时B. 小时C. 小时D. 7小时【答案】C【解析】解:小时.故这50名学生这一周在校的平均体育锻炼时间是小时.故选:C.根据加权平均数的计算公式列出算式,再进行计算即可.此题考查了加权平均数,用到的知识点是加权平均数的计算公式,根据加权平均数的计算公式列出算式是解题的关键.37.函数b为常数,的图象如图所示,则关于x的不等式的解集是A.B.C.D.【答案】C【解析】解:关于x的不等式的解集为.故选:C.利用函数图象,写出直线在x轴上方所对应的自变量的范围即可.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.38.在中,,的角平分线AD交BC于点D,,,则点D到AB的距离是A. 2B. 3C. 4D. 5【答案】B【解析】解:,,,由角平分线的性质,得点D到AB的距离,故选:B.根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D到AB的距离点D到AC的距离.本题主要考查平分线的性质,由已知能够注意到D到AB的距离即为CD长是解决的关键.39.如图,已知等腰,,若以点B为圆心,BC长为半径画弧,交腰AC于点D,则下列结论一定正确的是A.B.C.D.【答案】C【解析】解:,,以点B为圆心,BC长为半径画弧,交腰AC于点D,,,,,故选:C.利用等腰三角形的性质分别判断后即可确定正确的选项.本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.40.已知等腰三角形周长为40,则腰长y关于底边长x的函数图象是A. B.C. D.【答案】D【解析】解:等腰三角形的周长为40,其中腰长为y,底边长为x,,,,自变量x的取值范围是,y的取值范围是.故选:D.根据三角形的周长公式即可写出y与x的函数关系式,结合x和y的取值范围,即可得出答案.此题主要考查动点问题的函数图象、一次函数关系式,掌握等腰三角形的周长公式是解题的关键.41.如图,已知:,点,,,在射线ON上,点,,,在射线OM上,,,,均为等边三角形,若,则的长为A. B. C. D.【答案】C【解析】解:是等边三角形,,,,,,又,,,,,、是等边三角形,,,,,,,,,,,,,,,以此类推,的长为,的长为,故选:C.根据等腰三角形的性质以及平行线的性质得出,以及,得出,,,以此类推,的长为,进而得出答案.此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出,,进而发现规律是解题关键.二、填空题(本大题共8小题,共34.0分)42.已知点在一次函数的图象上,则______.【答案】【解析】解:点在一次函数的图象上,.故答案是:.把点P的坐标代入函数解析式,列出关于a的方程,通过解方程可以求得a的值.本题考查了一次函数图象上点的坐标特征此题利用代入法求得未知数a的值.43.在平面直角坐标系中,点在第三象限,则m的取值范围是______.【答案】【解析】解:点在第三象限,点的横坐标是负数,纵坐标也是负数,即,解得,故答案为:,点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得,求不等式的解即可.本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.44.如图,在中,AC的垂直平分线DE交AB于点E,交AC于点D,连接CE,若,,则______.【答案】【解析】解:的垂直平分线DE,,,,故答案为:.根据线段垂直平分线性质求出,即可得出的度数.此题考查线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.45.省运会举行射击比赛,我市射击队从甲、乙、丙、丁四人中选拔一人参赛,在选拔赛中,每人射击10次,计算他们10次成绩的平均数和方差如下表,请你根据表中数据选一人参加比赛,最适合的人选是______.【答案】丁【解析】解:甲,乙,丙,丁四个人中甲和丁的平均数最大且相等,甲,乙,丙,丁四个人中丁的方差最小,说明丁的成绩最稳定,综合平均数和方差两个方面说明丁成绩既高又稳定,丁是最佳人选.故答案为:丁.根据甲,乙,丙,丁四个人中甲和丁的平均数最大且相等,甲,乙,丙,丁四个人中丁的方差最小,说明丁的成绩最稳定,得到丁是最佳人选.本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.46.如图,在中,与的平分线相交于点O,过点O作,分别交AB、AC于点M、若的周长为15,,则的周长为______.【答案】9【解析】解:如图,、OC分别是与的平分线,,,又,,,,,的周长,又,,,的周长,故答案为9.先根据角平分线的性质和平行线判断出、,也就得到三角形的周长就等于AB与AC的长度之和.本题考查了等腰三角形的性质;解答此题的关键是熟知平行线的性质,等腰三角形的性质及角平分线的性质及利用线段的等量代换.47.如图,在中,,,D是AB的中点,点E、F分别在AC、BC边上运动点E不与点A、C重合,且保持,连接DE、DF、在此运动变化的过程中,有下列结论:;四边形CEDF的面积随点E、F位置的改变而发生变化;;以上结论正确的是______只填序号.【答案】【解析】解:连接CD,是等腰直角三角形,,;在和中,,≌ ,,故正确;,定值,故错误,四边形≌ ,,,故正确,,,,,,,故正确.故答案为.连接证明 ≌ ,利用全等三角形的性质即可一一判断.本题考查全等三角形的判定和性质,勾股定理,等腰直角三角形想的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.48.如图,,P为射线BC上任意一点点P和点B不重合,分别以AB,AP为边在内部作等边和等边,连结QE并延长交BP于点F,连接EP,若,,则______.【答案】【解析】解:如图:连接EP,过点E作,是等边三角形,,且,≌,,,,,,,,在中,故答案为连接EP,过点E作,由题意可得 ≌ ,可得,,可求,根据勾股定理可求,,,,可求,,,由,,可得,可求MP的长,根据勾股定理可求EP的长.本题考查了三角形综合题,全等三角形的判定和性质,勾股定理,构造直角三角形用勾股定理求线段的长度是本题的关键.49.如图,平面直角坐标系中,已知点,C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转至线段PD,过点D作直线轴,垂足为B,直线AB与直线OP交于点A,且,直线CD与直线OP交于点Q,则点Q的坐标为______.【答案】【解析】解:过点P作于E,EP的延长线交AB于F.,,四边形EOBF是矩形,,,,,,,在和中,,≌ ,,,,,,,,,设直线CD的解析式为则有,解得,直线CD的解析式为,由解得,点Q的坐标为故答案为过点P作于E,EP的延长线交AB于首先证明 ≌ ,得到,推出,由,推出,,,,,利用待定系数法求出直线CD的解析式,利用方程组即可求出点Q的坐标.本题考查一次函数的应用、待定系数法、全等三角形的判定和性质、二元一次方程组等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建一次函数,利用方程组求交点坐标,属于中考填空题中的压轴题.三、计算题(本大题共2小题,共12.0分)50.解二元一次方程组.【答案】解:,,得,,把代入,得,解得,所以原方程组的解为.【解析】利用加减消元法求解可得.本题主要考查解二元一次方程组,熟练掌握解二元一次方程组的两种消元方法是解题的关键.51.解不等式组,并把它的解集表示在数轴上.【答案】解:解不等式,得,解不等式,得,不等式组的解集是,在数轴上表示为:.【解析】先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解此题的关键.四、解答题(本大题共7小题,共66.0分)52.在中,D是BC的中点,,,垂足分别为E、F,且.求证:是等腰三角形.【答案】证明:是BC的中点,,,,,,,≌ ,,,是等腰三角形.【解析】根据中点的定义可得到,再根据HL即可判定 ≌ ,从而可得到,根据等角对等边可得到,即是等腰三角形.此题主要考查等腰三角形的判定及全等三角形的判定与性质的综合运用.53.为迎接广州市青少年读书活动,某校倡议同学们利于课余时间多阅读为了解同学们的读书情况,在全校随机调查了部分同学在一周内的阅读时间,并用得到的数据绘制了统计图,根据图中信息解答下列问题:被抽查学生阅读时间的中位数为______小时,众数为______小时,平均数为______小时已知全校学生人数为1500人,请你估算该校学生一周内阅读时间不少于三小时的有多少人?【答案】2 2【解析】解:,被抽查学生阅读时间的中位数为:第25和第26个学生阅读时间的平均数,众数为2,平均数,故答案为:2,2,;,答:估算该校学生一周内阅读时间不少于三小时的有540人.根据统计图中的数据确定出学生劳动时间的众数、中位数和平均数即可;根据总人数阅读时间不少于三小时的百分比可得结果.此题考查了众数,条形统计图,平均数、中位数及用样本估计总体,弄清题中的数据是解本题的关键.54.为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A、B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.若购买这批学习用品用了26000元,则购买A、B两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?【答案】解:设购买A型学习用品x件,B型学习用品y件,由题意,得:,解得:.答:购买A型学习用品400件,B型学习用品600件;设可以购买B型学习用品a件,则A型学习用品件,由题意,得:,解得:,答:最多购买B型学习用品800件.【解析】设购买A型学习用品x件,B型学习用品y件,就有,,由这两个方程构成方程组求出其解就可以得出结论;设可以购买B型学习用品a件,则A型学习用品件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.本题考查了列二元一次方程组和一元一次不等式解实际问题的运用,解答本题时找到等量关系是建立方程组的关键.55.如图,在中,,,AD是的角平分线,,垂足为E.求证:;已知,求AC的长;求证:.【答案】证明:在中,,,是等腰直角三角形,,,是等腰直角三角形,.是的角平分线,,;解:由知,是等腰直角三角形,,,,;证明:是的角平分线,,.在与中,,≌ ,.由知,.【解析】先根据题意判断出是等腰直角三角形,故,再由可知是等腰直角三角形,故DE,再根据角平分线的性质即可得出结论;由知,是等腰直角三角形,,再根据勾股定理求出BD的长,进而可得出结论;先根据HL定理得出 ≌ ,故AE,再由可得出结论.本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.56.已知:如图一次函数与的图象相交于点A.求点A的坐标;若一次函数与的图象与x轴分别相交于点B、C,求的面积.结合图象,直接写出时x的取值范围.【答案】解:解方程组,得,所以点A坐标为;当时,,,则B点坐标为;当时,,,则C点坐标为;,的面积;根据图象可知,时x的取值范围是.【解析】将两个函数的解析式联立得到方程组,解此方程组即可求出点A的坐标;先根据函数解析式求得B、C两点的坐标,可得BC的长,再利用三角形的面积公式可得结果;根据函数图象以及点A坐标即可求解.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合也考查了两直线相交时交点坐标的求法以及三角形的面积.57.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:如图1,已知:在中,,,直线m经过点A,直线m,直线m,垂足分别为点D、试猜想DE、BD、CE有怎样的数量关系,请直接写出______;组员小颖想,如果三个角不是直角,那结论是否会成立呢?如图2,将中的条件改为:在中,,D、A、E三点都在直线m上,并且有其中为任意锐角或钝角如果成立,请你给出证明;若不成立,请说明理由.数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,F是角平分线上的一点,且和均为等边三角形,D、E分别是直线m上A点左右两侧的动点、E、A互不重合,在运动过程中线段DE的长度始终为n,连接BD、CE,若,试判断的形状,并说明理由.【答案】【解析】解:,理由:,,,,,,,在和中,,≌ ,,,,故答案为:;解:结论成立;理由如下:,,,,在和中,,≌ ,,,;为等边三角形,理由:由得, ≌ ,,,,即,在和中,,≌ ,,,,为等边三角形.先利用同角的余角相等,判断出,进而判断出 ≌ ,得出,,即可得出结论;先利用等式的性质,判断出,进而判断出 ≌ ,得出,,即可得出结论;由得, ≌ ,得出,再判断出 ≌ ,得出,进而得出,即可得出结论.此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,判断出是解本题的关键.58.如图1,点A、B、C在坐标轴上,且A、B、C的坐标分别为、、过点A的直线AD与y轴正半轴交于点D,求直线AD和BC的解析式;如图2,点E在直线上且在直线BC上方,当的面积为6时,求E点坐标;在的条件下,如图3,动点M在直线AD上,动点N在x轴上,连接ME、NE、MN,当周长最小时,求周长的最小值.【答案】解:,,即点D的坐标为,将点A、D的坐标代入一次函数表达式:得:,解得:,则直线AD的表达式为:,同理可得直线BC的表达式为:;设直线与BC交于点F,点E坐标为,则点F坐标为,则,解得:,即点E的坐标为;过点E点作,点E和关于直线AD对称,设直线与直线AD交于点,连接,找到点E关于x轴的对称点,连接交AD于M点、交x轴于点N,此时,周长最小,,,则点的坐标为,则:周长的最小值.【解析】,,即点D的坐标为,将点A、D的坐标代入一次函数表达式,即可求解;由,即可求解;作点E关于直线AD对称点;找到点E关于x轴的对称点,连接交AD于M点、交x轴于点N,则周长最小,即可求解.本题考查的是一次函数综合运用,主要考查对称点的性质与用途,此类题目正确确定对称点的位置解题的关键.。
《试卷3份集锦》济南市某名校2018-2019年八年级上学期数学期末综合测试试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .50【答案】C【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A 、15=5,被开方数含分母,不是最简二次根式;故A 选项错误; B 、0.5=22,被开方数为小数,不是最简二次根式;故B 选项错误; C 、5,是最简二次根式;故C 选项正确;D .50=52,被开方数,含能开得尽方的因数或因式,故D 选项错误;故选C .考点:最简二次根式.2.(3分)25的算术平方根是( )A .5B .﹣5C .±5D .【答案】A【解析】试题分析:∵,∴21的算术平方根是1.故选A . 考点:算术平方根.3.点(3,5)M --关于x 轴的对称点的坐标为( )A .(3,5)-B .(3,5)--C .(3,5)D .(3,5)- 【答案】A【分析】根据关于x 轴对称的点的特征:横坐标相同,纵坐标互为相反数即可得出答案.【详解】∵关于x 轴对称的点横坐标相同,纵坐标互为相反数,∴点(3,5)M --关于x 轴的对称点的坐标为(3,5)-.故选:A .【点睛】本题主要考查关于x 轴对称的点的特征,掌握关于x 轴对称的点的特征是解题的关键.4.若()()23x x m -+计算的结果中不含关于字母x 的一次项,则m 的值为( )A .4B .5C .6D .7【答案】C 【分析】根据题意,先将代数式()()23x x m -+通过多项式乘以多项式的方法展开,再将关于x 的二次项、一次项及常数项分别合并,然后根据不含字母x 的一次项的条件列出关于x 的方程即可解得.【详解】()()23x x m -+2662x mx x m =+--()2662x m x m =+--∵计算的结果中不含关于字母x 的一次项∴60m -=∴6m =故选:C【点睛】本题考查的知识点是多项式乘以多项式的方法,掌握多项式乘法法则,能根据不含一次项的条件列出方程是关键,在去括号时要特别注意符号的准确性.5.若等腰三角形的顶角为80,则它的一个底角度数为( )A .20B .50C .80D .100【答案】B【分析】由已知顶角为80°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.【详解】解:∵等腰三角形的顶角为80°,∴它的一个底角为(180°-80°)÷2=50°.故选B .【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理.通过三角形内角和,列出方程求解是正确解答本题的关键.6.如图,已知△ABC ≌△DAE ,BC=2,DE=5,则CE 的长为( ).A .2B .2.5C .3D .3.5【答案】C【分析】依据全等三角形的性质及等量代换即可求出.【详解】解:∵△ABC≌△DAE,∴AE=BC=2,AC=DE=5,∴CE=AC−AE=3.故选:C.【点睛】找到全等三角形的对应边是关键.∠的度数是( )7.如图所示的两个三角形全等,则1A.50︒B.72︒C.58︒D.82︒【答案】A【分析】根据全等三角形对应角相等解答即可.【详解】解:在△ABC中,∠B=180-58°-72°=50°,∵两个三角形全等,∴∠1=∠B=50°.故选A.【点睛】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.8.下列说法中错误的是()A.全等三角形的对应边相等B.全等三角形的面积相等C.全等三角形的对应角相等D.全等三角形的角平分线相等【答案】D【分析】根据全等三角形的性质即可解决问题.【详解】解:全等三角形的对应边相等,对应角相等,全等三角形的面积相等,故A、B、C正确,故选D.【点睛】本题考查全等三角形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9( )A .-1B .0C .1D .±1【答案】C,=1, 故选C .【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同. 10.函数y=3x+1的图象一定经过点( )A .(3,5)B .(-2,3)C .(2,5)D .(0,1)【答案】D【分析】根据一次函数图象上点的坐标特点把各点分别代入函数解析式即可.【详解】A.∵当x=3时,3x 133110+=⨯+=,∴(3,5)不在函数图像上;B. ∵当x=-2时,()3x 13-215+=⨯+=-,∴(-2,3)不在函数图像上;C. ∵当x=2时,3x 13217+=⨯+=,∴(2,5)不在函数图像上;D. ∵当x=0时,3x 13011+=⨯+=,∴(0,1)在函数图像上.故选:D .【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.二、填空题11.如图,在ABC ∆中,AB AC =,BD CD =,25BAD ∠=︒,则C ∠的度数为______°.【答案】65【分析】根据等腰三角形的三线合一求出∠ADB=90°,进而求出∠B的度数,根据等边对等角求出∠C的度数.【详解】∵AB=AC,BD=CD∴AD⊥BC∴∠ADB=90°∵∠BAD=25°∴∠B=90°-∠BAD=65°∴∠C=∠B=65°故答案为:65【点睛】本题考查了等腰三角形的性质及直角三角形的两个锐角互余,掌握等腰三角形的性质及直角三角形的性质是关键.12.如图,点B,A,D,E在同一条直线上,AB=DE,BC∥EF,请你利用“ASA”添加一个条件,使△ABC≌△DEF,你添加的条件是_____.【答案】BAC EDF∠=∠【分析】由平行线的性质得出∠B=∠E,由ASA即可得出△ABC≌△DEF.【详解】解:添加条件:BAC EDF∠=∠,理由如下:∵BC∥EF,∴∠B=∠E,在△ABC和△DEF中,B EAB DEBAC EDF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC≌△DEF(ASA);故答案为:BAC EDF ∠=∠【点睛】本题主要考查利用ASA 判定三角形全等,找到另外一组相等角是解题的关键.13.如图,在平面直角坐标系xOy 中,点()11,1A -在直线y x b =+上,过点1A 作11A B x ⊥轴于点1B ,作等腰直角三角形112A B B (2B 与原点O 重合),再以12A B 为腰作等腰直角三角形212A A B ,以22A B 为腰作等腰直角三角形223A B B ;按照这样的规律进行下去,那么3A 的坐标为______.2019A 的坐标为______.【答案】(2,4) ()2018201822,2-【分析】根据直线的解析式及等腰直角三角形的性质分析前几个点的坐标规律,找到规律则可得出答案.【详解】∵点123,,,,n B B B B 在x 轴上,且122222233334,,,A B B B A B B B A B B B ===∵()11,1A -()()()()112340,2,2,4,6,8,,22,2n n n A A A A --∴- ∴2019A 的坐标为()2018201822,2-故答案为:()2,4;()2018201822,2-.【点睛】 本题主要考查等腰直角三角形的性质,找到点的坐标规律是解题的关键.14.计算()22x xy x -÷的结果是__________.【答案】2x y -【解析】直接利用多项式除以单项式的法则即可求出结果,在计算的时候注意符合的问题.【详解】利用多项式除以单项式的法则,即原式()22x xy x -÷=22x x xy x ÷-÷=2x y -【点睛】本题考查多项式除以单项式运算,熟练掌握运算法则是解题关键.15.某学校八年级()1班学生准备在植树节义务植树240棵,原计划每小时植树a 棵,实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了__________小时完成任务. (用含a 的代数式表示). 【答案】40a【分析】等量关系为:原计划时间-实际用时=提前的时间,根据等量关系列式. 【详解】由题意知,原计划需要240a 小时,实际需要2401.2a 小时, 故提前的时间为240240240200401.2a a a a a-=-=, 则实际比原计划提前了40a小时完成任务. 故答案为:40a . 【点睛】本题考查了列分式,找到等量关系是解决问题的关键,本题还考查了工作时间=工作总量÷工效这个等量关系.16.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.【答案】1y x =+【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k 的值不变.17.若点()2,A a -和点(),5B b -关于y 轴对称,则a b +=__________.【答案】-3【分析】根据关于y 轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等,求出a 、b ,代入即可.【详解】解:∵点()2,A a -和点(),5B b -关于y 轴对称∴a=-5,b=2∴523a b +=-+=-故答案为:3-.【点睛】此题考查的是关于y 轴对称的两点坐标关系,掌握关于y 轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等是解决此题的关键.三、解答题18.如图,四边形ABCD 中,//AD BC ,12cm AD =,15cm BC =,点P 自点A 向D 以1cm/s 的速度运动,到D 点即停止;点Q 自点C 向B 以2cm/s 的速度运动,到B 点即停止,直线PQ 分原四边形为两个新四边形;则当P ,Q 同时出发_____秒后其中一个新四边形为平行四边形.【答案】4或5【分析】结合题意,根据平行四边形的性质,列一元一次方程并求解,即可得到答案.【详解】设点P 和点Q 运动时间为t∵12cm AD =,点P 自点A 向D 以1cm/s 的速度运动,到D 点即停止∴点P 运动时间121AD t ≤=秒 ∵15cm BC =,点Q 自点C 向B 以2cm/s 的速度运动,到B 点即停止∴点Q 运动时间1522BC t ≤=秒 ∴点P 和点Q 运动时间152t ≤ 直线PQ 分原四边形为两个新四边形,其中一个新四边形为平行四边形,分两种情况分析:当四边形PDCQ 为平行四边形时PD QC =结合题意得:12PD AD AP t =-=-,2QC t =∴122t t -=∴4t =,且满足152t ≤ 当四边形APQB 为平行四边形时AP BQ =结合题意得:AP t =,152BQ BC QC t =-=-∴152t t =-∴5t =,且满足152t ≤ ∴当P ,Q 同时出发秒4或5后其中一个新四边形为平行四边形.【点睛】本题考查了平行四边形、一元一次方程、一元一次不等式的知识;解题的关键是熟练掌握平行四边形、一元一次方程、一元一次不等式的性质,从而完成求解.19.(1)解方程:542332x x x +=--. (2)计算:13(2715)3⨯--353÷+-. 【答案】(1)1x =;(2)325-+【分析】(1)先将分式方程化成整式方程,解整式方程求出x 的值,再检验,即可得出答案; (2)先化简根号和绝对值,再根据二次根式的混合运算计算即可得出答案.【详解】(1)解:去分母,得54(23)x x -=-,解得1x =.检验:当1x =时,230x -≠.∴原分式方程的解为1x =.(2)解:原式3(3315)=--353÷+-33553=-++-325=-+.【点睛】本题考查的是解分式方程和二次根式的混合运算,属于基础题型,需要熟练掌握相关的运算步骤和方法. 20.如图,E ,F 分别是等边三角形ABC 的边AB ,AC 上的点,且BE =AF ,CE ,BF 交于点P.(1)求证:BF =CE ;(2)求∠BPC 的度数.【答案】(1)见解析;(2)见解析.【分析】(1)先根据等边三角形和已知条件证明△ABF ≌△BCE ,然后根据全等三角形的性质证明即可; (2)先证明∠ABF=∠BCE ,再运用等量代换说明∠BCE+∠FBC=60°,最后根据三角形内角和定理即可解答.【详解】(1)证明:∵△ABC 是等边三角形,A EBC AB BC ∴∠=∠=在△ABF 和△BCE 中AF BE A EBC AB BC =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△BCE∴BF=CE ;(2)∵△ABF ≌△BCE∴∠ABF=∠BCE∵∠ABF+∠FBC=60°∴∠BCE+∠FBC=60°∴∠BPC=180°-(∠BCE+∠FBC )=180°-60°=120°.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质以及三角形内角和定理,灵活应用相关知识成为解答本题的关键.21.小颖根据学习函数的经验,对函数1|1|y x =--的图象与性质进行了探究,下面是小颖的探究过程,请你补充完整.(1)列表: x … -2 -1 0 1 2 3 4 … y … -2 -1 0 1 0 -1 k … ①k =____;②若(8A ,6)-,(B m ,6)-为该函数图象上不同的两点,则m =____;(2)描点并画出该函数的图象;(3)①根据函数图象可得:该函数的最大值为____;②观察函数1|1|y x =--的图象,写出该图象的两条性质________________________;_____________________;③已知直线1112y x =-与函数1|1|y x =--的图象相交,则当1y y <时,x 的取值范围为是____.【答案】(1)①2-;②6-;(2)见解析;(3)①1;②见解析;③22x -<<【分析】(1)①把x=4代入1|1|y x =--,即可得到结论;②把(),6B m -代入1|1|y x =--,即可得到结论;(2)根据题意画出函数图象即可;(3)①根据函数的图象即可得到结论;②根据函数的图象即可得到性质;③通过数形结合进行求解即可.【详解】(1)①把x=4代入1|1|y x =--得2k =-;②(),6B m -代入1|1|y x =--得61|1|m -=--,解得1286m m ==-,∵(8,6)(,6)A B m --,为该函数图象上不同的两点∴6m =-;(2)该函数的图象如下图所示,(3)根据函数图象可知:①该函数的最大值为1;②性质:该函数的图象是轴对称图形;当1x <时,y 随着x 的增大而增大,当1x >时,y 随着x 的增大而减小; ③∵1112y x =-与1|1|y x =--的图象相交于点(2,2)--,20(,), ∴当1y y <时,x 的取值范围为22x -<<.【点睛】本题主要考查了画函数图像及函数图像的性质,熟练掌握函数图像的画法及掌握数形结合的数学思想是解决本题的关键.22.小山同学结合学习一次函数的经验和自己的思考,按以下方式探究函数1y x x =+-的图象与性质,并尝试解决相关问题.请将以下过程补充完整:(1)判断这个函数的自变量x 的取值范围是________________;(2)补全表格: x ••• 3- 2.5- 2- 1.5- 1- 0 1 1.5 2 •••y ••• 5 4 3 1 1 1 •••(3)在平面直角坐标系xOy 中画出函数1y x x =+-的图象:(4)填空:当1x ≤-时,相应的函数解析式为___(用不含绝对值符合的式子表示);(5)写出直线1y x =-+与函数1y x x =+-的图象的交点坐标.【答案】(1)全体实数;(2)见解析;(3)见解析;(4)21y x =--;(5)(2,3),(0,1)-【分析】(1)由函数解析式:1y x x =+-可以得到自变量x 的取值范围,(2)利用函数解析式给出的自变量的值得出函数值可以得到答案.(3)根据自变量与函数值的对应值在平面直角坐标系中描好点并连线得到图像.(4)在1x ≤-的条件下去掉绝对值符号,得到函数解析式.(5)观察图像写出交点坐标即可.【详解】(1)因为:1y x x =+-,所以函数自变量的取值范围是全体实数. (2)利用1y x x =+-把 1.5,1, 1.5x x x =-=-= 分别代入解析式计算出函数y 的值填入下表: x ••• 3- 2.5- 2- 1.5- 1- 0 1 1.5 2 •••y ••• 5 4 3 2 1 1 1 1 1 •••(3)描点并连线(见图5).(4)因为:1x ≤-,所以10x +≤所以:1121y x x x x x =+-=---=--(5)在同一直角坐标系中画出1y x =-+的图像,观察图像得交点为(2,3),(0,1)-(如图6所示).【点睛】本题考查了一次函数图象上点的坐标特征,能熟记一次函数的图象和性质是解此题的关键.23.在△ABC中,AB=AC,D是BC的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD于点F,交AC于点G.(1)若∠BAC=40°,求∠AEB的度数;(1)求证:∠AEB=∠ACF;(3)求证:EF1+BF1=1AC1.【答案】(1)∠AEB=15°;(1)证明见解析;(3)证明见解析.【解析】(1)根据等腰三角形的性质可得∠ABE=∠AEB,求出∠BAE,根据三角形内角和定理求出即可;(1)根据等腰三角形的性质得出∠BAF=∠CAF,由SAS得出△BAF≌△CAF,从而得出∠ABF=∠ACF,即可得出答案;(3)根据全等得出BF=CF,由已知得到∠CFG=∠EAG=90°,由勾股定理得出EF1+BF1=EF1+CF1=EC1,EC1=AC1+AE1=1AC1,即可得到答案.【详解】解:(1)∵AB=AC,△ACE是等腰直角三角形,∴AB=AE,∴∠ABE=∠AEB,又∵∠BAC=40°,∠EAC=90°,∴∠BAE=40°+90°=130°,∴∠AEB=(180°﹣130°)÷1=15°;(1)∵AB=AC,D是BC的中点,∴∠BAF=∠CAF.在△BAF和△CAF中AF AF BAF CAF AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAF ≌△CAF (SAS ),∴∠ABF=∠ACF ,∵∠ABE=∠AEB ,∴∠AEB=∠ACF ;(3)∵△BAF ≌△CAF ,∴BF=CF ,∵∠AEB=∠ACF ,∠AGE=∠FGC ,∴∠CFG=∠EAG=90°,∴EF 1+BF 1=EF 1+CF 1=EC 1,∵△ACE 是等腰直角三角形,∴∠CAE=90°,AC=AE ,∴EC 1=AC 1+AE 1=1AC 1,即EF 1+BF 1=1AC 1.【点睛】本题主要考查全等三角形的判定与性质、勾股定理、等腰三角形的性质等,能正确和熟练地应用这些知识解决问题是关键.24.我们学过的分解因式的方法有提取公因式法、公式法及十字相乘法,但有很多的多项式只用上述方法就无法分解,如22424x y x y --+,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为: ()()()()()224242222222x y x y x y x y x y x y x y --+=+---=-+-;这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式:22216x xy y -+-(2)ABC ∆三边a ,b ,c 满足20a ab ac bc --+=,判断ABC ∆的形状.【答案】(1)()()44x y x y -+--;(2)ABC ∆是等腰三角形,理由见解析【分析】(1)首先将前三项组合,利用完全平方公式分解因式,进而利用平方差公式分解因式得出即可; (2)首先将前两项以及后两项组合,进而提取公因式法分解因式,即可得出a , b ,c 的关系,判断三角形形状即可.【详解】解:(1)22216x xy y -+- ()224x y =--=()()44x y x y -+--(2)∵20a ab ac bc --+=∴()()0a a b c a b ---=∴()()0a b a c --=∴a b =或a c =,∴ABC ∆是等腰三角形.【点睛】此题主要考查了分组分解法分解因式以及等腰三角形的判定,正确分组分解得出是解题关键. 25.已知a+b=2,求(11a b+)•2()4ab a b ab -+的值. 【答案】12【分析】首先把该分式进行化简,把括号里面的分式进行通分,然后把括号外面的分母由完全平方差和完全平方和的互化公式22()4()a b ab a b -+=+,可把分母化成2()a b +,最后进行相同因式的约分得到化简结果,再把2a b +=整体代入求值.【详解】解:原式=21()a b ab ab a b a b +⋅=++() 当2a b +=时原式=112a b =+ 【点睛】本题考查了分式的化简求值,化简过程需要用到通分约分,通分时要找准最简公分母,约分时先把分子分母因式分解,得到各个因式乘积的形式,再找相同的因式进行约分得到最简分式.代入求值时,要有整体代入的思维.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.四个长宽分别为a ,b 的小长方形(白色的)按如图所示的方式放置,形成了一个长、宽分别为m 、n 的大长方形,则下列各式不能表示图中阴影部分的面积是( )A .4mn ab -B .2mn ab am --C .24an bn ab +-D .22a ab am mn --+【答案】B 【分析】根据阴影部分的面积为大长方形去掉四个小长方形,再根据图形找到m=a+2b 进行代换即可判断.【详解】阴影部分的面积是:大长方形去掉四个小长方形为:4mn ab -,故A 正确;由图可知:m=a+2b ,所以()22224mn ab am mn ab a a b mn ab a --=--+=--,故B 错误; 由图可知:m=a+2b ,所以()24244an bn ab n a b ab mn ab +-=+-=-,故C 正确;由图可知:m=a+2b ,所以()222224a ab am mn a ab a a b mn mn ab --+=--++=-,故D 正确. 故选:B【点睛】本题考查的是列代数式表示阴影部分的面积,从图形中找到m=a+2b 并进行等量代换是关键. 2.下列四个图案中,不是轴对称图案的是( )A .B .C .D . 【答案】B【分析】根据轴对称的概念对各选项分析判断利用排除法求解.【详解】解:A .此图案是轴对称图形,不符合题意;B .此图案不是轴对称图形,符合题意;C .此图案是轴对称图形,不符合题意;D .此图案是轴对称图形,不符合题意;故选:B .【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 3.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m ﹣n 的值是( )A .1B .2C .3D .4【答案】D 【分析】根据已知将12x y =-⎧⎨=⎩代入二元一次方程组321x y m nx y +=⎧⎨-=⎩得到m ,n 的值,即可求得m-n 的值. 【详解】∵12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩ ∴3421m n -+=⎧⎨--=⎩∴m=1,n=-3m-n=4故选:D【点睛】本题考查了二元一次方程组解的定义,已知二元一次方程组的解,可求得方程组中的参数.4x 的取值范围是( )A .1x >B . 1x -C .1xD .1x 【答案】C【分析】根据二次根式的被开方数必须大于等于0即可确定x 的范围.∴10x -≥解得1x ≥故选:C .【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.5.下列各式中是分式的是( )A .23xB .3aπ C .521x - D .22a b -【答案】C【分析】根据分式的定义:分母中含有字母的式子逐项判断即可. 【详解】解:式子23x 、3a π、22a b -都是整式,不是分式,521x -中分母中含有字母,是分式. 故选:C .【点睛】本题考查的是分式的定义,属于应知应会题型,熟知分式的概念是解题关键.6.每天用微信计步是不少市民的习惯,小张老师记录了一周每天的步数并制作成折线统计图,则小张老师这一周一天的步数超过7000步的有()A.1天B.2天C.3天D.4天【答案】B【分析】根据折线统计图进行统计即可.【详解】根据统计图可得:小张老师这一周一天的步数超过7000步的有:星期一,星期六,共2天.故选:B【点睛】本题考查的是折线统计图,能从统计图中正确的读出信息是关键.7.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=40°,则∠CDE的度数为()A.50°B.40°C.60°D.80°【答案】C【分析】根据等腰三角形的性质推出∠A=∠CDA=40°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=20°,由三角形的内角和定理求出∠BDE,根据平角的定义即可求出选项.【详解】∵AC=CD=BD=BE,∠A=40°,∴∠A=∠CDA=40°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=40°,∴∠B=20°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=12(180°﹣20°)=80°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣40°﹣80°=60°,故选:C.【点睛】此题考查等腰三角形的性质:等边对等角.8.若分式23273xx--的值为零,则x的值为()A .3±B .3C .3-D .9【答案】C 【分析】根据分式的值为零的条件:分子=0且分母≠0,即可求出结论. 【详解】解:∵分式23273x x --的值为零, ∴2327030x x ⎧-=⎨-≠⎩解得:x=-3故选C .【点睛】此题考查的是分式的值为零的条件,掌握分式的值为零的条件:分子=0且分母≠0是解决此题的关键. 9.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD 从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有( )A .3个B .4个C .5个D .无数个【答案】C 【分析】结合正方形的特征,可知平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.【详解】因为正方形是轴对称图形,有四条对称轴,因此只要沿着正方形的对称轴进行平移,平移前后的两个图形组成的图形一定是轴对称图形,观察图形可知,向上平移,向上平移、向右平移、向右上45°、向右下45°平移时,平移前后的两个图形组成的图形都是轴对称图形,故选C.【点睛】本题考查了图形的平移、轴对称图形等知识,熟练掌握正方形的结构特征是解本题的关键.10.已知函数12y x =-和221y x =+,当时12y y >,x 的取值范围是( )A .5x <-B .3x <-C .5x -﹥D .3x -﹥ 【答案】B【分析】由题意得到x−2>2x+1,解不等式即可.【详解】解:∵y1>y2,∴x−2>2x+1,解得x<−3,故选B.【点睛】本题主要考查的是一次函数的性质,一次函数与一元一次不等式的有关知识,把比较函数值的大小问题,转化为不等式的问题,是解本题的关键.二、填空题11.若x2-y2=-1.则(x-y)2019(x+ y)2019 =________________.【答案】-1【分析】根据积的乘方逆运算及平方差公式即可求解.【详解】∵x2-y2=-1,∴(x-y)2019(x+ y)2019 =[(x-y) (x+ y)] 2019= [x2-y2] 2019=(-1)2019=-1【点睛】此题主要考查整式的运算,解题的关键是熟知积的乘方公式的逆运算得出与已知条件相关的式子.12.某招聘考试成绩由笔试和面试组成,笔试占成绩的60%,面试占成绩的40%.小明笔试成绩为95分,面试成绩为85分,那么小明的最终成绩是_____.【答案】1【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【详解】根据题意得:小明的最终成绩是95×60%+85×40%=1(分).故答案为1.【点睛】本题考查的是加权平均数的求法.本题易出现的错误是求95和85两个数的平均数,对平均数的理解不正确.13.某学校八年级()1班学生准备在植树节义务植树240棵,原计划每小时植树a棵,实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了__________小时完成任务.(用含a的代数式表示).【答案】40 a【分析】等量关系为:原计划时间-实际用时=提前的时间,根据等量关系列式.【详解】由题意知,原计划需要240a小时,实际需要2401.2a小时,故提前的时间为240240240200401.2a a a a a-=-=,则实际比原计划提前了40a小时完成任务.故答案为:40a. 【点睛】 本题考查了列分式,找到等量关系是解决问题的关键,本题还考查了工作时间=工作总量÷工效这个等量关系.14.若a <b ,则-5a______-5b(填“>”“<”或“=”).【答案】>【解析】试题解析:∵a <b ,∴-5a >-5b ;15.在弹性限度内,弹簧伸长的长度与所挂物体的质量呈正比,某弹簧不挂物体时长15cm ,当所挂物体质量为3kg 时,弹簧长1.8cm .写出弹簧长度L (cm )与所挂物体质量x (kg )之间的函数表达式 . 【答案】L=2.6x+3.【详解】解:设弹簧总长度L (cm )与所挂物体质量x (kg )之间符合一次函数关系为L=kx+3. 由题意得 1.8=3k+3,解得k=2.6,所以该一次函数解析式为L=2.6x+3.考点:根据实际问题列一次函数关系式.16.墨烯(Graphene )是人类已知强度最高的物质.据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001用科学计数法表示为_______.【答案】6110-⨯【分析】根据绝对值较小的数用科学记数法表示的一般形式是10n a -⨯(n 为正整数),其中n 由原数左边第一个不为0的数左边所有0的个数决定,由此易用科学记数法表示出0.1.【详解】∵绝对值较小的数的科学记数法的表示为10n a -⨯(n 为正整数),且0.1中1左边一共有6个0 ∴n=-6∴0.1=6110-⨯【点睛】本题考查的知识点是科学记数法,掌握绝对值较小的数如科学记数法表示时10的指数与原数中左边第一个不为0的数的左边所有0的个数的关系是关键.17.若关于x ,y 的二元一次方程组24327x y k x y k +=⎧⎨+=⎩的解也是二元一次方程x+y =36的解,则k 的值为_____. 【答案】1【分析】先用含k 的式子表示x 、y ,根据方程组的解也是二元一次方程x+y =36的解,即可求得k 的值.【详解】解:24327x y k x y k +=⎧⎨+=⎩①②解方程组得,2x k y k=⎧⎨=⎩, 因为方程组的解也是二元一次方程x+y =36的解,所以3k =36,解得k =1.故答案为1.【点睛】本题考查二元一次方程与方程组的解的意义,深刻理解定义是解答关键.三、解答题18.甲、乙两座城市的中心火车站A ,B 两站相距360 km.一列动车与一列特快列车分别从A ,B 两站同时出发相向而行,动车的平均速度比特快列车快54 km/h ,当动车到达B 站时,特快列车恰好到达距离A 站135 km 处的C 站.求动车和特快列车的平均速度各是多少?【答案】特快列车的平均速度为90 km/h ,动车的速度为1 km/h.【分析】设特快列车的平均速度为xkm/h ,则动车的速度为(x+54)km/h ,等量关系:动车行驶360km 与特快列车行驶(360﹣135)km 所用的时间相同,列方程求解.【详解】设特快列车的平均速度为xkm/h ,则动车的速度为(x+54)km/h , 由题意,得:360360-135=x+54x, 解得:x=90,经检验得:x=90是这个分式方程的解.x+54=1.答:特快列车的平均速度为90km/h ,动车的速度为1km/h .考点:分式方程的应用.19.如图,在平面直角坐标系中,过点B (6,0)的直线AB 与直线OA 相交于点A (4,2),动点N 沿路线O→A→C 运动.(1)求直线AB 的解析式.(2)求△OAC 的面积.(3)当△ONC 的面积是△OAC 面积的14时,求出这时点N 的坐标. 【答案】(1)y=-x+6;(2)12;(3)11(1,)2N 或2(1,5)N .【分析】(1)利用待定系数法,即可求得函数的解析式;(2)由一次函数的解析式,求出点C 的坐标,即OC 的长,利用三角形的面积公式,即可求解;(3)当△ONC 的面积是△OAC 面积的14时,根据三角形的面积公式,即可求得N 的横坐标,然后分别代入直线OA 的解析式,即可求得N 的坐标.【详解】(1)设直线AB 的函数解析式是y=kx+b ,根据题意得:4260k b k b +=⎧⎨+=⎩,解得:16k b =-⎧⎨=⎩, ∴直线AB 的解析式是:y=-x+6;(2)在y=-x+6中,令x=0,解得:y=6, ∴164122OAC S ∆=⨯⨯=; (3)设直线OA 的解析式y=mx ,把A (4,2)代入y=mx ,得:4m=2, 解得:12m =,即直线OA 的解析式是:12y x =, ∵△ONC 的面积是△OAC 面积的14, ∴点N 的横坐标是1414⨯=, 当点N 在OA 上时,x=1,y=12,即N 的坐标为(1,12), 当点N 在AC 上时,x=1,y=5,即N 的坐标为(1,5), 综上所述,11(1,)2N 或2(1,5)N .【点睛】本题主要考查用待定系数法求函数解析式,根据平面直角坐标系中几何图形的特征,求三角形的面积和点的坐标,数形结合思想和分类讨论思想的应用,是解题的关键.20.某学校初二年级在元旦汇演中需要外出租用同一种服装若干件,已知在没有任何优惠的情况下,同时在甲服装店租用2件和乙服装店租用3件共需280元,在甲服装店租用4件和乙服装店租用一件共需260元.(1)求两个服装店提供的单价分别是多少?(2)若该种服装提前一周订货则甲乙两个租售店都可以给予优惠,具体办法如下:甲服装店按原价的八折进行优惠;在乙服装店如果租用5件以上,则超出5件的部分可按原价的六折进行优惠;设需要租用x (5x >)件服装,选择甲店则需要1y 元,选择乙店则需要2y 元,请分别求出1y ,2y 关于x 的函数关系式;(3)若租用的服装在5件以上,请问租用多少件时甲乙两店的租金相同?【答案】(1)甲店每件租金50元,乙店每件租金60元;(2)1=0.85040y x x ⨯=,260(05)36120(5)x x y x x <≤⎧=⎨+>⎩;。
《试卷3份集锦》济南市某名校2018-2019年八年级上学期数学期末质量检测试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,边长分别为a 和b 的两个正方形拼接在一起,则图中阴影部分的面积为( )A .22bB .()2b a -C .212bD .22b a -【答案】C 【分析】根据三角形和矩形的面积公式,利用割补法,即可求解. 【详解】由题意得:11()22BCD S CD BC a b a =⋅⋅=⋅+⋅,21122DEF S DF EF b =⋅⋅=,11()22ABE SAB AE b a a =⋅⋅=-⋅,()ACDF S CD DF a b b =⋅=+⋅四边形, ∴S 阴影=BCD DEF ABE ACDF S S S S ---四边形=2111()()()222a b b a b a b b a a +⋅-⋅+⋅---⋅=212b . 故选C .【点睛】本题主要考查求阴影部分图形的面积,掌握割补法求面积,是解题的关键.2.若分式22x x +-的值为0,则x 的值是( ) A .2-B .2C .2±D .任意实数 【答案】A【分析】根据分式的值为零的条件:分子=0且分母≠0,列出方程和不等式即可求出x 的值.【详解】解:∵分式22x x +-的值为0 ∴2020x x +=⎧⎨-≠⎩解得:2x =-故选A .【点睛】此题考查的是分式的值为零的条件,掌握分式的值为零的条件:分子=0且分母≠0,是解决此题的关键. 3.若分式26x x -+的值是0,则x 的值是( ) A .6B .6-C .2D .2- 【答案】C【分析】分式值为零的条件是分子等于零且分母不等于零.【详解】分式26x x -+的值为0, ∴20x -=且60x +≠.解得:2x =.故选:C .【点睛】本题主要考查的是分式值为零的条件,熟练掌握分式值为零的条件是解题的关键.4.不等式4(x -2)>2(3x -5)的非负整数解的个数为( )A .0B .1C .2D .3【答案】B【解析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可. 【详解】4861046810221x x x x x x ->-∴->-->-< 则不等式的非负整数解的个数为1,故答案为:B.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.三个等边三角形的摆放位置如图所示,若12120∠+∠=︒,则3∠的度数为( )A .90︒B .60︒C .45︒D .30【答案】B 【分析】先根据图中是三个等边三角形可知三角形各内角均等于60°,用123∠∠∠,,表示出中间三角形的各内角,再根据三角形的内角和即可得出答案.【详解】解:如图所示,图中三个等边三角形,∴1806031203ABC ∠=︒-︒-∠=︒-∠,1806011201BAC ∠=︒-︒-∠=︒-∠,1806021202ACB ∠=︒-︒-∠=︒-∠,由三角形的内角和定理可知:180ABC BAC ACB ∠+∠+∠=︒,即1203+12011202180︒-∠︒-∠+︒-∠=︒,又∵12120∠+∠=︒,∴360∠=︒,故答案选B .【点睛】本题考查等边三角形的性质及三角形的内角和定理,熟悉等边三角形各内角均为60°是解答此题的关键. 6.某小区有一块边长为a 的正方形场地,规划修建两条宽为b 的绿化带. 方案一如图甲所示,绿化带面积为S 甲:方案二如图乙所示,绿化带面积为S 乙. 设()0S k a b S =>>甲乙,下列选项中正确的是( )A .102k <<B .322k <<C .312k <<D .112k << 【答案】D【分析】由题意可求S 甲=2ab-b 2,S 乙=2ab ,代入可求k 的取值范围.【详解】∵S 甲=2ab-b 2,S 乙=2ab .∴22122S ab b b k S ab a-===-乙甲 ∵a >b >0∴12<k<1故选D.【点睛】本题考查了正方形的性质,能用代数式正确表示阴影部分面积是本题的关键.7.下列交通标识不是轴对称图形的是()A.B.C.D.【答案】C【解析】平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形称为轴对称图形,利用轴对称图形的定义即可求解.【详解】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选:C.【点睛】本题主要考查的是轴对称图形的定义,解此题的关键是寻找对称轴,图形沿对称轴折叠后可完全重合.8.如图,中,,点在边上,且,则的度数为()A.30°B.36°C.45°D.72°【答案】D【解析】利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠C的度数.【详解】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC =2x ,∠C =, 可得 ,解得:x =36°, 则, 故选:D .【点睛】此题考查了等腰三角形的性质,以及三角形内角和定理,熟练掌握等腰三角形的性质是解本题的关键. 9.关于x 的分式方程2322x m m x x ++=--的解为正实数,则实数m 可能的取值是( ) A .2B .4C .6D .7【答案】B【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可. 【详解】解:2322x m m x x ++=-- 方程两边同乘(x-1)得,x+m-1m=3x-6, 解得,6m x=2- 由题意得,6m x=2->0 解得,m <6, 又∵6m x=2-≠1 ∴m ≠1,∴m <6且m ≠1.故选:B【点睛】本题考查的是分式方程的解、一元一次不等式的解法,掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.10.ABC ∆的三个内角A ∠,B ,C ∠满足::1:2:3A B C ∠∠∠=,则这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形【答案】C【分析】根据::1:2:3A B C ∠∠∠=,设∠A=x ,∠B=2x ,∠C=3x ,再根据内角和列出方程求解即可.【详解】解:设∠A=x ,∠B=2x ,∠C=3x ,则x+2x+3x=180,解得:x=30,∴∠A=30°,∠B=60°,∠C=90°,∴△ABC 为直角三角形,故选C.【点睛】本题是对三角形内角和的考查,熟练掌握三角形内角和知识和准确根据题意列出方程是解决本题的关键.二、填空题11.如图(1),在三角形ABC 中,38A ∠=︒72C ∠=︒,BC 边绕点C 按逆时针方向旋转1(080)αα︒≤≤︒,在旋转过程中(图2),当//CB AB '时,旋转角为__________度;当CB '所在直线垂直于AB 时,旋转角为___________度.【答案】70 1【分析】在三角形ABC 中,根据三角形的内角和得到∠B=180°-38°-72°=70°,如图1,当CB′∥AB 时,根据平行线的性质即可得到结论;如图2,当CB′⊥AB 时根据垂直的定义即可得到结论.【详解】解:∵在三角形ABC 中,∠A=38°,∠C=72°,∴∠B=180°-38°-72°=70°,如图1,当CB′∥AB 时,旋转角=∠B=70°,∴当CB′∥AB 时,旋转角为70°;如图2,当CB′⊥AB时,∠BCB″=90°-70°=20°,∴旋转角=180°-20°=1°,∴当CB′⊥AB时,旋转角为1°;故答案为:70;1.【点睛】本题考查了三角形的内角和,平行线的性质,正确的画出图形是解题的关键.12.写出一个平面直角坐标系中第三象限内点的坐标:(__________)【答案】答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.【分析】让横坐标、纵坐标为负数即可.【详解】在第三象限内点的坐标为:(﹣1,﹣1)(答案不唯一).故答案为答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.13.如图,将一个边长分别为1、3的长方形放在数轴上,以原点O为圆心,长方形的对角线OB长为半径作弧,交数轴正半轴于点A,则点A表示的实数是_______.10【分析】根据勾股定理求出OB,根据实数与数轴的关系解答.【详解】在Rt△OAB中,22+22OA AB1+3=10,∴点A1010.【点睛】本题考查的是勾股定理,实数与数轴,掌握如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2是解题的关键.14.把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率都是0.125,那么第8组的频率是______.【答案】0.1【分析】利用频率与频数的关系得出第1组到第4组的频率,进而得出第8组的频率.【详解】解:∵把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,÷=0.5625∴第1组到第4组的频率是:(5+7+11+13)64∵第5组到第7组的频率是0.125,⨯= 0.1第8组的频率是:1- 0.5625-0.1253故答案为:0.1.【点睛】此题主要考查了频数与频率,正确求出第5组到第7组的频数是解题关键.15.若一个直角三角形的三边分别为x,4,5,则x=_____.【答案】3或41【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边5既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即5是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】解:设第三边为x,(1)若5是直角边,则第三边x是斜边,由勾股定理得:52+42=x2,∴x=41;(2)若5是斜边,则第三边x为直角边,由勾股定理得:32+x2=52,∴x=3;∴第三边的长为3或41.故答案为:3或41.【点睛】本题主要考查的是勾股定理的简单应用,需注意解答时有两种情况.16.如图,在正方形网格中,∠1+∠2+∠3=_____________【答案】135°【分析】先证明△ABC≌△AEF,然后证明∠1+∠3=90°,再根据等腰直角三角形的性质可得∠2=45°,进而可得答案.【详解】解:如下图∵在△ABC和△AEF中,AB AE B E BC FE ⎧⎪∠∠⎨⎪⎩=== ∴△ABC ≌△AEF (SAS ),∴∠BAC =∠4,∵∠BAC =∠1,∴∠4=∠1,∵∠3+∠4=90°,∴∠1+∠3=90°,∵AG=DG ,∠AGD=90°,∴∠2=45°,∴∠1+∠2+∠3=135°,故答案为:135°【点睛】本题考查了三角形全等的判定和性质,等腰直角三角形的性质,准确识图判断出全等三角形是解题的关键. 17.在△ABC 中,若∠C =90°, ∠A =50°,则∠B =____.【答案】40°【解析】试题解析:∵∠C=90°,∠A=50°,∴∠B=90°-∠A=90°-50°=40°.三、解答题18.(1+(2)因式分解:3312x x -(3)计算:2(1)(2)(3)x x x x -+-+(4)计算:2(21)2(1)(1)x x x +-+-【答案】(1)6;(2)()()322x x x +-;(3)236x x --;(4)2243x x ++【分析】(1)根据二次根式乘法法则运算;(2)先提公因式,再套用公式;(3)根据整式乘法法则运算;(4)运用乘法公式运算.【详解】解:(1++=6-=6(2)()()()3231234322x x x x x x x -=-=+- (3)2(1)(2)(3)x x x x -+-+=22226x x x x -++-=236x x --(4)2(21)2(1)(1)x x x +-+-=224412(1)x x x ++--=2244122x x x ++-+=2243x x ++【点睛】考核知识点:因式分解,整式乘法.掌握相应法则是关键.19.分解因式:2363x x -+.【答案】23(1)x - 【分析】先提取公因式3,再根据完全平方公式进行二次分解,即可得到答案.【详解】解:原式=3(x 1-1x+1)=3(x-1)1.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.20.如图,已知90A D ∠=∠=︒,点E 、点F 在线段BC 上,DE 与AF 交于点O ,且AB DC =,BE CF =.求证:OE OF =.【答案】证明见解析.【分析】由BE CF =,得到BF CE =,则利用HL 证明RtABF RtDCE ≅,得到AFB DEC ∠=∠,即可得到结论成立.【详解】证明:BE CF =,BE EF CF EF ∴+=+,即BF CE =.90A D ∠=∠=︒ABF ∴∆与DCE ∆都为直角三角形,在Rt ABF ∆和Rt DCE ∆中BF CE AB DC =⎧⎨=⎩, RtABF RtDCE ∴≅()HL ,AFB DEC ∴∠=∠,OE OF ∴=.【点睛】本题考查了等角对等边证明边相等,以及全等三角形的判定和性质,解题的关键是熟练掌握HL 证明直角三角形全等.21.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:()1如图1,已知:在ABC 中,BAC 90∠=,AB AC =,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E.试猜想DE 、BD 、CE 有怎样的数量关系,请直接写出;()2组员小颖想,如果三个角不是直角,那结论是否会成立呢?如图2,将()1中的条件改为:在ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC α(∠∠∠===其中α为任意锐角或钝角).如果成立,请你给出证明;若不成立,请说明理由.()3数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,F 是BAC ∠角平分线上的一点,且ABF 和ACF 均为等边三角形,D 、E 分别是直线m 上A 点左右两侧的动点(D 、E 、A 互不重合),在运动过程中线段DE 的长度始终为n ,连接BD 、CE ,若BDA AEC BAC ∠∠∠==,试判断DEF 的形状,并说明理由.【答案】()1DE BD CE =+,理由见解析;() 2结论DE BD CE =+成立;理由见解析;() 3DFE 为等边三角形,理由见解析.【分析】(1)先利用同角的余角相等,判断出ABD=CAE ∠∠,进而判断△ADB ≌△CEA ,得出BD=AE ,AD=CE ,即可得出结论;(2)先利用三角形内角和及平角的性质,判断出ABD=CAE ∠∠,进而判断出△ADB ≌△CEA ,得出BD=AE ,AD=CE ,即可得出结论;(3)由(2)得,△ADB ≌△CEA ,得出BD=AE ,再判断出△FBD ≌△FAE ,得出BFD=AFE ∠∠,进而得出DFE=60∠︒ ,即可得出结论.【详解】()1DE BD CE =+,理由:BAC 90∠=,BAD CAE 90∠∠∴+=,BD m ⊥,CE m ⊥,ADB CEA 90∠∠∴==,BAD ABD 90∠∠∴+=,ABD CAE ∠∠∴=,在ADB 和CEA 中,90ADB CEA ABD CAE ABAC ⎧∠=∠=⎪∠=∠⎨⎪=⎩,ADB ∴≌()CEA AAS ,BD AE ∴=,AD CE =,DE AD AE BD CE ∴=+=+,故答案为DE BD CE =+;()2解:结论DE BD CE =+成立;理由如下:BAD CAE 180BAC ∠∠∠+=-,BAD ABD 180ADB ∠∠∠+=-,BDA BAC ∠∠=,ABD CAE ∠∠∴=,在BAD 和ACE 中,ABD CAE ADB CEA AB AC α∠=∠⎧⎪∠=∠=⎨⎪=⎩,BAD ∴≌()ACE AAS ,BD AE ∴=,AD CE =,DE DA AE BD CE ∴=+=+;()3DFE 为等边三角形,理由:由()2得,BAD ≌ACE ,BD AE ∴=,ABD CAE ∠∠=,ABD FBA CAE FAC ∠∠∠∴+=+,即FBD FAE ∠∠=,在FBD 和FAE 中,FB FA FBD FAE BD AE =⎧⎪∠=∠⎨⎪=⎩,FBD ∴≌()FAE SAS ,FD FE ∴=,BFD AFE ∠∠=,DFE DFA AFE DFA BFD 60∠∠∠∠∠∴=+=+=,DFE ∴为等边三角形.【点睛】本题是三角形综合题,主要考查全等三角形的判定和性质,等边三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质,等边三角形的判定和性质.22.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用为5500元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙合做来完成,则该工程施工费用是多少?【答案】(1)这项工程的规定时间是30天;(2)该工程的施工费用为153000元【分析】(1)设这项工程的规定时间是x 天,根据工程问题的等量关系列分式方程求解;(2)通过第一问求出的甲、乙单独完成的时间,算出合作需要的时间,乘以每天的费用得到总费用.【详解】解:(1)设这项工程的规定时间是x 天,根据题意得:115()1511.5x x x+⨯+=, 解得30x =,经检验30x =是方程的解,答:这项工程的规定时间是30天;(2)该工程由甲、乙合做完成,所需时间为;111()1830 1.530÷+=⨯ (天), 则该工程的施工费用是:18×(5500+3000)=153000(元),答:该工程的施工费用为153000元.【点睛】本题考查分式方程的应用,解题的关键是掌握工程问题中的列式方法.23.如图是由边长为1个单位长度的小正方形组成的网格,ABC ∆的三个顶点都在格点上.(1)作出ABC ∆关于y 轴对称的A B C '''∆,并写出点C '的坐标: .(2)求出A B C '''∆的面积.【答案】(1)见解析 (2)5【分析】(1)直接利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)直接利用△A′B′C′所在矩形面积减去周围三角形的面积进而得出答案.【详解】解:(1)如图所示,A B C '''∆为所作三角形,点C '的坐标:(-1,2);(2)11134132413222A B C S '''∆=⨯-⨯⨯-⨯⨯-⨯⨯=5. 【点睛】 本题主要考查了轴对称变换,正确得出对应点位置是解题关键.24.解不等式组251331148x x x x ⎧+>-⎪⎪⎨⎪-<-⎪⎩,并求出它的整数解的和. 【答案】1【分析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数解即可.【详解】解不等式2513x x +>-得:125x >-,解不等式31148x x-<-得:72x<,此不等式组的解集为127 52x-<<,故它的整数解为:-2,-1,0,1,2,1,它的整数解的和为1.【点睛】本题主要考查解一元一次不等式组及其整数解,注意各个不等式的解集的公共部分就是这个不等式组的解集.但本题是要求整数解,所以要找出在这范围内的整数.25.如图,直角坐标系xOy中,一次函数y=﹣12x+4的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,3),过动点M(n,0)作x轴的垂线与直线l1和l2分别交于P、Q两点.(1)求m的值及l2的函数表达式;(2)当PQ≤4时,求n的取值范围;(3)是否存在点P,使S△OPC=2S△OBC?若存在,求出此时点P的坐标,若不存在,请说明理由.【答案】(1)m=2,l2的解析式为y=32x;(2)0≤n≤4;(3)存在,点P的坐标(6,1)或(-2,5).【分析】(1)根据待定系数法,即可求解;(2)由l2与l1的函数解析式,可设P(n,﹣12n+4),Q(n,32n),结合PQ≤4,列出关于n的不等式,进而即可求解;(3)设P(n,﹣12n+4),分两种情况:①当点P在第一象限时,②当点P在第二象限时,分别列关于n的一元一次方程,即可求解.【详解】(1)把C(m,3)代入一次函数y=﹣12x+4,可得:3=﹣12m+4,解得:m=2,∴C(2,3),设l2的解析式为y=ax,则3=2a,解得a=32,∴l2的解析式为:y=32 x;(2)∵PQ∥y轴,点M(n,0),∴P(n,﹣12n+4),Q(n,32n),∵PQ≤4,∴|32n+12n﹣4|≤4,解得:0≤n≤4,∴n的取值范围为:0≤n≤4;(3)存在,理由如下:设P(n,﹣12n+4),∵S△OBC=12×4×2=4,S△OPC=2S△OBC,∴S△OPC=8,①当点P在第一象限时,∴S△OBP=4+8=12,∴12×4n=12,解得:n=6,∴点P的坐标(6,1),②当点P在第二象限时,∴S△OBP=8-4=4,∴12×4(-n)=4,解得:n=-2,∴点P的坐标(-2,5).综上所述:点P的坐标(6,1)或(-2,5).【点睛】本题主要考查一次函数的图象和性质与几何图形的综合,掌握待定系数法以及一次函数图象上点的坐标特征,是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若点()1,5P m -与点()3,2Q n -关于原点成中心对称,则m n +的值是( )A .1B .3C .5D .7【答案】C【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:∵点()1,5P m -与点()3,2Q n -关于原点对称,∴13m -=-,25n -=-,解得:2m =-,7n =,则275m n +=-+=故选C .【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数. 2.下列各式中计算正确的是( )A .93=±B .2(3)3-=-C .33(3)3-=±D .3273= 【答案】D【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A 、93=,此选项错误错误,不符合题意;B 、2(3)3-=,此选项错误错误,不符合题意;C 、33(3)3-=-,此选项错误错误,不符合题意;D 、3273=,此选项正确,符合题意;故选:D .【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键. 3.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D′处.若AB=3,AD=4,则ED 的长为A .32B .3C .1D .43【答案】A【分析】首先利用勾股定理计算出AC 的长,再根据折叠可得△DEC ≌△D′EC ,设ED=x ,则D′E=x ,AD′=AC ﹣CD′=2,AE=4﹣x ,再根据勾股定理可得方程22+x 2=(4﹣x )2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC ≌△D′EC ,∴D′C=DC=3,DE=D′E设ED=x ,则D′E=x ,AD′=AC ﹣CD′=2,AE=4﹣x ,在Rt △AED′中:(AD′)2+(ED′)2=AE 2,即22+x 2=(4﹣x )2,解得:x=32 故选A.4.把式子2x (a ﹣2)﹣y (2﹣a )分解因式,结果是( )A .(a ﹣2)(2x+y )B .(2﹣a )(2x+y )C .(a ﹣2)(2x ﹣y )D .(2﹣a )(2x ﹣y ) 【答案】A【分析】根据提公因式法因式分解即可.【详解】2x (a ﹣2)﹣y (2﹣a )=2x (a ﹣2)+y (a ﹣2)=(a ﹣2)(2x+y ).故选:A .【点睛】此题考查的是因式分解,掌握用提公因式法因式分解是解决此题的关键.5.已知2221112222a b c ab bc ac ++=---,则a+b+c 的值是( ) A .2B .4C .±4D .±2 【答案】D【分析】先计算(a+b+c)2,再将2221112222a b c ab bc ac ++=---代入即可求解. 【详解】∵2221112222a b c ab bc ac ++=--- ∴2224222a b c ab bc ac ++=---∴22224222a ()222222c a b c a b c ab bc ac ab bc ab bc ac ++=+---++++++=+=4∴a+b+c=±2故选:D【点睛】本题考查了代数式的求值,其中用到了2222()222a b c a b c ab bc ac ++=+++++. 6.下列各式:15(1﹣x ),43x π-,222x y -,25x x,其中分式共有( ) A .1个B .2个C .3个D .4个 【答案】A【解析】分式即A B形式,且分母中要有字母,且分母不能为0. 【详解】本题中只有第五个式子为分式,所以答案选择A 项.【点睛】本题考查了分式的概念,熟悉理解定义是解决本题的关键.7.把322m n m n mn ++分解因式正确的是( )A .()22mn m m +B .()221mn m m ++C .()221m n m ++D .()21mn m + 【答案】D【分析】先提取公因式mn ,再对余下的多项式利用完全平方公式继续分解.【详解】322m n m n mn ++=()221mn m m ++=()21mn m +.故选:D .【点睛】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于要进行二次分解因式. 8.已知△ABC 中,AB=17cm ,AC=10cm ,BC 边上的高AD=8cm ,则边BC 的长为( )A .21cmB .9cm 或21cmC .13cmD .13cm 或21cm 【答案】B【分析】高线AD 可能在三角形的内部也可能在三角形的外部,分两种情况进行讨论,分别依据勾股定理即可求解.【详解】解:分两种情况:①如图在Rt △ABD 中,∠ADB=90°,由勾股定理得,AB 2=AD 2+BD 2∴172=82+BD 2,解得BD=15cm,在Rt △ACD 中,∠ADC=90°,由勾股定理得,AC 2=AD 2+CD 2∴102=82+CD 2,解得CD=6cm,∴BC=BD+CD=15+6=21cm ;②如图由勾股定理求得BD=15cm,CD=6cm, ∴BC=BD-CD=15-6=9cm.∴BC 的长为21cm 或9cm.故选B【点睛】当涉及到有关高的题目时,高的位置可能在三角形的内部,也可能在三角形的外部,所以分类讨论计算是此类题目的特征.9.若代数式13x x +-有意义,则实数x 的取值范围是( ) A .1x =-B .3x =C .1x ≠-D .3x ≠ 【答案】D【分析】分式有意义的条件是分母不为0. 【详解】代数式13x x +-有意义, ∴30x -≠,∴3x ≠故选D .【点睛】本题运用了分式有意义的条件知识点,关键要知道分母不为0是分式有意义的条件.10.下列说法正确的是( )A .一个命题一定有逆命题B .一个定理一定有逆定理C .真命题的逆命题一定是真命题D .假命题的逆命题一定是假命题【答案】A【分析】命题由题设和结论两部分组成,所以所有的命题都有逆命题,但是所有的定理不一定有逆定理,真命题的逆命题不一定是真命题,假命题的逆命题不一定是假命题.【详解】解:A 、每个命题都有逆命题,故本选项正确.B 、每个定理不一定都有逆定理,故本选项错误.C 、真命题的逆命题不一定是真命题,故本选项错误.D 、假命题的逆命题不一定是假命题,故本选项错误.故选A .【点睛】本题考查命题的概念,以及逆命题,逆定理的概念和真假命题的概念等.二、填空题11.已知:如图,点E F 、分别在等边三角形ABC 的边CB AC 、的延长线上,,BE CF FB =的延长线交AE 于点G ,则AGB ∠=_______.【答案】60【分析】利用等边三角形的三条边都相等、三个内角都是60°的性质推知AB=BC ,∠ABE=∠BCF=120°,然后结合已知条件可证△ABE ≌△BCF ,得到∠E=∠F ,因为∠F+∠CBF=60°,即可求出AGB ∠得度数.【详解】解:∵△ABC 是等边三角形,∴AB=BC∴∠ACB=∠ABC=60º,∴∠ABE=∠BCF=120°,在△ABE 和△BCF 中,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△BCF (SAS);∴∠E=∠F ,∵∠GBE=∠CBF ,∠F+∠CBF=60°∴AGB ∠=∠GBE+∠B=60°,故答案为60°.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,线段垂直平分线的性质等知识点.在证明两个三角形全等时,一定要找准对应角和对应边.12.如图,ABC ∆中,AD 平分BAC ∠,3ACB B ∠=∠,CE AD ⊥,8AC =,74BC BD =,则CE =__________.【答案】43【分析】根据题意延长CE 交AB 于K ,由 CE AD ⊥,AD 平分BAC ∠,由等腰三角形的性质,三线合一得8AK AC ==,利用角平分线性质定理,分对边的比等于邻边的比,结合外角平分性质和二倍角关系可得.【详解】如图,延长CE 交AB 于K ,CE AD ⊥,AD 平分BAC ∠,等腰三角形三线合一的判定得8AC AK ∴==,ACK AKC ∠=∠,AC CD AB DB ∴=, 74BC BD =, 34CD BD ∴=, 323AB ∴=, 83KB ∴=, 3ACB B ∠=∠,KCB B ∴∠=∠,83KC KB ==, 1423CE KC ==, 故答案为:43.【点睛】考查了三线合一判定等腰三角形,等腰三角形的性质,角平分线定理,外角的性质,以及二倍角的角度关系代换,熟记几何图形的性质,定理,判定是解题的关键.13.按如图的运算程序,请写出一组能使输出结果为3的x 、y 的值:__________.【答案】1x =,1y =-.【分析】根据运算程序列出方程,取方程的一组正整数解即可.【详解】根据题意得:23x y -=,当1x =时,1y =-.故答案为:1x =,1y =-.【点睛】此题考查了解二元一次方程,弄清题中的运算程序是解本题的关键.14.如图所示,AB =AC ,AD =AE ,∠BAC =∠DAE ,∠1=25°,∠2=30°,则∠3=_____.【答案】55°【分析】根据∠BAC =∠DAE 能够得出∠1=∠EAC ,然后可以证明△BAD ≌△CAE ,则有∠2=∠ABD ,最后利用∠3=∠1+∠ABD 可求解.【详解】∵∠BAC =∠DAE ,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,∴∠1=∠EAC ,在△BAD 和△CAE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAE (SAS ),∴∠2=∠ABD =30°,∵∠1=25°,∴∠3=∠1+∠ABD =25°+30°=55°,故答案为:55°.【点睛】本题主要考查全等三角形的判定及性质,三角形外角性质,掌握全等三角形的判定方法及性质是解题的关键.15____________________.【答案】4 2【分析】根据算术平方根和立方根的定义进行解答.,=2.故答案为:4;2【点睛】本题主要考查算术平方根和立方根的定义,关键在于熟练掌握算术平方根和立方根的定义,仔细读题,小心易错点.16.一个正数的平方根分别是23x +和6x -,则x =__________.【答案】1【分析】一个正数有两个平方根,它们互为相反数,根据平方根的性质即可解答.【详解】由题意得:2x+3+x-6=0,得x=1,故答案为:1.【点睛】此题考查利用平方根解一元一次方程,熟记平方根的性质列出方程即可解答问题.17.如图,在Rt ABC ∆中, 3490AB AC BAC BC ==∠=︒,,,的中垂线DE 与Rt ABC ∆的角平分线AF 交于点E ,则四边形ABEC 的面积为____________【答案】12.25【分析】过点E 作EG ⊥AB 交射线AB 于G ,作EH ⊥AC 于H ,根据矩形的定义可得四边形AGEH 为矩形,然后根据角平分线的性质可得EG=EH ,从而证出四边形AGEH 为正方形,可得AG=AH ,然后利用HL 证出Rt △EGB ≌Rt △EHC ,从而得出BG=HC ,列出方程即可求出AG ,然后根据S 四边形ABEC = S 四边形ABEH +S △EHC 即可证出S 四边形ABEC = S 正方形AGEH ,最后根据正方形的面积公式求面积即可.【详解】解:过点E 作EG ⊥AB 交射线AB 于G ,作EH ⊥AC 于H∴∠AGE=∠GAH=∠AHE=90°∴四边形AGEH 为矩形∵AF 平分∠BAC∴EG=EH∴四边形AGEH 为正方形∴AG=AH∵DE 垂直平分BC∴EB=EC在Rt △EGB 和Rt △EHC 中EG EH EB EC =⎧⎨=⎩∴Rt △EGB ≌Rt △EHC∴BG=HC∴AG -AB=AC -AH∴AG -3=4-AG解得AG=3.5∴S四边形ABEC= S四边形ABEH+S△EHC= S四边形ABEH+S△EGB=S正方形AGEH=AG2=12.25故答案为:12.25.【点睛】此题考查的是正方形的判定及性质、角平分线的性质、垂直平分线的性质、全等三角形的判定及性质和正方形的面积公式,掌握正方形的判定及性质、角平分线的性质、垂直平分线的性质、全等三角形的判定及性质和正方形的面积公式是解决此题的关键.三、解答题18.如图,在7×7网格中,每个小正方形的边长都为1.(1)建立适当的平面直角坐标系后,若点A(1,3)、C(2,1),则点B的坐标为______;(2)△ABC的面积为______;(3)判断△ABC的形状,并说明理由.【答案】(1)(-2,-1);(2)5;(3)△ABC是直角三角形,∠ACB=90°.【解析】(1)首先根据A和C的坐标确定坐标轴的位置,然后确定B的坐标;(2)利用矩形的面积减去三个直角三角形的面积求解;(3)利用勾股定理的逆定理即可作出判断.【详解】解:(1)则B的坐标是(-2,-1).故答案是(-2,-1);(2)S△ABC=4×4-12×4×2-12×3×4-12×1×2=5,故答案是:5;(3)∵AC2=22+12=5,BC2=22+42=20,AB2=42+32=25,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°.【点睛】本题考查了平面直角坐标系确定点的位置以及勾股定理的逆定理,正确确定坐标轴的位置是关键.19.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=1.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA 之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【答案】(1)证明见解析(2)答案见解析(3)8【解析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM与NE交于K,则∠MKN=181°﹣2∠ONE=91°﹣∠NEA,即2∠ONE﹣∠NEA=91°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF 的值.【详解】解:(1)∵|a﹣b|+b2﹣8b+16=1∴|a﹣b|+(b﹣4)2=1∵|a﹣b|≥1,(b﹣4)2≥1∴|a ﹣b|=1,(b ﹣4)2=1∴a =b =4过点A 分别作x 轴,y 轴的垂线,垂足分别为M 、N ,则AN =AM∴OA 平分∠MON即OA 是第一象限的角平分线(2)过A 作AH 平分∠OAB ,交BM 于点H∴∠OAH =∠HAB =45°∵BM ⊥AE∴∠ABH =∠OAE在△AOE 与△BAH 中OAE ABH OA ABAOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩, ∴△AOE ≌△BAH (ASA )∴AH =OE在△ONE 和△AMH 中OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩=, ∴△ONE ≌△AMH (SAS )∴∠AMH =∠ONE设BM 与NE 交于K∴∠MKN =181°﹣2∠ONE =91°﹣∠NEA∴2∠ONE ﹣∠NEA =91°(3)过H 作HM ⊥OF ,HN ⊥EF 于M 、N可证:△FMH ≌△FNH (SAS )∴FM =FN同理:NE =EK。
2018-2019学年山东省济南市历城区八年级(上)期末数学试卷
2018-2019学年山东省济南市历城区八年级(上)期末数学试卷(考试时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)下列实数中,是无理数的是( )A .3.14159265B .C .D .2.(4分)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.(4分)下列各点,其中在第二象限内的点是( )A .(1,2)B .(1,﹣2)C .(﹣1,2)D .(﹣1,﹣2)4.(4分)如图,已知直线AB ∥CD ,∠C =125°,∠A =45°,那么∠E 的大小为( )A .70°B .80°C .90°D .100°5.(4分)某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( )A .5,5B .5,6C .6,6D .6,56.(4分)下列计算正确的是( )A .+=B .3+2=5 C .2×3=18 D .÷=7.(4分)若点A (m +2,3)与点B (﹣4,n +5)关于x 轴对称,则m +n 的值( )A .3B .﹣14C .7D .﹣88.(4分)关于函数y =﹣2x +1,下列结论正确的是( )A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<09.(4分)已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是()A.B.C.D.10.(4分)如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm211.(4分)如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.C.D.12.(4分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12 B.15 C.20 D.30二、填空题(每小题4分,一共24分)13.(4分)16的平方根是.14.(4分)一组数据2、3、﹣1、0、1的方差是.15.(4分)把点A(a,3)向上平移三个单位正好在直线y=﹣x+1上,则a的值是.16.(4分)如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=度.17.(4分)如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.已知CD =2,则AB的长度等于.18.(4分)如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为.三、解答题(共计78分)19.(10分)计算(1)﹣+﹣(2)﹣420.(10分)解下列二元一次方程组(1)(2)21.(10分)(1)如图1,在△AEC和△DFB中,点A、B、C、D在同一条直线上,AE=DF,AE∥DF,∠E=∠F,求证:EC=BF.(2)如图2,在△ABC中,∠CAB=55°,将△ABC在平面内绕点A逆时针旋转到△AB′C′的位置,使CC′∥AB,求旋转角的度数.22.(6分)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?23.(7分)如图,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC以x轴为对称轴,画出对称后的△A1B1C1;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并请你直接写出A1A2的长度.24.(8分)某培训中心有钳工20名,车工30名,现将这50名技工派往A,B两地工作,两地技工的月工资如下:(1)若派往A地x名钳工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(2)若派往A地x名车工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(3)如何派遣这50名技工,可使他们的工资总额最高?直接写出结果.25.(8分)甲乙两人同时登山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是米/分钟,乙在A地提速时距地面的高度b为米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请直接写出甲和乙提速后y和x之间的函数关系式.(3)登山多长时间时,乙追上了甲,此时乙距A地的高度为多少米?26.(8分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.求证:DE=EC.(用三种方法证明)27.(11分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)求线段BC的长;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN周长的最小值.2018-2019学年山东省济南市历城区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(4分)下列实数中,是无理数的是()A.3.14159265 B.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、3.1415926是有限小数是有理数,选项错误.B、=6,是整数,是有理数,选项错误;C、是无理数,选项正确;D、是分数,是有理数,选项错误;故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(4分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、不是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(4分)下列各点,其中在第二象限内的点是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据各个象限点的坐标特征判断.【解答】解:A、(1,2)在第一象限B、(1,﹣2)在第四象限C、(﹣1,2)在第二象限D、(﹣1,﹣2)在第三象限故选:C.【点评】本题考查的是点的坐标,掌握各个象限点的坐标特征是解题的关键.4.(4分)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°【分析】根据两直线平行,同旁内角互补,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.【解答】解:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.故选:B.【点评】本题应用的知识点为:两直线平行,同旁内角互补;三角形内角和定理.5.(4分)某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是()A.5,5 B.5,6 C.6,6 D.6,5【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(4分)下列计算正确的是()A.+=B.3+2=5C.2×3=18 D.÷=【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、3与2不能合并,所以B选项错误;C、原式=6×3=18,所以C选项正确;D、原式===,所以D选项错误.故选:C.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.(4分)若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n的值()A.3 B.﹣14 C.7 D.﹣8【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,再计算m+n即可.【解答】解:由题意,得m+2=﹣4,n+5=﹣3,解得m=﹣6,n=﹣8.m+n=﹣14.故选:B.【点评】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.8.(4分)关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<0【分析】根据一次函数的性质,依次分析选项可得答案.【解答】解:根据一次函数的性质,依次分析可得,A、x=﹣2时,y=﹣2×﹣2+1=5,故图象必经过(﹣2,5),故错误,B、k<0,则y随x的增大而减小,故错误,C、k=﹣2<0,b=1>0,则图象经过第一、二、四象限,故错误,D、当x>时,y<0,正确;故选:D.【点评】本题考查一次函数的性质,注意一次函数解析式的系数与图象的联系.9.(4分)已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是()A.B.C.D.【分析】方程组的解是一次函数的交点坐标即可.【解答】解:∵直线y=2x经过(1,a)∴a=2,∴交点坐标为(1,2),∵方程组的解就是两个一次函数的交点坐标,∴方程组的解,故选:A.【点评】本题考查一次函数与方程组的关系,解题的关键是理解方程组的解就是厉害一次函数的交点坐标.10.(4分)如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm2【分析】根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP=S△EBP,S△ACP=S,推出S△PBC=S△ABC,代入求出即可.△ECP【解答】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=S△ABC=×9cm2=4.5cm2,故选:C.【点评】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.11.(4分)如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.C.D.【分析】先过点A作AB′⊥OB,垂足为点B′,由于点B在直线y=x上运动,所以△AOB′是等腰直角三角形,由勾股定理求出OB′的长即可得出点B′的坐标.【解答】解:先过点A作AB′⊥OB,垂足为点B′,由垂线段最短可知,当点B与点B′重合时AB最短,∵点B在直线y=x上运动,∴∠AOB′=45°,∵AB′⊥OB,∴△AOB′是等腰直角三角形,过B′作B′C⊥x轴,垂足为C,∴△B′CO为等腰直角三角形,∵点A的坐标为(﹣1,0),∴OC=CB′=OA=×1=,∴B′坐标为(﹣,﹣),即当B与点B′重合时AB最短,点B的坐标为(﹣,﹣),故选:B.【点评】本题考查了一次函数的性质、垂线段最短和等腰直角三角形的性质,找到表示B′点坐标的等腰直角三角形是解题的关键.12.(4分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12 B.15 C.20 D.30【分析】设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,依据S1+S2+S3=60,可得4m+S2+S2+S2﹣4m=60,进而得出S2的值.【解答】解:设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,因为S1+S2+S3=60,所以4m+S2+S2+S2﹣4m=60,即3S2=60,解得S2=20.故选:C.【点评】此题主要考查了勾股定理和正方形、全等三角形的性质的运用,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.二、填空题(每小题4分,一共24分)13.(4分)16的平方根是±4 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.(4分)一组数据2、3、﹣1、0、1的方差是 2 .【分析】先求出这组数据的平均数,再根据方差的计算公式即可得出答案.【解答】解:这组数据的平均数:=(2+1﹣1+0+3)÷5=1,方差:S2=[(x1﹣)2+[(x2﹣)2+…+[(x n﹣)2]=[(2﹣1)2+(1﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2]=(1+4+0+1+4)=2.故答案为:2.【点评】本题考查了方差:一般地,设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+[(x2﹣)2+…+[(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.(4分)把点A(a,3)向上平移三个单位正好在直线y=﹣x+1上,则a的值是﹣5 .【分析】点A向上平移三个单位后的坐标为(a,6),然后将其代入直线方程y=﹣x+1即可求得a的值.【解答】解:根据题意知,点(a,6)在直线y=﹣x+1上,∴6=﹣a+1,解得a=﹣5;故答案是:﹣5.【点评】本题综合考查了一次函数图象上点的坐标特征、坐标与图形变化﹣﹣平移.点A(a,3)向上平移三个单位后的横坐标不变,纵坐标伸长3个单位.16.(4分)如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=20 度.【分析】根据旋转的性质可得AB=AB′,∠BAB′=40°,然后根据等腰三角形两底角相等求出∠ABB′,再利用直角三角形两锐角互余列式计算即可得解.【解答】解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=40°,在△ABB′中,∠ABB′=(180°﹣∠BAB′)=(180°﹣40°)=70°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°﹣∠ABB′=90°﹣70°=20°.故答案为:20.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,比较简单,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.17.(4分)如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.已知CD =2,则AB的长度等于4+2.【分析】根据角平分线的性质得到DE=DC=2,根据等腰直角三角形的性质、勾股定理计算.【解答】解:∵AC=BC,∠C=90°,∴∠CAB=∠B=45°,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=DC=2,∴DB=DE=2,∴BC=2+2,∴AB=BC=4+2,故答案为:4+2.【点评】本题考查的是勾股定理、角平分线的性质、等腰直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.18.(4分)如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为(﹣505,505).【分析】观察图形,由第二象限点的坐标的变化可得出“点A4n﹣1的坐标为(﹣n,n)(n为正整数)”,再结合2019=4×505﹣1,即可求出点A2019的坐标.【解答】解:观察图形,可知:点A3的坐标为(﹣1,1),点A7的坐标为(﹣2,2),点A11的坐标为(﹣3,3),…,∴点A4n﹣1的坐标为(﹣n,n)(n为正整数).又∵2019=4×505﹣1,∴点A2019的坐标为(﹣505,505).故答案为:(﹣505,505).【点评】本题考查了规律型:点的坐标,根据点的坐标的变化,找出变化规律“点A4n﹣1的坐标为(﹣n,n)(n为正整数)”是解题的关键.三、解答题(共计78分)19.(10分)计算(1)﹣+﹣(2)﹣4【分析】(1)直接化简二次根式以及立方根进而计算即可;(2)直接化简二次根式进而计算即可.【解答】解:(1)原式=2﹣+﹣3=﹣3;(2)原式=﹣4=10﹣4=6.【点评】此题主要考查了实数运算,正确化简二次根式是解题关键.20.(10分)解下列二元一次方程组(1)(2)【分析】(1)利用加减消元法解答即可;(2)利用代入消元法解答即可.【解答】解:(1),①+②得:3x=3,解得:x=1把x=1代入②得:y=4,所以方程组的解为:(2),由①变形为:x=6+3y③,把③代入②得:y=﹣1,把y=﹣1代入③得:x=3,所以方程组的解为:.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.21.(10分)(1)如图1,在△AEC和△DFB中,点A、B、C、D在同一条直线上,AE=DF,AE∥DF,∠E=∠F,求证:EC=BF.(2)如图2,在△ABC中,∠CAB=55°,将△ABC在平面内绕点A逆时针旋转到△AB′C′的位置,使CC′∥AB,求旋转角的度数.【分析】(1)根据“ASA”可证△AEC≌△DFB,可得EC=BF;(2)由平行线的性质和旋转的性质可求∠CAB=∠C'CA=∠CC'A=55°,由三角形内角和定理可求旋转角的度数.【解答】(1)证明:∵AE∥DF,∴∠A=∠D,在△AEC和△DFB中,,∴△AEC≌△DFB(ASA)∴EC=BF(2)∵CC′∥AB,∴∠ACC′=∠CAB=55°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×55°=70°,∴∠CAC′=∠BAB′=70°.所以旋转角为70°【点评】本题考查了旋转的性质,全等三角形的判定和性质,平行线的性质,三角形内角和定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.22.(6分)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?【分析】本题有两个定量:车辆总数,停车费总数.可根据这两个定量得到两个等量关系:中型汽车的辆数+小型汽车的辆数=50;中型汽车的停车费+小型汽车的停车费=230.依等量关系列方程组,再求解.【解答】解:设中型汽车有x辆,小型汽车有y辆.根据题意,得,解这个方程组,得.答:中型汽车有15辆,小型汽车有35辆.【点评】本题考查二元一次方程组的应用.找到两个定量,车辆总数,停车费总数,并根据定量得到两个等量关系是解题关键.23.(7分)如图,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC以x轴为对称轴,画出对称后的△A1B1C1;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并请你直接写出A1A2的长度.【分析】(1)依据轴对称的性质,即可画出对称后的△A1B1C1;(2)依据旋转变换,即可画出旋转后的△A2B2C2,并依据勾股定理求得A1A2的长度.【解答】解:(1)如图,△A1B1C1为所求的三角形;(2)如图,△A2B2C2为所求的三角形;由勾股定理可得,A1A2==.故答案为:.【点评】本题考查了利用轴对称变换和旋转变换作图以及勾股定理的运用,解答本题的关键是掌握旋转的性质及轴对称的性质.24.(8分)某培训中心有钳工20名,车工30名,现将这50名技工派往A,B两地工作,两地技工的月工资如下:(1)若派往A地x名钳工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(2)若派往A地x名车工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(3)如何派遣这50名技工,可使他们的工资总额最高?直接写出结果.【分析】(1)根据题意和表格可以写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(2)根据题意和表格可以写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(3)根据题意和表格中的数据可以得到如何派遣这50名技工,可使他们的工资总额最高.【解答】解:(1)由题意可得,y=1800x+1600(20﹣x)+1500×30=200x+77000,即这50名技工的月工资总额y(元)与x之间的函数表达式是y=200x+77000(0≤x≤20);(2)由题意可得,y=1400x+1600×20+1500(30﹣x)=﹣100x+77000,即这50名技工的月工资总额y(元)与x之间的函数表达式是y=﹣100x+77000(0≤x≤30);(3)钳工全部派往A地,车工全部派往B地可使他们的工资总额最高,理由:由表格可知,钳工全部派往A地,车工全部派往B地可使他们的工资总额最高,1800×20+1500×30=81000,即钳工全部派往A地,车工全部派往B地可使他们的工资总额最高,最高是81000元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用函数的思想解答.25.(8分)甲乙两人同时登山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是10 米/分钟,乙在A地提速时距地面的高度b为30 米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请直接写出甲和乙提速后y和x之间的函数关系式.(3)登山多长时间时,乙追上了甲,此时乙距A地的高度为多少米?【分析】(1)路程除以速度,计算出甲登上的速度,乙在0<t<2时,是正比例函数,速度为15米/分钟,代入2计算出A的高度;(2)用待定系数法确定两个函数的解析式;(3)追上时,两个函数有共同的x、y,即可列方程组,亦可列一次方程求解.【解答】解:(1)甲登山300﹣100=200(米),用了20分钟,所以甲登山的速度为:=10(米/分钟);乙从O到A的关系式为:y=15x,当x=2时,y=30米故答案为:10,30(2)甲的关系式:设甲的函数关系式为:y=kx+b,由题意,得解得,∴y=10x+100;设乙提速后的函数关系式为:y=mx+n,由于m=30,且图象经过(2.30)所以30=2×30+n解得:n=﹣30所以乙提速后的关系式:y=30x﹣30.(3)(法一)由题意得:10x+100=30x﹣30解得:x=6.5把x=6.5代入y=10x+100=165,相遇时乙距A地的高度为:165﹣30=135(米)答:登山6.5分钟,乙追上了甲,此时乙距A地的高度为135米.法2:由题意,可得,解得相遇时乙距A地的高度为:165﹣30=135(米)答:登山6.5分钟乙追上了甲,此时乙距A地的高度为135米.【点评】本题考查了一次函数的应用,用待定系数法确定函数解析式,是解决本题的关键.本题的第三问易把相遇时乙距A地的高度当成相遇时乙距出发地的高度而出错.26.(8分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.求证:DE=EC.(用三种方法证明)【分析】方法一:如图1,连接BE,根据线段垂直平分线的性质和角平分线的性质即可得到结论;方法二:如图2,连接CD,根据线段垂直平分线的性质和等腰三角形的性质即可得到结论;方法三:如图3,延长DE交BC的延长线于F,根据直角三角形的性质得到∠B=60°,BC=AB,根据线段垂直平分线的性质得到BD=AD=AB,∠BDF=90°,根据全等三角形的性质即可得到结论.【解答】证明:方法一:如图1,连接BE,∵DE是AB的垂直平分线,∴BE=AE,∠ABE=∠A=30°,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∴∠CBE=∠DBE=30°,∵DE⊥AB,CE⊥BC,∴CE=DE;方法二:如图2,连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∵点D是AB的中点,∴CD=BD=AB,∴△BDC是等边三角形,∴∠BCD=∠BDC=60°,∵∠BDE=∠ACB=90°,∴∠EDC=∠ECD=30°,∴DE=CE;方法三:如图3,延长DE交BC的延长线于F,∵∠ACB=90°,∠A=30°,∴∠B=60°,BC=AB,∵DE垂直平分AB,∴BD=AD=AB,∠BDF=90°,∴∠F=30°,∴BD=BF,∴CF=BD=AD,在△ADE与△FCE中,∴△ADE≌△FCE(AAS),∴DE=CE.【点评】本题考查了线段垂直平分线的性质,全等三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质,正确的作出辅助线是解题的关键.27.(11分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)求线段BC的长;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN周长的最小值.【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)如图2,连接BM,AM,根据等边三角形的性质得到BM⊥OC,根据全等三角形的性质得到BM=AB,AO =OM,得到AM被BD垂直平分,即M关于直线BO的对称点为A,连接AC,则C△CMN=AC+MC,于是得到结论.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴BC=OB=OC=4;(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,∴S△AOC=•OA•AB=×2×2=2,∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===;(3)如图2,连接BM,AM,∵M为OC中点,△OBC为等边三角形,∴BM⊥OC,在Rt△AOB中,∠A=90°,∠ABO=30°,∴∠BOA=60°,∵∠BOC=60°,∴∠BOA=∠BOM,∵∠BAO=∠BMO=90°,BO=BO,∴△BAO≌△BMO(ASA),∴BM=AB,AO=OM,∴B,O在AM的中垂线上,∴AM被BD垂直平分,即M关于直线BO的对称点为A,连接AC,则C△CMN=AC+MC,∵M是OC的中点,∴MC=OC=2,∴C△CMN的最小值为2+2.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
山东省济南市历城区2018-2019学年八年级上学期期末考试数学试题
第4题图2018—2019 学年度第一学期期末质量检测八年级数学试题(2019.1)满分:150分 时间:120分钟第I 卷(选择题 共48分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列实数中,是无理数的是( ) A .3.14159265B 36C .227D 72. 下列图形中,既是轴对称图形,又是中心对称图形的是( )A B C D 3. 下列各点,其中在第二象限内的点是( ) A .(1,2) B .(1,﹣2)C .(﹣1,2)D .(﹣1,﹣2)4. 如图,已知直线AB ∥CD ,∠C=125°,∠A=45°, 那么∠E 的大小为( ) A .70° B .80°C .90°D .100°5. 某车间20名工人每天加工零件数如表所示:每天加工零件数4 5 6 7 8 人数36542A .2,4B .5,6C .6,6D .5,5.56.下列计算正确的是( )yxOBA(第11题图)第12题图A 235=B .32252+=C .233318=D 623=7. 若点A (m+2,3)与点B (﹣4,n+5)关于x 轴对称,则m+n 的值( ) A .﹣14B .﹣8C .3D .78. 关于函数12+-=x y ,下列结论正确的是( ) A .图象必经过(﹣2,1) B .y 随x 的增大而增大C .图象经过第一、二、三象限D .当12x >时,y <0 9. 已知直线x y 2=与b x y +-=的交点的坐标为(1,a ),则方程组⎩⎨⎧+-==b x y xy 2的解是( )A .⎩⎨⎧-=-=21y x B .⎩⎨⎧==21y xC .⎩⎨⎧-=-=42y xD .⎩⎨⎧==42y x10.如图,△ABC 的面积为9cm 2,BP 平分∠ABC ,AP ⊥BP 于P ,连接PC ,则△PBC 的面积为( ) A .3cm 2B .4cm 2C .4.5cm 2D .5cm 211. 如图,点A 的坐标为(-1,0),点B 在直线y=x 上运动,当线段AB 最短时,点B 的坐标为 ( )A .(-21,-21) B .(22,22-) C .(-22,-22) D .(0,0)12. 如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNPQ 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=60,则S 2 的值是( ) A .15 B .20C .25D .30第Ⅱ卷(非选择题 共102分)注意事项:填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 二、填空题(每小题4分,一共24分) 13. 16的平方根是 . 14. 一组数据2、3、-1、0、1的方差是 .15. 把点A (a ,3)向上平移三个单位正好在直线y=﹣x+1上,则a 的值是 .16. 如图,把Rt △ABC 绕点A 逆时针旋转40°,得到Rt △AB ′C ′,点C ′恰好落在边AB 上,连接BB ′,则∠BB ′C ′= 度.17. 如图,在△ABC 中,AC=BC ,∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E.已知CD=2,则AB 的长度等于 .18. 如图,已知A 1(1,0)、A 2(1,1)、A 3(-1,1)、A 4(-1,-1)、A 5(2,-1)、…. 则点A 2019的坐标为________.三、解答题(共计78 分)第16题图EDACB第17题图第18题图19. 计算 (每题5分,共10分) (1)31312+-327-(2)2483250-⨯20.解下列二元一次方程组(每题5分,共10分)(1)225x y x y -=-⎧⎨+=⎩(2)36251x y x y -=⎧⎨+=⎩21.(1)(5分)如图,在△AEC 和△DFB 中,点A 、B 、C 、D 在同一条直线上,AE=DF ,AE ∥DF ,∠E=∠F ,求证:EC=BF .(2)(5分)如图,在△ABC 中,∠CAB=55°,将△ABC 在平面内绕点A 逆时针旋转到△AB ′C ′的位置,使CC ′∥AB ,求旋转角的度数22. (6分)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?23. (7分)如图,在正方形网格中,△ABC 的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题: (1)将△ABC 以x 轴为对称轴,画出对称后的 △111C B A ;(2)将△ABC 绕点C 逆时针旋转90°,画出旋转后的△222C B A ,并请你直接写出12A A 的长度 .24. (8分) 某培训中心有钳工20 名,车工30 名,现将这50 名技工派往 A , B 两地工作,两地技工的月工资如下:钳工 (元 / 月)车工 (元/ 月)A 地1800 1400 B 地16001500(1)若派往 A 地 x 名钳工,余下的技工全部派往 B 地,写出这 50 名技工的月工资总额 y (元 ) 与x 之间的函数表达式,并写出 x 的取值范围;(2)若派往 A 地 x 名车工,余下的技工全部派往 B 地,写出这 50 名技工的月工资总额 y (元 ) 与x 之间的函数表达式,并写出 x 的取值范围;(3)说明如何派遣这50 名技工,可使他们的工资总额最高?并直接写出最高工资总额的结果.EDBCA25.(8分)甲乙两人同时登山,甲乙两人距地面的高度y (米)与登山时间x (分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是 米/分钟,乙在A 地提速时距地面的高度b 为 米. (2)若乙提速后,乙的速度是甲登山速度的3倍,请求出乙提速后y 和x 之间的函数关系式.(3)登山多长时间时,乙追上了甲,此时乙距A 地的高度为多少米?26.(8分)如图,在△ABC 中,∠ACB=90°,∠A=30°,AB 的垂直平分线分别交AB 和AC 于点D,E.求证:DE=EC.(用三种方法证明)27. (11分) 已知Rt △OAB ,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt △OAB 绕点O 顺时针旋转60°,如题图1,连接BC . (1)求线段BC 的长;(2)如图1,连接AC ,作OP ⊥AC ,垂足为P ,求OP 的长度; (3)如图2,点M 是线段OC 的中点,点N 是线段OB 上的动点(不与点O重合),求△CMN 周长的最小值.2018—2019学年上学期期末测试八年级数学试题答案一、选择题((每题4分,共48 分)1.D2.C3.C4.B5.B6.C7.A8.D9.B 10.C 11.A 12.B 二、填空(每题4分,共24分)13. 4± 14.2 15.-5 16.20 17.224+ 18.(-505,505) 三、解答题 19.解:(1)原式=2﹣+-3 ---------------3分=-3 ;-----------------5分(2)原式=﹣4-----------------3分=10﹣4=6.-----------------5分20. (1)x=1-----------------2分y=4-----------------4分⎩⎨⎧==4y 1x -----------------5分 (2) x=3-----------------2分y=-1-----------------4分⎩⎨⎧==1-y 3x -----------------5分 21.(1)证明:∵AE ∥DF , ∴∠A=∠D ,-----------------1分 在△AEC 和△DFB 中,,∴△AEC ≌△DFB (ASA ),-----------------4分 ∴EC=BF-----------------5分 (2)解:∵CC ′∥AB ,∴∠ACC ′=∠CAB =55°,-----------------1分 ∵△ABC 绕点A 旋转得到△AB ′C ′, ∴AC =AC ′,-----------------2分∴∠CAC ′=180°﹣2∠ACC ′=180°﹣2×55°=70°,-----------------4分 ∴∠CAC ′=∠BAB ′=70°.所以旋转角为70°-----------------5分22.解:设中型汽车有x 辆,小型汽车有y 辆.-----------------1分 根据题意,得,-----------------4分 解这个方程组,得.-----------------5分答:中型汽车有15辆,小型汽车有35辆.-----------------6分 23.(1)△111C B A 为所求的三角形;----------2分 (2)△222C B A 为所求的三角形----------4分12A A 的长度26 .---------7分25.解:(1)10,30 ----------2分(2)设乙提速后的函数关系式为:y=kx+b,由于乙提速后是甲的3倍,所以k=30,且图象经过(2.30)所以30=2×30+b解得:b=﹣30所以乙提速后的关系式:y=30x﹣30.----------5分(3)甲的关系式:设甲的函数关系式为:y=mx+n,将n=100和点(20,300)代入,求得y=10x+100;----------6分由题意得:10x+100=30x﹣30解得:x=6.5 ----------7分把x=6.5代入y=10x+100=165,相遇时乙距A地的高度为:165﹣30=135(米)----------8分答:登山6.5分钟,乙追上了甲,此时乙距A地的高度为135米.26.做对一种4分,2种6分,3种8分思路:辅助线方法一:连接BE辅助线方法二:连接CD辅助线方法三:构造等边三角形ABM说明:不同解法,只要方法正确,请合理赋分27.∴BC=BO=OC=4 ----------3分----------7分(3) 连接BM,AM∵M 为OC 中点,△OBC 为等边三角形 ∴BMOC在Rt △AOB 中,0030,90=∠=∠ABO A , ∴060=∠BOA∵060=∠BOC∴BOM BOA ∠=∠∵090=∠=∠BMO BAO ,BO=BO ∴BAO ∆≌BMO ∆∴BM=ABAO=OM∴B,O 在AM 的中垂线上∴AM 被BD 垂直平分即M 关于直线BO 的对称点为A, 连接AC,则CMN C ∆=AC+MC∵M 是OC 的中点∴MC=21OC=2 ∴CMN C ∆的最小值为272+----------11分。
2018-2019学年山东省济南市历下区八年级(上)期末数学试卷-普通用卷
2018-2019学年山东省济南市历下区八年级(上)期末数学试卷副标题一、选择题(本大题共12小题,共48.0分)1.点M(-2019,2019)的位置在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.已知m>n,则下列不等式中不正确的是()A. B. C. D.3.如图,直线a∥b,将三角尺的直角顶点放在直线b上,若∠1=35°,则∠2等于()A. B. C. D.4.不等式6-3x>0的解集在数轴上表示为()A. B.C. D.5.满足下列条件的△ABC,不是直角三角形的是()A. B.C. a:b::4:5D. :::4:56.下列算式中,正确的是()A. B.C. D.7.某中学随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是()A. 小时B. 小时C. 小时D. 7小时8.函数y=ax+b(a,b为常数,a≠0)的图象如图所示,则关于x的不等式ax+b>0的解集是()A.B.C.D.9.在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,BC=7,BD=4,则点D到AB的距离是()A. 2B. 3C. 4D. 510.如图,已知等腰△ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点D,则下列结论一定正确的是()A.B.C.D.11.已知等腰三角形周长为40,则腰长y关于底边长x的函数图象是()A. B.C. D.12.如图,已知:∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=1,则B2018B2019的长为()A. B. C. D.二、填空题(本大题共8小题,共34.0分)13.已知点P(-2,a)在一次函数y=3x+1的图象上,则a=______.14.在平面直角坐标系中,点(-7,2m+1)在第三象限,则m的取值范围是______.15.如图,在△ABC中,AC的垂直平分线DE交AB于点E,交AC于点D,连接CE,若∠A=34°,∠ACB=76°,则∠BCE=______.16.省运会举行射击比赛,我市射击队从甲、乙、丙、丁四人中选拔一人参赛,在选拔赛中,每人射击10次,计算他们10次成绩的平均数和方差如下表,请你根据表中数据选一人参加比赛,最适合的人选是______.17.点O,过点O作MN∥BC,分别交AB、AC于点M、N.若△ABC的周长为15,BC=6,则△AMN的周长为______.18.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持∠EDF=90°,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①DE=DF;②四边形CEDF的面积随点E、F位置的改变而发生变化;③CE+CF=AB;④AE2+BF2=2ED2.以上结论正确的是______(只填序号).19.如图,∠ABC=90°,P为射线BC上任意一点(点P和点B不重合),分别以AB,AP为边在∠ABC内部作等边△ABE和等边△APQ,连结QE并延长交BP于点F,连接EP,若FQ=11,AE=4,则EP=______.20.如图,平面直角坐标系中,已知点P(2,2),C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线OP交于点A,且BD=4AD,直线CD与直线OP交于点Q,则点Q的坐标为______.三、计算题(本大题共2小题,共12.0分)21.解二元一次方程组.22.解不等式组<,并把它的解集表示在数轴上.四、解答题(本大题共7小题,共66.0分)23.在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF.求证:△ABC是等腰三角形.24.为迎接广州市青少年读书活动,某校倡议同学们利于课余时间多阅读为了解同学们的读书情况,在全校随机调查了部分同学在一周内的阅读时间,并用得到的数据绘制了统计图,根据图中信息解答下列问题:(1)被抽查学生阅读时间的中位数为______小时,众数为______小时,平均数为______小时(2)已知全校学生人数为1500人,请你估算该校学生一周内阅读时间不少于三小时的有多少人?25.为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A、B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A、B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?26.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)求证:CD=BE;(2)已知CD=2,求AC的长;(3)求证:AB=AC+CD.27.已知:如图一次函数y1=-x-2与y2=x-4的图象相交于点A.(1)求点A的坐标;(2)若一次函数y1=-x-2与y2=x-4的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≥y2时x的取值范围.28.某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系,请直接写出______;(2)组员小颖想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α(其中α为任意锐角或钝角).如果成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,F是∠BAC角平分线上的一点,且△ABF和△ACF均为等边三角形,D、E 分别是直线m上A点左右两侧的动点(D、E、A互不重合),在运动过程中线段DE的长度始终为n,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.29.如图1,点A、B、C在坐标轴上,且A、B、C的坐标分别为(-1,0)、(4,0)、(0,-3)过点A的直线AD与y轴正半轴交于点D,∠DAB=45°(1)求直线AD和BC的解析式;(2)如图2,点E在直线x=2上且在直线BC上方,当△BCE的面积为6时,求E 点坐标;(3)在(2)的条件下,如图3,动点M在直线AD上,动点N在x轴上,连接ME、NE、MN,当△MNE周长最小时,求△MNE周长的最小值.答案和解析1.【答案】B【解析】解:∵点M(-2019,2019),∴M点所在的象限是第二象限.故选:B.根据各象限内点的坐标特点,再根据M点的坐标符号,即可得出答案.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.【答案】D【解析】解:A、在不等式m>n的两边同时乘以5,不等式仍成立,即5m>5n,故本选项不符合题意;B、在不等式m>n的两边同时加7,不等式仍成立,即m+7>n+7,故本选项不符合题意;C、在不等式m>n的两边同时乘以-4,不等号方向改变,即-4m<-4n,故本选项不符合题意;D、在不等式m>n的两边同时减去6,不等式仍成立,即m-6>n-6,故本选项符合题意;故选:D.根据不等式的性质解答.考查了不等式的性质:(1)不等式两边加(或减)同一个数(或整式),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.【答案】B【解析】解:如图,∵∠1=35°,∴∠3=180°-35°-90°=55°,∵a∥b,∴∠2=∠3=55°.故选:B.根据平角的定义求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.本题考查了平行线的性质,熟记性质并准确识图是解题的关键.4.【答案】A【解析】解:移项得:-3x>-6,系数化为1得:x<2,即不等式的解集为:x<2,不等式的解集在数轴上表示如下:故选:A.依次移项,系数化为1,即可求得一元一次不等式的解集,再将解集在数轴上表示出来即可.本题考查了解一元一次不等式和在数轴上表示不等式的解集,正确掌握解一元一次不等式和在数轴上表示不等式解集的方法是解题的关键.5.【答案】D【解析】解:A、∵∠C=∠A+∠B==90°,是直角三角形,故此选项不合题意;B、∵∠C=∠A-∠B,∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;C、∵32+42=52,∴是直角三角形,故此选项不合题意;D、∠A:∠B:∠C=3:4:5,则∠C=180°×=75°,不是直角三角形,故此选项符合题意,故选:D.根据勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形;三角形内角和定理进行分析即可.此题主要考查了勾股定理逆定理,以及三角形内角和定理,关键是正确掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.6.【答案】C【解析】解:A.3-=2,此选项错误;B.+=2+3=5,此选项错误;C.,此选项正确;D.==2,此选项错误;故选:C.根据二次根式的混合运算法则逐一计算可得.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算法则.7.【答案】C【解析】解:(5×10+6×10+7×20+8×10)÷50=(50+60+140+80)÷50=330÷50=6.6(小时).故这50名学生这一周在校的平均体育锻炼时间是6.6小时.故选:C.根据加权平均数的计算公式列出算式(5×10+6×15+7×20+8×5)÷50,再进行计算即可.此题考查了加权平均数,用到的知识点是加权平均数的计算公式,根据加权平均数的计算公式列出算式是解题的关键.解:关于x的不等式ax+b>0的解集为x<3.故选:C.利用函数图象,写出直线y=ax+b在x轴上方所对应的自变量的范围即可.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.9.【答案】B【解析】解:∵BC=7,BD=4,∴CD=7-4=3,由角平分线的性质,得点D到AB的距离=CD=3,故选:B.根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D 到AB的距离=点D到AC的距离=CD.本题主要考查平分线的性质,由已知能够注意到D到AB的距离即为CD长是解决的关键.10.【答案】C【解析】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点D,∴BD=BC,∴∠ACB=∠BDC,∴∠BDC=∠ABC=∠ACB,∴∠BAC=∠DBC,故选:C.利用等腰三角形的性质分别判断后即可确定正确的选项.本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.解:∵等腰三角形的周长为40,其中腰长为y,底边长为x,∴x+2y=40,∴y=20-x,∵20<2y<40,∴自变量x的取值范围是0<x<20,y的取值范围是10<y<20.故选:D.根据三角形的周长公式即可写出y与x的函数关系式,结合x和y的取值范围,即可得出答案.此题主要考查动点问题的函数图象、一次函数关系式,掌握等腰三角形的周长公式是解题的关键.12.【答案】C【解析】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,∴BB2=,1∵B3A3=2B2A3,∴A3B3=4B1A2=4,∴BB3=2,2∵A4B4=8B1A2=8,∴BB4=4,3以此类推,B n B n+1的长为2n-1,∴BB2019的长为22017,2018故选:C.根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出B1B2=,B2B3=2,B3B4=4,以此类推,B n B n+1的长为2n-1,进而得出答案.此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.13.【答案】-5【解析】解:∵点P(-2,a)在一次函数y=3x+1的图象上,∴a=3×(-2)+1=-5.故答案是:-5.把点P的坐标代入函数解析式,列出关于a的方程,通过解方程可以求得a的值.本题考查了一次函数图象上点的坐标特征.此题利用代入法求得未知数a的值.14.【答案】m<【解析】解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即2m+1<0,解得m<,故答案为:m<,点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得2m+1<0,求不等式的解即可.本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.【答案】42°【解析】解:∵AC的垂直平分线DE,∴AE=CE,∴∠ACE=∠A=34°,∴∠BCE=∠ACB-∠ACE=76°-35°=42°,故答案为:42°.根据线段垂直平分线性质求出∠ACE=∠A,即可得出∠BCE的度数.此题考查线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.16.【答案】丁【解析】解:∵甲,乙,丙,丁四个人中甲和丁的平均数最大且相等,甲,乙,丙,丁四个人中丁的方差最小,说明丁的成绩最稳定,∴综合平均数和方差两个方面说明丁成绩既高又稳定,∴丁是最佳人选.故答案为:丁.根据甲,乙,丙,丁四个人中甲和丁的平均数最大且相等,甲,乙,丙,丁四个人中丁的方差最小,说明丁的成绩最稳定,得到丁是最佳人选.本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.【答案】9【解析】解:如图,∵OB、OC分别是∠ABC与∠ACB的平分线,∴∠1=∠5,∠3=∠6,又∵MN∥BC,∴∠2=∠5,∠6=∠4,∴BM=MO,NO=CN,∴△AMN的周长=AM+AN+MN=MA+AN+MO+ON=AB+AC,又∵AB+AC+BC=15,BC=6,∴AB+AC=9,∴△AMN的周长=9,故答案为9.先根据角平分线的性质和平行线判断出OM=BM、ON=CN,也就得到三角形的周长就等于AB与AC的长度之和.本题考查了等腰三角形的性质;解答此题的关键是熟知平行线的性质,等腰三角形的性质及角平分线的性质及利用线段的等量代换.18.【答案】①③④【解析】解:连接CD,∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴ED=DF,故①正确;∴S△ADE=S△CDF,∴S=S△ADC=S△ABC=定值,故②错误,四边形CEDF∵△ADE≌△CDF,∴AE=CF,∴CE+CF=CE+AE=AC=AB,故③正确,∵AE=CF,AC=BC,∴EC=BF,∴AE2+BF2=CF2+CE2=EF2,∵EF2=2DE2,∴AE2+BF2=2ED2,故④正确.故答案为①③④.连接CD.证明△ADE≌△CDF,利用全等三角形的性质即可一一判断.本题考查全等三角形的判定和性质,勾股定理,等腰直角三角形想的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.【答案】【解析】解:如图:连接EP,过点E作EM⊥BC∵△AEB,△APQ是等边三角形∴AB=AE=BE=4,AQ=AP,∠ABE=∠BAE=∠QAP=60°=∠AEB∴∠BAP=∠QAE且AQ=AP,AB=AE∴△ABP≌△QAE∴QE=BP,∠AEQ=∠ABC=90°∵∠AEQ=∠ABC=90°,∠ABE=∠AEB=60°∴∠BEF=∠EBF=30°∴BF=EF,∠EFM=60°∵EM⊥BC∴∠FEM=30°∴EF=2FM=BF,EM=FM∵∠EBM=30°,EM⊥BC∴BE=2EM,BM=EM∵EB=4∴EM=2,BM=6∵BF+FM=BM∴FM=2,BF=EF=4∵QF=EQ+EF∴EQ=11-4=7∴BP=7∴MP=BP-BM=1在Rt△EMP中,EP==故答案为连接EP,过点E作EM⊥BC,由题意可得△AQE≌△ABP,可得QE=BP,∠AEQ=∠ABC=90°,可求∠EBF=∠BEF=30°,根据勾股定理可求BE=2EM=4,BM=EM,EF=BF=2FM,EM=FM,可求BF=EF=4,EM=2,FM=2,由QF=11,EF=4,可得BP=EQ=7,可求MP的长,根据勾股定理可求EP的长.本题考查了三角形综合题,全等三角形的判定和性质,勾股定理,构造直角三角形用勾股定理求线段的长度是本题的关键.20.【答案】(,)【解析】解:过点P作PE⊥OC于E,EP的延长线交AB于F.∵AB⊥OB,∴∠OBF=∠EOB=∠FEO=90°,∴四边形EOBF是矩形,∵P(2,2),∴OE=PE=BF=2,∵∠CPD=90°,∴∠CPE+∠DPF=90°,∠ECP+∠CPE=90°,∴∠ECP=∠DPF,在△CPE和△PDF中,,∴△CPE≌△PDF,∴DF=PE=2,∴BD=BF+DF=4,∵BD=4AD,∴AD=1,AB=OB=5,∴CE=PF=3,∴D(5,4),C(0,5),设直线CD的解析式为y=kx+b则有,解得,∴直线CD的解析式为y=-x+5,由解得,∴点Q的坐标为(,).故答案为(,).过点P作PE⊥OC于E,EP的延长线交AB于F.首先证明△CPE≌△PDF,得到DF=PE=2,推出BD=BF+DF=4,由BD=4AD,推出AD=1,AB=OB=5,CE=PF=3,D(5,4),C(0,5),利用待定系数法求出直线CD的解析式,利用方程组即可求出点Q的坐标.本题考查一次函数的应用、待定系数法、全等三角形的判定和性质、二元一次方程组等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建一次函数,利用方程组求交点坐标,属于中考填空题中的压轴题.21.【答案】解:①②,①+②,得4x=12,∴x=3,把x=3代入②,得3+2y=3,解得y=0,所以原方程组的解为.【解析】利用加减消元法求解可得.本题主要考查解二元一次方程组,熟练掌握解二元一次方程组的两种消元方法是解题的关键.22.【答案】解:<①②∵解不等式①,得x>2,解不等式②,得x≤3,∴不等式组的解集是2<x≤3,在数轴上表示为:.【解析】先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解此题的关键.23.【答案】证明:∵D是BC的中点,∴BD=DC,∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵BD=DC,DE=DF,∴△BDE≌△CDF,∴∠B=∠C,∴AB=AC,∴△ABC是等腰三角形.【解析】根据中点的定义可得到BD=DC,再根据HL即可判定△BDE≌△CDF,从而可得到∠B=∠C,根据等角对等边可得到AB=AC,即△ABC是等腰三角形.此题主要考查等腰三角形的判定及全等三角形的判定与性质的综合运用.24.【答案】2 2 2.34【解析】解:(1)12+20+10+5+3=50,被抽查学生阅读时间的中位数为:第25和第26个学生阅读时间的平均数=2,众数为2,平均数==2.34,故答案为:2,2,2.34;(2)1500×=540,答:估算该校学生一周内阅读时间不少于三小时的有540人.(1)根据统计图中的数据确定出学生劳动时间的众数、中位数和平均数即可;(2)根据总人数×阅读时间不少于三小时的百分比可得结果.此题考查了众数,条形统计图,平均数、中位数及用样本估计总体,弄清题中的数据是解本题的关键.25.【答案】解:(1)设购买A型学习用品x件,B型学习用品y件,由题意,得:,解得:.答:购买A型学习用品400件,B型学习用品600件;(2)设可以购买B型学习用品a件,则A型学习用品(1000-a)件,由题意,得:20(1000-a)+30a≤28000,解得:a≤800,答:最多购买B型学习用品800件.【解析】(1)设购买A型学习用品x件,B型学习用品y件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论;(2)设可以购买B型学习用品a件,则A型学习用品(1000-a)件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.本题考查了列二元一次方程组和一元一次不等式解实际问题的运用,解答本题时找到等量关系是建立方程组的关键.26.【答案】(1)证明:∵在△ABC中,AC=BC,∠C=90°,∴△ABC是等腰直角三角形,∴∠B=45°,∵DE⊥AB,∴△BDE是等腰直角三角形,∴DE=BE.∵AD是△ABC的角平分线,∴CD=DE,∴CD=BE;(2)解:∵由(1)知,△BDE是等腰直角三角形,DE=BE=CD,∴DE=BE=CD=2,∴BD===2,∴AC=BC=CD+BD=2+2;(3)证明:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE.在Rt△ACD与Rt△AED中,∵ ,∴Rt△ACD≌Rt△AED,∴AE=AC.∵由(1)知CD=BE,∴AB=AE+BE=AC+CD.【解析】(1)先根据题意判断出△ABC是等腰直角三角形,故∠B=45°,再由DE⊥AB可知△BDE是等腰直角三角形,故DE=BE,再根据角平分线的性质即可得出结论;(2)由(1)知,△BDE是等腰直角三角形,DE=BE=CD,再根据勾股定理求出BD的长,进而可得出结论;(3)先根据HL定理得出Rt△ACD≌Rt△AED,故AE=AC,再由CD=BE可得出结论.本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.27.【答案】解:(1)解方程组,得,所以点A坐标为(1,-3);(2)当y1=0时,-x-2=0,x=-2,则B点坐标为(-2,0);当y2=时,x-4=0,x=4,则C点坐标为(4,0);∴BC=4-(-2)=6,∴△ABC的面积=×6×3=9;(3)根据图象可知,y1≥y2时x的取值范围是x≤1.【解析】(1)将两个函数的解析式联立得到方程组,解此方程组即可求出点A的坐标;(2)先根据函数解析式求得B、C两点的坐标,可得BC的长,再利用三角形的面积公式可得结果;(3)根据函数图象以及点A坐标即可求解.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了两直线相交时交点坐标的求法以及三角形的面积.28.【答案】DE=BD+CE【解析】解:(1)DE=BD+CE,理由:∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BAD+∠CAE=180°-∠BAC,∠BAD+∠ABD=180°-∠ADB,∠BDA=∠BAC,∴∠ABD=∠CAE,在△BAD和△ACE中,,∴△BAD≌△ACE(AAS),∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE;(3)△DFE为等边三角形,理由:由(2)得,△BAD≌△ACE,∴BD=AE,∵∠ABD=∠CAE,∴∠ABD+∠FBA=∠CAE+FAC,即∠FBD=∠FAE,在△FBD和△FAE中,,∴△FBD≌△FAE(SAS),∴FD=FE,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DFE为等边三角形.(1)先利用同角的余角相等,判断出∠ABD=∠CAE,进而判断出△ADB≌△CEA,得出BD=AE,AD=CE,即可得出结论;(2)先利用等式的性质,判断出∠ABD=∠CAE,进而判断出△ADB≌△CEA,得出BD=AE,AD=CE,即可得出结论;(3)由(2)得,△BAD≌△ACE,得出BD=AE,再判断出△FBD≌△FAE(SAS),得出∠BFD=∠AFE,进而得出∠DFE=60°,即可得出结论.此题是三角形综合题,主要考查了全等三角形的判定和性质,等边三角形的判定和性质,判断出∠ABD=∠CAE是解本题的关键.29.【答案】解:(1)∵∠DAB=45°,∴OA=OD=1,即点D的坐标为(0,1),将点A、D的坐标代入一次函数表达式:y=kx+b得:,解得:,则直线AD的表达式为:y=x+1,同理可得直线BC的表达式为:y=x-3;(2)设直线x=2与BC交于点F,点E坐标为(2,m),则点F坐标为(2,-),则S△BCE=×EF×OB=×4×(m+)=6,解得:m=,即点E的坐标为(2,);(3)过点E点作EE′⊥AD,点E和E′关于直线AD对称,设直线x=2与直线AD交于点H(2,3),连接E′H,找到点E关于x轴的对称点E″(2,-),连接E′E″交AD于M点、交x轴于点N,此时,△MNE周长最小,∵∠DAB=45°,∴E′H=EH=3-=,则点E′的坐标为(,3),则:△MNE周长的最小值=E′E″==.【解析】(1)∠DAB=45°,OA=OD=1,即点D的坐标为(0,1),将点A、D的坐标代入一次函数表达式,即可求解;(2)由S△BCE=×EF×OB=×4×(m+)=6,即可求解;(3)作点E关于直线AD对称点E′;找到点E关于x轴的对称点E″,连接E′E″交AD于M点、交x轴于点N,则△MNE周长最小,即可求解.本题考查的是一次函数综合运用,主要考查对称点的性质与用途,此类题目正确确定对称点的位置解题的关键.。
249.(期末、月考试卷)2018-2019学年山东省济南市历城区八年级(上)期末数学试卷(真题)
2018-2019学年山东省济南市历城区八年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列实数中,是无理数的是()A.3.14159265B .C .D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列各点,其中在第二象限内的点是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)4.如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°5.某车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是()A.5,5B.5,6C.6,6D.6,5 6.下列计算正确的是()A .+=B.3+2=5C.2×3=18D.÷=7.若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n的值()A.3B.﹣14C.7D.﹣88.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<09.已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是()A.B.C.D.10.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm211.如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.C.D.12.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12B.15C.20D.30二、填空题(每小题4分,一共24分)13.16的平方根是.14.一组数据2、3、﹣1、0、1的方差是.15.把点A(a,3)向上平移三个单位正好在直线y=﹣x+1上,则a的值是.16.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=度.17.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.已知CD=2,则AB的长度等于.18.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为.三、解答题(共计78分)19.(10分)计算(1)﹣+﹣(2)﹣420.(10分)解下列二元一次方程组(1)(2)21.(10分)(1)如图1,在△AEC和△DFB中,点A、B、C、D在同一条直线上,AE=DF,AE ∥DF,∠E=∠F,求证:EC=BF.(2)如图2,在△ABC中,∠CAB=55°,将△ABC在平面内绕点A逆时针旋转到△AB′C′的位置,使CC′∥AB,求旋转角的度数.22.(6分)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?23.(7分)如图,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC以x轴为对称轴,画出对称后的△A1B1C1;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并请你直接写出A1A2的长度.24.(8分)某培训中心有钳工20名,车工30名,现将这50名技工派往A,B两地工作,两地技工的月工资如下:钳工(元/月)车工(元/月)A地18001400B地16001500(1)若派往A地x名钳工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(2)若派往A地x名车工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(3)如何派遣这50名技工,可使他们的工资总额最高?直接写出结果.25.(8分)甲乙两人同时登山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是米/分钟,乙在A地提速时距地面的高度b为米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请直接写出甲和乙提速后y和x之间的函数关系式.(3)登山多长时间时,乙追上了甲,此时乙距A地的高度为多少米?26.(8分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.求证:DE=EC.(用三种方法证明)27.(11分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)求线段BC的长;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN 周长的最小值.2018-2019学年山东省济南市历城区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列实数中,是无理数的是()A.3.14159265B.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、3.1415926是有限小数是有理数,选项错误.B、=6,是整数,是有理数,选项错误;C、是无理数,选项正确;D、是分数,是有理数,选项错误;故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、不是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.下列各点,其中在第二象限内的点是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据各个象限点的坐标特征判断.【解答】解:A、(1,2)在第一象限B、(1,﹣2)在第四象限C、(﹣1,2)在第二象限D、(﹣1,﹣2)在第三象限故选:C.【点评】本题考查的是点的坐标,掌握各个象限点的坐标特征是解题的关键.4.如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°【分析】根据两直线平行,同旁内角互补,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.【解答】解:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.故选:B.【点评】本题应用的知识点为:两直线平行,同旁内角互补;三角形内角和定理.5.某车间20名工人每天加工零件数如表所示:每天加工零45678件数人数36542这些工人每天加工零件数的众数、中位数分别是()A.5,5B.5,6C.6,6D.6,5【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.下列计算正确的是()A.+=B.3+2=5C.2×3=18D.÷=【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、3与2不能合并,所以B选项错误;C、原式=6×3=18,所以C选项正确;D、原式===,所以D选项错误.故选:C.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n的值()A.3B.﹣14C.7D.﹣8【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,再计算m+n即可.【解答】解:由题意,得m+2=﹣4,n+5=﹣3,解得m=﹣6,n=﹣8.m+n=﹣14.故选:B.【点评】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.8.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<0【分析】根据一次函数的性质,依次分析选项可得答案.【解答】解:根据一次函数的性质,依次分析可得,A、x=﹣2时,y=﹣2×﹣2+1=5,故图象必经过(﹣2,5),故错误,B、k<0,则y随x的增大而减小,故错误,C、k=﹣2<0,b=1>0,则图象经过第一、二、四象限,故错误,D、当x>时,y<0,正确;故选:D.【点评】本题考查一次函数的性质,注意一次函数解析式的系数与图象的联系.9.已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是()A.B.C.D.【分析】方程组的解是一次函数的交点坐标即可.【解答】解:∵直线y=2x经过(1,a)∴a=2,∴交点坐标为(1,2),∵方程组的解就是两个一次函数的交点坐标,∴方程组的解,故选:A .【点评】本题考查一次函数与方程组的关系,解题的关键是理解方程组的解就是厉害一次函数的交点坐标.10.如图,△ABC 的面积为9cm 2,BP 平分∠ABC ,AP ⊥BP 于P ,连接PC ,则△PBC 的面积为( )A .3cm 2B .4cm 2C .4.5cm 2D .5cm 2【分析】根据已知条件证得△ABP ≌△EBP ,根据全等三角形的性质得到AP =PE ,得出S △ABP =S △EBP ,S △ACP =S △ECP ,推出S △PBC =S △ABC ,代入求出即可.【解答】解:延长AP 交BC 于E ,∵BP 平分∠ABC ,∴∠ABP =∠EBP ,∵AP ⊥BP ,∴∠APB =∠EPB =90°, 在△ABP 和△EBP 中,,∴△ABP ≌△EBP (ASA ),∴AP =PE ,∴S △ABP =S △EBP ,S △ACP =S △ECP , ∴S △PBC =S △ABC =×9cm 2=4.5cm 2,故选:C .【点评】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.11.如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.C.D.【分析】先过点A作AB′⊥OB,垂足为点B′,由于点B在直线y=x上运动,所以△AOB′是等腰直角三角形,由勾股定理求出OB′的长即可得出点B′的坐标.【解答】解:先过点A作AB′⊥OB,垂足为点B′,由垂线段最短可知,当点B与点B′重合时AB最短,∵点B在直线y=x上运动,∴∠AOB′=45°,∵AB′⊥OB,∴△AOB′是等腰直角三角形,过B′作B′C⊥x轴,垂足为C,∴△B′CO为等腰直角三角形,∵点A的坐标为(﹣1,0),∴OC=CB′=OA=×1=,∴B′坐标为(﹣,﹣),即当B与点B′重合时AB最短,点B的坐标为(﹣,﹣),故选:B.【点评】本题考查了一次函数的性质、垂线段最短和等腰直角三角形的性质,找到表示B′点坐标的等腰直角三角形是解题的关键.12.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12B.15C.20D.30【分析】设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,依据S1+S2+S3=60,可得4m+S2+S2+S2﹣4m=60,进而得出S2的值.【解答】解:设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,因为S1+S2+S3=60,所以4m+S2+S2+S2﹣4m=60,即3S2=60,解得S2=20.故选:C.【点评】此题主要考查了勾股定理和正方形、全等三角形的性质的运用,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.二、填空题(每小题4分,一共24分)13.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.一组数据2、3、﹣1、0、1的方差是2.【分析】先求出这组数据的平均数,再根据方差的计算公式即可得出答案.【解答】解:这组数据的平均数:=(2+1﹣1+0+3)÷5=1,方差:S2=[(x1﹣)2+[(x2﹣)2+…+[(x n﹣)2]=[(2﹣1)2+(1﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2]=(1+4+0+1+4)=2.故答案为:2.【点评】本题考查了方差:一般地,设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+[(x2﹣)2+…+[(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.把点A(a,3)向上平移三个单位正好在直线y=﹣x+1上,则a的值是﹣5.【分析】点A向上平移三个单位后的坐标为(a,6),然后将其代入直线方程y=﹣x+1即可求得a的值.【解答】解:根据题意知,点(a,6)在直线y=﹣x+1上,∴6=﹣a+1,解得a=﹣5;故答案是:﹣5.【点评】本题综合考查了一次函数图象上点的坐标特征、坐标与图形变化﹣﹣平移.点A(a,3)向上平移三个单位后的横坐标不变,纵坐标伸长3个单位.16.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=20度.【分析】根据旋转的性质可得AB=AB′,∠BAB′=40°,然后根据等腰三角形两底角相等求出∠ABB′,再利用直角三角形两锐角互余列式计算即可得解.【解答】解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=40°,在△ABB′中,∠ABB′=(180°﹣∠BAB′)=(180°﹣40°)=70°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°﹣∠ABB′=90°﹣70°=20°.故答案为:20.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,比较简单,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.17.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.已知CD=2,则AB的长度等于4+2.【分析】根据角平分线的性质得到DE=DC=2,根据等腰直角三角形的性质、勾股定理计算.【解答】解:∵AC=BC,∠C=90°,∴∠CAB=∠B=45°,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=DC=2,∴DB=DE=2,∴BC=2+2,∴AB=BC=4+2,故答案为:4+2.【点评】本题考查的是勾股定理、角平分线的性质、等腰直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.18.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为(﹣505,505).【分析】观察图形,由第二象限点的坐标的变化可得出“点A4n的坐标为(﹣n,n)(n为正﹣1整数)”,再结合2019=4×505﹣1,即可求出点A2019的坐标.【解答】解:观察图形,可知:点A3的坐标为(﹣1,1),点A7的坐标为(﹣2,2),点A11的坐标为(﹣3,3),…,的坐标为(﹣n,n)(n为正整数).∴点A4n﹣1又∵2019=4×505﹣1,∴点A2019的坐标为(﹣505,505).故答案为:(﹣505,505).的坐标【点评】本题考查了规律型:点的坐标,根据点的坐标的变化,找出变化规律“点A4n﹣1为(﹣n,n)(n为正整数)”是解题的关键.三、解答题(共计78分)19.(10分)计算(1)﹣+﹣(2)﹣4【分析】(1)直接化简二次根式以及立方根进而计算即可;(2)直接化简二次根式进而计算即可.【解答】解:(1)原式=2﹣+﹣3=﹣3;(2)原式=﹣4=10﹣4=6.【点评】此题主要考查了实数运算,正确化简二次根式是解题关键.20.(10分)解下列二元一次方程组(1)(2)【分析】(1)利用加减消元法解答即可;(2)利用代入消元法解答即可.【解答】解:(1),①+②得:3x=3,解得:x=1把x=1代入②得:y=4,所以方程组的解为:(2),由①变形为:x=6+3y③,把③代入②得:y=﹣1,把y=﹣1代入③得:x=3,所以方程组的解为:.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.21.(10分)(1)如图1,在△AEC和△DFB中,点A、B、C、D在同一条直线上,AE=DF,AE ∥DF,∠E=∠F,求证:EC=BF.(2)如图2,在△ABC中,∠CAB=55°,将△ABC在平面内绕点A逆时针旋转到△AB′C′的位置,使CC′∥AB,求旋转角的度数.【分析】(1)根据“ASA”可证△AEC≌△DFB,可得EC=BF;(2)由平行线的性质和旋转的性质可求∠CAB=∠C'CA=∠CC'A=55°,由三角形内角和定理可求旋转角的度数.【解答】(1)证明:∵AE∥DF,∴∠A=∠D,在△AEC和△DFB中,,∴△AEC≌△DFB(ASA)∴EC=BF(2)∵CC′∥AB,∴∠ACC′=∠CAB=55°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×55°=70°,∴∠CAC′=∠BAB′=70°.所以旋转角为70°【点评】本题考查了旋转的性质,全等三角形的判定和性质,平行线的性质,三角形内角和定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.22.(6分)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?【分析】本题有两个定量:车辆总数,停车费总数.可根据这两个定量得到两个等量关系:中型汽车的辆数+小型汽车的辆数=50;中型汽车的停车费+小型汽车的停车费=230.依等量关系列方程组,再求解.【解答】解:设中型汽车有x辆,小型汽车有y辆.根据题意,得,解这个方程组,得.答:中型汽车有15辆,小型汽车有35辆.【点评】本题考查二元一次方程组的应用.找到两个定量,车辆总数,停车费总数,并根据定量得到两个等量关系是解题关键.23.(7分)如图,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC以x轴为对称轴,画出对称后的△A1B1C1;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并请你直接写出A1A2的长度.【分析】(1)依据轴对称的性质,即可画出对称后的△A1B1C1;(2)依据旋转变换,即可画出旋转后的△A2B2C2,并依据勾股定理求得A1A2的长度.【解答】解:(1)如图,△A1B1C1为所求的三角形;(2)如图,△A2B2C2为所求的三角形;由勾股定理可得,A1A2==.故答案为:.【点评】本题考查了利用轴对称变换和旋转变换作图以及勾股定理的运用,解答本题的关键是掌握旋转的性质及轴对称的性质.24.(8分)某培训中心有钳工20名,车工30名,现将这50名技工派往A,B两地工作,两地技工的月工资如下:钳工(元/月)车工(元/月)A地18001400B地16001500(1)若派往A地x名钳工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(2)若派往A地x名车工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(3)如何派遣这50名技工,可使他们的工资总额最高?直接写出结果.【分析】(1)根据题意和表格可以写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(2)根据题意和表格可以写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(3)根据题意和表格中的数据可以得到如何派遣这50名技工,可使他们的工资总额最高.【解答】解:(1)由题意可得,y=1800x+1600(20﹣x)+1500×30=200x+77000,即这50名技工的月工资总额y(元)与x之间的函数表达式是y=200x+77000(0≤x≤20);(2)由题意可得,y=1400x+1600×20+1500(30﹣x)=﹣100x+77000,即这50名技工的月工资总额y(元)与x之间的函数表达式是y=﹣100x+77000(0≤x≤30);(3)钳工全部派往A地,车工全部派往B地可使他们的工资总额最高,理由:由表格可知,钳工全部派往A地,车工全部派往B地可使他们的工资总额最高,1800×20+1500×30=81000,即钳工全部派往A地,车工全部派往B地可使他们的工资总额最高,最高是81000元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用函数的思想解答.25.(8分)甲乙两人同时登山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是10米/分钟,乙在A地提速时距地面的高度b为30米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请直接写出甲和乙提速后y和x之间的函数关系式.(3)登山多长时间时,乙追上了甲,此时乙距A地的高度为多少米?【分析】(1)路程除以速度,计算出甲登上的速度,乙在0<t<2时,是正比例函数,速度为15米/分钟,代入2计算出A的高度;(2)用待定系数法确定两个函数的解析式;(3)追上时,两个函数有共同的x、y,即可列方程组,亦可列一次方程求解.【解答】解:(1)甲登山300﹣100=200(米),用了20分钟,所以甲登山的速度为:=10(米/分钟);乙从O到A的关系式为:y=15x,当x=2时,y=30米故答案为:10,30(2)甲的关系式:设甲的函数关系式为:y=kx+b,由题意,得解得,∴y=10x+100;设乙提速后的函数关系式为:y=mx+n,由于m=30,且图象经过(2.30)所以30=2×30+n解得:n=﹣30所以乙提速后的关系式:y=30x﹣30.(3)(法一)由题意得:10x+100=30x﹣30解得:x=6.5把x=6.5代入y=10x+100=165,相遇时乙距A地的高度为:165﹣30=135(米)答:登山6.5分钟,乙追上了甲,此时乙距A地的高度为135米.法2:由题意,可得,解得相遇时乙距A地的高度为:165﹣30=135(米)答:登山6.5分钟乙追上了甲,此时乙距A地的高度为135米.【点评】本题考查了一次函数的应用,用待定系数法确定函数解析式,是解决本题的关键.本题的第三问易把相遇时乙距A地的高度当成相遇时乙距出发地的高度而出错.26.(8分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.求证:DE=EC.(用三种方法证明)【分析】方法一:如图1,连接BE,根据线段垂直平分线的性质和角平分线的性质即可得到结论;方法二:如图2,连接CD,根据线段垂直平分线的性质和等腰三角形的性质即可得到结论;方法三:如图3,延长DE交BC的延长线于F,根据直角三角形的性质得到∠B=60°,BC=AB,根据线段垂直平分线的性质得到BD=AD=AB,∠BDF=90°,根据全等三角形的性质即可得到结论.【解答】证明:方法一:如图1,连接BE,∵DE是AB的垂直平分线,∴BE=AE,∠ABE=∠A=30°,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∴∠CBE=∠DBE=30°,∵DE⊥AB,CE⊥BC,∴CE=DE;方法二:如图2,连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∵点D是AB的中点,∴CD=BD=AB,∴△BDC是等边三角形,∴∠BCD=∠BDC=60°,∵∠BDE=∠ACB=90°,∴∠EDC=∠ECD=30°,∴DE=CE;方法三:如图3,延长DE交BC的延长线于F,∵∠ACB=90°,∠A=30°,∴∠B=60°,BC=AB,∵DE垂直平分AB,∴BD=AD=AB,∠BDF=90°,∴∠F=30°,∴BD=BF,∴CF=BD=AD,在△ADE与△FCE中,∴△ADE≌△FCE(AAS),∴DE=CE.【点评】本题考查了线段垂直平分线的性质,全等三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质,正确的作出辅助线是解题的关键.27.(11分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)求线段BC的长;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN 周长的最小值.【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)如图2,连接BM,AM,根据等边三角形的性质得到BM⊥OC,根据全等三角形的性质得到BM=AB,AO=OM,得到AM被BD垂直平分,即M关于直线BO的对称点为A,连接AC,=AC+MC,于是得到结论.则C△CMN【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴BC=OB=OC=4;(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,∴S=•OA•AB=×2×2=2,△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===;(3)如图2,连接BM,AM,∵M为OC中点,△OBC为等边三角形,∴BM⊥OC,在Rt△AOB中,∠A=90°,∠ABO=30°,∴∠BOA=60°,∵∠BOC=60°,∴∠BOA=∠BOM,∵∠BAO=∠BMO=90°,BO=BO,∴△BAO≌△BMO(ASA),∴BM=AB,AO=OM,∴B,O在AM的中垂线上,∴AM被BD垂直平分,即M关于直线BO的对称点为A,=AC+MC,连接AC,则C△CMN∵M是OC的中点,∴MC=OC=2,∴C的最小值为2+2.△CMN【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180 °18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形21 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形22 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形23 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形24 矩形性质定理 1 矩形的四个角都是直角25 矩形性质定理 2 矩形的对角线相等26 矩形判定定理 1 有三个角是直角的四边形是矩形27 矩形判定定理 2 对角线相等的平行四边形是矩形28 菱形性质定理 1 菱形的四条边都相等29 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角30 菱形面积= 对角线乘积的一半,即S= (a×b )÷231 菱形判定定理1 四边都相等的四边形是菱形32 菱形判定定理2 对角线互相垂直的平行四边形是菱形33 正方形性质定理1 正方形的四个角都是直角,四条边都相等34 正方形性质定理2 正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角35 定理1 关于中心对称的两个图形是全等的36 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分37 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称38 等腰梯形性质定理等腰梯形在同一底上的两个角相等。
XXX2018-2019学年八年级上期末数学试卷及答案
XXX2018-2019学年八年级上期末数学试卷及答案数学试卷历下区2018-201年八年级(上)第一学期期末考试数学考试时间:120分钟,满分:120分一、选择题(共15题,每题3分,共45分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.4的算术平方根是(。
)A。
4.B。
±4.C。
2.D。
±22.以下各组数为三角形的边长,能构成直角三角形的是(。
)A。
8.12.17.B。
1.2.3.C。
6.8.10.D。
5.12.93.在平面直角坐标系中,点P(-2.3)关于x轴的对称点在(。
)A。
第四象限。
B。
第三象限。
C。
第二象限。
D。
第一象限4.12的负的平方根介于(。
)A。
-5和-4之间。
B。
-4和-3之间。
C。
-3和-2之间。
D。
-2和-1之间5.某青年排球队12名队员年龄情况如下:则这12名队员年龄的众数、中位数分别是(。
)A。
20.19.B。
19.19.C。
19.20.5.D。
19.206.下列各组数值是二元一次方程x-3y=4的解的是(。
)7.一次函数y=kx+b,y随x均增大而增大,且b>0,则该函数的大致图象为(。
)8.在直角三角形中,其中一个锐角是另一个锐角的2倍,则此三角形中最小的角是(。
)A。
15°。
B。
30°。
C。
60°。
D。
90°9.点P(m+3.m+1)在直角坐标系的x轴上,则点P的坐标为(。
)A。
(2.0)。
B。
(0.2)。
C。
(4.0)。
D。
(0.-2)10.下列图形中,已知∠1=∠2,则可得到AB∥CD的是(。
)11.有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为(。
)A。
3cm。
B。
4cm。
C。
5cm。
D。
4.8cm12.在一次体育课上,体育老师对九年级一班的40名同学进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则这次测试的平均分为(。
(汇总3份试卷)2018年济南市八年级上学期期末考试数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.计算()32-2a b的结果是( ) A .536a b -B .636a bC .538a b -D .638a b - 【答案】D【分析】根据幂的乘方:底数不变,指数相乘;以及积的乘方:等于把积的每一个因式分别乘方,再把所得的幂相乘,进行运算,即可求解.【详解】解:()()()33322323363-2288a ba b a b a b ⨯=-⋅⋅=-⋅⋅=-,故选D .【点睛】本题考察积的乘方以及幂的乘方运算,较容易,熟练掌握积的乘方以及幂的乘方运算法则是顺利解题的关键.2.已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,过O 作DE ∥BC ,分别交AB 、AC 于点D 、E ,若BD+CE=5,则线段DE 的长为( )A .5B .6C .7D .8【答案】A 【详解】试题分析:根据角平分线的性质可得:∠OBD=∠OBC ,∠OCB=∠OCE ,根据平行线的性质可得:∠OBC=∠DOB ,∠OCB=∠COE ,所以∠OBD=∠DOB ,∠OCE=∠COE ,则BD=DO ,CE=OE ,即DE=DO+OE=BD+CE=5.故选A【点睛】考点:等腰三角形的性质3.下列四组数据中,能作为直角三角形三边长的是( )A .1,2,3B 33,5C .23,24,25D .0.3,0.4,0.5【答案】D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A 、12+22≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;B、(3)2+(5)2≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;C、(32)2+(42)2≠(52)2,根据勾股定理的逆定理可知不能作为直角三角形三边长;D、0.32+0.42=0.52,根据勾股定理的逆定理可知能作为直角三角形三边长.故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.若(2x﹣y)2+M=4x2+y2,则整式M为()A.﹣4xy B.2xy C.﹣2xy D.4xy【答案】D【分析】根据完全平方公式,即可解答.【详解】解:因为(2x﹣y)2+M=4x2+y2,(2x﹣y)2+4xy=4x2+y2,所以M=4xy,故选:D.【点睛】本题考查完全平方公式,解题的关键是掌握完全平方公式的概念:两数和(或差)的平方,等于它们的平方和,再加上(或减去)它们积的2倍.5.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS 【答案】C【详解】试题分析:如图,连接EC、DC.根据作图的过程知,在△EOC 与△DOC 中,,△EOC ≌△DOC (SSS ).故选C .考点:1.全等三角形的判定;2.作图—基本作图.6.如图,△ABC 中,∠C =90°,ED 垂直平分AB ,若AC =12,EC =5,且△ACE 的周长为30,则BE 的长为( )A .5B .10C .12D .13【答案】D 【分析】ED 垂直平分AB ,BE =AE ,在通过△ACE 的周长为30计算即可【详解】解:∵ED 垂直平分AB ,∴BE =AE ,∵AC =12,EC =5,且△ACE 的周长为30,∴12+5+AE =30,∴AE =13,∴BE =AE =13,故选:D .【点睛】本题考查了线段的垂直平分线的性质,熟知线段垂直平分线上的点到线段两端点的距离相等是解答此题的关键.7.若将一副三角板按如图所示的方式放置,则下列结论:①13∠=∠;②如果230∠=︒,则有//AC DE ;③如果230∠=︒,则有//BC AD ;④如果230∠=︒,必有4C ∠=∠;其中正确的有( )A.①②③B.①②④C.②③④D.①②③④【答案】B【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【详解】解:①∵∠CAB=∠EAD=90°,∴∠1=∠CAB-∠2,∠3=∠EAD-∠2,∴∠1=∠3,故本选项正确.②∵∠2=30°,∴∠1=90°-30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE,故本选项正确.③∵∠2=30°,∴∠3=90°-30°=60°,∵∠B=45°,∴BC不平行于AD,故本选项错误.④由∠2=30°可得AC∥DE,从而可得∠4=∠C,故本选项正确.故选B.【点睛】此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.8.如图,平行四边形ABCD中,AB = 6cm,AD=10 cm,点P在AD 边上以每秒1 cm的速度从点A向点D 运动,点Q在BC边上,以每秒4 cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A.1 次B.2次C.3次D.4次【答案】C【分析】易得两点运动的时间为12s,PD=BQ,那么以P、D、Q、B四点组成平行四边形平行四边形,列式可求得一次组成平行四边形,算出Q 在BC 上往返运动的次数可得平行的次数.【详解】解:∵四边形ABCD 是平行四边形,∴BC=AD=12,AD ∥BC ,∵四边形PDQB 是平行四边形,∴PD=BQ ,∵P 的速度是1cm/秒,∴两点运动的时间为12÷1=12s ,∴Q 运动的路程为12×4=48cm ,∴在BC 上运动的次数为48÷12=4次,第一次:12﹣t=12﹣4t ,∴t=0,此时两点没有运动,∴点Q 以后在BC 上的每次运动都会有PD=QB ,∴在运动以后,以P 、D 、Q 、B 四点组成平行四边形的次数有3次,故选C .【点睛】本题考查列了矩形的性质和平行线的性质. 解决本题的关键是理解以P 、D 、Q 、B 四点组成平出四边形的次数就是Q 在BC 上往返运动的次数.9.如图,在ABC ∆中,68BAC ∠=︒,36C ∠=︒,AD 平分BAC ∠,M 、N 分别是AD 、AB 上的动点,当BM MN +最小时,BMN ∠的度数为( )A .34︒B .68︒C .76︒D .90︒【答案】B 【分析】在AC 上截取AE=AN ,先证明△AME ≌△AMN (SAS ),推出ME=MN .当B 、M 、E 共线,BE ⊥AC 时,BM+ME 最小,可求出∠NME 的度数,从而求出∠BMN 的度数.【详解】如图,在AC 上截取AE=AN ,∵∠BAC 的平分线交BC 于点D ,∴∠EAM=∠NAM ,在△AME 与△AMN 中,AE AN EAM NAM AM AM ⎧⎪∠∠⎨⎪⎩===,∴△AME ≌△AMN (SAS ),∴ME=MN .∴BM+MN=BM+ME ,当B 、M 、E 共线,BE ⊥AC 时,BM+ME 最小,∴MN ⊥AB∵∠BAC=68°∴∠NME=360°-∠BAC-∠MEA-∠MNA=360°-68°-90°-90°=112°,∴∠BMN=180°-112°=68°.故选:B .【点睛】本题考查了轴对称-最短问题,解题的关键是能够通过构造全等三角形,把BM+MN 进行转化,利用垂线段最短解决问题.10.如图,把ABC ∆纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则A ∠与12∠+∠之间有一种数量关系始终保持不变,试着找一找这个规律你发现的规律是( )A .122A ∠+∠=∠B .12A ∠+∠=∠C .2(12)A ∠=∠+∠D .1122A ∠+∠=∠ 【答案】A 【分析】画出折叠之前的部分,连接AA ',由折叠的性质可知DAE DA E '∠=∠,根据三角形外角的性质可得∠1=DAA DA A ''∠+∠,∠2=EAA EA A ''∠+∠,然后将两式相加即可得出结论.【详解】解:画出折叠之前的部分,如下图所示,连接AA '由折叠的性质可知DAE DA E '∠=∠∵∠1是DAA '的外角,∠2是AA E '的外角∴∠1=DAA DA A ''∠+∠,∠2=EAA EA A ''∠+∠∴∠1+∠2=DAA DA A ''∠+∠+EAA EA A ''∠+∠=()()DAA EAA DA A EA A ''''∠+∠+∠+∠=DAE DA E '∠+∠=2DAE ∠故选A .【点睛】此题考查的是三角形与折叠问题,掌握折叠的性质和三角形外角的性质是解决此题的关键.二、填空题11____________________.【答案】4 2【分析】根据算术平方根和立方根的定义进行解答.,=2.故答案为:4;2【点睛】本题主要考查算术平方根和立方根的定义,关键在于熟练掌握算术平方根和立方根的定义,仔细读题,小心易错点.12.若3(23)10x x +--=,则21x +=______.【答案】3或5或-5【分析】由已知3(23)10x x +--=可知(2x-3)x+3=1,所以要分3种情况来求即可. 【详解】解:∵3(23)10x x +--= ∴(2x-3)x+3=1∴当2x-3=1时,x+3取任意值,x=2;当2x-3=-1时,x+3是偶数,x=1;当2x-3≠0且x+3=0时,x=-3∴x 为2或者1或者-3时,∴2x+1的值为:5或者3或者-5故答案为:5,-5,3.【点睛】本题考查了一个代数式的幂等于1时,底数和指数的取值.找到各种符合条件各种情况,不能丢落. 13.点A (﹣3,2)关于y 轴的对称点坐标是_____.【答案】(3,2)【解析】本题比较容易,考查平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】点A (﹣3,2)关于y 轴的对称点坐标是(3,2).故答案为:(3,2).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.如果关于x 的一元二次方程2410x x m --+= 没有实数根,那么m 的取值范围是_____________.【答案】3m <-【分析】由已知方程没有实数根,得到根的判别式小于0,列出关于m 的不等式,求出不等式的解集即可得到m 的范围.【详解】解:∵方程x 2-4x-m+1=0没有实数根,∴△=16-4(-m+1)=4m+12<0,解得:m <-1.故答案为:m <-1【点睛】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.15.如图,在ABC ∆中,3AB AC ==,30B ∠=,点P 是BC 边上的动点,设BP x =,当ABP ∆为直角三角形时,x 的值是__________.【答案】332或23 【分析】分两种情况讨论:①∠APB=90°,②∠BAP=90°,分别作图利用勾股定理即可解出x .【详解】①当∠APB=90°时,如图所示,在Rt △ABP 中,AB=3,∠B=30°,∴AP=12AB=32 ∴BP=222233AB AP =3=322⎛⎫-- ⎪⎝⎭ ②当∠BAP=90°时,如图所示,在Rt △ABP 中,AB=3,∠B=30°,BP x =∴12AP x =, 222AP AB =BP +即22213=2⎛⎫+ ⎪⎝⎭x x 解得23x =综上所述,x 的值为332或23. 故答案为:332或23. 【点睛】本题考查勾股定理的应用,解题的关键是掌握直角三角形中30度所对的直角边是斜边的一半. 16.如图,直线a b ∥,ABC ∆的顶点C 在直线b 上,边AB 与直线b 相交于点D .若BCD ∆是等边三角形,20A ∠=︒,则1∠=__°【答案】40【分析】根据等边三角形的性质得到∠BDC=60°,根据平行线的性质求出∠2,根据三角形的外角性质计算,得到答案.【详解】如图,∵△BCD 是等边三角形,∴∠BDC=60°,∵a ∥b ,∴∠2=∠BDC=60°,由三角形的外角性质可知,∠1=∠2-∠A=1°,故答案为1.【点睛】本题考查的是等边三角形的性质、平行线的性质,掌握三角形的三个内角都是60°是解题的关键.17.计算:11()22--+-=_____.【答案】.【解析】分别根据负指数幂和绝对值进行化简每一项即可解答;【详解】解:11|2222-⎛⎫-+=-+= ⎪⎝⎭;故答案为.【点睛】本题考查实数的运算,负整数指数幂的运算;掌握实数的运算性质,负整数指数幂的运算法则是解题的关键.三、解答题18.某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?【答案】(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球【解析】(1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;(2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.【详解】(1)设购买一个甲种足球需要x 元,则购买一个乙种篮球需要(x+2)元, 根据题意得:20001400220x x =⨯+,解得:x =50,经检验,x =50是原方程的解,且符合题意,∴x+2=1.答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.(2)设可购买m 个乙种足球,则购买(50﹣m )个甲种足球,根据题意得:50×(1+10%)(50﹣m )+1×(1﹣10%)m≤2910,解得:m≤2.答:这所学校最多可购买2个乙种足球.【点睛】本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.19.如图,△ABC 三个顶点的坐标分别为A(3,4),B(1,2),C(5,1),(1)请画出△ABC 关于y 轴对称的图形△A 1B 1C 1,(2)△A 1B 1C 1三个顶点坐标分别为A 1 ,B 1 ,C 1【答案】(1)见解析;(2)()()()3,41,25,1---,,【分析】(1)根据题意,找出对应的对称坐标,即可画出;(2)由对称图形可知,其对应坐标.【详解】(1)如图所示:(2)由对称性,得A 1()3,4-,B 1()1,2-,C 1()5,1-.【点睛】此题主要考查轴对称图形的画法与坐标求解,熟练掌握,即可解题.20.如图,()23A -,,()43B ,,()13C --,.(1)点C 到x 轴的距离为:______;(2)ABC ∆的三边长为:AB =______,AC =______,BC =______;(3)当点P 在y 轴上,且ABP ∆的面积为6时,点P 的坐标为:______.【答案】(1)3;(2)63761;(3)0,1,0,5【分析】(1)点C 的纵坐标的绝对值就是点C 到x 轴的距离解答;(2)利用A ,C ,B 的坐标分别得出各边长即可;(3)设点P 的坐标为(0,y ),根据△ABP 的面积为6,A (−2,3)、B (4,3),所以12×6×|x−3|=6,即|x−3|=2,所以x =5或x =1,即可解答.【详解】(1)∵C (−1,−3),∴|−3|=3,∴点C 到x 轴的距离为3;(2)∵A (−2,3)、B (4,3)、C (−1,−3),∴AB =4−(−2)=6,AC=BC(3)(3)设点P 的坐标为(0,y ),∵△ABP 的面积为6,A (−2,3)、B (4,3), ∴12。
济南xx中学2018-2019年初二上年末数学试卷含解析解析
济南xx中学2018-2019年初二上年末数学试卷含解析解析一、选择题1.下列各式中计算正确的是()A.B.C.D.2.根据下列表述,能确定具体位置的是()A.某电影院2排 B.大桥南路C.北偏东30°D.东经118°,北纬40°3.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2 B.8 C.D.4.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.6.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角7.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,28.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对9.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)10.如果方程组的解与方程组的解相同,则a+b的值为()A.﹣1 B.2 C.1 D.011.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.112.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A .B .C .D .13.如图,以两条直线l 1,l 2的交点坐标为解的方程组是()A .B .C .D .14.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x 千克,付款金额为y 元,则y 与x 的函数关系的图象大致是()A .B .C .D .15.如图,AB ∥EF ,∠C=90°,则α、β、γ的关系为()A .β=α+γB .α+β+γ=180°C .β+γ﹣α=90°D .α+β﹣γ=90°二、填空题16.若点A (﹣2,b )在第三象限,则点B (﹣b ,4)在第象限.17.一组数据1,3,2,5,x 的平均数为3,那么这组数据的方差是.18.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠BAC 的度数是.19.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x=.20.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为.21.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为.三、解答题22.(1)计算:(2)解方程组:.23.(1)如图1,一住宅楼发生火灾,消防车立即赶到准备在距大厦6米处升起云梯到火灾窗口展开营救,已知云梯AB长15米,云梯底部B距地面2米,此时消防队员能否成功救下等候在距离地面约14米窗口的受困人群?说说你的理由.(2)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.24.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?25.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.26.已知:用2辆A 型车和1辆B 型车载满货物一次可运货10吨;用1辆A 型车和2辆B 型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A 型车和1辆车B 型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金100元/次,B 型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.27.小明从家骑自行车出发,沿一条直路到相距2400m 的邮局办事,小明出发的同时,他的爸爸以96m/min 速度从邮局同一条道路步行回家,小明在邮局停留2min 后沿原路以原速返回,设他们出发后经过tmin 时,小明与家之间的距离为s 1m ,小明爸爸与家之间的距离为s 2m ,图中折线OABD 、线段EF 分别表示s 1、s 2与t 之间的函数关系的图象.(1)求s 2与t 之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?28.平面内的两条直线有相交和平行两种位置关系,下面我们就来研究其中的几种位置关系中角所存在的几种数量关系.(1)问题探究1:如图①,若AB ∥CD ,点P 在AB 、CD 外部,则有∠D=∠BOD ,又因为∠BOD 是△POB 的外角,故∠BOD=∠BPD+∠B ,得∠BPD=∠D ﹣∠B .将点P 移到AB 、CD 内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD 、∠B 、∠D 之间有何数量关系?请证明你的结论;(2)问题探究2:在图②中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 延长线于点Q ,如图③,则∠BPD ﹑∠B ﹑∠PDQ ﹑∠BQD 之间有何数量关系?请证明你的结论;(3)根据(2)的结论直接写出图④中∠A+∠B+∠C+∠D+∠E+∠F 的度数.2015-2016学年山东省济南市XX中学八年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列各式中计算正确的是()A.B.C.D.【考点】立方根;算术平方根.【分析】根据算术平方根和立方根的概念计算即可求解.【解答】解:A、=9,故选项错误;B、=5,故选项错误;C、=﹣1,故选项正确;D、(﹣)2=2,故选项错误.故选:C.【点评】本题考查了算术平方根和立方根的概念.算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0.2.根据下列表述,能确定具体位置的是()A.某电影院2排 B.大桥南路C.北偏东30°D.东经118°,北纬40°【考点】坐标确定位置.【分析】根据坐标的定义,确定位置需要两个数据对各选项分析判断利用排除法求解.【解答】解:A、某电影院2排,不能确定具体位置,故本选项错误;B、大桥南路,不能确定具体位置,故本选项错误;C、北偏东30°,不能确定具体位置,故本选项错误;D、东经118°,北纬40°,能确定具体位置,故本选项正确.故选D.【点评】本题考查了坐标确定位置,理解确定坐标的两个数是解题的关键.3.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2 B.8 C.D.【考点】算术平方根.【专题】压轴题;图表型.【分析】根据图中的步骤,把64输入,可得其算术平方根为8,8再输入得其算术平方根是,是无理数则输出.【解答】解:由图表得,64的算术平方根是8,8的算术平方根是;故选D.【点评】本题考查了算术平方根的定义,看懂图表的原理是正确解答的关键.4.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60° B.65° C.75° D.80°【考点】平行线的性质.【分析】根据三角形外角性质求出∠EOB,根据平行线性质得出∠C=∠EOB,代入即可得出答案.【解答】解:∵∠A+∠E=75°,∴∠EOB=∠A+∠E=75°,∵AB∥CD,∴∠C=∠EOB=75°,故选C.【点评】本题考查了平行线性质和三角形外角性质的应用,关键是得出∠C=∠EOB和求出∠EOB的度数.5.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=kx+k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的性质.【分析】先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【解答】解:∵正比例函数y=kx的函数值y随x的增大而增大,∴k>0,∵b=k>0,∴一次函数y=kx+k的图象经过一、二、三象限.故选A.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k>0,b>0时函数的图象在一、二、三象限.6.下列命题是真命题的是()A.同旁内角互补B.直角三角形的两锐角互余C.三角形的一个外角等于它的两个内角之和D.三角形的一个外角大于内角【考点】命题与定理.【分析】分别根据平行线的性质、直角三角形的性质、三角形的外角分别对每一项进行分析即可.【解答】解:A.两直线平行,同旁内角互补,故本选项错误,是假命题,B.直角三角形的两锐角互余,正确,是真命题,C.三角形的一个外角等于与它不相邻的两个内角之和,故本选项错误,是假命题,D.三角形的一个外角大于与它不相邻的内角,故本选项错误,是假命题,故选:B.【点评】此题考查了命题与定理,用到的知识点是平行线的性质、直角三角形的性质、三角形的外角,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.每年的4月23日是“世界读书日”.某中学为了了解八年级学生的读书情况,随机调查了50名学生的册数,统计数据如表所示:则这50名学生读数册数的众数、中位数是()A.3,3 B.3,2 C.2,3 D.2,2【考点】众数;中位数.【分析】在这组样本数据中,3出现的次数最多,所以求出了众数,将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2;【解答】解:∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,有=2,∴这组数据的中位数为2;故选B.【点评】本题考查的知识点有:用样本估计总体、众数以及中位数的知识,解题的关键是牢记概念及公式.8.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.【点评】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.9.对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)【考点】一次函数的性质.【专题】探究型.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵一次函数y=x+6中k=1>0,∴函数值随自变量增大而增大,故A选项正确;B、∵一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),(0,6),∴此函数与x轴所成角度的正切值==1,∴函数图象与x轴正方向成45°角,故B选项正确;C、∵一次函数y=x+6中k=1>0,b=6>0,∴函数图象经过一、二、三象限,故C选项正确;D、∵令y=0,则x=﹣6,∴一次函数y=x+6与x、y轴的交点坐标分别为(﹣6,0),故D选项错误.故选:D.【点评】本题考查的是一次函数的性质,熟知一次函数的增减性及与坐标轴的交点坐标是解答此题的关键.10.如果方程组的解与方程组的解相同,则a+b的值为()A.﹣1 B.2 C.1 D.0【考点】二元一次方程组的解.【分析】把代入方程组,即可得到一个关于a,b的方程组,即可求解.【解答】解:把代入方程组,得:,方程左右两边相加,得:7(a+b)=7,则a+b=1.故选C.【点评】本题考查了二元一次方程组的解的定义,理解定义是关键.11.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.1【考点】勾股定理.【专题】图表型.【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=24.根据完全平方公式即可求解.【解答】解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b )2=25+24=49.故选:A .【点评】本题考查了勾股定理的应用,解题的关键是注意完全平方公式的展开:(a+b )2=a 2+b 2+2ab ,还要注意图形的面积和a ,b 之间的关系.12.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x 元,包子每个y 元,则所列二元一次方程组正确的是()A .B .C .D .【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①5个馒头的钱+3个包子的钱=10+1元;②(8个馒头的钱+6个包子的钱)×9折=18元,根据等量关系列出方程组即可.【解答】解:若馒头每个x 元,包子每个y 元,由题意得:,故选:B .【点评】此题主要考查了由实际问题抽象出二元一次方程组的应用,关键是正确理解题意,根据花费列出方程.13.如图,以两条直线l 1,l 2的交点坐标为解的方程组是()A .B .C .D .【考点】一次函数与二元一次方程(组).【专题】数形结合.【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【解答】解:直线l 1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x ﹣1;直线l 2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l 1,l 2的交点坐标为解的方程组是:.故选C .【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.14.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过2千克部分的种子价格打6折,设购买种子数量为x 千克,付款金额为y 元,则y 与x 的函数关系的图象大致是()A .B .C .D .【考点】函数的图象.【分析】根据玉米种子的价格为5元/千克,如果一次购买2千克以上种子,超过2千克的部分的种子的价格打6折,可知2千克以下付款金额为y 元随购买种子数量为x 千克增大而增大,超过2千克的部分打6折,y 仍随x 的增大而增大,不过增加的幅度低一点,即可得到答案.【解答】解:可知2千克以下付款金额为y 元随购买种子数量为x 千克增大而增大,超过2千克的部分打6折,y 仍随x 的增大而增大,不过增加的幅度低一点,故选:B .【点评】本题主要考查了函数的图象,关键是分析出分两段,每段y 都随x 的增大而增大,只不过快慢不同.15.如图,AB ∥EF ,∠C=90°,则α、β、γ的关系为()A.β=α+γ B.α+β+γ=180°C.β+γ﹣α=90°D.α+β﹣γ=90°【考点】平行线的性质;垂线.【专题】探究型.【分析】此题可以构造辅助线,利用三角形的外角的性质以及平行线的性质建立角之间的关系.【解答】解:延长DC交AB与G,延长CD交EF于H.直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,因为AB∥EF,所以∠1=∠2,于是90°﹣α=β﹣γ,故α+β﹣γ=90°.故选D.【点评】此题主要是通过作辅助线,构造了三角形以及由平行线构成的内错角.掌握三角形的外角的性质以及平行线的性质:两条直线平行,内错角相等.二、填空题16.若点A(﹣2,b)在第三象限,则点B(﹣b,4)在第一象限.【考点】点的坐标.【分析】根据第三象限内点的坐标,可得关于b的不等式,根据不等式的性质,可得b的相反数的取值范围,根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:由点A(﹣2,b)在第三象限,得b<0,两边都除以﹣1,得﹣b>0,4>0,B(﹣b,4)在第一象限,故答案为:一.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).17.一组数据1,3,2,5,x 的平均数为3,那么这组数据的方差是2.【考点】方差;算术平均数.【专题】计算题.【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算.一般地设n 个数据,x 1,x 2,…x n 的平均数为,=(x 1+x 2+…+x n ),则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s 2=[(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.【点评】本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,=(x 1+x 2+…+x n ),则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠BAC 的度数是80°.【考点】三角形内角和定理.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠PCD=∠P+∠PCB ,根据角平分线的定义可得∠PCD=∠ACD ,∠PBC=∠ABC ,然后整理得到∠PCD=∠A ,再代入数据计算即可得解.【解答】解:在△ABC 中,∠ACD=∠A+∠ABC ,在△PBC 中,∠PCD=∠P+∠PBC ,∵PB 、PC 分别是∠ABC 和∠ACD 的平分线,∴∠PCD=∠ACD,∠PBC=∠ABC,∴∠P+∠PCB=(∠A+∠ABC)=∠A+∠ABC=∠A+∠PCB,∴∠PCD=∠A,∴∠BPC=40°,∴∠A=2×40°=80°,即∠BAC=80°.故答案为:80°.【点评】本题考查了三角形内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记定理与性质并求出∠PCD=∠A是解题的关键.19.如图,已知一次函数y=ax+b的图象为直线,则关于x的方程ax+b=1的解x=4.【考点】一次函数与一元一次方程.【分析】根据一次函数图象可得一次函数y=ax+b的图象经过(4,1)点,进而得到方程的解.【解答】解:根据图象可得,一次函数y=ax+b的图象经过(4,1)点,因此关于x的方程ax+b=1的解x=4,故答案为:4.【点评】此题主要考查了一次函数与方程,关键是正确利用数形结合的方法从图象中找到正确答案.20.△ABC中,AB=15,AC=13,BC边上的高AD=12,则BC的长为14或4.【考点】勾股定理.【专题】分类讨论.【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为BD+DC=9+5=14;(2)钝角△ABC中,AB=15,AC=13,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理得:BD2=AB2﹣AD2=152﹣122=81,∴BD=9,在Rt△ACD中AC=13,AD=12,由勾股定理得:CD2=AC2﹣AD2=132﹣122=25,∴CD=5,∴BC的长为DC﹣BD=9﹣5=4.故答案为14或4.【点评】本题考查了勾股定理,把三角形斜边转化到直角三角形中用勾股定理解答.21.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为(36,0).【考点】旋转的性质;坐标与图形性质;勾股定理.【专题】压轴题;规律型.【分析】如图,在△AOB中,∠AOB=90°,OA=3,OB=4,则AB=5,每旋转3次为一循环,则图③、④的直角顶点坐标为(12,0),图⑥、⑦的直角顶点坐标为(24,0),所以,图⑨、⑩10的直角顶点为(36,0).【解答】解:∵在△AOB中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0).故答案为:(36,0).【点评】本题主要考查了旋转的性质、坐标与图形的性质及勾股定理,找出图形旋转的规律“旋转3次为一循环”,是解答本题的关键.三、解答题22.(1)计算:(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【分析】(1)直接利用二次根式混合运算法则化简求出答案;(2)直接利用代入消元法解方程得出答案.【解答】解:(1)=3﹣6﹣3=﹣6;(2),由②得:x=6﹣3y,则2(6﹣3y)+y=5,解得:y=﹣1,则2x﹣1=5,解得:x=3,故方程组的解为:.【点评】此题主要考查了二次根式的混合运算以及二元一次方程组的解法,正确化简二次根式是解题关键.23.(1)如图1,一住宅楼发生火灾,消防车立即赶到准备在距大厦6米处升起云梯到火灾窗口展开营救,已知云梯AB长15米,云梯底部B距地面2米,此时消防队员能否成功救下等候在距离地面约14米窗口的受困人群?说说你的理由.(2)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.【考点】勾股定理的应用;平行线的判定与性质.【分析】(1)先根据题意建立直角三角形,然后利用勾股定理求出AB的长度,最后于云梯的长度比较即可得出答案.(2)由已知条件和对顶角相等得出∠1=∠3,证出BD∥CE,由平行线的性质得出∠ABD=∠C,在证出∠ABD=∠D,得出AC∥DF,由平行线的性质即可得出结论.【解答】(1)解:能救下.理由如下:如图所示:由题意得,BC=6米,AC=14﹣2=12米,在RT△ABC中,AB2=AC2+BC2,∴AB2=(14﹣2)2+62=144+36=180,而152=225>180,故能救下.(2)证明:∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴BD∥CE,∴∠ABD=∠C,∵∠C=∠D,∴∠ABD=∠D,∴AC∥DF,∴∠A=∠F.【点评】此题考查了勾股定理的应用、平行线的判定与性质;熟练掌握勾股定理和平行线的判定与性质,在(1)中,根据题意得出AC、BC的长度,利用勾股定理求出AB是解答本题的关键.24.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?【考点】加权平均数;统计表;扇形统计图.【分析】(1)根据扇形统计图中的数据即可求得甲、乙、丙的民主评议得分;(2)根据平均数的概念求得甲、乙、丙的平均成绩,进行比较;(3)根据加权成绩分别计算三人的个人成绩,进行比较.【解答】解:(1)甲、乙、丙的民主评议得分分别为:200×25%=50分,200×40%=80分,200×35%=70分;(2)甲的平均成绩为:,乙的平均成绩为:,丙的平均成绩为:.由于76.67>76>72.67,所以候选人乙将被录用;(3)如果将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么甲的个人成绩为:,乙的个人成绩为:,丙的个人成绩为:.由于丙的个人成绩最高,所以候选人丙将被录用.【点评】本题考查了加权平均数的概念及求法,属于基础题,牢记加权平均数的计算公式是解题的关键.25.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.【考点】一次函数图象上点的坐标特征.【分析】(1)把x=0,y=0分别代入函数解析式,即可求得相应的y、x的值,则易得点A、B的坐标;(2)由B、A的坐标易求:OB=3,OA=.然后由三角形面积公式得到S=AP•OB=,则AP=.设△ABP点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,由此可以求得m的值.【解答】解:(1)由x=0得:y=3,即:B(0,3).由y=0得:2x+3=0,解得:x=﹣,即:A(﹣,0);(2)由B(0,3)、A(﹣,0)得:OB=3,OA==AP•OB=∵S△ABP∴AP=,解得:AP=.设点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,解得:m=1或﹣4,∴P点坐标为(1,0)或(﹣4,0).【点评】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.26.已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.【考点】二元一次方程组的应用;二元一次方程的应用.【分析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B 型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.(3)∵A型车每辆需租金100元/次,B型车每辆需租金120元/次,∴方案一需租金:9×100+1×120=1020(元)方案二需租金:5×100+4×120=980(元)方案三需租金:1×100+7×120=940(元)∵1020>980>940∴最省钱的租车方案是方案三:A型车1辆,B型车7辆,最少租车费为940元.。
精品解析:【区级联考】山东济南市历下区2018-2019学年八年级上学期期末考试数学试题(解析版)
山东省济南市历下区2018-2019学年 八年级上学期期末考试数学试题一、选择题(本大题共12小题,共48.0分)1.点()M 2019,2019-的位置在( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】 【分析】根据各象限内点的坐标特点,再根据M 点的坐标符号,即可得出答案. 【详解】解:∵ 点M (-2019,2019), ∴点M 所在的象限是第二象限. 故选:B .【点睛】本题考查各象限内点的坐标的符号特征,解题的关键是熟记各象限内点的坐标的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.已知m n >,则下列不等式中不正确的是( ) A. 5m 5n >B. m 7n 7+>+C. 4m 4n -<-D.m 6n 6-<-【答案】D 【解析】 【分析】根据不等式的性质即可解答.【详解】解:A 、在不等式m>n 的两边同时乘以5,不等式仍成立,即5m>5n ,故本选项不符合题意;B 、在不等式m>n 的两边同时加7,不等式仍成立,即m+7>n+7,故本选项不符合题意;C 、在不等式m>n 的两边同时乘以-4,不等号方向改变,即-4m<-4n ,故本选项不符合题意;D 、在不等式m>n 的两边同时减去6,不等式仍成立,即m-6>n-6,故本选项符合题意; 故选:D .【点睛】本题考查不等式的性质:(1)不等式两边加(或减)同一个数(或整式),不等号的方向不变. (2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.如图,直线a //b ,将三角尺的直角顶点放在直线b 上,若135∠=,则2∠等于( )A. 45B. 55C. 35D. 65【答案】B 【解析】 【分析】根据平角的定义求出3∠ ,再根据两直线平行,同位角相等可得2=3∠∠ .【详解】解:如图,∵ 1=35∠︒ , ∴ 3=180359055∠︒-︒-︒=︒ , ∵ a b ∥ , ∴ 2=3=55∠∠︒ .故选:B .【点睛】本题考查平行线的性质,熟记两直线平行,同位角相等是解题的关键.4.不等式6﹣3x >0的解集在数轴上表示为( )A. B.C.D.【答案】A 【解析】 【分析】依次移项,系数化为1,即可求得一元一次不等式的解集,再将解集在数轴上表示出来即可. 【详解】移项得:-3x >-6, 系数化为1得:x <2, 即不等式的解集为:x <2, 不等式的解集在数轴上表示如下:故选:A .【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,正确掌握解一元一次不等式和在数轴上表示不等式解集的方法是解题的关键.5.满足下列条件的ABC ,不是直角三角形的是( ) A.C A B ∠∠∠=+B. C A B ∠∠∠=-C. a :b :c 3=:4:5D.A ∠:B ∠:C 3∠=:4:5【答案】D 【解析】【分析】根据勾股定理逆定理:如果三角形的三边长a ,b ,c 满足222+=a b c ,那么这个三角形就是直角三角形;三角形内角和定理进行分析即可. 【详解】解:A 、180C=A+B==902︒∠∠∠︒,直角三角形,故此选项不合题意; B 、C=A-B,?A+B+C=180∠∠∠∠∠∠︒ ,A=90∴∠︒ ,∴ 是直角三角形,故此选项不合题意; C 、2223+4=5,∴ 是直角三角形,故此选项不合题意;D 、A B C=3:4:5∠∠∠::,则5C =180=7512∠︒⨯︒ ,不是直角三角形,故此选项符合题意, 故选:D .【点睛】本题考查勾股定理的逆定理,三角形内角和定理,解题的关键是正确掌握如果三角形的三边长a ,b ,c 满足222+=a b c ,那么这个三角形就是直角三角形.6.下列算式中,正确的是()A. 3=B.= C. 25=- D.4=【答案】C 【解析】 【分析】根据二次根式的混合运算法则逐一计算即可判断. 【详解】解:A.-= ,此选项错误; C.25=-,此选项错误; 故选:C .【点睛】本题考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算法则.7.某中学随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是( ) A. 6.2小时 B. 6.5小时C. 6.6小时D. 7小时【答案】C 【解析】 【分析】根据加权平均数的计算公式列出算式,再进行计算即可. 【详解】解:()510+610+720+81050⨯⨯⨯⨯÷()=50+60+140+8050÷=33050÷ =6.6 (小时).故这50名学生这一周在校的平均体育锻炼时间是6.6小时. 故选:C .【点睛】本题考查加权平均数,解题的关键是熟练掌握加权平均数的计算公式.8.函数 y=ax+b (a ,b 为常数,a≠0)的图象如图所示,则关于 x 的不等式 ax+b >0 的解集是( )A. x >4B. x <0C. x <3D. x >3【答案】C 【解析】 【分析】解不等式ax+b>0的解集,就是求一次函数y=ax+b 的函数值大于0时,自变量的取值范围. 【详解】不等式ax+b>0的解集,就是一次函数y=ax+b 的函数值大于或等于0时,求自变量的取值范围, 即是x<3. 故选C .【点睛】本题考查的知识点是用图像求解各问题,先画函数图像,根据图像观察,得出结论,解题关键是找到一次函数与一元一次方程及一元一次不等式之间的内在联系.9.在Rt ABC 中,C 90∠=︒,BAC ∠的角平分线AD 交BC 于点D BC 7BD 4==,,,则点D 到AB 的距离是( )A. 2B. 3C. 4D. 5【答案】B 【解析】 【分析】过D作DE⊥AB于E,得出DE的长度是D到AB边的距离,根据角平分线性质得出ED=DC,代入求出即可.【详解】解:过点D作DE⊥AB于E,则DE的长是点D到AB的距离∵AD是∠BAC的角平分线,∠C=90︒,DE⊥AB∴DE=DC(角平分线上的点到角两边的距离相等) ∵BC=7,BD=4 ∴DC=BC-BD=3 ∴DE=3 故点D到AB的距离是3. 故选B. 【点睛】本题考查了角平分线的性质. 10.如图,已知等腰ABC,AB AC=,若以点B为圆心,BC长为半径画弧,交腰AC于点D,则下列结论一定正确的是()A. AD CD =B. AD BD =C.DBC BAC ∠∠=D.DBC ABD ∠∠=【答案】C 【解析】 【分析】利用等腰三角形的性质对每一个选项分别判断,即可得出答案. 【详解】解:∵ AB=AC , ∴ ABC=ACB ∠∠ ,∵ 以点B 为圆心,BC 长为半径画弧,交腰AC 于点D , ∴ BD=BC ,∴ ACB=BDC ∠∠ , ∴ ABC=ACB=BDC ∠∠∠ , ∴ BAC=DBC ∠∠ . 故选:C .【点睛】本题考查等腰三角形的性质,解题的关键是根据等腰三角形的底角对应相等得出其顶角也相等.11.已知等腰三角形周长为40,则腰长y 关于底边长x 的函数图象是( )A. B. C. D.【答案】D 【解析】 【分析】根据等腰三角形和三角形的周长公式可写出y 与x 的函数关系式,结合x 和y 的取值范围,即可得出答案. 【详解】解:等腰三角形的周长为40,其中腰长为y ,底边长为x ,∵ x+2y=40, ∴ y=1202x -+ , ∵ 20<2y <40,∴ 自变量x 的取值范围是0<x <20,y 的取值范围是10<y<20. 故选:D .【点睛】本题考查函数图象、一次函数关系式,解题的关键是掌握等腰三角形的周长公式.12.如图,已知:MON 30∠=,点1A ,2A ,3A ,⋯在射线ON 上,点1B ,2B ,3B ,⋯在射线OM 上,112A B A ,223A B A ,334A B A ,⋯均为等边三角形,若1OA 1=,则20182019B B的长为( )A. B. C. 2 D. 2【答案】C 【解析】 【分析】根据等腰三角形的性质以及平行线的性质得出1122331223A B ,A B A B B A B A ,以及 ,得出122334B B B B B B 1B B n n +的长为2n -【详解】解:∵112A B A 是等边三角形, ∴1121A B =A B 3=4=12=60∠∠∠︒,2=120∴∠︒ ,MON=30∠︒ ,∴ 1=1801203030∠︒-︒-︒=︒ , 又3=60∠︒ ,5=180-60-30=90∴∠︒︒︒︒ , MON=1=30∠∠︒ ,111OA =A B =1∴ , 21A B =1∴ ,223334A B A A B A 、 是等边三角形,∴11=10=6013=60∠∠︒∠︒, , ∵ 4=12=60∠∠︒ , ∴ 1122331223A B ,A B A B B A B A ,∴ 1=6=7=305=8=90,∠∠∠︒∠∠︒ ,,12B B ∴,3323B A =2B A , 3312A B =4B A =4∴ ,23B B ∴ ,4412A B =8B A =8∴ ,34B B ∴ ,以此类推,1B B n n +的长为2n -,20182019B B ∴ 的长为2 ,故选:C .【点睛】本题考查等边三角形的性质以及直角三角形的性质,根据已知发现规律是解题的关键.二、填空题(本大题共8小题,共34.0分)13.已知点()P 2,a -在一次函数y 3x 1=+的图象上,则a =______. 【答案】-5. 【解析】 【分析】把点P 的坐标代入函数解析式,列出关于a 的方程,通过解方程即可求得a 的值. 【详解】解:∵ 点P (-2,a )在一次函数y=3x+1的图象上, ∴()3215a =⨯-+=- . 故答案为:-5.【点睛】本题考查一次函数图象上点的坐标特征.解题的关键是利用代入法求得未知数a 的值.14.在平面直角坐标系中,点()7,2m 1-+在第三象限,则m 的取值范围是______. 【答案】1m 2<- 【解析】 【分析】点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得2+10m <,求不等式的解即可. 【详解】解:∵点在第三象限,∴ 点的横坐标是负数,纵坐标也是负数,即2+10m < , 解得12m -< , 故答案为:12m -<. 【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,解决的关键是记住各象限内点的坐标的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.如图,在ABC 中,AC 的垂直平分线DE 交AB 于点E ,交AC 于点D ,连接CE ,若A 34∠=,ACB 76∠=,则BCE ∠=______.【答案】42°. 【解析】 【分析】根据线段垂直平分线性质求出ACE=A=34∠∠︒,即可得出BCE ∠的度数. 【详解】解:∵ AC 的垂直平分线DE , ∴ AE=CE ,∴ACE=A=34∠∠︒ ,∴BCE=763442ACB ACE ∠∠-∠=︒-︒=︒ . 故答案为:42︒ .【点睛】本题考查线段垂直平分线的性质,线段垂直平分线上的点到线段两个端点的距离相等.16.省运会举行射击比赛,我市射击队从甲、乙、丙、丁四人中选拔一人参赛,在选拔赛中,每人射击10次,计算他们10次成绩的平均数和方差如下表,请你根据表中数据选一人参加比赛,最适合的人选是_____.【答案】丁.【解析】【分析】根据甲,乙,丙,丁四个人中甲和丁的平均数最大且相等,甲,乙,丙,丁四个人中丁的方差最小,说明丁的成绩最稳定,得到丁是最佳人选.【详解】解:∵ 甲,乙,丙,丁四个人中甲和丁的平均数最大且相等,甲,乙,丙,丁四个人中丁的方差最小,说明丁的成绩最稳定,∴ 综合平均数和方差两个方面说明丁成绩既高又稳定,∴ 丁是最佳人选.故答案为:丁..方差是用来衡量一组数据波动大小的量,方差越大,表明这组数【点睛】本题考查方差的意义据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.如图,在ABC 中,ABC ∠与ACB ∠的平分线相交于点O ,过点O 作MN //BC ,分别交AB 、AC 于点M 、N.若ABC 的周长为15,BC 6=,则AMN 的周长为______.【答案】9. 【解析】 【分析】先根据角平分线的性质和平行线的性质推出OM=BM ,ON=CN ,即可得到三角形的周长就等于AB 与AC 的长度之和.【详解】解:如图,∵ OB 、OC 分别是∠ABC 与∠ACB 的平分线, ∴ 1=5,3=6∠∠∠∠ ,又∵ MN BC ,2=54=6,∴∠∠∠∠ ,BM=MO CN=NO ∴, ,AMN =AM+AN+MN=AM+AN+MO+ON=AB+AC ∴的周长 ,又AB+AC+BC=15BC=6, ,AB+AC=9 ,AMN ∴ 的周长=9.故答案为:9.【点睛】本题考查等腰三角形的性质;解答此题的关键是熟知平行线的性质,等腰三角形的性质及角平分线的性质.18.如图,在ABC 中,C 90∠=,AC BC 4==,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持EDF 90∠=,连接DE 、DF 、EF.在此运动变化的过程中,有下列结论:DE DF =①;②四边形CEDF 的面积随点E 、F 位置的改变而发生变化;CE CF AB 2+=③;222AE BF 2ED .+=④以上结论正确的是______(只填序号).【答案】①③④ 【解析】 【分析】连接CD .证明ADE CDF ≌,利用全等三角形的性质一一判断即可. 【详解】解:连接CD ,∵△ABC 是等腰直角三角形,D 是AB 的中点, ∴DCB=A=45CD=AD=DB ,∠∠︒ ,CD ⊥AB , 又∵EDF=90∠︒,∴ ∠ADE=∠CDF=90°-∠EDC , 在△ADE 和△CDF 中,A=DCF{AD=CDADE=CDF∠∠∠∠ , ∴ADE CDF ≌(ASA ) ∴ ED=DF ,故①正确;∴ ADECDF S=S,ADCABCCEDF 1S =S=S 2四边形=定值,故②错误,∵ADE CDF ≌, ∴ AE=CF ,∴CE+CF=CE+AE=AC=AB 2,故③正确, ∵ AE=CF ,AC=BC , ∴ EC=BF ,∴22222AE +BF =CF +CE =EF , ∵22EF =2DE ,∴222AE +BF =2DE ,故④正确. 故答案为:①③④.【点睛】本题考查全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,解题的关键是正确寻找全等三角形解决问题.19.如图,ABC 90∠=,P 为射线BC 上任意一点(点P 和点B 不重合),分别以AB ,AP 为边在ABC ∠内部作等边ABE 和等边APQ ,连结QE 并延长交BP 于点F ,连接EP ,若FQ 1=,AE =EP =______.【解析】 【分析】连接EP ,过点E 作EM BC ⊥,由题意可得△AEQ ≌△ABP ,可得QE=BP ,AEQ=ABC=90∠∠︒,可求EBF=BEF=30∠∠︒,根据勾股定理可求 ,EF=BF=2FM ,,可求BF=EF=4,FM=2,由QF=11,EF=4,可得BP=EQ=7,可求MP 的长,根据勾股定理可求EP 的长.【详解】解:如图:连接EP ,过点E 作EM BC ⊥.∵△AEB ,△APQ 是等边三角形∴,AQ=AP ,∠ABE=∠BAE=∠QAP=60°=∠AEB , ∴∠BAP=∠EAQ ,且AP=AQ ,AB=AE , ∴ △ABP ≌△AEQ ,∴EQ=BP ,∠AEQ=∠ABC=90°, ∴∠BEF=∠EBF=30°, ∴BF=EF ,∠EFM=60°, ∵EM BC ⊥, ∴∠FEM=30°,∴EF=2FM =BF ,FM , ∵∠EBM=30°,EM BC ⊥,∴BE=2EM ,EM ,∵,∴,BM=6, ∵BF+FM=BM , ∴FM=2,BF=EF=4,∵QF=EQ+EF,∴EQ=11-4=7,∴ BP=7,∴MP=BP –BM =1,在Rt△EMP中,【点睛】本题考查三角形综合题,全等三角形的判定和性质,勾股定理,解题的关键是构造直角三角形用勾股定理求线段的长度.20.如图,平面直角坐标系中,已知点P(2,2),C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线OP交于点A,且BD=4AD,直线CD与直线OP交于点Q,则点Q的坐标为_____.【答案】2525,66⎛⎫ ⎪⎝⎭【解析】【分析】过点P作PE OC⊥于E,EP的延长线交AB于F.首先证明△CPE≌△PDF,得到DF=PE=2,推出BD=BF+DF=4,由BD=4AD,推出AD=1,AB=OB=5,CE=PF=3,D(5,4),C(0,5),利用待定系数法求出直线CD的解析式,利用方程组即可求出点Q的坐标.【详解】解:过点P作PE OC⊥于E,EP的延长线交AB于F.∵AB OB ⊥∴OBF=EOB=FEO=90∠∠∠︒ , ∴ 四边形EOBF 是矩形, ∵ P (2,2) ∴ OE=PE=BF=2, ∵ CPD=90∠︒ ,∴ CPE+DPF=90∠∠︒ ,ECP+CPE=90∠∠︒ , ∴ ECP=DPF ∠∠ ,在△CPE 和△PDF 中,PEC=PFD{PCE=DPF PC=PD∠∠∠∠ ,∴ △CPE ≌△PDF , ∴ DF=PE=2, ∴ BD=BF+DF =4, ∵ BD=4AD , ∴ AD=1,AB=OB=5, ∴ CE=PF=3,∴ D (5,4),C (0,5),设直线CD 的解析式为y=kx+b 则有5{54b k b =+=,解得1{55k b =-=, ∴直线CD 的解析式为155y x =-+,由{155y x y x ==-+解得256{256x y ==, ∴点Q 的坐标为252566⎛⎫⎪⎝⎭,. 故答案为:252566⎛⎫⎪⎝⎭,. 【点睛】本题考查一次函数的应用、待定系数法、全等三角形的判定和性质、二元一次方程组等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会构建一次函数,利用方程组求交点坐标.三、计算题(本大题共2小题,共12.0分)21.解二元一次方程组3x 2y 9x 2y 3-=⎧+=⎨⎩.【答案】{x 3y 0== 【解析】 【分析】利用加减消元法求解即可得答案. 【详解】3x 2y 9x 2y 3①②-=⎧⎨+=⎩,+①②,得4x 12=,x 3∴=,把x 3=代入②,得32y 3+=, 解得y 0=,所以原方程组的解为{x 3y 0==.故答案为:30 xy=⎧⎨=⎩.【点睛】本题考查解二元一次方程组,解题的关键是熟练掌握解二元一次方程组的两种消元方法.22.解不等式组()2x53x1x1x23⎧+<+⎪⎨-≤⎪⎩,并把它的解集表示在数轴上.【答案】2x3<≤,在数轴上表示见解析.【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集,在数轴上表示不等式组的解集即可.【详解】() 2531x1x23x x⎧+<+⎪⎨-≤⎪⎩①②,解不等式①,得x2>,解不等式②,得x3≤,∴不等式组的解集是2x3<≤,在数轴上表示为:.【点睛】本题考查解一元一次不等式组和在数轴上表示不等式组的解集,解题的关键是能求出不等式组的解集.四、解答题(本大题共7小题,共66.0分)23.已知:如图,D是△ABC的BC边的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且DE=DF.求证:△ABC是等腰三角形.【答案】证明见解析.【解析】试题分析:根据点D是△ABC的BC边上的中点,DE⊥AC于E,DF⊥AB于F,且DE=DF.利用HL求证△BFD≌△DEC,可得∠B=∠C,即可证明△ABC是等腰三角形.试题解析:∵点D是△ABC的BC边上的中点,∴BD=DC,∵DE⊥AC于E,DF⊥AB于F,∴△BFD和△DEC为直角三角形,在Rt△BFD和Rt△CED中,{DE DF DB DC==,∴Rt△BFD≌Rt△CED(HL),∴∠B=∠C,∴△ABC是等腰三角形.考点:1.等腰三角形的判定;2.全等三角形的判定与性质.【此处有视频,请去附件查看】24.为迎接广州市青少年读书活动,某校倡议同学们利于课余时间多阅读为了解同学们的读书情况,在全校随机调查了部分同学在一周内的阅读时间,并用得到的数据绘制了统计图,根据图中信息解答下列问题:()1被抽查学生阅读时间的中位数为多少小时,众数为多少小时,平均数为多少小时;()2已知全校学生人数为1500人,请你估算该校学生一周内阅读时间不少于三小时的有多少人?【答案】()12,2,2.34;()2估算该校学生一周内阅读时间不少于三小时的有540人.【解析】【分析】(1)根据统计图中的数据确定出学生劳动时间的众数、中位数和平均数即可;(2)根据总人数⨯ 阅读时间不少于三小时的百分比可得结果.【详解】()11220105350++++=,被抽查学生阅读时间的中位数为:第25和第26个学生阅读时间的平均数2=,众数为2, 平均数1212021035435x 2.3450⨯+⨯+⨯+⨯+⨯==, ()10532150054050++⨯=, 答:估算该校学生一周内阅读时间不少于三小时的有540人.故答案为:(1) 2, 2, 2.34;(2)估算该校学生一周内阅读时间不少于三小时的有540人.【点睛】本题考查众数,条形统计图,平均数、中位数及用样本估计总体,解题的关键是弄清题中的数据.25. 为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A ,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A ,B 两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B 型学习用品多少件?【答案】详见解析【解析】【分析】(1)设购买A 型学习用品x 件,B 型学习用品y 件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论。
山东省济南市八年级(上)期末数学试卷(含答案)
山东省济南市八年级(上)期末数学试卷一、选择题(每题4分,共48分)1.(4分)下列实数中的无理数是()A.B.C.D.2.(4分)以下列各组数为边长,不能构成直角三角形的是()A.3,4,5B.1,1,C.8,12,13D.3.(4分)289的平方根是±17的数学表达式是()A.=17B.=±17C.±=±17D.±=174.(4分)下列命题中的假命题是()A.过直线外一点有且只有一条直线与这条直线平行B.平行于同一直线的两条直线平行C.直线y=2x﹣1与直线y=2x+3一定互相平行D.如果两个角的两边分别平行,那么这两个角相等5.(4分)已知点A(2x﹣4,x+2)在坐标轴上,则x的值等于()A.2或﹣2B.﹣2C.2D.非上述答案6.(4分)对于函数y=k2x(k是常数,k≠0),下列说法不正确的是()A.该函数是正比例函数B.该函数图象过点(,k)C.该函数图象经过二、四象限D.y随着x的增大而增大7.(4分)将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n()A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°8.(4分)小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则这两个数分别为()A.4和6B.6和4C.2和8D.8和﹣29.(4分)某超市的某种商品一周内每天的进价与售价信息和实际每天的销售量情况如图表所示,则下列推断不合理的是()进价与售价折线图(单位:元/斤)实际销售量表(单位:斤)日期周一周二周三周四周五周六周日销售量30403530506050 A.该商品周一的利润最小B.该商品周日的利润最大C.由一周中的该商品每天售价组成的这组数据的众数是4(元/斤)D.由一周中的该商品每天进价组成的这组数据的中位数是3(元/斤)10.(4分)如图,以两条直线l1,l2的交点坐标为解的方程组是()A.B.C.D.11.(4分)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t(h)之间的函数图象如图所示,则下列说法中:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km.正确的是()A.①②B.①③C.①④D.①③④12.(4分)如图,在△ABC中.∠ACB=90°,AC=4,,点D在AB上,将△ACD沿CD折叠,点A落在点A1处,A1C与AB相交于点E,若A1D∥BC,则A1E的长为()A.B.C.D.二、填空题(每题4分,共24分)13.(4分)计算=.14.(4分)如图,△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=153°,则∠B的度数为.15.(4分)一组数2、a、4、6、8的平均数是5,这组数的中位数是.16.(4分)定义:如图,点P、Q把线段AB分割成线段AP、PQ和BQ,若以AP、PQ、BQ为边的三角形是一个直角三角形,则称点P、Q是线段AB的勾股分割点.已知点P、Q是线段AB的勾股分割点,如果AP=8,PQ=12(PQ>BQ),那么BQ=.17.(4分)现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是.18.(4分)如图,已知在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C、D的坐标分别为A(9,0)、C(0,4),D(5,0),点P从点O出发,以每秒1个单位长度的速度沿O→C→B→A运动,点P 的运动时间为t秒.则当t=秒时,△ODP是腰长为5的等腰三角形?三.解答题(共78分)19.(6分)(1)计算:﹣5(2)计算:620.(6分)已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴.(1)求m的值;(2)求AB的长.21.(6分)在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.22.(8分)阅读理解:已知两直线,L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1,根据以上结论解答下列各题:(1)已知直线y=2x+1与直线y=kx﹣1垂直,求k的值.(2)若一条直线经过A(2,3),且与y=x+3垂直,求这条直线的函数关系式.23.(8分)如图,∠α和∠β的度数满足方程组,且CD∥EF,AC⊥AE.(1)求∠α和∠β的度数.(2)求∠C的度数.24.(10分)某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校85B校85100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.25.(10分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求甲、乙两种节能灯各进多少只?(2)全部售完100只节能灯后,该商场获利多少元?26.(12分)如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.27.(12分)已知:如图1,在平面直角坐标系中,一次函数y=x+3交x轴于点A,交y轴于点B,点C是点A 关于y轴对称的点,过点C作y轴平行的射线CD,交直线AB与点D,点P是射线CD上的一个动点.(1)求点A,B的坐标.(2)如图2,将△ACP沿着AP翻折,当点C的对应点C′落在直线AB上时,求点P的坐标.(3)若直线OP与直线AD有交点,不妨设交点为Q(不与点D重合),连接CQ,是否存在点P,使得S△CPQ=2S,若存在,请求出对应的点Q坐标;若不存在,请说明理由.△DPQ山东省济南市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题4分,共48分)1.【解答】解:A、=2,不是无理数,故此选项错误;B、=2,是无理数,故此选项正确;C、,不是无理数,故此选项错误;D、=3,不是无理数,故此选项错误;故选:B.2.【解答】解:A、32+42=52,故是直角三角形,故此选项不符合题意;B、12+12=()2,故是直角三角形,故此选项不符合题意;C、82+122≠132,故不是直角三角形,故此选项符合题意;D、()2+()2=()2,故是直角三角形,故此选项不符合题意.故选:C.3.【解答】解:289的平方根是±17的数学表达式是±=±17,故选:C.4.【解答】解:A、过直线外一点有且只有一条直线与这条直线平行,正确.B、平行于同一直线的两条直线平行,正确;C、直线y=2x﹣1与直线y=2x+3一定互相平行,正确;D、如果两个角的两边分别平行,那么这两个角相等,错误;应该是如果两个角的两边分别平行,那么这两个角相等或互补;故选:D.5.【解答】解:∵点A(2x﹣4,x+2)在坐标轴上,∴当2x﹣4=0时,x=2,当x+2=0时,x=﹣2,∴x的值为±2,故选:A.6.【解答】解:对于函数y=k2x(k是常数,k≠0)的图象,∵k2>0,∴直线y=k2x经过第一、三象限,y随x的增大而增大,∵当x=时,y=k,∴直线y=k2x经过点(,k).故选:C.7.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.8.【解答】解:∵x=5是方程组的解,∴2×5﹣y=12,∴y=﹣2,∴2x+y=2×5﹣2=8,∴●是8,★是﹣2.故选:D.9.【解答】解:A.该商品周一的利润45元,最小,正确;B.该商品周日的利润85元,最大,正确;C.由一周中的该商品每天售价组成的这组数据的众数是4(元/斤),正确;D.一周中的该商品每天进价组成的这组数据的中位数是(2.8元/斤),错误;故选:D.10.【解答】解:直线l1经过(2,3)、(0,﹣1),易知其函数解析式为y=2x﹣1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:.故选:C.11.【解答】解:由题意可得出:甲乙两地之间的距离为560千米,故①正确;由题意可得出:慢车和快车经过4个小时后相遇,出发后两车之间的距离开始增大直到快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,故②错误;∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20∴快车的速度是80km/h,慢车的速度是60km/h.由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,故④错误,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240﹣3×60=60km,故③正确.故选:B.12.【解答】解:∵A1D∥BC,∴∠B=∠A1DB,由折叠可得,∠A1=∠A,又∵∠A+∠B=90°,∴∠A1+∠A1DB=90°,∴AB⊥CE,∵∠ACB=90°,AC=4,,∴AB==3,∵AB×CE=BC×AC,∴CE==,又∵A1C=AC=4,∴A1E=4﹣=,故选:B.二、填空题(每题4分,共24分)13.【解答】解:==2,故答案为:2.14.【解答】解:∵∠1+∠EDC=180°,∠1=153°,∴∠EDC=27°,∵DE∥BC,∴∠EDC=∠C=27°,∵∠A=90°,∴∠B=90°﹣∠C=63°,故答案为63°.15.【解答】解:由题意得,(2+a+4+6+8)=5,解得:x=5,这组数据按照从小到大的顺序排列为:2,4,5,6,8,则中位数为5;故答案为:5.16.【解答】解:依题意得:AP2+BQ2=PQ2,即82+BQ2=122,解得BQ=4(舍去负值).故答案是:4.17.【解答】解:设小矩形的宽是x,长是y,,解得:.小矩形的面积为:6×10=60.故答案为:60.18.【解答】解:当OD=OP=5时,在直角△OPC中,CP==3,则t=4+3=7;当PD=OD=5时,作DE⊥BC于点E,同理,在直角△PED中,得到PE=3,则当P在E的左边时,CP=5﹣3=2,则t=4+2=6;当P在E的右边时CP=5+3=8,则t=4+8=12;或AP=3,则t=4+9+4﹣3=14;当OP=PD,CP=2.5,t=4+2.5=6.5(舍去)总之,t=7或6或12或14.故答案为:6或7或12或14.三.解答题(共78分)19.【解答】解:(1)原式=﹣﹣5=2﹣2﹣5=﹣2﹣3;(2)原式=2﹣+9﹣=9.20.【解答】解:(1)∵A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x轴,∴2m﹣4=3,∴m=.(2)由(1)得:m=,∴m+2=,m﹣1=,2m﹣4=3,∴A(,3),B(,3),∵﹣=3,∴AB的长为3.21.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.22.【解答】解:(1)∵直线y=2x+1与直线y=kx﹣1垂直,∴2•k=﹣1,∴k=(2)∵过点A的直线与y=x+3垂直,∴可设过点A的直线解析式为y=﹣3x+b将点A(2,3)代入,得:﹣6+b=3,解得:b=9,所以过点A的直线解析式为y=﹣3x+923.【解答】解:(1)解方程组,得.(2)∵∠α+∠β=55°+125°=180°,∴AB∥CD,∴∠C+∠CAB=180°,∵AC⊥AE,∴∠CAE=90°,∴∠C=180°﹣90°﹣55°=35°.24.【解答】解:(1)A校平均数为:(75+80+85+85+100)=85(分),众数85(分);B校中位数80(分).填表如下:平均数/分中位数/分众数/分A校858585B校8580100故答案为:85;85;80.(2)A校成绩好些.因为两个队的平均数都相同,A校的中位数高,所以在平均数相同的情况下中位数高的A校成绩好些.(3)∵A校的方差s12=×[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,B校的方差s22=×[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∴s12<s22,因此,A校代表队选手成绩较为稳定.25.【解答】解:(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意,得,解这个方程组,得,答:甲、乙两种节能灯分别购进40、60只.(2)商场获利=40×(40﹣30)+60×(50﹣35)=1300(元),答:商场获利1300元.26.【解答】解:(1)∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°﹣40°=140°,∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF,∴∠ECF=∠ACD=70°;(2)不变.数量关系为:∠APC=2∠AFC.∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP,∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC;(3)∵AB∥CD,∴∠AEC=∠ECD,当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF,∴∠PCD=∠ACD=70°,∴∠APC=∠PCD=70°.27.【解答】解:(1)令x=0,则y=3,∴B(0,3),令y=0,则x+3=0,∴x=﹣4,∴A(﹣4,0);(2)∵点C是点A关于y轴对称的点,∴C(4,0),∵CD⊥x轴,∴x=4时,y=6,∴D(4,6),∴AC=8,CD=6,AD=10,由折叠知,AC'=AC=8,∴C'D=AD﹣AC'=2,设PC=a,∴PC'=a,DP=6﹣a,在Rt△DC'P中,a2+4=(6﹣a)2,∴a=,∴P(4,);(3)设P(4,m),∴CP=m,DP=|m﹣6|,∵S△CPQ=2S△DPQ,∴CP=2PD,∴2|m﹣6|=m,∴m=4或m=12,∴P(4,4)或P(4,12),∵直线AB的解析式为y=x+3①,当P(4,4)时,直线OP的解析式为y=x②,联立①②解得,x=12,y=12,∴Q(12,12),当P(4,12)时,直线OP解析式为y=3x③,联立①③解得,x=,y=4,∴Q(,4),即:满足条件的点Q(12,12)或(,4).。
山东济南2018-2019市中八年级上学期数学期末
A、 1 2
B、-2
1
C、
2
D、2
4、如图,已知矩形纸片一边经过一个含 30°的直角三角尺顶点,若矩形纸片一组对边分别与直角三角尺两边相交, 且∠2=115°,则∠1 的的数是 ( )
A、75
B、85
C、60
D、65
4题
7题
5、下列命题是真命题的是 ( )
A、同位角相等 B、相等的角是对顶角 C、两点确定一条直线
(2)如图②,AD 是∠MAB 的平分线,AD 的反向延长线交 BC 的延长线于点 E,点 A,B 在运动过程中,∠E 大小 会变化吗?如不会,求出∠E 度数,若变,说明理由;
(3)若∠MON=n,请直接写出∠ACB=______;∠E=_______
学而不思则罔,思而不学则殆
5
肖老师
梅花香自苦寒来
P3,…均在直线 y=﹣ x+4 上.设△P1OA1,△P2A1A2,△P3A2A2,…的面积分别为 S1,S2,S3,…,依据图形所 反映的规律,S2018= ___________
学而不思则罔,思而不学则殆
2
肖老师
三、解答题
19、计算: 12 18 1 6
梅花香自苦寒来
4x y 3 20、解方程组: 3x - y 4
小明思考过程如下:
第一步:添加辅助线,如图②,过点 P 作 MN∥x 轴,
与 y 轴交于点 N,与 AC 的延长线交于 M;
第二步:证明△MPA≌△NBP;
第三步:设 NB=m,列出关于 m 的方程,进而求得点 P 的坐标。
请根据小明的思考过程,写出第二步和第三步的完整解答过程;
(4)若点 P 在直线 l 上,点 Q 在直线 AC 上(不与点 A 重合),△QPB 为等腰直角三角形,直接写 P 点坐标;
2018-2019学年山东省济南市历城区北师大版八年级(上)期末数学试卷(解析版)
2018-2019学年山东省济南市历城区八年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列实数中,是无理数的是()A.3.14159265B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列各点,其中在第二象限内的点是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)4.如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°5.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是()A.5,5B.5,6C.6,6D.6,5 6.下列计算正确的是()A.+=B.3+2=5C.2×3=18D.÷=7.若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n的值()A.3B.﹣14C.7D.﹣88.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<09.已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是()A.B.C.D.10.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm211.如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.C.D.12.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12B.15C.20D.30二、填空题(每小题4分,一共24分)13.16的平方根是.14.一组数据2、3、﹣1、0、1的方差是.15.把点A(a,3)向上平移三个单位正好在直线y=﹣x+1上,则a的值是.16.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=度.17.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.已知CD=2,则AB的长度等于.18.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为.三、解答题(共计78分)19.(10分)计算(1)﹣+﹣(2)﹣420.(10分)解下列二元一次方程组(1)(2)21.(10分)(1)如图1,在△AEC和△DFB中,点A、B、C、D在同一条直线上,AE=DF,AE ∥DF,∠E=∠F,求证:EC=BF.(2)如图2,在△ABC中,∠CAB=55°,将△ABC在平面内绕点A逆时针旋转到△AB′C′的位置,使CC′∥AB,求旋转角的度数.22.(6分)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?23.(7分)如图,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC以x轴为对称轴,画出对称后的△A1B1C1;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并请你直接写出A1A2的长度.24.(8分)某培训中心有钳工20名,车工30名,现将这50名技工派往A,B两地工作,两地技工的月工资如下:(1)若派往A地x名钳工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(2)若派往A地x名车工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(3)如何派遣这50名技工,可使他们的工资总额最高?直接写出结果.25.(8分)甲乙两人同时登山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是米/分钟,乙在A地提速时距地面的高度b为米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请直接写出甲和乙提速后y和x之间的函数关系式.(3)登山多长时间时,乙追上了甲,此时乙距A地的高度为多少米?26.(8分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.求证:DE=EC.(用三种方法证明)27.(11分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)求线段BC的长;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN 周长的最小值.2018-2019学年山东省济南市历城区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列实数中,是无理数的是()A.3.14159265B.C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、3.1415926是有限小数是有理数,选项错误.B、=6,是整数,是有理数,选项错误;C、是无理数,选项正确;D、是分数,是有理数,选项错误;故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、不是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.下列各点,其中在第二象限内的点是()A.(1,2)B.(1,﹣2)C.(﹣1,2)D.(﹣1,﹣2)【分析】根据各个象限点的坐标特征判断.【解答】解:A、(1,2)在第一象限B、(1,﹣2)在第四象限C、(﹣1,2)在第二象限D、(﹣1,﹣2)在第三象限故选:C.【点评】本题考查的是点的坐标,掌握各个象限点的坐标特征是解题的关键.4.如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°【分析】根据两直线平行,同旁内角互补,求得∠EFA=55°,再利用三角形内角和定理即可求得∠E的度数.【解答】解:∵AB∥CD,∠C=125°,∴∠EFB=125°,∴∠EFA=180﹣125=55°,∵∠A=45°,∴∠E=180°﹣∠A﹣∠EFA=180°﹣45°﹣55°=80°.故选:B.【点评】本题应用的知识点为:两直线平行,同旁内角互补;三角形内角和定理.5.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是()A.5,5B.5,6C.6,6D.6,5【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.下列计算正确的是()A.+=B.3+2=5C.2×3=18D.÷=【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、3与2不能合并,所以B选项错误;C、原式=6×3=18,所以C选项正确;D、原式===,所以D选项错误.故选:C.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n的值()A.3B.﹣14C.7D.﹣8【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,再计算m+n即可.【解答】解:由题意,得m+2=﹣4,n+5=﹣3,解得m=﹣6,n=﹣8.m+n=﹣14.故选:B.【点评】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.8.关于函数y=﹣2x+1,下列结论正确的是()A.图象必经过(﹣2,1)B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<0【分析】根据一次函数的性质,依次分析选项可得答案.【解答】解:根据一次函数的性质,依次分析可得,A、x=﹣2时,y=﹣2×﹣2+1=5,故图象必经过(﹣2,5),故错误,B、k<0,则y随x的增大而减小,故错误,C、k=﹣2<0,b=1>0,则图象经过第一、二、四象限,故错误,D、当x>时,y<0,正确;故选:D.【点评】本题考查一次函数的性质,注意一次函数解析式的系数与图象的联系.9.已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是()A.B.C.D.【分析】方程组的解是一次函数的交点坐标即可.【解答】解:∵直线y=2x经过(1,a)∴a=2,∴交点坐标为(1,2),∵方程组的解就是两个一次函数的交点坐标, ∴方程组的解,故选:A .【点评】本题考查一次函数与方程组的关系,解题的关键是理解方程组的解就是厉害一次函数的交点坐标.10.如图,△ABC 的面积为9cm 2,BP 平分∠ABC ,AP ⊥BP 于P ,连接PC ,则△PBC 的面积为( )A .3cm 2B .4cm 2C .4.5cm 2D .5cm 2【分析】根据已知条件证得△ABP ≌△EBP ,根据全等三角形的性质得到AP =PE ,得出S △ABP =S △EBP ,S △ACP =S △ECP ,推出S △PBC =S △ABC ,代入求出即可.【解答】解:延长AP 交BC 于E ,∵BP 平分∠ABC ,∴∠ABP =∠EBP ,∵AP ⊥BP ,∴∠APB =∠EPB =90°,在△ABP 和△EBP 中,,∴△ABP ≌△EBP (ASA ),∴AP =PE ,∴S △ABP =S △EBP ,S △ACP =S △ECP ,∴S △PBC =S △ABC =×9cm 2=4.5cm 2,故选:C .【点评】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.11.如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为()A.(0,0)B.C.D.【分析】先过点A作AB′⊥OB,垂足为点B′,由于点B在直线y=x上运动,所以△AOB′是等腰直角三角形,由勾股定理求出OB′的长即可得出点B′的坐标.【解答】解:先过点A作AB′⊥OB,垂足为点B′,由垂线段最短可知,当点B与点B′重合时AB最短,∵点B在直线y=x上运动,∴∠AOB′=45°,∵AB′⊥OB,∴△AOB′是等腰直角三角形,过B′作B′C⊥x轴,垂足为C,∴△B′CO为等腰直角三角形,∵点A的坐标为(﹣1,0),∴OC=CB′=OA=×1=,∴B′坐标为(﹣,﹣),即当B与点B′重合时AB最短,点B的坐标为(﹣,﹣),故选:B.【点评】本题考查了一次函数的性质、垂线段最短和等腰直角三角形的性质,找到表示B′点坐标的等腰直角三角形是解题的关键.12.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12B.15C.20D.30【分析】设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,依据S1+S2+S3=60,可得4m+S2+S2+S2﹣4m=60,进而得出S2的值.【解答】解:设每个小直角三角形的面积为m,则S1=4m+S2,S3=S2﹣4m,因为S1+S2+S3=60,所以4m+S2+S2+S2﹣4m=60,即3S2=60,解得S2=20.故选:C.【点评】此题主要考查了勾股定理和正方形、全等三角形的性质的运用,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.二、填空题(每小题4分,一共24分)13.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.一组数据2、3、﹣1、0、1的方差是2.【分析】先求出这组数据的平均数,再根据方差的计算公式即可得出答案.【解答】解:这组数据的平均数:=(2+1﹣1+0+3)÷5=1,方差:S2=[(x1﹣)2+[(x2﹣)2+…+[(x n﹣)2]=[(2﹣1)2+(1﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2]=(1+4+0+1+4)=2.故答案为:2.【点评】本题考查了方差:一般地,设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+[(x2﹣)2+…+[(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.把点A(a,3)向上平移三个单位正好在直线y=﹣x+1上,则a的值是﹣5.【分析】点A向上平移三个单位后的坐标为(a,6),然后将其代入直线方程y=﹣x+1即可求得a的值.【解答】解:根据题意知,点(a,6)在直线y=﹣x+1上,∴6=﹣a+1,解得a=﹣5;故答案是:﹣5.【点评】本题综合考查了一次函数图象上点的坐标特征、坐标与图形变化﹣﹣平移.点A(a,3)向上平移三个单位后的横坐标不变,纵坐标伸长3个单位.16.如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=20度.【分析】根据旋转的性质可得AB=AB′,∠BAB′=40°,然后根据等腰三角形两底角相等求出∠ABB′,再利用直角三角形两锐角互余列式计算即可得解.【解答】解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=40°,在△ABB′中,∠ABB′=(180°﹣∠BAB′)=(180°﹣40°)=70°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°﹣∠ABB′=90°﹣70°=20°.故答案为:20.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,比较简单,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.17.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.已知CD=2,则AB的长度等于4+2.【分析】根据角平分线的性质得到DE=DC=2,根据等腰直角三角形的性质、勾股定理计算.【解答】解:∵AC=BC,∠C=90°,∴∠CAB=∠B=45°,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=DC=2,∴DB=DE=2,∴BC=2+2,∴AB=BC=4+2,故答案为:4+2.【点评】本题考查的是勾股定理、角平分线的性质、等腰直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.18.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为(﹣505,505).的坐标为(﹣n,n)(n为正【分析】观察图形,由第二象限点的坐标的变化可得出“点A4n﹣1整数)”,再结合2019=4×505﹣1,即可求出点A2019的坐标.【解答】解:观察图形,可知:点A3的坐标为(﹣1,1),点A7的坐标为(﹣2,2),点A11的坐标为(﹣3,3),…,的坐标为(﹣n,n)(n为正整数).∴点A4n﹣1又∵2019=4×505﹣1,∴点A2019的坐标为(﹣505,505).故答案为:(﹣505,505).的坐标【点评】本题考查了规律型:点的坐标,根据点的坐标的变化,找出变化规律“点A4n﹣1为(﹣n,n)(n为正整数)”是解题的关键.三、解答题(共计78分)19.(10分)计算(1)﹣+﹣(2)﹣4【分析】(1)直接化简二次根式以及立方根进而计算即可;(2)直接化简二次根式进而计算即可.【解答】解:(1)原式=2﹣+﹣3=﹣3;(2)原式=﹣4=10﹣4=6.【点评】此题主要考查了实数运算,正确化简二次根式是解题关键.20.(10分)解下列二元一次方程组(1)(2)【分析】(1)利用加减消元法解答即可;(2)利用代入消元法解答即可.【解答】解:(1),①+②得:3x=3,解得:x=1把x=1代入②得:y=4,所以方程组的解为:(2),由①变形为:x=6+3y③,把③代入②得:y=﹣1,把y=﹣1代入③得:x=3,所以方程组的解为:.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法.21.(10分)(1)如图1,在△AEC和△DFB中,点A、B、C、D在同一条直线上,AE=DF,AE ∥DF,∠E=∠F,求证:EC=BF.(2)如图2,在△ABC中,∠CAB=55°,将△ABC在平面内绕点A逆时针旋转到△AB′C′的位置,使CC′∥AB,求旋转角的度数.【分析】(1)根据“ASA”可证△AEC≌△DFB,可得EC=BF;(2)由平行线的性质和旋转的性质可求∠CAB=∠C'CA=∠CC'A=55°,由三角形内角和定理可求旋转角的度数.【解答】(1)证明:∵AE∥DF,∴∠A=∠D,在△AEC和△DFB中,,∴△AEC≌△DFB(ASA)∴EC=BF(2)∵CC′∥AB,∴∠ACC′=∠CAB=55°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×55°=70°,∴∠CAC′=∠BAB′=70°.所以旋转角为70°【点评】本题考查了旋转的性质,全等三角形的判定和性质,平行线的性质,三角形内角和定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.22.(6分)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?【分析】本题有两个定量:车辆总数,停车费总数.可根据这两个定量得到两个等量关系:中型汽车的辆数+小型汽车的辆数=50;中型汽车的停车费+小型汽车的停车费=230.依等量关系列方程组,再求解.【解答】解:设中型汽车有x辆,小型汽车有y辆.根据题意,得,解这个方程组,得.答:中型汽车有15辆,小型汽车有35辆.【点评】本题考查二元一次方程组的应用.找到两个定量,车辆总数,停车费总数,并根据定量得到两个等量关系是解题关键.23.(7分)如图,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC以x轴为对称轴,画出对称后的△A1B1C1;(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并请你直接写出A1A2的长度.【分析】(1)依据轴对称的性质,即可画出对称后的△A1B1C1;(2)依据旋转变换,即可画出旋转后的△A2B2C2,并依据勾股定理求得A1A2的长度.【解答】解:(1)如图,△A1B1C1为所求的三角形;(2)如图,△A2B2C2为所求的三角形;由勾股定理可得,A1A2==.故答案为:.【点评】本题考查了利用轴对称变换和旋转变换作图以及勾股定理的运用,解答本题的关键是掌握旋转的性质及轴对称的性质.24.(8分)某培训中心有钳工20名,车工30名,现将这50名技工派往A,B两地工作,两地技工的月工资如下:(1)若派往A地x名钳工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(2)若派往A地x名车工,余下的技工全部派往B地,写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(3)如何派遣这50名技工,可使他们的工资总额最高?直接写出结果.【分析】(1)根据题意和表格可以写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(2)根据题意和表格可以写出这50名技工的月工资总额y(元)与x之间的函数表达式,并写出x的取值范围;(3)根据题意和表格中的数据可以得到如何派遣这50名技工,可使他们的工资总额最高.【解答】解:(1)由题意可得,y=1800x+1600(20﹣x)+1500×30=200x+77000,即这50名技工的月工资总额y(元)与x之间的函数表达式是y=200x+77000(0≤x≤20);(2)由题意可得,y=1400x+1600×20+1500(30﹣x)=﹣100x+77000,即这50名技工的月工资总额y(元)与x之间的函数表达式是y=﹣100x+77000(0≤x≤30);(3)钳工全部派往A地,车工全部派往B地可使他们的工资总额最高,理由:由表格可知,钳工全部派往A地,车工全部派往B地可使他们的工资总额最高,1800×20+1500×30=81000,即钳工全部派往A地,车工全部派往B地可使他们的工资总额最高,最高是81000元.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用函数的思想解答.25.(8分)甲乙两人同时登山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是10米/分钟,乙在A地提速时距地面的高度b为30米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请直接写出甲和乙提速后y和x之间的函数关系式.(3)登山多长时间时,乙追上了甲,此时乙距A地的高度为多少米?【分析】(1)路程除以速度,计算出甲登上的速度,乙在0<t<2时,是正比例函数,速度为15米/分钟,代入2计算出A的高度;(2)用待定系数法确定两个函数的解析式;(3)追上时,两个函数有共同的x、y,即可列方程组,亦可列一次方程求解.【解答】解:(1)甲登山300﹣100=200(米),用了20分钟,所以甲登山的速度为:=10(米/分钟);乙从O到A的关系式为:y=15x,当x=2时,y=30米故答案为:10,30(2)甲的关系式:设甲的函数关系式为:y=kx+b,由题意,得解得,∴y=10x+100;设乙提速后的函数关系式为:y=mx+n,由于m=30,且图象经过(2.30)所以30=2×30+n解得:n=﹣30所以乙提速后的关系式:y=30x﹣30.(3)(法一)由题意得:10x+100=30x﹣30解得:x=6.5把x=6.5代入y=10x+100=165,相遇时乙距A地的高度为:165﹣30=135(米)答:登山6.5分钟,乙追上了甲,此时乙距A地的高度为135米.法2:由题意,可得,解得相遇时乙距A地的高度为:165﹣30=135(米)答:登山6.5分钟乙追上了甲,此时乙距A地的高度为135米.【点评】本题考查了一次函数的应用,用待定系数法确定函数解析式,是解决本题的关键.本题的第三问易把相遇时乙距A地的高度当成相遇时乙距出发地的高度而出错.26.(8分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.求证:DE=EC.(用三种方法证明)【分析】方法一:如图1,连接BE,根据线段垂直平分线的性质和角平分线的性质即可得到结论;方法二:如图2,连接CD,根据线段垂直平分线的性质和等腰三角形的性质即可得到结论;方法三:如图3,延长DE交BC的延长线于F,根据直角三角形的性质得到∠B=60°,BC=AB,根据线段垂直平分线的性质得到BD=AD=AB,∠BDF=90°,根据全等三角形的性质即可得到结论.【解答】证明:方法一:如图1,连接BE,∵DE是AB的垂直平分线,∴BE=AE,∠ABE=∠A=30°,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∴∠CBE=∠DBE=30°,∵DE⊥AB,CE⊥BC,∴CE=DE;方法二:如图2,连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∵点D是AB的中点,∴CD=BD=AB,∴△BDC是等边三角形,∴∠BCD=∠BDC=60°,∵∠BDE=∠ACB=90°,∴∠EDC=∠ECD=30°,∴DE=CE;方法三:如图3,延长DE交BC的延长线于F,∵∠ACB=90°,∠A=30°,∴∠B=60°,BC=AB,∵DE垂直平分AB,∴BD=AD=AB,∠BDF=90°,∴∠F=30°,∴BD=BF,∴CF=BD=AD,在△ADE与△FCE中,∴△ADE≌△FCE(AAS),∴DE=CE.【点评】本题考查了线段垂直平分线的性质,全等三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质,正确的作出辅助线是解题的关键.27.(11分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)求线段BC的长;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN 周长的最小值.【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)如图2,连接BM,AM,根据等边三角形的性质得到BM⊥OC,根据全等三角形的性质得到BM=AB,AO=OM,得到AM被BD垂直平分,即M关于直线BO的对称点为A,连接AC,=AC+MC,于是得到结论.则C△CMN【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴BC=OB=OC=4;(2)如图1中,∵OB=4,∠ABO=30°,∴OA =OB =2,AB =OA =2,∴S △AOC =•OA •AB =×2×2=2, ∵△BOC 是等边三角形,∴∠OBC =60°,∠ABC =∠ABO +∠OBC =90°,∴AC ==2,∴OP ===;(3)如图2,连接BM ,AM ,∵M 为OC 中点,△OBC 为等边三角形,∴BM ⊥OC ,在Rt △AOB 中,∠A =90°,∠ABO =30°,∴∠BOA =60°,∵∠BOC =60°,∴∠BOA =∠BOM ,∵∠BAO =∠BMO =90°,BO =BO ,∴△BAO ≌△BMO (ASA ),∴BM =AB ,AO =OM ,∴B ,O 在AM 的中垂线上,∴AM 被BD 垂直平分,即M 关于直线BO 的对称点为A ,连接AC ,则C △CMN =AC +MC ,∵M 是OC 的中点,∴MC =OC =2,∴C △CMN 的最小值为2+2.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
〖汇总3套试卷〗济南市2018年八年级上学期期末达标检测数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.方格纸上有A 、B 两点,若以B 点为原点建立直角坐标系,则A 点坐标为(3,4),若以A 点为原点建立直角坐标系,则B 点坐标是( ) A .(3,4) B .(4,3)C .(3,4)--D .(4,3)-【答案】C【分析】明确A 、B 的坐标位置,即可判定坐标.【详解】以B 为原点建立平面直角坐标系,则A 点的坐标为(3,4);若以A 点为原点建立平面直角坐标系,则B 点在A 点左3个单位,下4个单位处. 故B 点坐标为(-3,-4). 故答案为C . 【点睛】此题主要考查平面直角坐标系中用坐标表示位置,熟练掌握其性质,即可解题.2.如图所示.在△ABC 中,∠C=90°,DE 垂直平分AB ,交BC 于点E ,垂足为点D ,BE=6cm ,∠B=15°,则AC 等于( )A .6cmB .5cmC .4cmD .3cm【答案】D【分析】根据三角形内角和定理求出∠BAC ,根据线段垂直平分性质求出BE=AE=6cm ,求出∠EAB=∠B=15°,即可求出∠EAC ,根据含30°角的直角三角形性质求出即可. 【详解】∵在△ABC 中,∠ACB=90°,∠B=15° ∴∠BAC=90°-15°=75° ∵DE 垂直平分AB ,BE=6cm ∴BE=AE=6cm , ∴∠EAB=∠B=15° ∴∠EAC=75°-15°=60° ∵∠C=90° ∴∠AEC=30° ∴AC=12AE=12×6cm=3cm 故选:D本题考查了三角形内角和定理,线段垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等,直角三角形中,30°角所对的边等于斜边的一半.3.如图,在ABC ∆中,AB AC =,AD AE =,36B DAE ∠=∠=︒,则图中等腰三角形共有( )个A .3B .4C .5D .6【答案】D【分析】根据等腰三角形的定义即可找到两个等腰三角形,然后利用等边对等角、三角形的内角和、三角形外角的性质求出图中各个角的度数,再根据等角对等边即可找出所有的等腰三角形. 【详解】解:∵AB AC =,AD AE =,36B DAE ∠=∠=︒ ∴△ABC 和△ADE 都是等腰三角形,∠B=∠C=36°,∠ADE=∠AED=()1180722DAE ︒-∠=︒ ∴∠BAD=∠ADE -∠B=36°,∠CAE=∠AED -∠C=36° ∴∠BAD=∠B ,∠CAE=∠C ∴DA=DB ,EA=EC∴△DAB 和△EAC 都是等腰三角形∴∠BAE=∠BAD +∠DAE=72°,∠CAD=∠CAE +∠DAE=72° ∴∠BAE=∠AED ,∠CAD=∠ADE ∴BA=BE ,CA=CD∴△BAE 和△CAD 都是等腰三角形 综上所述:共有6个等腰三角形 故选D . 【点睛】此题考查的是等腰三角形的性质及判定、三角形的内角和定理和三角形外角的性质,掌握等角对等边、等边对等角、三角形的内角和定理和三角形外角的性质是解决此题的关键. 4.下面的计算中,正确的是( ) A .336a a a ⋅= B .4442b b b ⋅= C .437()a a = D .326()ab ab =【答案】A【分析】根据幂的运算法则依次计算判断即可.【详解】解:A. 336a a a ⋅=,故A 选项正确; B. 448b b b ⋅=,故B 选项错误; C. 4312()a a =,故C 选项错误; D. 3226()ab a b =,故D 选项错误. 故选A. 【点睛】本题考查了幂的运算性质,掌握幂的运算性质是解题的关键.5.函数111y k x b =+与222y k x b =+的部分自变量和对应函数值如下: x -4 -3 -2 -1 y -1 -2 -3 -4 x -4 -3 -2 -1 y-9-6-3当12y y >时,自变量x 的取值范围是( ) A .2x >- B .2x <-C .1x >-D .1x <-【答案】B【分析】根据表格可确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表格可得y 1=k 1x+b 1中y 随x 的增大而减小,y 1=k 1x+b 1中y 随x 的增大而增大. 且两个函数的交点坐标是(-1,-3). 则当x <-1时,y 1>y 1. 故选:B . 【点睛】本题考查了函数的性质,正确确定增减性以及两函数交点坐标是关键.6.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,F 是CB 延长线上一点,AF ⊥CF ,垂足为F .下列结论:①∠ACF =45°;②四边形ABCD 的面积等于12AC 2;③CE =2AF ;④S △BCD =S △ABF +S △ADE ;其中正确的是( )A .①②B .②③C .①②③D .①②③④【答案】C【分析】证明ABC ≌()ADE SAS ,得出45ACF E ∠=∠=︒,①正确;由ABCACDABCD S S S=+四边形,得出212ADE ACDACEABCD S SSSAC =+==四边形,②正确; 证出AF AG =,2CE AF =,③正确;由ABFADEABFABCACFS SSSS+=+=,不能确定ACFBCD SS=,④不正确;即可得出答案.【详解】解:∵∠CAE =90°,AE =AC , ∴∠E =∠ACE =45°, ∵∠BAD =∠CAE =90°, ∴∠BAC+∠CAD =∠EAD+∠CAD ∴∠BAC =∠EAD , 在△ABC 和△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ADE(SAS), ∴∠ACF =∠E =45°,①正确; ∵S 四边形ABCD =S △ABC +S △ACD , ∴S 四边形ABCD =S △ADE +S △ACD =S △ACE =12AC 2,②正确; ∵△ABC ≌△ADE , ∠ACB =∠AEC =45°, ∵∠ACE =∠AEC =45°, ∴∠ACB =∠ACE , ∴AC 平分∠ECF ,过点A 作AG ⊥CG ,垂足为点G ,如图所示:∵AC 平分∠ECF ,AF ⊥CB ,又∵AC =AE ,∴∠CAG =∠EAG =45°,∴∠CAG =∠EAG =∠ACE =∠AEC =45°, ∴CG =AG =GE , ∴CE =2AG , ∴CE =2AF ,③正确;∵S △ABF +S △ADE =S △ABF +S △ABC =S △ACF , 不能确定S △ACF =S △BCD ,④不正确; 故选:C . 【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;证明三角形全等是解题的关键.7.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是()A .B .C . D【答案】D【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x 的取值范围,然后选择即可. 【详解】由题意得,2x+y=10, 所以,y=-2x+10,由三角形的三边关系得,()2210210x x x x x -+--+⎧⎨⎩>①<②,解不等式①得,x >2.5, 解不等式②的,x <5,所以,不等式组的解集是2.5<x <5,正确反映y 与x 之间函数关系的图象是D 选项图象. 故选:D .①当a=﹣3时,分式23 9a a +-的值是0②若x2﹣2kx+9是完全平方式,则k=3③工程建筑中经常采用三角形的结构,这是利用三角形具有稳定性的性质④在三角形内部到三边距离相等的点是三个内角平分线的交点⑤当x≠2时(x﹣2)0=1⑥点(﹣2,3)关于y轴对称的点的坐标是(﹣2,﹣3)A.1个B.2个C.3个D.4个【答案】C【解析】根据分式有意义的条件、完全平方公式、三角形的稳定性、内心的性质、非零数的零指数幂及关于坐标轴对称的点的坐标特点分别判断可得.【详解】解:①当a=﹣3时,分式23 9a a +-无意义,此说法错误;②若x2﹣2kx+9是完全平方式,则k=±3,此说法错误;③工程建筑中经常采用三角形的结构,这是利用三角形具有稳定性的性质,此说法正确;④在三角形内部到三边距离相等的点是三个内角平分线的交点,此说法正确;⑤当x≠2时(x﹣2)0=1,此说法正确;⑥点(﹣2,3)关于y轴对称的点的坐标是(2,3),此说法错误;故选:C.【点睛】考查分式的值为零的条件,解题的关键是掌握分式有意义的条件、完全平方公式、三角形的稳定性、内心的性质、非零数的零指数幂及关于坐标轴对称的点的坐标特点.9.下列美丽的图案中,不是轴对称图形的是()A.B.C.D.【答案】A【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点睛】10.王老师乘公共汽车从A地到相距50千米的B地办事,然后乘出租车返回,出租车的平均速度比公共汽车多20千米/时,回来时所花的时间比去时节省了14,设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是()A.50350204x x=⨯+B.50350420x x=⨯+C.50150204x x+=+D.50501204x x=-+【答案】A【分析】根据题意得到回来时的速度为(x+20)千米/时,根据时间等于路程除以速度即可列出方程.【详解】根据题意得到回来时的速度为(x+20)千米/时,去时的时间是50x小时,回来时的时间是5020x+,∵回来时所花的时间比去时节省了14,∴50350204x x=⨯+,故选:A.【点睛】此题考查分式方程的实际应用,正确理解时间、速度、路程之间的数量关系是解题的关键.二、填空题11.如图,一棵大树在离地3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是_________米.【答案】8【解析】利用勾股定理求得树的顶端到折断处的长即可得解.2234+米,则这棵树折断之前的高度是5+3=8米.故答案为:8.【点睛】本题主要考查勾股定理的应用,解此题的关键在于熟练掌握其知识点.12.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为____________.【答案】454353 x yx y+=⎧⎨-=⎩【分析】根据总费用列出一个方程,根据单价关系列出一个方程,联立方程即可.【详解】由题意得:4个篮球和5个足球共花费435元,可列方程:4x+5y=435,篮球的单价比足球的单价多3元,可列方程:x-y=3,联立得454353x yx y+=⎧⎨-=⎩.【点睛】本题考查二元一次方程的应用,根据题意列出方程是关键.13.已知关于x,y的二元一次方程组的解互为相反数,则k的值是_________.【答案】-1【详解】∵关于x,y的二元一次方程组的解互为相反数,∴x=-y③,把③代入②得:-y+2y=-1,解得y=-1,所以x=1,把x=1,y=-1代入①得2-3=k,即k=-1.故答案为-114.如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm 每秒的速度运动,设运动时间为t秒.(1)当t=_____.时,线段AP是∠CAB的平分线;(2)当t=_____时,△ACP是以AC为腰的等腰三角形.【答案】32s,3或275s或6s【分析】(1)过P作PE⊥AB于E,根据角平分线的性质可得PE=CP=2t,AE=AC=6,进而求得BE、BP,再根据勾股定理列方程即可解答;(2)根据题意分AC=CP、AC=AP情况进行讨论求解.【详解】(1)在△ABC中,∵∠ACB=90°,AC=6cm,BC=8cm,∴AB=10cm,∵线段AP 是∠CAB 的平分线,∠ACB=90°, ∴PE=CP=2t,AE=AC=6cm , ∴BP=(8-2t)cm ,BE=10-6=4cm ,在Rt △PEB 中,由勾股定理得:222(82)(2)4t t -=+,解得:t=32, 故答案为:32s ;(2)∵△ACP 是以AC 为腰的等腰三角形, ∴分下列情况讨论, 当AC=CP=6时,如图1,t=62=3s ; 当AC=CP=6时,如图2,过C 作CM ⊥AB 于M , 则AM=PM ,CM=6824105⨯=, ∵AP=10+8-2t=18-2t , ∴AM=12AP=9-t , 在Rt △AMC 中,由勾股定理得:222246()(9)5t =+-, 解得:t=275s 或t=635s , ∵0﹤2t ﹤8+10=18, ∴0﹤t ﹤9, ∴t=275s ; 当AC=AP=6时,如图3,PB=10-6=4,t=842+=6s , 故答案为:3s 或275s 或6s .本题考查了角平分线的性质、等腰三角形的判定与性质、勾股定理,难度适中,熟练掌握角平分线的性质,利用分类讨论的思想是解答的关键,15.如图,已知//AE BD ,1130∠=︒,230∠=︒,则C ∠=__________.【答案】20°【分析】由//AE BD ,得∠AEC =230∠=︒,结合1130∠=︒,即可得到答案. 【详解】∵//AE BD ,230∠=︒, ∴∠AEC =230∠=︒, ∵∠1+∠AEC+∠C=180°, ∴∠C=180°-130°-30°=20°. 故答案是:20°. 【点睛】本题主要考查平行线的性质定理和三角形内角和定理,掌握平行线的性质定理和三角形内角和定理是解题的关键.16.若关于x 的分式方程x 2322m mx x++=--的解为正实数,则实数m 的取值范围是____.【答案】m <6且m≠2.【分析】利用解分式方程的一般步骤解出方程,根据题意列出不等式,解不等式即可. 【详解】x 2322m mx x++=--, 方程两边同乘(x-2)得,x+m-2m=3x-6,解得,x=6-2m, 由题意得,6-2m>0,解得,m <6, ∵6-2m≠2, ∴m≠2, ∴m<6且m≠2.要注意的是分式的分母暗含着不等于零这个条件,这也是易错点.17=_______.t =,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.t =,由算术平方根的非负性可得t ≥0,则244t =+8=+8=+81)=+6=+21)=1t ∴=..【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.三、解答题18.先化简2221169x x x x x -⎛⎫-⋅ ⎪--+⎝⎭,再在1,2,3中选取一个适当的数代入求值. 【答案】3x x -,当x=2时,原式=2-. 【解析】试题分析: 先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可. 试题解析:原式=()()2x x 1x 12x 1x 1x 3--⎛⎫-⋅ ⎪--⎝⎭-=()()2x x 1x 3x 1x 3--⋅--=x x 3- 当x=2时,原式=2223=--. 19.如图,在△ABC 中,AB =BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,∠BAD =45°,AD 与BE 交于点F ,连接CF.(1)求证△ACD ≌△BFD(2)求证:BF =2AE ;(3)若CD=2,求AD的长.【答案】(1)见解析;(1)见解析;(3)2【分析】(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等;(1)根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=1AE,从而得证;(3)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.【详解】(1)∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,∠CAD=∠CBE,AD=BD,∠ADC=∠BDF=90°,∴△ACD≌△BFD(ASA)(1)由(1)可知:BF=AC∵AB=BC,BE⊥AC,∴AC=1AE,∴BF=1AE;(3) ∵△ACD≌△BFD,∴2,在Rt△CDF中,2222+=+=,DF CD(2)(2)2∵BE⊥AC,AE=EC,∴AF=CF=1.∴2【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键. 20.用分式方程解决问题:元旦假期有两个小组去攀登- -座高h 米的山,第二组的攀登速度是第- -组的a 倍.(1)若450, 1.2h a ==,两小组同时开始攀登,结果第二组比第一组早15min 到达顶峰.求两个小组的攀登速度.(2)若第二组比第一组晚出发30min ,结果两组同时到达顶峰,求第二组的攀登速度比第一组快多少? (用含,a h 的代数式表示)【答案】(1)第一组5/m min ,第二组6/m min ;(2)()21/30h a m min a -.【分析】(1)设第一组的速度为/xm min ,则第二组的速度为1.2/xm min ,根据两个小组同时开始攀登,第二组比第一组早15min ,列方程求解.(2)设第一组的速度为/ym min ,则第二组的速度为/aym min ,根据两个小组去攀登另一座hm 高的山,第二组比第一组晚出发30min ,结果两组同时到达顶峰,列方程求解.【详解】解:(1)设第一组的速度为/xm min ,则第二组的速度为1.2/xm min , 由题意得,450450151.2x x-=, 解得:5x =,经检验:5x =是原分式方程的解,且符合题意,则1.26x =.答:第一组的攀登速度5/m min ,第二组的攀登速度6/m min ;(2)设第一组的平均速度为/ym min ,则第二组的平均速度为/aym min , 由题意得,30h h y ay -=, 解得:30ah h y a-=, 经检验:30ah h y a-=是原分式方程的解,且符合题意, 则22303030ah h ah h a h ah h ay y a a ---+-=-=()2130h a a-=, 答:第二组的平均攀登速度比第一组快()21/30h a m min a -.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列分式方程求解,注意检验.21.(1)如图①,直线m 经过正三角形ABC 的顶点A ,在直线m 上取两点D 、E ,使得60ADB ∠=,60AEC ∠=,求证:BD CE DE +=.(2)将(1)中的直线m 绕着点A 逆时针方向旋转一个角度到如图②的位置,并使120ADB ∠=,120AEC ∠=,通过观察或测量,猜想线段BD ,CE 与DE 之间满足的数量关系,并予以证明.【答案】(1)证明见解析;(2)CE BD DE -=,理由见解析.【分析】(1)通过等边三角形的性质和等量代换得出DAB ECA ∠=∠,利用AAS 可证DAB ∆≌ECA ∆,则有AD CE =,BD AE =,则结论可证;(2)通过等边三角形的性质和等量代换得出DAB ECA ∠=∠,利用AAS 可证DAB ∆≌ECA ∆,则有AD CE =,BD AE =,则可以得出CE BD DE -=;【详解】(1)∵在正三角形ABC 中,60BAC ∠=,∴,120AB CA DAB CAE =∠+∠=又∵120ECA CAE ∠+∠=∴DAB ECA ∠=∠在DAB ∆和ECA ∆中,60ADB AEC DAB ECAAB CA ⎧∠=∠=⎪∠=∠⎨⎪=⎩∴DAB ∆≌ECA ∆(AAS )∴AD CE =,BD AE =∴BD CE AE AD DE +=+=(2)猜想:CE BD DE -=证明:∵在正三角形ABC 中,60BAC ∠=∴,60AB CA DAB CAE =∠+∠=∵120AEC ∠=∴60ECA CAE ∠+∠=∴DAB ECA ∠=∠在DAB ∆和ECA ∆中120ADB AEC DAB ECAAB CA ⎧∠=∠=⎪∠=∠⎨⎪=⎩∴DAB ∆≌ECA ∆(AAS )∴AD CE =,BD AE =∴CE BD AD AE DE -=-=【点睛】本题主要考查全等三角形的判定及性质,掌握全等三角形的判定及性质是解题的关键.22.如图,△ABC 中,AB=AC ,D 是AC 边上的一点,CD=1,BC=5,BD=1.(1)求证:ΔBCD 是直角三角形;(1)求△ABC 的面积。
┃精选3套试卷┃2018届济南市八年级上学期期末监测数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知关于x的分式方程211ax-=+的解是负数,则a的取值范围是()A.a<1 B.a>1且a≠2 C.a<3 D.a<3且a≠2【答案】D【分析】先求得分式方程的解,然后再解不等式即可,需要注意分式方程的分母不为4.【详解】解:去分母得:a﹣4=x+4.解得:x=a﹣3.∵方程的解为负数,且x+4≠4,∴a﹣3<4且a﹣3+4≠4.∴a<3且a≠4.∴a的取值范围是a<3且a≠4.故选:D.【点睛】本题主要考查了分式方程,已知方程解的情况求参数的值,解题过程中易忽略分式有意义的条件是分母不为4,灵活的求含参数的分式方程的解是解题的关键.2.若a、b、c为三角形三边,则下列各项中不能构成直角三角形的是()A.a=7,b=24,c=25 B.a=5,b=13,c=12C.a=1,b=2,c=3 D.a=30,b=40,c=50【答案】C【解析】试题分析:要组成直角三角形,三条线段满足较小的平方和等于较大的平方即可.A、72+242=252,B、52+122=132,D、302+402=502,能构成直角三角形,不符合题意;C、12+22≠32,本选项符合题意.考点:本题考查勾股定理的逆定理点评:解答本题的关键是熟练掌握勾股定理的逆定理:两边的平方和等于第三边的平方,那么这样的三角形是直角三角形.3.若一个三角形的两边长分别为3和7,则第三边长可能是( )A.6B.3C.2D.11【答案】A【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【详解】设第三条边长为x,根据三角形三边关系得:7-3<x<7+3,即4<x <10.结合各选项数值可知,第三边长可能是6.故选A.【点睛】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题.4.如图,直线,∠1=40°,∠2=75°,则∠3等于( )A .55°B .60°C .65°D .70°【答案】C 【解析】试题分析:如图:∵直线l1∥l2,∠1=40°,∠2=75°,∴∠1=∠4=40°,∠2=∠5=75°,∴∠3=65°.故选C .考点:1.三角形内角和定理;2.对顶角、邻补角;3.平行线的性质5.如图,在同一直角坐标系中,直线l 1:y=kx 和l 2: y=(k -2)x+k 的位置可能是( )A .B .C .D .【答案】C【分析】根据比例系数的正负分三种情况:2k >,02k <<,k 0<,然后再结合交点横坐标的正负即可作出判断.【详解】当(2)kx k x k =-+ 时 ,解得2k x = ; 当2k >时 ,正比例函数图象过一、三象限,而一次函数图象过一、二、三象限,两函数交点的横坐标大于0,没有选项满足此条件;当02k <<时 ,正比例函数图象过一、三象限,而一次函数图象过一、二、四象限;两函数交点的横坐标大于0,C 选项满足条件;当k 0<时 ,正比例函数图象过二,四象限,而一次函数图象过二、三、四象限;两函数交点的横坐标小于0,没有选项满足此条件;故选:C .【点睛】本题主要考查正比例函数与一次函数的图象,掌握k 对正比例函数和一次函数图象的影响是解题的关键. 6.关于x 的方程1233x k x x -=+--无解,则k 的值为( ) A .±3B .3C .﹣3D .2 【答案】B 【详解】解:去分母得:26x x k =-+,由分式方程无解,得到30x -=,即3x ,= 把3x =代入整式方程得:32363k k =⨯-+=,,故选B .7.在二次根式56,22x y +,0.5,23x 中,最简二次根式的个数是( ) A .1个B .2个C .3个D .4个 【答案】A【分析】根据最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式进行解答.【详解】56214=,120.52==,233x x =都不是最简二次根式; 22x y +符合最简二次根式的要求.综上,最简二次根式的个数是1个,故选:A .【点睛】本题考查了最简二次根式,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.8.以下四家银行的行标图中,是轴对称图形的有( )A .1个B .2个C .3个D .4个【答案】C 【解析】试题分析:根据轴对称图形的定义可知:第1个行标是轴对称图形;第2个行标不是轴对称图形;第3个行标是轴对称图形;第4个行标是轴对称图形;所以共3个轴对称图形,故选C.考点:轴对称图形9.下列图案中,不是轴对称图形的是( )A .B .C .D .【答案】B【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是轴对称图形,故本选项不符合题意;B 、不是轴对称图形,故本选项符合题意;C 、是轴对称图形,故本选项不符合题意;D 、是轴对称图形,故本选项不符合题意.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 10.若234a b c ==,则2222232a bc c a ab c-+--的值是( ) A .13 B .13- C .12 D .12- 【答案】C【解析】∵234a b c ==, ∴b=32a ,c=2a , 则原式222222222222232943123462a bc c a a a a a abc a a a a -+-+-===-----. 故选C.二、填空题11.若(x+2y)(2x ﹣ky ﹣1)的结果中不含xy 项,则k 的值为_____.【答案】1【分析】根据多项式乘以多项式法则展开,合并同类项,即可得出﹣k+1=0,求出即可.【详解】解:(x+2y )(2x ﹣ky ﹣1)=2x 2﹣kxy ﹣x+1xy ﹣2ky 2﹣2y=2x 2+(﹣k+1)xy ﹣2ky 2﹣2y ﹣x ,∵(x+2y )(2x ﹣ky ﹣1)的结果中不含xy 项,∴﹣k+1=0,解得:k =1,故答案为1.【点睛】本题考查了多项式乘以多项式法则,能根据多项式乘以多项式法则展开是解此题的关键.12.(1)可燃冰是一种新型能源,它的密度很小,1cm 3可燃冰的质量仅为0.00092kg .数字0.00092用科学记数法表示是_________________.(2) 把多项式226x x --可以分解因式为(2)x -(___________)【答案】9.2×10-4 23x +【分析】(1)绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定; (2)根据十字相乘法即可求解.【详解】(1)0.00092=9.2×10-4(2)226x x --=(2)x -(23x +)故答案为9.2×10-4;23x +. 【点睛】此题主要考查科学记数法的表示及因式分解,解题的关键是熟知十字相乘法因式分解的运用. 13.经过A 、B 两点的圆的圆心的轨迹是______.【答案】线段AB 的垂直平分线【分析】根据线段垂直平分线的性质即可得答案.【详解】∵线段垂直平分线上的点到线段两端点的距离相等,∴经过A 、B 两点的圆的圆心的轨迹是线段AB 的垂直平分线,故答案为线段AB 的垂直平分线【点睛】本题考查了相等垂直平分线的性质,线段垂直平分线上的点到线段两端点的距离相等;熟练掌握性质是解题关键.14.如图,点A ,C ,D ,E 在Rt △MON 的边上,∠MON=90°,AE ⊥AB 且AE=AB ,BC ⊥CD 且BC=CD ,BH ⊥ON 于点H ,DF ⊥ON 于点F ,OM=12,OE=6,BH=3,DF=4,FN=8,图中阴影部分的面积为________.【答案】50【分析】易证△AEO ≌△BAH ,△BCH ≌△CDF 即可求得AO=BH ,AH=EO ,CH=DF ,BH=CF ,即可求得梯形DEOF 的面积和△AEO ,△ABH ,△CGH ,△CDF 的面积,即可解题.【详解】∵∠EAO+∠BAH=90°,∠EAO+∠AEO=90°,∴∠BAH=∠AEO ,∵在△AEO 和△BAH 中90AEO BAH O BHA AE AB ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△AEO ≌△BAH (AAS ),同理△BCH ≌△CDF (AAS ),∴AO=BG=3,AH=EO=6,CH=DF=4,BH=CF=3,∵梯形DEOF 的面积=12(EF+DH )•FH=80, S △AEO =S △ABH =12AF•AE=9, S △BCH =S △CDF =12CH•DH=6, ∴图中实线所围成的图形的面积S=80-2×9-2×6=50,故选:B .【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEO ≌△BAH ,△BCH ≌△CDF 是解题的关键.15.在一次函数y=﹣3x+1中,当﹣1<x <2时,对应y 的取值范围是_____.【答案】-5<y<1【解析】解:由y=﹣3x+1得到x=﹣13y -,∵﹣1<x <2,∴﹣1<﹣13y -<2,解得﹣5<y <1.故答案为﹣5<y <1.点睛:本题考查了一次函数的性质,根据题意得出关于y 的不等式是解答此题的关键.16.如图,在平面鱼角坐标系xOy 中,A (﹣3,0),点B 为y 轴正半轴上一点,将线段AB 绕点B 旋转90°至BC 处,过点C 作CD 垂直x 轴于点D ,若四边形ABCD 的面积为36,则线AC 的解析式为_____.【答案】y =13x+1或y =﹣3x ﹣1. 【分析】过C 作CE ⊥OB 于E ,则四边形CEOD 是矩形,得到CE =OD ,OE =CD ,根据旋转的性质得到AB =BC ,∠ABC =10°,根据全等三角形的性质得到BO =CE ,BE =OA ,求得OA =BE =3,设OD =a ,得到CD =OE =|a ﹣3|,根据面积公式列方程得到C (﹣6,1)或(6,3),设直线AB 的解析式为y =kx+b ,把A点和C点的坐标代入即可得到结论.【详解】解:过C作CE⊥OB于E,则四边形CEOD是矩形,∴CE=OD,OE=CD,∵将线段AB绕点B旋转10°至BC处,∴AB=BC,∠ABC=10°,∴∠ABO+∠CBO=∠CBO+∠BCE=10°,∴∠ABO=∠BCE,∵∠AOB=∠BEC=10°,∴△ABO≌△BCO(AAS),∴BO=CE,BE=OA,∵A(﹣3,0),∴OA=BE=3,设OD=a,∴CD=OE=|a﹣3|,∵四边形ABCD的面积为36,∴12AO•OB+12(CD+OB)•OD=12×3×a+12(a﹣3+a)×a=36,∴a=±6,∴C(﹣6,1)或(6,3),设直线AB的解析式为y=kx+b,把A点和C点的坐标代入得,3063k bk b-+=⎧⎨+=⎩或3069,k bk b-+=⎧⎨-+=⎩解得:131kb⎧=⎪⎨⎪=⎩或39.kb=-⎧⎨=-⎩,∴直线AB的解析式为113y x=+或y=﹣3x﹣1.故答案为113y x=+或y=﹣3x﹣1.【点睛】本题考查了坐标与图形变化﹣旋转,待定系数法求函数的解析式,全等三角形的判定和性质,正确的作出图形是解题的关键.17.如图,在Rt △ABC ,∠C=90°,AC=12,BC=6,一条线段PQ=AB ,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QPA 全等,则AP= ______ .【答案】6或1【分析】本题要分情况讨论:①Rt △APQ ≌Rt △CBA ,此时AP=BC=6,可据此求出P 点的位置.②Rt △QAP ≌Rt △BCA ,此时AP=AC=1,P 、C 重合.【详解】解:①当AP=CB 时,∵∠C=∠QAP=90°,在Rt △ABC 与Rt △QPA 中,AP CB AB QP =⎧⎨=⎩, ∴Rt △ABC ≌Rt △QPA (HL ),即AP BC 6==;②当P 运动到与C 点重合时,AP=AC ,在Rt △ABC 与Rt △QPA 中,AP AC QP AB=⎧⎨=⎩ , ∴Rt △QAP ≌Rt △BCA (HL ),即AP AC 12==,∴当点P 与点C 重合时,△ABC 才能和△APQ 全等.综上所述,AP=6或1.故答案为6或1.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.三、解答题18.一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【答案】解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得111x 1.5x12 +=,解得x=1.经检验,x=1是方程的解且符合题意.1.5 x=2.∴甲,乙两公司单独完成此项工程,各需1天,2天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:1×5000=100000(元);乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元);∴让一个公司单独完成这项工程,甲公司的施工费较少.【解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.19.如图1,△ABC中,AD是∠BAC的角平分线,若AB=AC+CD.那么∠ACB 与∠ABC有怎样的数量关系? 小明通过观察分析,形成了如下解题思路:如图2,延长AC到E,使CE=CD,连接DE,由AB=AC+CD,可得AE=AB,又因为AD是∠BAC的平分线,可得△ABD ≌△AED,进一步分析就可以得到∠ACB 与∠ABC 的数量关系.(1) 判定△ABD 与△AED 全等的依据是______________(SSS,SAS,ASA,AAS 从其中选择一个);(2)∠ACB 与∠ABC 的数量关系为:___________________【答案】SAS ∠ACB =2∠ABC【解析】试题分析:(1)根据已知以及作法可知可以利用SAS 判定△ABD 与△AED 全等;(2)根据△ABD ≌△A ED ,可得∠B=∠E,由作法可知CE=CD ,从而得∠E=∠CDE,再利用三角形外角的性质即可得∠ACB=2∠ABC.试题解析:(1)延长AC 到E ,使CE=CD ,连接DE ,∵AB=AC+CD ,AE=AC+CE ,∴AE=AB ,又∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD ,又AD 是公共边,∴△ABD ≌△AED (SAS ),故答案为SAS ;(2)∵△ABD ≌△AED ,∴∠B=∠E ,∵CD=CE ,∴∠E=∠CDE ,∵∠ACB=∠E+∠CDE ,∴∠ACB=2∠B ,故答案为∠ACB=2∠B.【点睛】本题考查了三角形全等的判定与性质,等腰三角形的性质、三角形的外角等,正确添加辅助线是解题的关键.20.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为a 的大正方形,两块是边长都为b 的小正方形,五块是长为a ,宽为b 的全等小矩形,且a b >.(1)观察图形,将多项式22252a ab b ++分解因式;(2)若每块小矩形的面积为10,四个正方形的面积和为58.求下列代数式的值:①+a b .②22a b ab +.【答案】(1)()()2225222a ab b a b a b ++=++;(2)①7,②1.【分析】(1)整个图形的面积一方面可以表示为两个大正方形的面积+两个小正方形面积+五个小矩形的面积,另一方面又可表示为边长分别为2a+b 与a+2b 的矩形的面积,据此解答即可;(2)①根据题意可得:10ab =,222258a b +=,然后根据完全平方公式即可求出结果;②先将所求式子分解因式,然后把由①得到的关系式整体代入计算即可.【详解】解:(1)观察图形可知:()()2225222a ab b a b a b ++=++; (2)根据题意,得:10ab =,222258a b +=,∴22a b 29+=.①∵()22222921049a b a ab b +=++=+⨯=,又∵0a b +>,∴7a b +=;②()2210770ab a a b ab b ==⨯=++. 【点睛】本题考查了因式分解在几何图形中的应用,属于常见题型,利用图形面积不同的表示方法是解(1)题的关键,熟练掌握完全平方公式和分解因式的方法是解(2)题的关键.21.如图,以A 点为圆心,以相同的长为半径作弧,分别与射线,AM AN 交于,B C 两点,连接BC ,再分别以,B C 为圆心,以相同长(大于12BC )为半径作弧,两弧相交于点D ,连接,,AD BD CD .若40NCD ∠=︒,求MBD ∠的度数.【答案】∠MBD=40°【分析】由等腰三角形的性质得到∠ABC=∠ACB ,∠DBC=∠DCB ,则∠ABD=∠ACD ,再根据邻补角即可得到∠MBD=∠NCD .【详解】由题意可知AB=AC ,DB=DC∴∠ABC=∠ACB ,∠DBC=∠DCB∴∠ABC+∠DBC=∠ACB+∠DCB ,即∠ABD=∠ACD∴180°-∠ABD=180°-∠ACD ,即∠MBD=∠NCD∴∠MBD=40°【点睛】本题考查了等腰三角形的性质,根据作图描述得到AB=AC ,DB=DC 是解题的关键.22.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA 是线段,且BA ∥x 轴,AC 是射线.(1)当x ≥30,求y 与x 之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?【答案】(1)y=3x ﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.【解析】(1)由图可知,当x≥30时,图象是一次函数图象,设函数关系式为y=kx+b ,使用待定系数法求解即可;(2)根据题意,从图象上看,30小时以内的上网费用都是60元;(3)根据题意,因为60<75<90,当y=75时,代入(1)中的函数关系计算出x 的值即可.【详解】(1)当x≥30时,设函数关系式为y=kx+b ,则30604090k b k b +=⎧⎨+=⎩, 解得330k b =⎧⎨=-⎩, 所以y=3x ﹣30;(2)若小李4月份上网20小时,由图象可知,他应付60元的上网费;(3)把y=75代入,y=3x-30,解得x=35,∴若小李5月份上网费用为75元,则他在该月份的上网时间是35小时.【点睛】本题考查了一次函数的应用,待定系数法求一次函数关系式,准确识图、熟练应用待定系数法是解题的关键.23.解答下列各题:(12810. (2)解方程:22322x x x-=+++. 【答案】(1)425-(2)3x =-【分析】(1)利用二次根式的乘法法则运算;(2)先去分母得到23(2)2x x =++-,然后解整式方程后进行检验确定原方程的解.【详解】解:(1)原式28210=⨯⨯425=-(2)23(2)2x x =++-,解得3x =-,经检验,原方程的解为3x =-.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解分式方程.24.近年来,随着我国的科学技术的迅猛发展,很多行业已经由“中国制造”升级为“中国智造”,高铁事业是“中国智造”的典范.一般的高铁包括G 字头的高速动车组以及D 字头的动车组.由长沙到北京的高铁G84的平均速度是动卧D928的平均速度的1.2倍,行驶相同的路程1500千米,G84少用1个小时.(1)求动卧D928的平均速度.(2)若以“速度与票价的比值”定义这两种列车的性价比,人们出行都喜欢选择性价比高的方式.现阶段D928二等座的票价为491元/张,G84二等座的票价为649元/张,如果你有机会给有关部门提一个合理化建议,使G84的性价比与D928的性价比相近,你如何建议,为什么?【答案】(1)1千米/时;(2)为了G84的性价比与D928的性价比相近,建议适当降低G84二等座票价【分析】(1)设D928的平均速度为x 千米/时,则G84的平均速度为1.2x 千米/时,根据时间=路程÷速度,结合行驶相同的路程1500千米,G84少用1个小时,即可得出关于x 的分式方程,解之检验后即可得出结论;(2)利用“速度与票价的比值”求出这两种列车的性价比,进行比较即可得出结论.【详解】(1)设D928的平均速度为x 千米/时,则G84的平均速度为1.2x 千米/时. 由题意:150015001.2x x-=1, 解得x=1.经检验:x=1,是分式方程的解.答:D928的平均速度1千米/时.(2)G84的性价比=250 1.2649⨯≈0.46,D928的性价比=250491≈0.51, ∵0.51>0.46,∴为了G84的性价比与D928的性价比相近,建议适当降低G84二等座票价.【点睛】本题考查了分式方程的应用.找准等量关系,正确列出分式方程是解题的关键.25.如图,点 A 、B 、C 表示三个自然村庄,自来水公司准备在其间建一水厂P ,要求水厂P 到三个村的距离相等。
┃精选3套试卷┃2018届济南市八年级上学期期末达标测试数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如果把分式xyyx+中的x,y同时扩大为原来的4倍,现么该分式的值()A.不变B.扩大为原来的4倍C.缩小为原来的12D.缩小为原来的14【答案】D【分析】根据分式的性质可得4444x yx y+⋅=4()16x yxy+=14•xyyx+,即可求解.【详解】解:x,y同时扩大为原来的4倍,则有4444x yx y+⋅=4()16x yxy+=14•xyyx+,∴该分式的值是原分式值的14,故答案为D.【点睛】本题考查了分式的基本性质,给分子分母同时乘以一个整式(不为0),不可遗漏是解答本题的关键.2.方程2x+y=5与下列方程构成的方程组的解为31xy=⎧⎨=-⎩的是()A.x﹣y=4 B.x+y=4 C.3x﹣y=8 D.x+2y=﹣1 【答案】A【分析】将31xy=⎧⎨=-⎩分别代入四个方程进行检验即可得到结果.【详解】解:A、将31xy=⎧⎨=-⎩代入x﹣y=4,得左边=3+1=4,右边=4,左边=右边,所以本选项正确;B、将31xy=⎧⎨=-⎩代入x+y=4 ,得左边=3−1=2,右边=4,左边≠右边,所以本选项错误;C、将31xy=⎧⎨=-⎩代入3x﹣y=8,得左边=3×3+1=10,右边=8,左边≠右边,所以本选项错误;D、将31xy=⎧⎨=-⎩代入x+2y=﹣1 ,得左边=3−2=1,右边=-1,左边≠右边,所以本选项错误;故选A.【点睛】本题考查了二元一次方程组的定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组3.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是()A.(12)n•75°B.(12)n﹣1•65°C.(12)n﹣1•75°D.(12)n•85°【答案】C【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的底角度数.【详解】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C=1802B︒-∠=75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=12∠BA1C=12×75°;同理可得,∠EA3A2=(12)2×75°,∠FA4A3=(12)3×75°,∴第n个三角形中以A n为顶点的底角度数是(12)n﹣1×75°.故选:C.【点睛】本题考查等腰三角形的性质和三角形外角的性质,解题的关键是根据这两个性质求出∠DA2A1,∠EA3A2及∠FA4A3的度数,探索其规律.4.一次函数y=﹣2x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【分析】先根据一次函数的系数判断出函数图象所经过的象限,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+2中,k=﹣2<0,b=2>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选:C.本题考查一次函数的图象与系数的关系,熟知当k <0,b >0时,一次函数y=kx+b 的图象在一、二、四象限是解题关键.5.若分式3x x -的值为0,则x 的取值是( ) A .3x =B .0x =C .0x =或3D .以上均不对【答案】B【分析】根据分式的值为零的条件可得到0,30x x =-≠,再解可以求出x 的值.【详解】解:由题意得:0,30x x =-≠,解得:x=1,故选:B .【点睛】本题主要考查了分式值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可. 6.下列各式:213,,,3122x x a b a x a π+-++中,分式的个数有( ) A .1个B .2个C .3个D .4个 【答案】B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 【详解】解:3,312x a b x a -++的分母中含有字母,是分式; 21,2x a π+的分母中不含字母,不是分式; 故选:B .【点睛】本题主要考查分式的概念,掌握分式的概念是解题的关键.7.已知11x y=3,则代数式232x xy y x xy y +---的值是( ) A .72- B .112- C .92 D .34【答案】D【分析】由113x y -=得出3y x xy -=,即3x y xy -=-,整体代入原式()()23x y xy x y xy-+=--,计算可得.【详解】 113x y-=, ∴ 3y x xy-=, ∴ 3x y xy -=-,则原式()()236333344x y xyxy xy xy x y xy xy xy xy -+-+-====-----. 故选:D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.8.下列图形中,不一定是轴对称图形的是( )A .正方形B .等腰三角形C .直角三角形D .圆【答案】C【解析】正方形、等腰三角形、圆一定是轴对称图形,等腰直角三角形是轴对称图形,故选C 9.下列计算中,正确的是( )A .x 3•x 2=x 4B .x(x-2)=-2x+x 2C .(x+y)(x-y)=x 2+y 2D .3x 3y 2÷xy 2=3x 4 【答案】B【分析】根据同底数幂的乘法、整式的乘法和除法计算即可.【详解】解:A 、x 3•x 2=x 5,错误;B 、x(x-2)=-2x+x 2,正确;C 、(x+y)(x-y)=x 2-y 2,错误;D 、3x 3y 2÷xy 2=3x 2,错误;故选:B .【点睛】本题考查了同底数幂的乘法、单项式乘多项式、平方差公式和单项式的除法运算,熟练掌握运算法则是解答本题的关键.10.等边三角形的两个内角的平分线所夹的钝角的度数为( )A .60︒B .80︒C .100︒D .120︒ 【答案】D【分析】画出图形,根据内角平分线的定义求出∠OBC 和∠OCB 的度数,再根据三角形的内角和定理求出∠BOC 的度数.【详解】如图:∵∠ABC =∠ACB =60︒,BO 、CO 是两个内角的平分线,∴∠OBC =∠OCB =30︒,∴在△OBC 中,∠BOC =180︒−30︒−30︒=120︒.故选D .【点睛】本题考查了等边三角形的性质,知道等边三角形的每个内角是60度是解题的关键.二、填空题11.下面是一个按某种规律排列的数表: 第1行1 第2行 23 2 第3行 5 6 7 22 3第4行 10 11 23 13 14 15 4 … …那么第n (1n >,且n 是整数)行的第2个数是________.(用含n 的代数式表示)2(1)2n -+【分析】根据每一行的最后一个数的被开方数是所在的行数的平方,写出第()1n -行的最后一个数的平方是()21n -,据此可写出答案.【详解】第242=,第393=,第4164=,第()1n -()211n n -=-, 第n ()211n -+第n 行第二个数字是:()212n -+, 故答案为:()212n -+【点睛】 本题考查了规律型-数字变化,解题的关键是确定每一行最后一个数字.12.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.【答案】1【分析】以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.【详解】解:如图所示,以其中任意三个点为顶点画三角形,最多可以画1个三角形,故答案为:1.【点睛】本题考查的是几何图形的个数,我们根据三角形的定义,在画图的时候要注意按照一定的顺序,保证不重复不遗漏.13.若23,22m n ==,则24m n +等于______.【答案】1【分析】根据幂的乘方,将24m n +的底数化为2,然后根据同底数幂乘方的逆用和幂的乘方的逆用计算即可.【详解】解:24m n +=()222m n +=242m n +=2422m n •=()()2422mn • 将23,22m n ==代入,得原式=2432144⨯=故答案为:1.【点睛】此题考查的是幂的运算性质,掌握同底数幂乘方的逆用和幂的乘方及逆用是解决此题的关键. 14.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=910-米,用科学记数法将16纳米表示为__________________米.【答案】81.610-⨯【分析】由1纳米=10-9米,可得出16纳米=1.6×10-1米,此题得解.【详解】∵1纳米=10-9米,∴16纳米=1.6×10-1米.故答案为1.6×10-1.【点睛】本题考查了科学计数法中的表示较小的数,掌握科学计数法是解题的关键.15.如图,边长为1的正方形ABCD 绕点A 逆时针旋转45度后得到正方形AB C D ''',边B C ''与DC 交于点O ,则四边形AB OD '的周长是_______________.【答案】22【分析】由题意可知当AB 绕点A 逆时针旋转45度后,刚回落在正方形对角线AC 上,据此求出 B ′C ,再根据等腰直角三角形的性质,勾股定理可求B ′O 和OD ,从而可求四边形AB ′OD 的周长.【详解】解:连接B ′C ,∵旋转角∠BAB ′=45°,∠BAC=45°,∴B ′在对角线AC 上,∵AB=BC= AB ′=1,用勾股定理得,∴B ′C = AC -AB ′=-1,∵旋转角∠BAB ′=45°,AC 为对角线,∠AB ′O =90°,∴∠CB ′O =90°,∠B ′CO =45°,即有△OB ′C 为等腰直角三角形,在等腰Rt △OB ′C 中,OB ′=B ′-1,在直角三角形OB ′C 中,由勾股定理得 -1),∴OD=1-OC=1-()-1,∴四边形AB ′OD 的周长是:2AD+OB ′-1=故答案为:.【点睛】本题考查正方形的性质,旋转的性质,特殊三角形边长的求法,连接B ′C 构造等腰Rt △OB ′C 是解题的关键.16.已知a =1,则a 2+2a+2的值是_____.【答案】1.【分析】先将多项式配方后再代入可解答.【详解】解:∵a =1,∴a 2+2a+2=(a+1)2+1=1+1)2+1=11+1=1.故答案为:1.【点睛】本题考查了完全平方式和二次根式的化简,熟记完全平方公式对解题非常重要.17.计算()20192019122⎛⎫⨯- ⎪⎝⎭的结果是____.【答案】-1 【分析】根据题意直接利用积的乘方运算法则将原式变形,即可求出答案. 【详解】解:()()201920192019201911221122⎛⎫⎛⎫⨯-=-⨯=-=- ⎪ ⎪⎝⎭⎝⎭.故答案为:-1.【点睛】 本题主要考查幂的运算法则,熟练掌握幂的运算法则是解答本题的关键.三、解答题18.某地教育局为了解该地八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:请根据图中提供的信息,回答下列问题:(1)a =___________,并写出该扇形所对圆心角的度数为___________,请补全条形统计图. (2)在这次抽样调查中,众数为___________,中位数为___________.【答案】(1)10%,36︒,见解析;(2)5天,6天【分析】(1)根据各部分所占比的和等于1列式可算出a ,再用360°乘以所占百分比求出对应的圆心角的度数,然后用被抽查学生的人数乘以8所占百分比可求出8天的人数,补全条形图即可;(2)用众数和中位数的定义解答.【详解】解:(1)125%20%40%5%10%=----=a ,36010%36︒⨯=︒,24040%10%60÷⨯=(人),故补全条形统计图如下:(2)参加社会实践活动5天的人数最多,所以众数是5天;所有人参加社会实践活动的天数按照从少到多排列,第300人和第301人都是6天,所以中位数是6天.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.19.计算:(1)()22353a a ⋅- (3)(2)6(1)x x x -+--(2)分解因式3728x x - 2232x y xy y -+(3)解分式方程232x x =+ 21124x x x -=-- 【答案】(1)845a ,27x x -;(2)7(2)(2)+-x x x ,2()y x y -;(3)4x =,32x =-【分析】(1)根据整式的混合运算法则进行计算即可;(2)根据提公因式法和公式法进行因式分解;(3)先把分式方程化为整式方程求出x 的值,再代入最简公分母进行检验即可.【详解】解::(1)()223268535945⋅-=⋅=a a a a a ,22(3)(2)6(1)326667-+--=-+--+=-x x x x x x x x x ;(2)327287(4)7(2)(2)-=-=+-x x x x x x x , 222223(2)(2)=-++=--x y xy y x xy y y x y y ;(3)232x x =+ 方程两边同时乘(2)x x +得:2(2)3x x +=,去括号、移项得:234-=-x x ,解得:4x =,经检验,4x =是原方程的解,所以4x =,21124x x x -=-- 方程两边同时乘24x -得:2(2)14x x x +-=-,去括号、移项得:22241-+=-+x x x , 解得:32x =-, 经检验,32x =-是原方程的解, 所以32x =-. 【点睛】本题综合考查了整式的混合运算、因式分解和分式方程的解法,要注意分式方程求解后要验根. 20.计算:(1) ()()2211x x x x ---+ (2) ()()222299n m m n -++ (3) 2244112a a a a a -+-⨯-- 【答案】 (1) 231x x -+(2) 4481m n -(3) 21a a -+ 【分析】(1)根据整式的乘法运算法则即可求解;(2)根据平方差公式即可求解;(3)根据分式的乘法运算法则即可求解.【详解】(1) ()()2211x x x x ---+ =22221x x x x -+--=231x x -+(2) ()()222299n m m n -++=4481m n - (3) 2244112a a a a a -+-⨯-- =()()2(2)1112a a a a a --⨯+-- =21a a -+ 【点睛】此题主要考查整式与分式的运算,解题的关键是熟知其运算法则.21.学校到- -家文具店给九年级学生购买考试用文具包,该文具店规一次购买300个以上,可享受八折优惠.若给九年级学生每人购买一个,则不能享受八折优惠,需付款2520元;若再多买70个就可享受八折优惠,并且同样只需付款2520元.求该校九年级学生的总人数. (列分式方程解答)【答案】该校九年级学生的总人数是280人.【分析】首先设九年级学生有x 人,根据“给九年级学生每人购买一个,不能享受8折优惠,需付款2520元”可得每个文具包的花费是2520x元,根据“若多买70个,就可享受8折优惠,同样只需付款2520元”可得每个文具包的花费是252070x +元,根据题意可得方程即可 【详解】解:设该校九年级学生的总人数是x 人, 由题意得,252025200.870x x ⨯=+ 解得: 280x =,经检验: 280x =是原分式方程的解,且符合题意.答:该校九年级学生的总人数是280人.【点睛】此题主要考查了分式方程的应用,关键是弄清题意,找出题目中的等量关系,列出方程,列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.22.已知:如图,AB=AC ,AD=AE ,∠1=∠1.求证:△ABD ≌△ACE .【答案】证明见解析.【分析】首先得出∠EAC=∠BAD ,进而利用全等三角形的判定方法(SAS) 得出即可.【详解】证明:∵∠1=∠1,∴∠EAC=∠BAD ,在△DAB 和△EAC 中,=AB AC BAD EAC AD AE =⎧⎪∠∠⎨⎪=⎩,∴△ABD ≌△ACE(SAS);【点睛】本题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.23.如图,在△ABC 中,D 是BC 边上的点(不与点B ,C 重合),连结AD(1)如图1,当点D 是BC 边上的中点时,则S △ABD :S △ACD =_________(直接写出答案)(2)如图2,当AD 是∠BAC 的平分线时,若AB=m ,AC=n ,S △ABD :S △ACD =_________ (用含m,n 的代数式表示).(3)如图3,AD 平分∠BAC ,延长AD 到E ,使得AD=DE,连结BE ,如果AC=2,AB=4,S △BDE =6,求△ABC 的面积.【答案】(1)1:1;(2)m ∶n ;(3)1【分析】(1)过A 作AE ⊥BC 于E ,根据三角形面积公式求出即可;(2)过D作DE⊥AB于E,DF⊥AC于F,根据角平分线性质求出DE=DF,根据三角形面积公式求出即可;(3)根据已知和(1)(2)的结论求出△ABD和△ACD的面积,即可求出答案.【详解】解:(1)过A作AE⊥BC于E,∵点D是BC边上的中点,∴BD=DC,∴S ABD:S△ACD=(12×BD×AE):(12×CD×AE)=1:1,故答案为:1:1;(2)过D作DE⊥AB于E,DF⊥AC于F,∵AD为∠BAC的角平分线,∴DE=DF,∵AB=m,AC=n,∴S ABD:S△ACD=(12×AB×DE):(12×AC×DF)=m:n;(3)∵AD=DE,∴由(1)知:S△ABD:S△EBD=1:1,∵S△BDE=6,∴S△ABD=6,∵AC=2,AB=4,AD平分∠CAB,∴由(2)知:S△ABD:S△ACD=AB:AC=4:2=2:1,∴S△ACD=3,∴S△ABC=3+6=1,故答案为:1.【点睛】本题考查了角平分线性质和三角形的面积公式,能根据(1)(2)得出规律是解此题的关键.24.如图,已知,D、E分别是△ABC的边AB、AC上的点,DE交BC的延长线于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠F和∠BDF的度数.【答案】∠F=26°,∠BDF=87°.【分析】根据对顶角相等可知∠CEF=∠AED;又∠ACB是△CEF的外角,所以根据外角的性质求出∠F;根据三角形内角和定理可求∠BDF的度数.【详解】解:∵∠CEF=∠AED=48°,∠ACB=∠CEF+∠F,∴∠F=∠ACB﹣∠CEF=74°﹣48°=26°;∵∠BDF+∠B+∠F=180°,∴∠BDF=180°﹣∠B﹣∠F=180°﹣67°﹣26°=87°.【点睛】此题考查三角形内角和定理和三角形的外角的性质,正确识图运用定理进行推理计算是关键.25.A,B两地相距80km,甲、乙两人骑车同时分别从A,B两地相向而行,假设他们都保持匀速行驶,则他们各自到A地的距离s(km)都是骑车时间t(h)的一次函数,如图所示.(1)求乙的s乙与t之间的解析式;(2)经过多长时间甲乙两人相距10km?【答案】(1)s乙=﹣20t+80;(2)t=2或187.【分析】(1)s乙与t之间的解析式为:y=kt+80,将点(1,60)代入上式并解得:k=−20,即可求解;(2)由题意得:s甲−s乙=±10,即可求解.【详解】解:(1)s乙与t之间的解析式为:y=kt+80,将点(1,60)代入上式并解得:k=﹣20,故s乙与t之间的解析式为:y=﹣20t+80;(2)同理s甲与t之间的解析式为:y=15t,由题意得:s甲﹣s乙=±10,即﹣20t+80﹣15t=±10,解得:t=2或187.【点睛】此题为一次函数的应用,渗透了函数与方程的思想,重点是求乙的k值.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边ABC ∆和等边CDE ∆,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .下列五个结论:①AD BE =;②//PQ AE ;③AP BQ =;④DE=DP ;⑤60AOB ∠=︒.其中正确结论的个数是()A .2个B .3个C .4个D .5个【答案】C 【分析】①由于△ABC 和△CDE 是等边三角形,可知AC=BC ,CD=CE ,∠ACB=∠DCE=60°,从而证出△ACD ≌△BCE ,可推知AD=BE ;②由△ACD ≌△BCE 得∠CBE=∠DAC ,加之∠ACB=∠DCE=60°,AC=BC ,得到△CQB ≌△CPA (ASA ),再根据∠PCQ=60°推出△PCQ 为等边三角形,又由∠PQC=∠DCE ,根据内错角相等,两直线平行,可知②正确;③根据②△CQB ≌△CPA (ASA ),可知③正确;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ ,∠CDE=60°,可知∠DQE≠∠CDE ,可知④错误;⑤由BC ∥DE ,得到∠CBE=∠BED ,由∠CBE=∠DAE ,得到∠AOB=∠OAE+∠AEO=60°.【详解】解:∵等边△ABC 和等边△CDE ,∴AC=BC ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD ,即∠ACD=∠BCE ,在△ACD 与△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE (SAS ),∴AD=BE , 故①正确,∵△ACD ≌△BCE ,∴∠CBE=∠DAC ,又∵∠ACB=∠DCE=60°,∴∠BCD=60°,即∠ACP=∠BCQ ,又∵AC=BC ,∴△CQB ≌△CPA (ASA ),∴CP=CQ ,又∵∠PCQ=60°可知△PCQ为等边三角形,∴∠PQC=∠DCE=60°,∴PQ∥AE,故②正确,∵△CQB≌△CPA,∴AP=BQ,故③正确,∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∵∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故④错误;∵BC∥DE,∴∠CBE=∠BED,∵∠CBE=∠DAE,∴∠AOB=∠OAE+∠AEO=60°,故⑤正确;综上所述,正确的有4个,故选C.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,找到不变量,是解题的关键.2.若分式23xx-+的值为0,则x的值等于()A.0B.2C.3D.-3【答案】B【解析】分式的值为0,分子为0分母不为0,由此可得x-2=0且x+3≠0,解得x=2,故选B.3.下列说法正确的是()A.-3是-9的平方根B.1的立方根是±1C.a是2a的算术平方根D.4的负的平方根是-2【答案】D【解析】各式利用平方根,立方根定义判断即可.【详解】A.﹣3是9的平方根,不符合题意;B.1的立方根是1,不符合题意;C.当a>0时,a是2a的算术平方根,不符合题意;D.4的负的平方根是-2,符合题意.故选D.【点睛】本题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解答本题的关键.4.若代数式23x -有意义,则实数x 的取值范围是( ) A .x=0B .x=3C .x≠0D .x≠3【答案】D【解析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x ﹣3≠0,解得,x≠3,故选D .点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零. 5.已知数据1x ,2x ,3x 的平均数为m ,数据1y ,2y ,3y 的平均数为n ,则数据112x y +,222x y +,332x y +的平均数为( ).A .2m n +B .2n m ++C .()2m n +D .12m n + 【答案】A【分析】通过条件列出计算平均数的式子,然后将式子进行变形代入即可.【详解】解:由题意可知1233x x x m ++=,1233y y y n ++=, ∴()1221231122332222233x x x y y y x y x y x y m n ++++++++++==+, 故选:A .【点睛】本题考查了平均数的计算,熟练掌握平均数的计算方法并将式子进行正确的变形是解题的关键. 6.如图,在△ABC 中,AB =AC ,AE 是∠BAC 的平分线,点D 是线段AE 上的一点,则下列结论错误的是( )A .AE ⊥BCB .BE =CEC .∠ABD =∠DBE D .△ABD ≌△ACD【答案】C 【分析】根据等腰三角形的性质以及三角形全等的判定定理,逐一判断选项,即可.【详解】∵在△ABC 中,AB =AC ,AE 是∠BAC 的平分线,∴AE ⊥BC ,故选项A 正确;∴BE =CE ,故选项B 正确;在△ABD 和△ACD 中,∵AB AC BAD CAD AD AD =⎧⎪=⎨⎪=⎩∠∠,∴△ABD ≌△ACD (SAS ),故选项D 正确;∵D 为线段AE 上一点,BD 不一定是∠ABC 的平分线,∴∠ABD 与∠DBE 不一定相等,故选项C 错误;故选:C .【点睛】本题主要考查等腰三角形的性质以及三角形全等的判定定理,掌握等腰三角形三线合一,是解题的关键. 7.已知点(1,2)P m n -+与(24,2)Q m -关于x 轴对称,则2019()m n +的值为( )A .1B .1-C .2019D .2019- 【答案】B【分析】根据关于x 轴对称的点的坐标规律可求出m 、n 的值,代入即可得答案.【详解】∵点(1,2)P m n -+与(24,2)Q m -关于x 轴对称,∴m-1=2m-4,n+2=-2,解得:m=3,n=-4,∴2019()m n +=(3-4)2019=-1. 故选B.【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数;掌握好对称点的坐标规律是解题关键.8.下列各式中,从左到右的变形是因式分解的是( )A .()()2111x x x +-=-B .()24444x x x x -+=-+ C .()()23412x x x x +-=-- D .()()2422x x x -=+- 【答案】D【分析】根据因式分解的意义(把一个多项式化成几个整式的积的形式,这个过程叫因式分解)逐个判断即可.【详解】解:A 、是整式的乘法,不是因式分解,故本选项不符合题意; B 、右边不是积的形式,所以不是因式分解,故本选项不符合题意; C 、是整式的乘法,不是因式分解,故本选项不符合题意; D 、是因式分解,故本选项符合题意; 故选:D . 【点睛】本题考查了因式分解的定义,能正确理解因式分解的定义是解此题的关键. 9.当x=-1时,代数式()22(1)1x x x x x --+-的结果是( ) A .-3 B .1 C .-1 D .-6【答案】A【分析】把x=-1代入,根据有理数混合运算法则计算即可得答案. 【详解】∵x=-1,∴()22(1)1x x x x x --+- =(-1)2×(-1-1)-(-1)[(-1)2+(-1)-1] =-2+(-1) =-3. 故选:A. 【点睛】本题考查代数式求值,熟练掌握有理数混合运算法则是解题关键.10.已知两条线段a=2cm ,b=3.5cm ,下列线段中能和a ,b 构成三角形的是( ) A .5.5cm B .3.5cmC .1.3cmD .1.5cm【答案】B【分析】此题首先根据三角形的三边关系,求得第三边的取值范围,再进一步找到符合条件的数值. 【详解】根据三角形的三边关系,得:第三边应>两边之差,即3.5−2=1.5cm ;而<两边之和,即3.5+2=5.5cm .所给的答案中,只有3.5cm 符合条件. 故选:B . 【点睛】此题考查了三角形三边关系.一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边. 二、填空题11.如图,利用图①和图②的阴影面积相等,写出一个正确的等式_____.【答案】(a+2)(a﹣2)=a2﹣1【分析】根据图形分别写出图①与图②中阴影部分面积,由阴影部分面积相等得出等式.【详解】∵图①中阴影部分面积=(a+2)(a﹣2),图②中阴影部分面积=a2﹣1,∵图①和图②的阴影面积相等,∴(a+2)(a﹣2)=a2﹣1,故答案为:(a+2)(a﹣2)=a2﹣1.【点睛】本题考查平方差公式的几何背景,结合图形得到阴影部分的面积是解题的关键.12.某校七()1班有45名学生,期中考试的数学平均成绩是76分,七()2有55名学生,期中考试的数学平均成绩是72分,这两个班期中考试的数学平均成绩是______分.【答案】73.8【分析】根据平均数的定义,算出两个班总分数的和,再除以总人数即可.【详解】解:七(1)班的总分=45×76=3420,七(2)班的总分=55×72=3960,∴两个班期中考试的数学平均成绩=(3420+3960)÷(45+55)=73.8.故答案为:73.8.【点睛】本题考查了平均数的定义,解题的关键是掌握平均数的求法.13.市运会举行射击比赛,射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10次成绩(单位:环)的平均数及方差如下表.根据表中提供的信息,你认为最合适的人选是_____,理由是_________.甲乙丙丁平均数8.3 8.1 8.0 8.2方差 2.1 1.8 1.6 1.4【答案】丁;综合平均数和方差两个方面说明丁成绩既高又稳定【分析】根据甲,乙,丙,丁四个人中甲和丁的平均数最大且相等,甲,乙,丙,丁四个人中丁的方差最小,说明丁的成绩最稳定,得到丁是最佳人选.【详解】∵甲,乙,丙,丁四个人中甲和丁的平均数最大且相等, 甲,乙,丙,丁四个人中丁的方差最小, 说明丁的成绩最稳定,∴综合平均数和方差两个方面说明丁成绩既高又稳定, ∴丁是最佳人选. 故答案为:丁. 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14__________.【答案】【分析】先算开方,再算乘法,最后算减法即可.===故答案为: 【点睛】本题考查了无理数的混合运算,掌握无理数的混合运算法则是解题的关键. 15.由a b >,得到22ac bc >的条件是:c ______1. 【答案】≠【分析】观察不等式两边同时乘以一个数后,不等式的方向没有改变,由此依据不等式的性质进行求解即可.【详解】∵由a b >,得到22ac bc >, ∴c 2>1,∴c ≠1, 故答案为:≠. 【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变;基本性质2:不等式两边同时乘以(或除以)同一个大于1的整式,不等号方向不变;基本性质3:不等式两边同时乘以(或除以)同一个小于1的整式,不等号方向改变.16.2213(4)()3π-+---=_______. 【答案】1【分析】根据负整数指数幂,零指数幂,整数指数幂的运算法则计算即可. 【详解】原式=19+1-19=1, 故答案为:1. 【点睛】本题考查了实数的运算,掌握负整数指数幂,零指数幂,整数指数幂的运算法则是解题关键. 17.在ABC ∆中,将B ,C ∠按如图所示方式折叠,点B ,C 均落于边BC 上一点Q 处,线段MN ,EF 为折痕,若82A ∠=︒,则MQE ∠=______.【答案】82︒【分析】由折叠的性质,得到∠MQN=∠B ,∠EQF=∠C ,由三角形内角和定理,得到∠B+∠C=98°,根据平角的定义,即可得到答案.【详解】解:由折叠的性质,得到∠MQN=∠B ,∠EQF=∠C , ∵∠A+∠B+∠C=180°, ∴∠B+∠C=180°82-︒=98°, ∴∠MQN+∠EQF=98°, ∴1809882MQE ∠=︒-︒=︒; 故答案为:82︒. 【点睛】本题考查了折叠的性质,三角形内角和定理,以及平角的定义,解题的关键是熟练掌握折叠的性质进行解题. 三、解答题18.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:AD 平分BAC ∠.【答案】见解析【分析】证明Rt △BDE ≌Rt △CDF ,得到DE=DF ,即可得出AD 平分BAC ∠. 【详解】∵DE ⊥AB ,DF ⊥AC , ∴∠E=∠DFC=90°在Rt △BDE 和Rt △CDF 中,BD CDBE CF ⎧⎨⎩==, ∴Rt △BDE ≌Rt △CDF (HL ), ∴DE=DF , ∴AD 平分∠BAC . 【点睛】此题考查角平分线的判定定理:在角的内部,到角的两边的距离相等的点在角的平分线上.19.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?【答案】10【分析】试题分析:由题意可构建直角三角形求出AC 的长,过C 点作CE ⊥AB 于E ,则四边形EBDC 是矩形.BE=CD,AE 可求,CE=BD,在Rt △AEC 中,由两条直角边求出AC 长.试题解析:如图,设大树高为AB=10m ,小树高为CD=4m ,过C 点作CE ⊥AB 于E ,则四边形EBDC 是矩形.∴EB=CD=4m ,EC=8m .AE=AB -EB=10-4=6m .连接AC ,在Rt △AEC 中,2210m.AC AE EC =+=.考点:1.勾股定理的运用;2.矩形性质. 【详解】请在此输入详解!20.如图,ABC 中,BD 平分ABC ∠,DE AB ⊥于点E ,DF BC ⊥于F ,ABCS 18=,AB 8=,BC 4=,求DE 长.【答案】3【解析】根据角平分线的性质得到DE DF =,然后根据三角形的面积列方程即可得到结论. 【详解】解:BD 是ABC ∠的平分线,DE AB ⊥于点E ,DF BC ⊥于点F ,DE DF ∴=,ABCABD BDC11SSSAB DE BC DF 1822=+=⋅+⋅=, 即118DE 4DE 1822⨯⋅+⨯⋅=, 解得:DE 3=. 【点睛】考查了角平分线的性质,三角形的面积的计算,熟练掌握角平分线的性质是解题的关键. 21.如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE=∠ACD=90°,∠BAC=∠D ,BC=CE . (1)求证:AC=CD ;(2)若AC=AE ,求∠DEC 的度数.【答案】(1)证明见解析;(2)112.5°.【分析】()1根据同角的余角相等可得到24∠=∠,结合条件BAC D ∠=∠,再加上BC CE =, 可证得结论;()2根据90ACD AC CD ∠=︒=,,得到145D ∠=∠=︒, 根据等腰三角形的性质得到3567.5∠=∠=︒, 由平角的定义得到1805112.5DEC ∠=︒-∠=︒. 【详解】() 1证明:90BCE ACD ∠=∠=︒, 2334,∴∠+∠=∠+∠ 24∴∠=∠,在△ABC 和△DEC 中,24BAC DBC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABC DEC ∴≌, AC CD ∴=;(2)∵∠ACD =90°,AC =CD , ∴∠1=∠D =45°, ∵AE =AC , ∴∠3=∠5=67.5°,∴∠DEC =180°-∠5=112.5°.22.如图,在等腰Rt ABC ∆中,AB AC =,8BC =,D 是BC 边上的中点,点B ,F 分别是边AB ,AC 上的动点,点E 从顶点B 沿BA 方向作匀速运动,点F 从从顶点A 沿AC 方向同时出发,且它们的运动速度相同,连接DE ,DF .(1)求证:BDE ADF ∆≅∆.(2)判断线段DE 与DF 的位置及数量关系,并说明理由.(3)在运动过程中,BDE ∆与CDF ∆的面积之和是否为定值?若是,请求出这个定值;若不是,请说明理由.【答案】(1)证明见解析;(2)DE ⊥DF ,DE=DF ,证明见解析;(3)△BDE 与△CDF 的面积之和始终是一个定值,这个定值为1.【解析】(1)由题意根据全等三角形的判定运用SAS ,求证BDE ADF ∆≅∆即可;(2)根据全等三角形的性质结合中点和垂线定义,进行等量替换即可得出线段DE 与DF 的位置及数量关系;(3)由题意根据全等三角形的性质得出S △BDE +S △CDF =S △ADF +S △CDF =S △ADC , 进而分析即可得知BDE ∆与CDF ∆的面积之和.【详解】解:(1)∵AB=AC ,D 是BC 边上的中点, ∴AD 是BC 边上的高 又∵∠BAC=90°,∴∠ABD=∠DAF=∠BAD=45°, ∴BD=AD又由题意可知BE=AF , ∴△BDE ≌△ADF(SAS). (2)∵DE ⊥DF ,DE=DF, 理由如下: ∵△BDE ≌△ADF , ∴DE=DF ,∠BDE=∠ADF ∵AB=AC ,D 是BC 边上的中点, ∴AD ⊥BC ,∠BDE+∠ADE=90°, ∴∠ADE+∠ADF=90°,DE ⊥DF.(3)在运动过程中,△BDE 与△CDF 的面积之和始终是一个定值 ∵AB=AC ,D 是BC 边上的中点,∠BAC=90°, ∴AD=BD=BC=4 又∵△BDE ≌△ADF S △BDE +S △CDF =S △ADF +S △CDF =S △ADC 又∵S △ADC =S △ABC =12.BC .AD=1 ∵点E ,F 在运动过程中,△ADC 的面积不变,∴△BDE 与△CDF 的面积之和始终是一个定值,这个定值为1. 【点睛】本题考查全等三角形的综合问题,熟练掌握全等三角形的性质与判定是解题的关键.。
★试卷3套精选★济南市2018届八年级上学期期末达标检测数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列计算中正确的是( )A .235a b a +=B .1025a a a ÷=C .248a a a ⋅=D .()326a a =【答案】D【分析】运用幂的运算法则即可进行判断.【详解】A 中2a 和3b 不是同底数幂,也不是同类项,不能合并,A 错;同底数幂相除,底数不变,指数相减,B 错;同底数幂相乘,底数不变,指数相加,C 错;幂的乘方,底数不变,指数相乘,D 对故本题正确选项为D .【点睛】本题考查了幂的运算法则,掌握相关知识点是解决本类题的关键.2.若a 、b 、c 为ABC ∆的三边长,且满足|2|0a -=,则c 的值可以为( ) A .2B .5C .6D .8 【答案】B【分析】根据非负数的性质列方程求出a 、b 的值,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出c 的取值范围,然后解答即可.【详解】解:由题意得,20a -=,40b -=,解得:2a =,4b =,∵4−2=2,4+2=6,∴26c <<,∴c 的值可以为1.故选:B .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0;三角形的三边关系:三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边.3.已知等腰三角形的周长为 17cm ,一边长为 5cm ,则它的腰长为( )A .5cmB .6cmC .5.5cm 或 5cmD .5cm 或 6cm 【答案】D【分析】分为两种情况:5cm 是等腰三角形的底边或5cm 是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】解:当5cm 是等腰三角形的底边时,则其腰长是(17-5)÷2=6(cm ),能够组成三角形; 当5cm 是等腰三角形的腰时,则其底边是17-5×2=7(cm ),能够组成三角形.故该等腰三角形的腰长为:6cm 或5cm .故选:D .【点睛】本题考查了等腰三角形的两腰相等的性质,三角形的三边关系,熟练掌握等腰三角形的性质是解题的关键. 4.下列各式中,属于分式的是( )A .1x -B .3aC .()35m n +D .2b【答案】D【分析】由题意根据分式的定义进行解答即可,即分母中含有未知数的式子叫分式.【详解】解:A 、1x -没有分母,所以它是整式,故本选项错误; B 、3a 的分母中不含有字母,因此它们是整式,而不是分式,故本选项错误; C 、()35m n +的分母中不含有字母,因此它们是整式,而不是分式,故本选项错误; D 、2b的分母中含有字母,因此它们是分式,故本选项正确; 故选:D .【点睛】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.5.如图,AD 是ABC ∆的中线,CE 是ACD ∆的中线,DF 是CDE ∆的中线,若2DEF S ∆=,则ABC S ∆等于( )A .16B .14C .12D .10【答案】A 【分析】根据三角形的中线将三角形分成面积相等的两个三角形即可解答.【详解】解:∵DF 是CDE ∆的中线,2DEF S ∆=,∴24DEC DEF S S ∆∆==,又∵CE 是ACD ∆的中线,∴28ADC DEC S S ∆∆==,又∵AD 是ABC ∆的中线,∴126ABC ADC S S ∆∆==,故答案为:A .【点睛】本题考查了三角形的中线的性质,解题的关键是熟知三角形的中线将三角形分成面积相等的两个三角形. 6.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm ,在容器内壁离容器底部4 cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4 cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为15 cm ,则该圆柱底面周长为( )cm .A .9B .10C .18D .20【答案】C 【分析】将容器侧面展开,建立A 关于上边沿的对称点A’,根据两点之间线段最短可知A’B 的长度为最短路径15,构造直角三角形,依据勾股定理可以求出底面周长的一半,乘以2即为所求.【详解】解:如图,将容器侧面展开,作A 关于EF 的对称点'A ,连接'A B ,则'A B 即为最短距离,根据题意:'15A B cm =,12412BD AE cm =-+=,2222'15129A D A B BD ∴-=-'==.所以底面圆的周长为9×2=18cm.故选:C .【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.7.下列语句,其中正确的有( )①同位角相等;②点(0,-2)在x 轴上;③点(0,0)是坐标原点A .0个B .1个C .2个D .3个【答案】B【分析】根据平行线的性质以及平面直角坐标系的点坐标特点进行判断,找到正确的结论个数即可.【详解】解:①两直线平行,同位角相等,故此结论错误;②点(0,-2)的横坐标为0,是y 轴上的点,故此结论错误;③点(0,0)是坐标原点,故此结论正确.∴正确的结论有1个.故选:B【点睛】本题考查了平行线的性质与平面直角坐标系的点坐标特点,掌握平行线的性质和平面直角坐标系点的坐标特点是解答此题的关键.8.如图,AO =BO ,CO =DO ,AD 与BC 交于E ,∠O =40º,∠B = 25º,则∠BED 的度数是( )A .090B .060C .075D .085【答案】A 【解析】先证明△OAD ≌△OBC,从而得到∠A=∠B,再根据三角形外角的性质求得∠BDE 的度数,最后根据三角形的内角和定理即可求出∠BDE 的度数.【详解】解:在△OAD 和△OBC 中,OA OB O O DO CO =⎧⎪∠=∠⎨⎪=⎩,∴△OAD ≌△OBC(SAS)∴∠A=∠B=25°,∵∠BDE=∠O+∠A=40°+25°=65°,∴∠BED=180°-∠BDE-∠A=180°-65°-26°=90°,故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA 和HL ,做题时,要根据已知条件结合图形进行思考.9.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD【答案】C【解析】试题分析:A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,∵∠1与∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、在△AOB和△COD中,,∴△AOB≌△COD,∴∠CAO=∠DBO,∴a∥b(内错角相等,两直线平行),故正确.故选C.考点:平行线的判定.10.若式子34x-在实数范围内有意义,则x的取值范围是()A.x≥43B.x>43C.x≥34D.x>34【答案】A【分析】二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.【详解】解:由题意得,43x≥,故选A.【点睛】本题考查二次根式有意义的条件,本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.二、填空题11.如图,在正方形网格中,△ABC的每一个顶点都在格点上,AB=5,点D是AB边上的动点(点D不与点A,B重合),将线段AD沿直线AC翻折后得到对应线段AD1,将线段BD沿直线BC翻折后得到对应线段BD2,连接D1D2,则四边形D1ABD2的面积的最小值是____.【答案】11 2【分析】延长AC使CE=AC,先证明△BCE是等腰直角三角形,再根据折叠的性质解得S四边形ADCD1+S 四边形BDCD2=1,再根据S四边形D1ABD2=S四边形ADCD1+S四边形BDCD2+S△D1CD2,可得要四边形D1ABD2的面积最小,则△D1CD2的面积最小,即:CD最小,此时,CD⊥AB,此时CD最小=1,根据三角形面积公式即可求出四边形D1ABD2的面积的最小值.【详解】如图,延长AC使CE=AC,∵点A,C是格点,∴点E必是格点,∵CE2=12+22=1,BE2=12+22=1,BC2=12+32=10,∴CE2+BE2=BC2,CE=BE,∴△BCE是等腰直角三角形,∴∠BCE=41°,∴∠ACB=131°,由折叠知,∠DCD1=2∠ACD,∠DCD2=2∠BCD,∴∠DCD1+∠DCD2=2(∠ACD+∠BCD)=2∠ACB=270°,∴∠D1CD2=360°﹣(∠DCD1+DCD2)=90°,由折叠知,CD=CD1=CD2,∴△D1CD2是等腰直角三角形,由折叠知,△ACD≌△ACD1,△BCD≌△BCD2,∴S△ACD=S△ACD1,S△BCD=S△BCD2,∴S四边形ADCD1=2S△ACD,S四边形BDCD2=2S△BCD,∴S四边形ADCD1+S四边形BDCD2=2S△ACD+2S△BCD=2(S△ACD+S△BCD)=2S△ABC=1,∴S四边形D1ABD2=S四边形ADCD1+S四边形BDCD2+S△D1CD2,∴要四边形D 1ABD 2的面积最小,则△D 1CD 2的面积最小,即:CD 最小,此时,CD ⊥AB ,此时CD 最小=1,∴S △D 1CD 2最小=12CD 1•CD 2=12CD 2=12, 即:四边形D 1ABD 2的面积最小为1+12=1.1, 故答案为1.1.【点睛】本题考查了四边形面积的最值问题,掌握等腰直角三角形的性质、折叠的性质、三角形面积公式是解题的关键.12.如图,在ABC 中A 120AB AC BC 6cm AB ∠=︒==,,,的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长____________cm .【答案】2【分析】连接AM 和AN ,先说明△AMN 是等边三角形,从而说明BM=MN=CN ,得出MN=2cm.【详解】解:∵∠BAC=120︒,AB=AC ,∴∠B=∠C=1801202︒-︒=30︒, ∵NF 、ME 分别是AC 、AB 的垂直平分线,∴BM=AM ,CN=AN ,∴∠B=∠MAB=∠C=∠NAC=30°,∴∠AMN=∠ANM=60°,∴△AMN 是等边三角形,∴AM=AN=MN ,∴BM=MN=CN ,∵BM+MN+CN=BC=6cm ,∴MN=2cm ,故答案为2.【点睛】本题考查了线段垂直平分线的性质、等边三角形的判定.13.一个n 边形,从一个顶点出发的对角线有 ______ 条,这些对角线将n 边形分成了______个三角形,这个n 边形的内角和为__________.【答案】3n - 2n - ()1802n -【分析】多边形上任何不相邻的两个顶点之间的连线就是对角线,n 边形有n 个顶点,和它不相邻的顶点有3n -个,因而从n 边形(3)n >的一个顶点出发的对角线有3n -条,把n 边形分成2n -个三角形.由分成三角形个数即可求出多边形内角和.【详解】解:从n 边形(3)n >的一个顶点出发的对角线有3n -条,可以把n 边形划分为2n -个三角形,这个n 边形的内角和为()1802n -.故答案为:3n -,2n -,()1802n -.【点睛】此题考查了多边形的对角线的知识,多边形的问题可以通过作对角线转化为三角形的问题解决,是转化思想在多边形中的应用.14.如图,在OAB ∆中,3OA OB ==,45AOB ∠=︒,C 是AB 中点,则点O 关于点C 的对称点的坐标是______.【答案】 3323222,). 【分析】过点A 作AD ⊥OB 于D ,然后求出AD 、OD 的长,从而得到点A 的坐标,再根据中点坐标公式,求出点C 的坐标,然后利用中点坐标公式求出点O 关于点C 的对称点坐标,即可.【详解】如图,过点A 作AD ⊥OB 于D ,∵OA=OB=3,∠AOB=45°,∴AD=OD=3÷2322∴点A(32 2,322),B(3,0),∵C是AB中点,∴点C的坐标为(332322222+,),∴点O关于点C的对称点的坐标是:(3323222+,)故答案为:(3323222+,).【点睛】本题主要考查图形与坐标,掌握等腰直角三角形的三边之比以及线段中点坐标公式,是解题的关键.15.如图,点D、E分别在线段AB、AC上,且AD=AE,若由SAS判定ABE ACD≅,则需要添加的一个条件是_________.【答案】AB AC=【分析】题目中已给出一组对边和一个公共角,再找到公共角的另一组对边即可.【详解】在ABE△和ACD中,AE ADA AAB AC=⎧⎪∠=∠⎨⎪=⎩()ABE ACD SAS∴≅故答案为:AB AC=.【点睛】本题主要考查用SAS证明三角形全等,掌握全等三角形的判定方法是解题的关键.16.一次函数y=(2m-6)x+5中,y随x的增大而减小,则m的取值范围是________.【答案】m<1【解析】解:∵y随x增大而减小,∴k<0,∴2m-6<0,∴m<1.17.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为_________度.【答案】1【分析】根据三角形的内角和求出∠2=45°,再根据对顶角相等求出∠3=∠2,然后根据三角形的一个外角等于与它不相邻的两个内角的和计算即可.【详解】解:∵∠2=90°-45°=45°(直角三角形两锐角互余),∴∠3=∠2=45°,∴∠1=∠3+30°=45°+30°=1°.故答案为:1.【点睛】本题考查的是三角形的内角和,三角形外角的性质,熟知三角形的一个外角等于与它不相邻的两个内角的和是解答此题的关键.三、解答题18.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.【答案】证明见解析.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【详解】∵AD∥BE,∴∠A=∠B.在△ACD和△BEC中∵,∴△ACD≌△BEC(SAS),∴DC=CE.∵CF平分∠DCE,∴CF⊥DE(三线合一).【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.19.计算:(1)计算:231(5)84---;(2)求x的值:(x+3)2=16;(3)如图,一木杆在离地某处断裂,木杆顶部落在离木杆底部8米处,已知木杆原长16米,求木杆断裂处离地面多少米?【答案】(1)212;(2)x=﹣7或1;(3)木杆断裂处离地面1米【分析】(1)直接利用立方根以及二次根式的性质化简得出答案;(2)直接利用平方根的定义得出答案;(3)设木杆断裂处离地面x米,由题意得x2+82=(11﹣x)2,求出x的值即可.【详解】解:(1231(5)84 --=5﹣2﹣1 2=212;(2)(x+3)2=11,则x+3=±4,则x=﹣7或1;(3)设木杆断裂处离地面x米,由题意得x2+82=(11﹣x)2,解得x=1.答:木杆断裂处离地面1米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.20.寿阳某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元,购买一个足球、一个篮球各需多少元?【答案】购买一个足球50元,一个篮球80元【分析】设购买一个足球需要x元,购买一个篮球需要y元,然后根据题意,列出二元一次方程组即可求出结论.【详解】解:设购买一个足球需要x元,购买一个篮球需要y元,根据题意得3x2y310 2x+5y=500+=⎧⎨⎩解得5080 xy=⎧⎨=⎩,∴购买一个足球需要50元,购买一个篮球需要80元.【点睛】此题考查的是二元一次方程组的应用,掌握实际问题中的等量关系是解决此题的关键.21.已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.求证:BD=DE.【答案】证明见解析【分析】欲证BD=DE,只需证∠DBE=∠E,根据等边三角形的性质及角的等量关系可证明∠DBE=∠E=30°.【详解】∵△ABC为等边三角形,BD是AC边的中线,∴BD⊥AC,BD平分∠ABC,∠DBE=12∠ABC=30°.∵CD=CE,∴∠CDE=∠E.∵∠ACB=60°,且∠ACB为△CDE的外角,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°,∴∠DBE=∠DEB=30°,∴BD=DE.【点睛】考点:1.等边三角形的性质;2.三角形内角和定理;3.等腰三角形的判定与性质.22.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.【答案】(1)证明见解析(2)40°.【分析】(1)根据菱形的对边平行且相等可得AB=CD ,AB ∥CD ,然后证明得到BE=CD ,BE ∥CD ,从而证明四边形BECD 是平行四边形,再根据平行四边形的对边相等即可得证.(2)根据两直线平行,同位角相等求出∠ABO 的度数,再根据菱形的对角线互相垂直可得AC ⊥BD ,然后根据直角三角形两锐角互余计算即可得解.【详解】(1)∵四边形ABCD 是菱形,∴AB=CD ,AB ∥CD.又∵BE=AB ,∴BE=CD ,BE ∥CD.∴四边形BECD 是平行四边形.∴BD=EC.(2)∵四边形BECD 是平行四边形,∴BD ∥CE ,∴∠ABO=∠E=50°.又∵四边形ABCD 是菱形,∴AC 丄BD.∴∠BAO=90°﹣∠ABO=40°.23.先化简,再求值:2(2)(2)(2)(32)x y y x y x y x y -----+-,其中x ,y 满足370x y ++=.【答案】xy -,6【分析】根据整式的四则混合运算先化简代数式,再根据370x y ++=确定x 和y 的值,代入求值即可.【详解】解:2(2)(2)(2)(32)x y y x y x y x y -----+-=4x 2-4xy+y 2-4x 2+y 2+3xy-2y 2=xy -.∵370x y ++=∴370x y ++=,380x -=∴2x =,3y =-∴原式=2(3)6-⨯-=.【点睛】本题考查代数式的化简求值.熟练掌握整式的乘法、平方差公式、完全平方公式、绝对值及算术平方根的非负性是解题的关键.24.芳芳计算一道整式乘法的题:(2x +m)(5x-4),由于芳芳将第一个多项式中的“+ m”抄成“-m”,得到的结果为10x 2 - 33x + 1.(1)求m 的值;(2)请解出这道题的正确结果.【答案】(1)m=5;(2)2101720x x +-【分析】(1)化简()()254x m x --,根据一次项的系数和常数项即可求出m 的值;(2)将5m =代入原式求解即可.【详解】(1)()()225410854x m x x x mx m --=--+. ∴4208533m m =⎧⎨--=-⎩ 解得5m =(2)将5m =代入原式中原式()()2554x x =+-21082520x x x =-+-2101720x x =+-.【点睛】本题考查了整式的运算问题,掌握整式混合运算法则是解题的关键.25.如图,已知在平面直角坐标中,直线l :y =﹣2x+6分别交两坐标于A 、B 两点,M 是级段AB 上一个动点,设点M 的横坐标为x ,△OMB 的面积为S .(1)写出S 与x 的函数关系式;(2)当△OMB 的面积是△OAB 面积的23时,求点M 的坐标; (3)当△OMB 是以OB 为底的等腰三角形,求它的面积.【答案】(1)S =﹣3x+9(0≤x <3);(2)M (1,4);(3)92.【解析】(1)根据x轴的坐标特点求出点B坐标,再表示出点M坐标,最后利用三角形的面积公式即可得出结论;(2)根据y轴的坐标特点求出点A坐标,进而利用三角形的面积公式求出△AOB的面积,进而求出△OBM 的面积,即可得出结论;(3)先判定点M是OB的垂直平分线上,进而求出M的坐标,即可得出结论.【详解】(1)针对于直线l:y=﹣2x+6,令y=0,则﹣2x+6=0,∴x=3,∴B(3,0),∴OB=3,∵点M在线段AB上,∴M(x,﹣2x+6),∴S=S△OBM=12×3×(﹣2x+6)=﹣3x+9(0≤x<3),(2)针对于直线l:y=﹣2x+6,令x=0,则y=6,∴A(0,6),∴S△AOB=12OA•OB=12×6×3=9,∵△OMB的面积是△OAB面积的23,∴S△OBM=23×9=6,由(1)知,S△OBM=﹣3x+9(0≤<3),∴﹣3x+9=6,∴x=1,∴M(1,4);(3)∵△OMB是以OB为底的等腰三角形,∴点M是OB的垂直平分线上,∴点M(32,3),∴S△OBM=12×3×3=92.【点睛】此题主要考查了坐标轴上点的特点,三角形的面积公式,等腰三角形的性质,掌握坐标系中求三角形面积的方法是解本题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各多项式从左到右变形是因式分解,并分解正确的是( )A .2()()()(1)a b b a a b a b ---=--+B .2(2)(3)56x x x x ++=++C .2249(49)(49)a b a b a b -=-+D .222()()2m n m n m n -+=+-+【答案】A【分析】直接利用因式分解的定义进而分析得出答案.【详解】解:A 、2()()()(1)a b b a a b a b ---=--+,是因式分解,故此选项正确;B 、(x+2)(x+3)=x 2+5x+6,是整式的乘法运算,故此选项错误;C 、4a 2-9b 2=(2a-3b )(2a+3b ),故此选项错误;D 、m 2-n 2+2=(m+n )(m-n )+2,不符合因式分解的定义,故此选项错误.故选:A .【点睛】此题主要考查了因式分解的意义,正确把握因式分解的定义是解题关键.2.已知1181a =,2127b =,319c =,则a 、b 、c 的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >> 【答案】D【分析】根据幂的运算法则,把各数化为同底数幂进行比较.【详解】因为()14441113831a ===,()136********b ===,()3123162933c ===所以b c a >>故选:D【点睛】考核知识点:幂的乘方.逆用幂的乘方公式是关键.3.某区为了解5600名初中生的身高情况,抽取了300名学生进行身高测量.在这个问题中,样本是() A .300B .300名学生C .300名学生的身高情况D .5600名学生的身高情况 【答案】C【分析】根据样本的定义即可判断.【详解】依题意可知样本是300名学生的身高情况故选C.【点睛】此题主要考查统计分析,解题的关键是熟知样本的定义.4.计算2(3)的结果是( )A .3B .±3C .9D .±9 【答案】A 【解析】根据公式()()20a a a =≥进一步计算即可.【详解】∵2(3)=3,故选:A.【点睛】本题主要考查了二次根式的计算,熟练掌握相关公式是解题关键.5.如图,在Rt △ABC 中,∠C=90°,点D 为AB 边中点,DE ⊥AB ,并与AC 边交于点E ,如果∠A=15°,BC=1,那么AC 等于( )A .2B .13+C .23+D 3【答案】C 【分析】根据线段垂直平分线的性质得到AE=BE ,根据等腰三角形的性质得到∠ABE=∠A=15°,利用三角形外角的性质求得∠BEC =30°,再根据30°角直角三角形的性质即可求得结论.【详解】∵点D 为AB 边中点,DE ⊥AB ,∴DE 垂直平分AB ,∴AE=BE ,∴∠ABE=∠A=15°,∴∠BEC=∠A+∠ABE=30°,∵∠C=90°,∴BE=AE=2BC=2,33,∴3故选C .【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质、30°角直角三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.6.下列实数中,是有理数的是( )A B .C .3π- D .0.1010010001【答案】D【分析】根据有理数的定义即可得出答案.、、3π-均为无理数,0.1010010001为有理数,故答案选择D.【点睛】本题考查的是有理数的定义,比较简单,整数和分数统称为有理数.7.如果把分式x yxy -中的x 和y 都扩大了3倍,那么分式的值( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍【答案】C【分析】将分子与分母中未知数分别乘以3,进而化简即可. 【详解】3313333x yx yx yx y xy xy ---==⋅⋅,故分式的值缩小3倍.故选:C .【点睛】本题考查了分式的性质,将未知数扩大3倍后再化简分式是解题关键.8.下列各式中,能用完全平方公式进行因式分解的是( )A .24x -B .221x x --C .244x x -+D .241x x ++【答案】C【分析】利用完全平方公式:()2222a ab b a b ±+=±,进而判断得出答案.【详解】解:A 、24x -,不能用完全平方公式进行因式分解;B 、221x x --,不能用完全平方公式进行因式分解;C 、()22442x x x -+=-,能用完全平方公式进行因式分解;D 、241x x ++,不能用完全平方公式进行因式分解;故选C .【点睛】本题考查用完全平方公式进行因式分解,解题的关键是熟练运用完全平方公式.9.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为( ) A .5 B .5或6 C .5或7 D .5或6或7【答案】D【解析】试题分析:根据内角和为720°可得:多边形的边数为六边形,则原多边形的边数为5或6或7. 考点:多边形的内角和10.学校开展为贫困地区捐书活动,以下是5名同学捐书的册数:2,2,x ,4,1.已知这组数据的平均数是4,则这组数据的中位数和众数分别是( )A .2和2B .4和2C .2和3D .3和2 【答案】D 【解析】试题分析:根据平均数的含义得:22495x ++++=4,所以x=3; 将这组数据从小到大的顺序排列(2,2,3,4,1),处于中间位置的数是3,那么这组数据的中位数是3;在这一组数据中2是出现次数最多的,故众数是2.故选D .考点:中位数;算术平均数;众数二、填空题11.在△ABC 中,C 90∠=︒,AB=4,A 60∠=︒,则AC=______.【答案】1【分析】根据直角三角形两锐角互余求出B 的度数,然后利用30°所对的直角边是斜边的一半即可得出答案.【详解】C 90︒∠=,A 60∠=︒90906030B A ∴∠=︒-∠=︒-︒=︒4AB =122AC AB ∴== 故答案为:1.【点睛】本题主要考查直角三角形的性质,掌握含30°的直角三角形的性质和直角三角形中两锐角互余是解题的关键.12.已知2x+3y ﹣1=0,则9x •27y 的值为______.【答案】1【分析】直接利用幂的乘方运算法则将原式变形,进而利用同底数幂的乘法运算法则求出答案.【详解】解:∵2x+1y ﹣1=0,∴2x+1y =1.∴9x •27y =12x ×11y =12x+1y =11=1.故答案为:1.【点睛】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题关键.13.已知一个等腰三角形的顶角30°,则它的一个底角等于_____________.【答案】75°【分析】已知明确给出等腰三角形的顶角是30°,根据等腰三角形的性质及三角形的内角和定理易求得底角的度数.【详解】解:∵等腰三角形的顶角是30°,∴这个等腰三角形的一个底角=12(180°-30°)=75°. 故答案为:75°.【点睛】此题考查了等腰三角形的性质及三角形内角和定理,此题很简单,解答此题的关键是熟知三角形内角和定理及等腰三角形的性质.14.若分式253(1)x x -+-值为负,则x 的取值范围是___________________ 【答案】x >5【解析】先根据非负数的性质,判断出分母必是正数,故若使分式的值是负值,则分子的值为负数即可,从而列出不等式,求此不等式的解集即可.【详解】∵()210x -≥∴()2310x +-> ∵分式()2531x x -+-值为负∴5-x<0即x>5故答案为:x >5【点睛】本题考查不等式的解法和分式值的正负条件,解不等式时要根据不等式的基本性质.15.在底面直径为3cm ,高为3cm 的圆柱体侧面上,用一条无弹性的丝带从A 至C 按如图所示的圈数缠绕,则丝带的最短长度为____cm .(结果保留π)【答案】231π+.【详解】试题分析:如图所示,∵无弹性的丝带从A 至C ,∴展开后AB=3πcm ,BC=3cm ,由勾股定理得:AC=22AB BC +=2299=31ππ++cm .故答案为231π+.考点:1.平面展开-最短路径问题;2.最值问题.16.已知a ,b ,c 是ABC ∆的三边,且2222b ab c ac +=+,则ABC ∆的形状是__________.【答案】等腰三角形【分析】将等式两边同时加上2a 得222222b ab a c ac a ++=++,然后将等式两边因式分解进一步分析即可.【详解】∵2222b ab c ac +=+,∴222222b ab a c ac a ++=++,即:22(b)(c)a a +=+,∵a ,b ,c 是ABC ∆的三边,∴a ,b ,c 都是正数,∴b a +与c a +都为正数,∵22(b)(c)a a +=+,∴b c a a +=+,∴b c =,∴△ABC 为等腰三角形,故答案为:等腰三角形.【点睛】本题主要考查了因式分解的应用,熟练掌握相关方法是解题关键.17.已知a-b=3,ab=28,则3ab 2-3a 2b 的值为_________.【答案】-252【分析】先把3ab 2-3a 2b 进行化简,即提取公因式-3ab ,把已知的值代入即可得到结果.【详解】解:因为a-b=3,ab=28,所以3ab 2-3a 2b=3ab(b-a)= -3ab(a-b)= -3×28×3=-252【点睛】本题主要考查了多项式的化简求值,能正确提取公因式是做题的关键,要把原式化简成与条件相关的式子才能代入求值.三、解答题18.已知一次函数y=2x+b.(1)它的图象与两坐标轴所围成的图形的面积等于4,求b 的值;(2)它的图象经过一次函数y=-2x+1、y=x+4图象的交点,求b 的值.【答案】(1)±4;(2)5【解析】(1)分别求出一次函数y=2x+b 与坐标轴的交点,然后根据它的图象与坐标轴所围成的图象的面积等于4列出方程即可求出b 的值;(2)由题意可知:三条直线交于一点,所以可先求出一次函数y=-2x+1与y=x+4的交点坐标,然后代入y=2x+b 求出b 的值.【详解】解:(1)令x=0代入y=2x+b ,∴y=b ,令y=0代入y=2x+b ,∴x=-2b , ∵y=2x+b 的图象与坐标轴所围成的图象的面积等于4, ∴12×|b|×|-2b |=4, ∴b 2=16,∴b=±4;(2)联立214y x y x =-+⎧⎨=+⎩, 解得:13x y =-⎧⎨=⎩, 把(-1,3)代入y=2x+b ,∴3=-2+b ,∴b=5,【点睛】本题考查了一次函数与坐标轴的交点,图形与坐标的性质,待定系数求一次函数的解析式,解题的关键是根据条件求出b 的值,本题属于基础题型.19.先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数. 【答案】-5【分析】根据分式的运算法则即可求出答案.【详解】原式=[2(1)(1)xx x--+(2)(2)(2)x xx x-++]÷1x=(1xx-+2xx-)•x=x﹣1+x﹣2=2x﹣3由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.计算:(1);(24 +【答案】(1)0;(2)2-【分析】(1)先化简二次根式,再进行二次根式乘除计算,最后计算即可;(2)先进行分母有理化化简,再合并同类二次根式即可.【详解】解:(1)原式=(53)-=2 =22-=0;(2)原式(2=21++-=2+=2-【点睛】本题是对二次根式计算的综合考查,熟练掌握二次根式化简及二次根式乘除是解决本题的关键.21.我们知道,有一个内角是直角的三角形是直角三角形,其中直角所在的两条边叫直角边,直角所对的边叫斜边(如图①所示).数学家还发现:在一个直角三角形中,两条直角边长的平方和等于斜边长的平方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年山东省济南市历下区八年级(上)期末数学试卷一、选择题(每小题4分,共48分)1.(4分)点M(﹣2019,2019)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限2.(4分)已知m>n,则下列不等式中不正确的是()A.5m>5n B.m+7>n+7C.﹣4m<﹣4n D.m﹣6<n﹣63.(4分)如图,直线a∥b,将三角尺的直角顶点放在直线b上,若∠1=35°,则∠2等于()A.45°B.55°C.35°D.65°4.(4分)不等式6﹣3x>0的解集在数轴上表示为()A.B.C.D.5.(4分)满足下列条件的△ABC,不是直角三角形的是()A.∠C=∠A+∠B B.∠C=∠A﹣∠BC.a:b:c=3:4:5D.∠A:∠B:∠C=3:4:56.(4分)下列算式中,正确的是()A.3﹣=3B.=C.D.=47.(4分)某中学随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是()A.6.2小时B.6.5小时C.6.6小时D.7小时8.(4分)函数y=ax+b(a,b为常数,a≠0)的图象如图所示,则关于x的不等式ax+b>0的解集是()A.x>4B.x<0C.x<3D.x>39.(4分)在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,BC=7,BD=4,则点D到AB的距离是()A.2B.3C.4D.510.(4分)如图,已知等腰△ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点D,则下列结论一定正确的是()A.AD=CD B.AD=BD C.∠DBC=∠BAC D.∠DBC=∠ABD11.(4分)已知等腰三角形周长为40,则腰长y关于底边长x的函数图象是()A.B.C.D.12.(4分)如图,已知:∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=1,则B2018B2019的长为()A.2017B.2018C.D.二、填空题(每小题4分,共24分)13.(4分)已知点P(﹣2,a)在一次函数y=3x+1的图象上,则a=.14.(4分)在平面直角坐标系中,点(﹣7,2m+1)在第三象限,则m的取值范围是.15.(4分)如图,在△ABC中,AC的垂直平分线DE交AB于点E,交AC于点D,连接CE,若∠A=34°,∠ACB =76°,则∠BCE=.16.(4分)省运会举行射击比赛,我市射击队从甲、乙、丙、丁四人中选拔一人参赛,在选拔赛中,每人射击10次,计算他们10次成绩的平均数和方差如下表,请你根据表中数据选一人参加比赛,最适合的人选是.17.(4分)如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.若△ABC的周长为15,BC=6,则△AMN的周长为.18.(4分)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持∠EDF=90°,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①DE =DF;②四边形CEDF的面积随点E、F位置的改变而发生变化;③CE+CF=AB;④AE2+BF2=2ED2.以上结论正确的是(只填序号).三、解答题(共78分)19.(6分)解二元一次方程组.20.(6分)解不等式组,并把它的解集表示在数轴上.21.(6分)在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF.求证:△ABC是等腰三角形.22.(8分)为迎接广州市青少年读书活动,某校倡议同学们利于课余时间多阅读为了解同学们的读书情况,在全校随机调查了部分同学在一周内的阅读时间,并用得到的数据绘制了统计图,根据图中信息解答下列问题:(1)被抽查学生阅读时间的中位数为小时,众数为小时,平均数为小时(2)已知全校学生人数为1500人,请你估算该校学生一周内阅读时间不少于三小时的有多少人?23.(8分)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A、B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A、B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?24.(10分)如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)求证:CD=BE;(2)已知CD=2,求AC的长;(3)求证:AB=AC+CD.25.(10分)已知:如图一次函数y1=﹣x﹣2与y2=x﹣4的图象相交于点A.(1)求点A的坐标;(2)若一次函数y1=﹣x﹣2与y2=x﹣4的图象与x轴分别相交于点B、C,求△ABC的面积.(3)结合图象,直接写出y1≥y2时x的取值范围.26.(12分)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系,请直接写出;(2)组员小颖想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α(其中α为任意锐角或钝角).如果成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,F是∠BAC角平分线上的一点,且△ABF和△ACF均为等边三角形,D、E分别是直线m上A点左右两侧的动点(D、E、A互不重合),在运动过程中线段DE的长度始终为n,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.27.(12分)如图1,点A、B、C在坐标轴上,且A、B、C的坐标分别为(﹣1,0)、(4,0)、(0,﹣3)过点A 的直线AD与y轴正半轴交于点D,∠DAB=45°(1)求直线AD和BC的解析式;(2)如图2,点E在直线x=2上且在直线BC上方,当△BCE的面积为6时,求E点坐标;(3)在(2)的条件下,如图3,动点M在直线AD上,动点N在x轴上,连接ME、NE、MN,当△MNE周长最小时,求△MNE周长的最小值.28.(5分)如图,∠ABC=90°,P为射线BC上任意一点(点P和点B不重合),分别以AB,AP为边在∠ABC 内部作等边△ABE和等边△APQ,连结QE并延长交BP于点F,连接EP,若FQ=11,AE=4,则EP=.29.(5分)如图,平面直角坐标系中,已知点P(2,2),C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线OP交于点A,且BD=4AD,直线CD与直线OP交于点Q,则点Q的坐标为.2018-2019学年山东省济南市历下区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.【解答】解:∵点M(﹣2019,2019),∴M点所在的象限是第二象限.故选:B.2.【解答】解:A、在不等式m>n的两边同时乘以5,不等式仍成立,即5m>5n,故本选项不符合题意;B、在不等式m>n的两边同时加7,不等式仍成立,即m+7>n+7,故本选项不符合题意;C、在不等式m>n的两边同时乘以﹣4,不等号方向改变,即﹣4m<﹣4n,故本选项不符合题意;D、在不等式m>n的两边同时减去6,不等式仍成立,即m﹣6>n﹣6,故本选项符合题意;故选:D.3.【解答】解:如图,∵∠1=35°,∴∠3=180°﹣35°﹣90°=55°,∵a∥b,∴∠2=∠3=55°.故选:B.4.【解答】解:移项得:﹣3x>﹣6,系数化为1得:x<2,即不等式的解集为:x<2,不等式的解集在数轴上表示如下:故选:A.5.【解答】解:A、∵∠C=∠A+∠B==90°,是直角三角形,故此选项不合题意;B、∵∠C=∠A﹣∠B,∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;C、∵32+42=52,∴是直角三角形,故此选项不合题意;D、∠A:∠B:∠C=3:4:5,则∠C=180°×=75°,不是直角三角形,故此选项符合题意,故选:D.6.【解答】解:A.3﹣=2,此选项错误;B.+=2+3=5,此选项错误;C.,此选项正确;D.==2,此选项错误;故选:C.7.【解答】解:(5×10+6×10+7×20+8×10)÷50=(50+60+140+80)÷50=330÷50=6.6(小时).故这50名学生这一周在校的平均体育锻炼时间是6.6小时.故选:C.8.【解答】解:关于x的不等式ax+b>0的解集为x<3.故选:C.9.【解答】解:∵BC=7,BD=4,∴CD=7﹣4=3,由角平分线的性质,得点D到AB的距离=CD=3,故选:B.10.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点D,∴BD=BC,∴∠ACB=∠BDC,∴∠BDC=∠ABC=∠ACB,∴∠BAC=∠DBC,故选:C.11.【解答】解:∵等腰三角形的周长为40,其中腰长为y,底边长为x,∴x+2y=40,∴y=20﹣x,∵20<2y<40,∴自变量x的取值范围是0<x<20,y的取值范围是10<y<20.故选:D.12.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2=2,∴B1B2=,∵B3A3=2B2A3,∴A3B3=4B1A2=4,∴B2B3=2,∵A4B4=8B1A2=8,∴B3B4=4,以此类推,B n B n+1的长为2n﹣1,∴B2018B2019的长为22017,故选:C.二、填空题(每小题4分,共24分)13.【解答】解:∵点P(﹣2,a)在一次函数y=3x+1的图象上,∴a=3×(﹣2)+1=﹣5.故答案是:﹣5.14.【解答】解:∵点在第三象限,∴点的横坐标是负数,纵坐标也是负数,即2m+1<0,解得m<,故答案为:m<,15.【解答】解:∵AC的垂直平分线DE,∴AE=CE,∴∠ACE=∠A=34°,∴∠BCE=∠ACB﹣∠ACE=76°﹣34°=42°,故答案为:42°.16.【解答】解:∵甲,乙,丙,丁四个人中甲和丁的平均数最大且相等,甲,乙,丙,丁四个人中丁的方差最小,说明丁的成绩最稳定,∴综合平均数和方差两个方面说明丁成绩既高又稳定,∴丁是最佳人选.17.【解答】解:如图,∵OB、OC分别是∠ABC与∠ACB的平分线,∴∠1=∠5,∠3=∠6,又∵MN∥BC,∴∠2=∠5,∠6=∠4,∴BM=MO,NO=CN,∴△AMN的周长=AM+AN+MN=MA+AN+MO+ON=AB+AC,又∵AB+AC+BC=15,BC=6,∴AB+AC=9,∴△AMN的周长=9,故答案为9.18.【解答】解:连接CD,∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴ED=DF,故①正确;∴S△ADE=S△CDF,∴S四边形CEDF=S△ADC=S△ABC=定值,故②错误,∵△ADE≌△CDF,∴CE+CF=CE+AE=AC=AB,故③正确,∵AE=CF,AC=BC,∴EC=BF,∴AE2+BF2=CF2+CE2=EF2,∵EF2=2DE2,∴AE2+BF2=2ED2,故④正确.故答案为①③④.三、解答题(共78分)19.【解答】解:,①+②,得4x=12,∴x=3,把x=3代入②,得3+2y=3,解得y=0,所以原方程组的解为.20.【解答】解:∵解不等式①,得x>2,解不等式②,得x≤3,∴不等式组的解集是2<x≤3,在数轴上表示为:.21.【解答】证明:∵D是BC的中点,∴BD=DC,∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵BD=DC,DE=DF,∴△BDE≌△CDF,∴△ABC是等腰三角形.22.【解答】解:(1)12+20+10+5+3=50,被抽查学生阅读时间的中位数为:第25和第26个学生阅读时间的平均数=2,众数为2,平均数==2.34,故答案为:2,2,2.34;(2)1500×=540,答:估算该校学生一周内阅读时间不少于三小时的有540人.23.【解答】解:(1)设购买A型学习用品x件,B型学习用品y件,由题意,得:,解得:.答:购买A型学习用品400件,B型学习用品600件;(2)设可以购买B型学习用品a件,则A型学习用品(1000﹣a)件,由题意,得:20(1000﹣a)+30a≤28000,解得:a≤800,答:最多购买B型学习用品800件.24.【解答】(1)证明:∵在△ABC中,AC=BC,∠C=90°,∴△ABC是等腰直角三角形,∴∠B=45°,∵DE⊥AB,∴△BDE是等腰直角三角形,∴DE=BE.∵AD是△ABC的角平分线,(2)解:∵由(1)知,△BDE是等腰直角三角形,DE=BE=CD,∴DE=BE=CD=2,∴BD===2,∴AC=BC=CD+BD=2+2;(3)证明:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE.在Rt△ACD与Rt△AED中,∵,∴Rt△ACD≌Rt△AED,∴AE=AC.∵由(1)知CD=BE,∴AB=AE+BE=AC+CD.25.【解答】解:(1)解方程组,得,所以点A坐标为(1,﹣3);(2)当y1=0时,﹣x﹣2=0,x=﹣2,则B点坐标为(﹣2,0);当y2=时,x﹣4=0,x=4,则C点坐标为(4,0);∴BC=4﹣(﹣2)=6,∴△ABC的面积=×6×3=9;(3)根据图象可知,y1≥y2时x的取值范围是x≤1.26.【解答】解:(1)DE=BD+CE,理由:∵∠BAC=90°,∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BAD+∠CAE=180°﹣∠BAC,∠BAD+∠ABD=180°﹣∠ADB,∠BDA=∠BAC,∴∠ABD=∠CAE,在△BAD和△ACE中,,∴△BAD≌△ACE(AAS),∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE;(3)△DFE为等边三角形,理由:由(2)得,△BAD≌△ACE,∴BD=AE,∵∠ABD=∠CAE,∴∠ABD+∠FBA=∠CAE+F AC,即∠FBD=∠F AE,在△FBD和△F AE中,,∴FD=FE,∠BFD=∠AFE,∴∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=60°,∴△DFE为等边三角形.27.【解答】解:(1)∵∠DAB=45°,∴OA=OD=1,即点D的坐标为(0,1),将点A、D的坐标代入一次函数表达式:y=kx+b得:,解得:,则直线AD的表达式为:y=x+1,同理可得直线BC的表达式为:y=x﹣3;(2)设直线x=2与BC交于点F,点E坐标为(2,m),则点F坐标为(2,﹣),则S△BCE=×EF×OB=×4×(m+)=6,解得:m=,即点E的坐标为(2,);(3)过点E点作EE′⊥AD,点E和E′关于直线AD对称,设直线x=2与直线AD交于点H(2,3),连接E′H,找到点E关于x轴的对称点E″(2,﹣),连接E′E″交AD于M点、交x轴于点N,此时,△MNE周长最小,∵∠DAB=45°,∴E′H=EH=3﹣=,则点E′的坐标为(,3),则:△MNE周长的最小值=E′E″==.28.【解答】解:如图:连接EP,过点E作EM⊥BC∵△AEB,△APQ是等边三角形∴AB=AE=BE=4,AQ=AP,∠ABE=∠BAE=∠QAP=60°=∠AEB ∴∠BAP=∠QAE且AQ=AP,AB=AE∴△ABP≌△QAE∴QE=BP,∠AEQ=∠ABC=90°∵∠AEQ=∠ABC=90°,∠ABE=∠AEB=60°∴∠BEF=∠EBF=30°∴BF=EF,∠EFM=60°∵EM⊥BC∴∠FEM=30°∴EF=2FM=BF,EM=FM∵∠EBM=30°,EM⊥BC∴BE=2EM,BM=EM∵EB=4∴EM=2,BM=6∵BF+FM=BM∴FM=2,BF=EF=4∵QF=EQ+EF∴EQ=11﹣4=7∴BP=7∴MP=BP﹣BM=1在Rt△EMP中,EP==29.【解答】解:过点P作PE⊥OC于E,EP的延长线交AB于F.∵AB⊥OB,∴∠OBF=∠EOB=∠FEO=90°,∴四边形EOBF是矩形,∵P(2,2),∴OE=PE=BF=2,∵∠CPD=90°,∴∠CPE+∠DPF=90°,∠ECP+∠CPE=90°,∴∠ECP=∠DPF,在△CPE和△PDF中,,∴△CPE≌△PDF,∴DF=PE=2,∴BD=BF+DF=4,∵BD=4AD,∴AD=1,AB=OB=5,∴CE=PF=3,∴D(5,4),C(0,5),设直线CD的解析式为y=kx+b则有,解得,∴直线CD的解析式为y=﹣x+5,由解得,∴点Q的坐标为(,).故答案为(,).。