利用大数据分析绩效
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用大数据分析绩效
一般来说,在公司中对员工的绩效考评标准主要有2种:上级评价和业务数据体现(如果有的话)。不仅有主观评论也有客观数据,使得考评结果不倾向于任何一方。
然而,大部分情况下,业务数据很难用数字表示,只有少数特定职位可以有精确业务数据,而这些数据也很容易被变通的理解。
如果要使绩效数据真正帮助到公司发展,来确认哪些部门为公司做出重要贡献,哪些员工的工作真正起到实际作用,就要在部门间和部门内做横向和纵向对比。
而这些对比不能以业务数据来分析,因为每个部门功能不同,工作情况也不同,并且业务数据无法体现真实的工作效率,只能做总结性的对比,特别是销售业绩,也许某个部门或员工为产品市场推广做了大量工作并起到积极作用,最终导致了他人销售业绩增长,如果业绩分析错误也就等于误判了市场发展方向。
如果要真实的体现所有员工或部门的效率,就要用一种标准化且统一的方式,那就是记录每一个员工的每一个工作情况,计算其平均或合计工作数量,实际完成速度,有效完成数量。拿上面说到的销售部和市场部的例子来讲,市场部本月工作数量和效率明显高于上一个月,而销售部的工作量却保持持平状态,如果销售业绩提高了,则说明市场推广起到明显作用。当然,这只是一个简单的例子,其中还要考虑其他各种因素,这时,最好的方法还是要去确认关键项目的实际工作内容。
PACKS办公管理(搜索)的设计不仅为员工提供了更有效的工作方式,还能为业绩提供有效的数据支撑,在需要确认项目工作明细时,也能发现工作中的细节问题,同时还保证了员工个人事务的隐私。