管壳式换热器设计计算软件

合集下载

管壳式换热器工艺计算软件(THecal Ver 1.3)

管壳式换热器工艺计算软件(THecal Ver 1.3)

管壳式换热器工艺计算软件(THecal Ver 1.3)绿色版无需安装解压后启动 Thecal.exe该软件是通用的管式换热器的工艺设计计算软件,其结构参数是以GB151-1999为基础,同时参照了JB/T 4174-92、JB/T 4175-92。

尽管 THECAL遵守JB/T 4174-92、JB/T 4175-92 的规定,但用户可以自行修改有关的结构参数。

硬件环境:Thecal 对硬件环境没有特殊要求,建议采用486-DX66或以上的CPU。

请将显示卡的分辨率设置为800×600或以上。

软件环境:该软件运行在中文Windows 9X环境下。

推荐使用中文Windows 98。

软件安装:运行系统盘上的 “..\THECAL\Setup.exe”,安装向导向到会引导用户顺利完成安装。

运行该软件后,首先进入数据输入界面,在管程与壳程这两个回路中,流量、进出口温度、及热负荷这七个数据中必须且仅须已知五个数据方可进行计算,也就是说需要有五个选择框被选中并填入合理的数据才能够进行计算。

当选择框选择不对或数据不合理,将提示错误,可以参考右上角的图形来检查出错的原因,重新确定已知数据并输入合理的数据。

输入数据后,首先按<热平衡>按钮来建立热平衡,如果输入的数据不合理,软件即发出数据错误信息,您可以留意屏幕右上角的图形来检查数据错误的原因。

正确地建立好热平衡后,即可按<计算>按钮来进入下一个界面进行计算。

该软件提供验证、设计两种计算方式,使用<设计>时,软件会自动确定管壳式换热器的壳程内径、折流板数及间距、拉杆数、换热管根数、换热管长度及管间距等,自动计算将自动确定换热器的流程数,其结构参数一般是遵循JB/T 4174-92、JB/T 4175-92的规定。

<验证>时,可以自行确定换热器的管程及壳程的所有结构参数。

首先确定壳体内径,然后确定换热管的长度,再核实其他的结构参数,按<验证>来计算该换热器的传热及流阻性能情况。

aspen设计换热器

aspen设计换热器

ASPEN PLUS软件在管壳式换热器设计中的应用摘要:文章介绍了ASPEN PLUS软件在管壳式换热器设计中的应用。

通过与必要的手工计算相结合,便捷高效地设计出符合中国相关标准管壳式换热器的步骤和方法。

并以一个实例来演示所提方法的简单性和有效性,所得的换热面积相比节省了 66. 7%。

关键词:换热器设计 ASPEN PLUS引言ASPEN PLUS软件是一款功能强大的化工软件、动态模拟及各类计算的软件,它几乎能满足大多数化工设计及计算的要求,其计算结果得到许多同行的认可,该软件也和其他软件一样在不断的升级。

换热器是一种实现物料之间热量传递的设备,广泛应用于化工、冶金、电力、食品等行业。

在化工装置中换热设备占设备数量的40%左右,占总投资的 35% ~46%。

目前,在换热设备中,使用量最大的是管壳式换热器,尤其在高温、高压和大型换热设备中占有绝对优势。

换热器的设计主要包括传热和阻力计算两个方面。

由于换热器的设计方法比较烦杂,且需要迭代计算,故借助于日益普及的计算机软件进行优化设计则可以极大地提高工作效率。

目前,工程上已大量使用商业软件进行换热器的计算。

最著名的专业换热器计算软件主要有成立于 1962 年的美国传热研究公司 ( HTRI)开发的 XchangerSuite 软件;成立于 1967 年的英国传热及流体服务(HTFS)开发的 HTFS 系列软件和 B-JAC 软件。

为了便于组织工业生产,换热器的设计要尽可能符合相关的行业标准。

对于管壳式换热器,国外主要标准有TEMA(TubularExchangersManu-facturersAssociation)和 ASME (American SocietyofMechanical Engineers);国内主要标准有国标 GB151-1999(管壳式换热器标准),行业标准 JB/T 4715-92(固定管板式换热器形式与基本参数)和 HG 21503-92(钢制固定式薄管板换热器)。

管壳式换热器热力计算软件开发

管壳式换热器热力计算软件开发

这一缺点 ,并能够提高热力计算的准确性 ,另外
软 件具有 友好 的界 面 ,用户 可 以选择 合适 的换 热
№, 1 6e P dt ) () =. R) r /) / 6 8  ̄ ( (
式中: r ,胁, r 分别 为努 赛尔 ,雷诺 和普 ,尸, 朗特准则数;n为常数 ,流体被加 热时取 04 ., 被冷却时取 0 3 , 分别为管 的内径和管 的长 . ;d Z 度,m;u,u 分别为流体 的平均动力粘度和管 , 壁 处的动 力粘度 ,k/ ( ・ ) g m s。 ②壳侧对流传热系数的计算 般情 况下在 壳侧加 折流板 来强化 壳侧 的对
钢 铁厂 的加 热炉是 大型 的耗 能设 备 ,其 出炉 膛 烟气 温度 一般 为 90C左右 ,经加 热 炉尾 部空 0 ̄ 气 换热 器换 热后 的烟 气 温度 仍 然有 40~50e。 5 0 ̄ 然后 排 人大 气 … ,很 大 一 部 分 热 量 没 有 得 到 回 收利 用 ,造成 了能源 的浪费 。随着 国家节 能减排
平台 ,可以实现管壳式换热器的热力设计计算和热 力校核计算 。通过 该软件可 以对换热器 进
行优化设 计。 关键 词 加热 炉 管壳式换热器 热力计算
De eo m e f t r o n m i a c l to s fwa e v l p nto he m dy a c c l u a i n o t r f r s e la d t be h a x ha g r o h l n u e te c n e
Wa gK n Y ig Z aY o n u uO nt  ̄ h o a ( otes m nvr t) N r at U i sy h e ei
Ab t a t T e te mo y a c c lu ain s f a e fr s el a d t b e t e c a g r u e o h sr c h h r d n mi ac l t ot r o h l n u e h a x h n e s d fr t e o w w se h a e o e yWa nr d c d a t e t c v r s i t u e .T e s f r a e eo e sn . a g a e T e d sg r o h ot e W d v lp d u i g VB 6 0 ln u g . h e in wa s c c lt n n e c e k c c lt n o l e f i e y t e s f r .T e s f r o l rv d l a u a o s a d t h c a ua i s c ud b n s d b ot e h t e c ud p o i e i h l o i h h wa o wa f u d t n f rltro t zn e in. o n ai s o ae p mii g d sg o i Ke wo d h ai g fr a e s ela d t b e te c a g r te mo y a c c c lt n y rs e t n c h l n u e h a x h n e h r d n mi a ua i n u l o

完整版HTRI管壳式换热器设计基础教程讲解

完整版HTRI管壳式换热器设计基础教程讲解

市场前景
随着科技的不断进步和工业的快速发展,管 壳式换热器的应用领域将不断扩大。同时, 随着环保意识的提高和节能减排政策的实施, 高效、节能、环保的管壳式换热器将成为未
来市场的主流产品。
02
HTRI软件简介及功能
HTRI软件发展历程
01
初始开发阶段
HTRI软件最初由美国Heat Transfer Research Inc.公司开发,专注于管
04
HTRI在管壳式换热器设 计中的应用
工艺流程模拟与优化
工艺流程建模
使用HTRI软件对管壳式换热器工艺流程进行 建模,包括输入工艺参数、物性数据和设备尺 寸等。
模拟计算
通过软件内置的算法和模型,对工艺流程进行模拟计 算,得出各物流的温度、压力、流量和物性变化等关 键参数。
优化设计
根据模拟结果,对换热器的结构、尺寸和布局 等进行优化设计,以提高换热效率和降低能耗。
换热器类型选择依据
传热方式
根据工艺要求选择合适的传热方式,如并流、逆 流或错流。
操作条件
根据操作压力、温度、流量等条件选择合适的换 热器类型。
ABCD
流体性质
考虑流体的物理性质(如密度、粘度、比热容等) 和化学性质(如腐蚀性、结垢性等)。
经济性
在满足工艺要求的前提下,考虑换热器的制造成 本、运行费用和维修费用等因素。
壳式换热器的热工水力设计计算。
02
逐步完善阶段
随着技术的发展和用户需求的变化,HTRI软件逐步增加了新的功能模
块,如振动分析、腐蚀预测等,并不断优化算法以提高计算精度和效率。
03
广泛应用阶段
目前,HTRI软件已成为全球范围内广泛应用于石油、化工、制冷等领

管壳式换热器工艺计算软件(THecal Ver 1.3)

管壳式换热器工艺计算软件(THecal Ver 1.3)

管壳式换热器工艺计算软件(THecal Ver 1.3)绿色版无需安装解压后启动 Thecal.exe该软件是通用的管式换热器的工艺设计计算软件,其结构参数是以GB151-1999为基础,同时参照了JB/T 4174-92、JB/T 4175-92。

尽管 THECAL遵守JB/T 4174-92、JB/T 4175-92 的规定,但用户可以自行修改有关的结构参数。

硬件环境:Thecal 对硬件环境没有特殊要求,建议采用486-DX66或以上的CPU。

请将显示卡的分辨率设置为800×600或以上。

软件环境:该软件运行在中文Windows 9X环境下。

推荐使用中文Windows 98。

软件安装:运行系统盘上的 “..\THECAL\Setup.exe”,安装向导向到会引导用户顺利完成安装。

运行该软件后,首先进入数据输入界面,在管程与壳程这两个回路中,流量、进出口温度、及热负荷这七个数据中必须且仅须已知五个数据方可进行计算,也就是说需要有五个选择框被选中并填入合理的数据才能够进行计算。

当选择框选择不对或数据不合理,将提示错误,可以参考右上角的图形来检查出错的原因,重新确定已知数据并输入合理的数据。

输入数据后,首先按<热平衡>按钮来建立热平衡,如果输入的数据不合理,软件即发出数据错误信息,您可以留意屏幕右上角的图形来检查数据错误的原因。

正确地建立好热平衡后,即可按<计算>按钮来进入下一个界面进行计算。

该软件提供验证、设计两种计算方式,使用<设计>时,软件会自动确定管壳式换热器的壳程内径、折流板数及间距、拉杆数、换热管根数、换热管长度及管间距等,自动计算将自动确定换热器的流程数,其结构参数一般是遵循JB/T 4174-92、JB/T 4175-92的规定。

<验证>时,可以自行确定换热器的管程及壳程的所有结构参数。

首先确定壳体内径,然后确定换热管的长度,再核实其他的结构参数,按<验证>来计算该换热器的传热及流阻性能情况。

HTRI管壳式换热器设计基础教程讲解

HTRI管壳式换热器设计基础教程讲解

HTRI管壳式换热器设计基础教程郑州大学化工与能源学院2011年11月HTRI简介美国传热研究协会(Heat Transfer Research Institute)简称HTRI,主要致力于工业规模的传热设备的研究,开发基于试验研究数据的专业模拟计算工具软件,提供完善的产品、技术服务和培训。

HTRI帮助其会员设计高效、可靠及低成本的换热器。

HTRI Xchanger Suite是HTRI开发的换热器设计及核算的集成图形化用户环境,它包括以下几个部分:HTRI.Xist能够计算所有的管壳式换热器,作为一个完全增量法程序,Xist包含了HTRI 的预测冷凝、沸腾、单相热传递和压降的最新的逐点计算法。

该方法基于广泛的壳程和管程冷凝、沸腾及单相传热试验数据。

HTRI.Xphe能够设计、核算、模拟板框式换热器。

这是一个完全增量式计算软件,它使用局部的物性和工艺条件分别对每个板的通道进行计算。

该软件使用HTRI特有的基于试验研究的端口不均匀分布程序来决定流入每板通道的流量。

HTRI.Xace软件能够设计、核算、模拟空冷器及省煤器管束的性能,它还可以模拟分机停运时的空冷器性能。

该软件使用了HTRI的最新逐点完全增量计算技术。

HTRI.Xjpe是计算套管式换热器的软件。

HTRI.Xtlo是管壳式换热器严格的管子排布软件。

HTRI.Xvib是对换热器管束的单管中由于物流流动导致的振动进行分析的软件。

HTRI.Xfh能够模拟火力加热炉的工作情况。

该软件能够计算圆筒炉及方箱炉的辐射室的性能以及对流段的性能,它还能用API350对工艺加热炉的炉管进行设计,并完成燃烧计算。

在本次培训中,们以HTRI.Xist为主,介绍HTRI的使用。

一、换热器的基础设计知识1. 换热器的分类按作用原理和实现传热的方式可分三大类:即混合式换热器、蓄热式换热器、间壁式换热器,其中间壁式换热器按传热面的形状和结构分类:(1)管壳式:固定管板式、浮头式、填料函式、U 型管式(2)板式:板翅式、平板式、螺旋板式(3)管式:空冷器、套管式、喷淋管式、箱管式(4)液膜式:升降膜式、括板薄膜式、离心薄膜式(5)其他型式:板壳式、热管2.换热器设计标准:中国:GB 151 《管壳式换热器》美国:TEMATEMA—Tubular Exchanger Manufacturers Association (管式交换器制造商协会),TEMA标准就是该协会下属的技术委员会编制的一本关于列管式换热器设计、制造和检验的标准,是目前世界上使用最广泛的列管式换热器标准。

再放送专业小工具 管壳式换热器换热面积计算软件

再放送专业小工具   管壳式换热器换热面积计算软件

再放送专业小工具管壳式换热器换热面积计算软件
再放送专业小工具——管壳式换热器换热面积计算软件是一款由再放
送开发的专业小工具软件,主要用于帮助工程师进行管壳式换热器换
热面积计算。

它可以让使用者以图形方式了解换热器结构,以及计算
换热器管壳式换热面积。

该软件基于管壳式换热器换热面积的规律,采用相应的模型和算法,
运用计算机图形技术,在保证计算精度的同时,实现了较为自然的图
形界面,从而提高了实际应用中的便捷性。

而且该软件还提供了换热
器换热面积的报表和图形输出,可以方便的让使用者查看管壳式换热
器换热面积的计算结果,方便快捷。

此外,这款小工具还包含管壳式换热器参数校核模块,涵盖了管壳式
换热器有关的参数校核,包括管壳式换热器的容积流量、管壳式换热
器的温差穿透系数、管壳式换热器的换热系数、管壳式换热器的换热
面积等,可以帮助使用者校核管壳式换热器的相关参数,更有利于提
高换热器的工作效率。

总之,再放送专业小工具——管壳式换热器换热面积计算软件是一款
非常有用的工具,能够帮助工程师快速准确的计算出换热器换热面积,为换热器的设计和应用提供可靠的计算和分析,大大降低开发成本和
提高工作效率。

管壳式换热器热力计算软件的开发

管壳式换热器热力计算软件的开发

应用领域:石油、化工、制药、食品等工业领域 案例分析:某石化企业管壳式换热器优化改造项目,通过该软件计算,实现了能效提升和生产成本的降低。
测试目的:验证软 件的准确性和可靠 性
测试方法:单元测 试、集成测试、系 统测试和验收测试
测试内容:热力计 算、数据输入输出 、界面操作等
验证方法:与手工 计算结果进行对比 ,确保误差在允许 范围内
运行数据。
数据分析功能: 软件可以对采 集的数据进行 深入分析,包 括温度、压力、 流量等参数。
可视化界面: 软件提供直观 的可视化界面, 方便用户查看 和分析数据。
数据导出功能: 用户可以将分 析结果导出为 Excel或其他格 式的文件,方 便进一步处理
和分享。
软件支持用户根据实际需求自定义参数,满足不同场景的计算需求。 用户可以构建自己的模型,通过软件进行热力计算,提高计算效率和精度。 软件提供了丰富的模型库,用户可以根据需要选择合适的模型进行计算。 用户自定义参数和模型功能增强了软件的灵活性和适用性,提高了用户体验。
满足工程实际需求,提高换热器设计效率 实现自动化计算,减少人工干预和误差 界面友好,方便用户操作和学习 具备可扩展性和可维护性,便于未来功能升级和优化
算法的原理:介绍算法的基 本原理和计算过程
算法的选取:根据换热器热 力计算的需求,选择合适的 算法进行计算
算法的实现:详细说明算法 在软件中的实现过程和步骤
和个性化
预测未来软件 将更加注重用 户体验和易用

汇报人:
算法的优化:针对换热器热 力计算的特点,对算法进行
优化和改进
数据库类型:选择合适的数据库类型,如关系型数据库或非关系型数据库 数据模型设计:根据软件需求设计合适的数据模型 数据存储管理:实现数据的存储、备份、恢复和清理等功能 数据访问控制:设置合适的访问权限和角色,保证数据的安全性和完整性

管壳式换热器设计计算软件

管壳式换热器设计计算软件

参数名称符号数据单位参数名称一、操作/介质参数管程低温介质液体高温介质进口温度32.00℃进口温度出口温度38.00℃出口温度流量64939.00Kg/hr 流量平均温度35.00℃比热 4.18KJ/kg.C 比热热量6944.06kw 热量流体主体粘度0.80cP 密度1030.00kg/m3热导率 K 0.50W/(m)(K)近壁面粘度0.80cP二、传热参数计算总传热功率5939.97kw实际总传热系数1541.24W/(m)(K)污垢损失传热计算总传热系数(无污垢)382.86W/(m)(K)对数平均温差(LMTD)16.70℃三、对数平均温差计算对数平均温差(LMTD)12.219.84℃预定换热器型式2管程1壳程修正后对数平均温差P49.00M四、总传热系数计算1/U0.00五、列管换热器结构参数参数名称符号数据单位管壳式换热器设计计算软件工况选外壳直径Ds0.50m流向形式列管数nt500.00根列管外径Do0.03m换热器型式列管内径Di0.02m列管长度L 5.88m高温流体走管内管间距s0.03m列管排列方式 1.00交错排列挡板间距B0.28m直线排列列管材质及导热系数kt17.00W/(m)(K)计算换热面积929.07m2设计换热面积230.79m2换热裕度 %六、校核计算管程流通面积0.17m2流通面积质量流量103.98kg/s/(m2)质量流量雷诺数2599.45/雷诺数hi/(Cp.G) (Re>8,000)0.00/Re>200K hi/(Cp.G)hi/(Cp.G) (Re<2,100)0.00/Re=300~200K hi/(Cp.G) hi/(Cp.G) Re=2,100-8,0000.00/Re<300 hi/(Cp.G)预定雷诺数382.85W/(m2)/K预定雷诺数校正因子 F1管壁传热系数校正因子 Fr管壁传热系数6800.00W/(m2)/K修正 hi4数据单位壳程液体80.00℃39.00℃39000.00Kg/hr59.50℃4.18KJ/kg.C4935.88kw0.90cP1000.00kg/m30.50W/(m)(K)0.90cP1158.38W/(m)(K)16.70℃9.84℃16.70℃41.44382.86W/(m2)/K 工况选择2.002.00Y并流逆流单管程单壳程双管程单壳程698.28壳程0.03m2353.74kg/s/(m2)9826.15/0.00/0.00/0.00/3668.40W/(m2)/K0.73/1.00/2664.39W/(m2)/K m a0.300.170.370.270.64 1.31。

用ANSYS和FLUENT进行管壳式换热器整体分析

用ANSYS和FLUENT进行管壳式换热器整体分析

用ANSYS和FLUENT进行管壳式换热器整体分析作者:郭崇志林长青利用数值模拟计算软件进行管壳式换热器的流体力学和传热性能计算及评估已经成为开发和研究管壳式换热器的重要手段之一,由于结构和流道复杂,导致准确地进行换热器的流体力学性能和传热性能计算和评估有一定的困难。

而对换热器的结构性能进行准确分析一般都需要进行流固耦合模拟,如果要同时进行换热器的流体流动与传热和结构性能分析就更加困难。

有关管壳式换热器的温度场研究,目前大多数文献集中于研究管板的温度场及所产生温差应力、以及由此导致的结构强度等问题,通常利用ANSYS 大型商用软件行管壳式换热器管板结构的温度场研究,采用简化的三维实体模型较多,一般利用已知的平均温度或利用已知的换热(膜)系数对几何结构模型加载,而这些已知条件通常来源于手册提供的数据或者经验数据,并非来源于严格的换热器流体力学与传热工艺的数值计算,因此是产生结果计算偏差的主要原因之一。

目前文献对于给定工艺条件下管壳式换热器的整体温度场研究的并不多,由于准确的温度场是研究温差应力及其危害的前提,因此本文利用FLUENT 和ANSYS 软件对一台固定管板换热器的约束构件之间的整体结构在正常运行工况下的数值模拟问题进行了研究,首先从计算流体力学与传热的角度出发,利用FLUENT 软件进行换热器流体流动与传热的工艺状况数值模拟。

然后把FLUENT 软件的数值模拟结果导入ANSYS中作节点插值,完成温度场的重建,作为进行换热器的热分析以及结构分析的边界条件。

从而实现了管壳式换热器的FLUENT 和ANSYS 联合仿真模拟,综合整个过程可以很好地完成同一条件下换热器的流体力学与传热和结构性能分析,使得换热器的工艺性能计算与结构分析计算完整地结合在一起,计算精度更高。

1 CFD数值模拟本文研究的换热器结构示意如图1所示,在对实际结构进行合理简化的基础上,以影响流动和传热的主要结构建立了某固定管板式换热器温度场数值计算模型,采用分段模拟、整体综合的方法,利用FLUENT软件对该换热器在正常操作工况下的流动与传热情况进行数值模拟[8] ,得到计算流道上有关各个构件的壁温场分布。

管壳式换热器设计计算软件

管壳式换热器设计计算软件

管壳式换热器设计计算软件管壳式换热器是目前工业中最常见的换热设备之一,其结构简单,易于维护,同时可以满足各种不同流体之间的换热需求。

为了更加高效地完成管壳式换热器的设计计算工作,我们可以开发一款专门的软件来支持这一过程。

接下来,本文将详细介绍如何设计一款高效的管壳式换热器设计计算软件,并就此进行3000字的阐述。

一、软件开发背景在每个行业中,对于不同领域或不同参数的管壳式换热器都有着不同的需求。

设计软件的开发目的是为了更好地满足这些需求。

软件开发可以使设计人员更好地掌握和了解换热器的相关知识,同时提高换热器设计的工作效率和质量。

二、需求分析(一)功能需求1. 可以完成理想换热器的设计,计算出合适的传热面积和流体流量;2. 可以对已有的换热器进行参数修改和设计,以满足不同的需求;3. 可以计算换热器的热传导性能,根据计算结果调整换热器结构参数。

(二)性能需求1. 处理大规模数据快速响应,能够提高工作效率和设计效果;2. 具有较高的数据精度和稳定性,以达到高质量的计算结果;3. 软件应该具备较好的可拓展性,支持后续功能的增加和升级。

(三)安全性需求软件应具有一些安全措施,可以避免不必要的误操作,保护用户的利益和数据安全。

例如:1. 设计者需要填写一部分基本参数的值才能开始设计,以避免错误输入和计算出错;2. 设计者需要输入账户和密码才可以使用软件;三、设计思路(一)应用框架设计应用框架是指软件的总体结构,包括各个模块的组织方式、应用模式和数据交互方式。

为了使得软件具有良好的可扩展性和升级性,我们可以采用以下的应用框架:1. Model-View-Controller(MVC)架构:设计模型和视图分开,视图呈现在界面上,模型对视图做数据处理。

同时采用MVP模式,Presenter中进行业务处理,更新View界面。

基于这种结构,我们可以轻松扩展和优化功能。

2. 流水线架构(Pipeline):将设计流程划分成不同的阶段,并按流程顺序一步步完成设计。

利用HTRI进行管壳式换热器的设计

利用HTRI进行管壳式换热器的设计

利用HTRI进行管壳式换热器的设计发布时间:2021-07-05T02:51:01.218Z 来源:《中国科技人才》2021年第10期作者:王建航[导读] 常用的管壳式换热器主要有固定管板式,浮头式及U型管式。

一般优先选用固定板式换热器。

对壳体和管子温差超过30°C或冷热流体进口温差超过110°C的情况应考虑选用浮头式换热器。

对于高温高压流体应考虑选用U型管换热器。

空气产品(山东)工程设计有限公司山东省淄博市 255000摘要:管壳式换热器作为重要的换热设备,在石油石化行业应用广泛。

本文阐述了如何借助HTRI进行管壳式换热器的设计,以及在设计过程中需要注意的问题,从而设计出经济实用的换热器。

关键词:管壳式换热器;HTRI管壳式换热器又称列管式换热器,因其制造容易,生产成本低,适应性强,处理量大,工作可靠,维护方便,在石油,化工,能源等行业的应用中处于主导地位。

【1】相比于其他型式的换热器,其理论研究,设计技术及标准化和规范化也是最完善的。

【2】随着计算机技术的发展,专门的换热器计算软件HTRI,HTFS已经成为换热器计算的主要手段,并很好的符合实际的生产工况。

本文主要叙述如何利用HTRI进行管壳式换热器的设计。

1 设计前应确定的条件1.1明确两股流体的工艺参数及要求初步确定换热器的形式。

常用的管壳式换热器主要有固定管板式,浮头式及U型管式。

一般优先选用固定板式换热器。

对壳体和管子温差超过30°C或冷热流体进口温差超过110°C的情况应考虑选用浮头式换热器。

对于高温高压流体应考虑选用U型管换热器。

1.2根据两股流体的物性确定冷热流体的流程。

1/易结垢的物料应走容易清洗的一侧;2/有毒,有腐蚀性或高压的物料应走管程;3/通常蒸汽为便于排凝,一般通入壳程;4/高粘度流体或在管程为层流的流体,可考虑其走壳程。

因为壳程中的挡板有利于流体达到湍流,提高换热系数;1.3根据流体物性确定合适的污垢系数流体的结垢会严重影响换热器的换热效果。

管壳式换热器热力计算软件的开发

管壳式换热器热力计算软件的开发
管添加壳副式标换题 热器热力 计算软件的开发
汇报人:
目录
PART One
添加目录标题
PART Two
软件背景与目标
PART Three
软件功能与特点
PART Five
应用场景与案例分 析
PART Four
开发流程与技术实 现
PART Six
未来发展与展望
单击添加章节标题
软件背景与目标
管壳式换热器的应用领域
关键技术实现方法
热力计算算法:采用先进的热力计算算法,确保计算结果的准确性和可靠性 软件开发技术:采用面向对象编程技术,实现软件的模块化和可扩展性 数据处理技术:对输入数据进行校验和预处理,提高计算效率和准确性 用户界面设计:采用直观易用的界面设计,方便用户操作和使用
数据处理与存储技术
数据采集:通过传感器、仪表等设 备采集数据
案例一:某石油化工企业管 壳式换热器的热力计算
案例三:某钢铁企业高炉煤 气余热回收系统的热力计算
案例四:某核电站反应堆冷 却剂系统的热力计算
用户反馈与评价
用户对软件使用的满意度
用户对软件功能的评价
添加标题
添加标题
用户对软件性能的认可度
添加标题
添加标题
用户对软件易用性的评价
未来发展与展望
技术发展趋势预测
技术挑战:需要解决计算过程中的精度和稳定性问题,提高软件的易用性和可维护性
软件功能与特点
热力计算功能
输入参数:用户可以输入相关的热力参数,如温度、压力等 计算模型:软件采用高效的计算模型,快速准确地完成热力计算 输出结果:软件将计算结果以图表或数据形式输出,方便用户查看和分析 自定义功能:用户可以根据实际需求,自定义计算模型和输出结果

完整版HTRI管壳式换热器设计基础教程讲解

完整版HTRI管壳式换热器设计基础教程讲解
键参数。
收集设计资料
收集相关的工艺数据、物性数 据、设备规格等必要信息。
选择设计软件
根据设计任务和设计资料,选 择合适的管壳式换热器设计软
件,如HTRI等。
热力计算与选型分析
热力计算
根据工艺条件和物性数据,进行 热量衡算,确定传热面积、热负 荷等关键参数。
选型分析
根据热力计算结果,选择合适的 换热器型号、管径、管长、管数 等结构参数。
结构组成
管壳式换热器主要由壳体、管束、管板、折流板、封头等部件组成。
结构特点
管壳式换热器具有结构紧凑、传热效率高、适应性强、使用寿命长等特点。
工作原理与性能参数
工作原理
管壳式换热器通过热传导和对流换热的方式,实现热量从高温流体向低温流体的传递。
性能参数
评价管壳式换热器性能的参数主要包括传热系数、压力降、热效率等。
计算实例
以某具体换热器为例,展示详细的热力计算 过程,包括物性参数计算、传热系数确定、 压降计算等。
结构设计优化建议
要点一
结构优化方向
从提高传热效率、降低压降、增强结构强度等方面提出优 化建议。
要点二
具体优化措施
采用高效传热管型、优化折流板结构、改进管板连接方式 等。
性能评估与改进方向
性能评估方法
案例分析:典型管壳式换热器设计实 例
案例背景介绍及设计要求
案例背景
某化工厂需要一种高效、可靠的管壳式 换热器来满足生产过程中的热量交换需 求。
VS
设计要求
换热器需要能够承受高温高压的工作环境 ,同时保证高效的热量传递效率,降低能 耗,提高生产效率。
热力计算过程展示
热力计算流程
确定设计参数 -> 选择合适的热力学模型 > 进行热量平衡计算 -> 确定换热器的主要 尺寸和性能参数。

HTRI管壳式换热器设计基础教程

HTRI管壳式换热器设计基础教程

HTRI管壳式换热器设计基础教程郑州大学化工与能源学院2011年11月HTRI简介美国传热研究协会(Heat Transfer Research Institute)简称HTRI,主要致力于工业规模的传热设备的研究,开发基于试验研究数据的专业模拟计算工具软件,提供完善的产品、技术服务和培训。

HTRI帮助其会员设计高效、可靠及低成本的换热器。

HTRI Xchanger Suite是HTRI开发的换热器设计及核算的集成图形化用户环境,它包括以下几个部分:HTRI.Xist能够计算所有的管壳式换热器,作为一个完全增量法程序,Xist包含了HTRI 的预测冷凝、沸腾、单相热传递和压降的最新的逐点计算法。

该方法基于广泛的壳程和管程冷凝、沸腾及单相传热试验数据。

HTRI.Xphe能够设计、核算、模拟板框式换热器。

这是一个完全增量式计算软件,它使用局部的物性和工艺条件分别对每个板的通道进行计算。

该软件使用HTRI特有的基于试验研究的端口不均匀分布程序来决定流入每板通道的流量。

HTRI.Xace软件能够设计、核算、模拟空冷器及省煤器管束的性能,它还可以模拟分机停运时的空冷器性能。

该软件使用了HTRI的最新逐点完全增量计算技术。

HTRI.Xjpe是计算套管式换热器的软件。

HTRI.Xtlo是管壳式换热器严格的管子排布软件。

HTRI.Xvib是对换热器管束的单管中由于物流流动导致的振动进行分析的软件。

HTRI.Xfh能够模拟火力加热炉的工作情况。

该软件能够计算圆筒炉及方箱炉的辐射室的性能以及对流段的性能,它还能用API350对工艺加热炉的炉管进行设计,并完成燃烧计算。

在本次培训中,们以HTRI.Xist为主,介绍HTRI的使用。

一、换热器的基础设计知识1. 换热器的分类按作用原理和实现传热的方式可分三大类:即混合式换热器、蓄热式换热器、间壁式换热器,其中间壁式换热器按传热面的形状和结构分类:(1)管壳式:固定管板式、浮头式、填料函式、U 型管式(2)板式:板翅式、平板式、螺旋板式(3)管式:空冷器、套管式、喷淋管式、箱管式(4)液膜式:升降膜式、括板薄膜式、离心薄膜式(5)其他型式:板壳式、热管2.换热器设计标准:中国:GB 151 《管壳式换热器》美国:TEMATEMA—Tubular Exchanger Manufacturers Association (管式交换器制造商协会),TEMA标准就是该协会下属的技术委员会编制的一本关于列管式换热器设计、制造和检验的标准,是目前世界上使用最广泛的列管式换热器标准。

(完整版)HTRI管壳式换热器设计基础教程讲解

(完整版)HTRI管壳式换热器设计基础教程讲解

HTRI管壳式换热器设计基础教程郑州大学化工与能源学院2011年11月HTRI简介美国传热研究协会(Heat Transfer Research Institute)简称HTRI,主要致力于工业规模的传热设备的研究,开发基于试验研究数据的专业模拟计算工具软件,提供完善的产品、技术服务和培训。

HTRI帮助其会员设计高效、可靠及低成本的换热器。

HTRI Xchanger Suite是HTRI开发的换热器设计及核算的集成图形化用户环境,它包括以下几个部分:HTRI.Xist能够计算所有的管壳式换热器,作为一个完全增量法程序,Xist包含了HTRI 的预测冷凝、沸腾、单相热传递和压降的最新的逐点计算法。

该方法基于广泛的壳程和管程冷凝、沸腾及单相传热试验数据。

HTRI.Xphe能够设计、核算、模拟板框式换热器。

这是一个完全增量式计算软件,它使用局部的物性和工艺条件分别对每个板的通道进行计算。

该软件使用HTRI特有的基于试验研究的端口不均匀分布程序来决定流入每板通道的流量。

HTRI.Xace软件能够设计、核算、模拟空冷器及省煤器管束的性能,它还可以模拟分机停运时的空冷器性能。

该软件使用了HTRI的最新逐点完全增量计算技术。

HTRI.Xjpe是计算套管式换热器的软件。

HTRI.Xtlo是管壳式换热器严格的管子排布软件。

HTRI.Xvib是对换热器管束的单管中由于物流流动导致的振动进行分析的软件。

HTRI.Xfh能够模拟火力加热炉的工作情况。

该软件能够计算圆筒炉及方箱炉的辐射室的性能以及对流段的性能,它还能用API350对工艺加热炉的炉管进行设计,并完成燃烧计算。

在本次培训中,们以HTRI.Xist为主,介绍HTRI的使用。

一、换热器的基础设计知识1. 换热器的分类按作用原理和实现传热的方式可分三大类:即混合式换热器、蓄热式换热器、间壁式换热器,其中间壁式换热器按传热面的形状和结构分类:(1)管壳式:固定管板式、浮头式、填料函式、U 型管式(2)板式:板翅式、平板式、螺旋板式(3)管式:空冷器、套管式、喷淋管式、箱管式(4)液膜式:升降膜式、括板薄膜式、离心薄膜式(5)其他型式:板壳式、热管2.换热器设计标准:中国:GB 151 《管壳式换热器》美国:TEMATEMA—Tubular Exchanger Manufacturers Association (管式交换器制造商协会),TEMA标准就是该协会下属的技术委员会编制的一本关于列管式换热器设计、制造和检验的标准,是目前世界上使用最广泛的列管式换热器标准。

HTRI 管壳式换热器 Xist

HTRI 管壳式换热器 Xist

HTRI 管壳式换热器Xist 设计目录01定义单位 (2)02工艺参数输入 (6)03冷热物性输入 (10)04物性生成器的使用 (14)05结构参数的输入 (21)06壳程参数输入 (32)07管子参数输入 (36)08折流板参数输入 (42)09再沸器参数输入 (50)10再沸器配管参数输入 (54)11管口参数输入 (59)12防冲设施的设置 (63)13管子排布设置 (66)14管束间隙的设置 (74)15设计选项的设置 (79)01定义单位HTRI换热器软件入门教程:设计一个管壳式换热器【Xist】,本节HTRI教程先进行软件界面的熟悉。

1、双击HTRI软件快捷图标HTRI Xchanger Suiter 7.1,打开程序界面:2、创建一个“新的管壳式换热器”3、设置自己熟悉的一套单位制,比如MKH公制,也可以通过<Edit…>来自定义。

(1) 如何自定义单位制,进入<Edit…>,选择<Modify…>设置自定义单位制的名称“My Units”;选择参照单位制(Reference set Nam e),程序默认有三套单位制1US美制,2SI国际标准值,3MKH公制。

国内选SI或MKH,将与你最常用的单位不一致的,可去掉勾选,然后选择你所需要的如下图:(2) 保存退出后,即可在单位制选项中出现“My Units”。

4. 接下来就是将界面中的“红框”也就是缺少的参数按你将要设计的工况填写完整,包括如下几部分的数据:(1)“Process”工艺条件:包括热流体侧和冷流体侧;(2) “Hot Fluid Properties”、“Cold Fluid Properties”热流体物性,冷流体物性;(3) “Geometry”机械结构:包括壳体结构尺寸、管子、折流板、管口、布管等。

5. 当输入数据足够所有的红框消失,那么初步的输入就完成了,可以点击"绿灯"图标运行。

管壳式换热器设计计算软件

管壳式换热器设计计算软件

管壳式换热器设计计算软件管壳式换热器是一种常见的热交换器,用于在工业过程中实现热量传递。

设计一个管壳式换热器需要进行一系列的计算,以确保换热器能够满足工艺要求,并具有合适的换热效果。

为了简化这个过程,可以使用管壳式换热器设计计算软件。

下面将详细介绍这个软件的功能和计算步骤。

1.换热器类型选择:软件可以提供不同类型的管壳式换热器供用户选择,如固定管板式、浮动管板式、U型管式等。

用户可以根据具体的工艺要求选择适合的类型。

2.热工参数计算:软件可以根据用户提供的热工参数,如流体的温度、流量等数据,自动计算换热器的热传导率和传热系数。

这些参数是换热器设计和性能评估的基础。

3.结构设计:软件可以根据用户提供的设计参数,如管束长度、管板间距、管壳接头方式等,自动生成换热器的结构设计。

这些参数直接影响换热器的尺寸和重量。

4.管束优化:软件可以通过计算不同管束类型的传热性能指标,如换热面积、热损失等,为用户提供管束设计的优化方案。

用户可以根据具体的工艺要求选择最合适的管束类型。

5.材料选择:软件可以提供不同材料的换热器管束和壳体选项,并计算其耐压性能和传热性能。

用户可以根据具体的工艺要求选择最合适的材料。

以上功能只是管壳式换热器设计计算软件的一部分,不同的软件可能还具备其他附加功能,如换热器的模拟和仿真功能,用户可以在软件中进行各种操作和实验,以评估换热器不同工况下的性能。

下面将以一个具体的设计计算为例,介绍常见的管壳式换热器设计步骤:1.确定工艺要求:首先,需要明确工艺要求,包括流体的温度、流量、压力等参数。

这些参数将直接影响换热器的设计和性能。

2.确定传热参数:根据流体的温度和热传导性质,可以计算出换热器的热传导率和传热系数。

这些参数是换热器设计和性能评估的基础。

3.计算换热面积:根据传热参数和工艺要求,可以计算出所需的换热面积。

通常,换热面积与流体的温度差和流量成正比。

4.确定结构参数:根据所需的换热面积和设计要求,可以确定换热器的结构参数,如管束长度、管板间距、管壳接头方式等。

XHeater(套管换热软件)用户手册

XHeater(套管换热软件)用户手册
3S技术系列 即输 Synchronous Input 即算 Synchronous Calculation 即见 Synchronous Display
中华人民共和国版权局注册软件 计算机软件著作权登记号:xxxxxx
自然驾驭,智能反应,最人性化的—
换热器计算软件
XHeater®用户手册
直管套管、螺旋套管、夹套釜—严格热力计算
管程:
38 ℃的热水降温到 32 ℃。
两侧污垢均取: 0.0001 m2 K/W
主要结构参数:
单程管长:
500 mm
这些数据输入完成后,XHeater 的画面如 2.3 所示。操作这个计算过程十分简洁,计算结果
图 2.3 套管换热器计算结果
也是一目了然:全部集中在用户界面中。 现在简要说明一下部分比较特殊的计算结果:
每个数据的后面带有单位选择,你随时可以选择单位。每个数据输入后回车,系统会立 即响应计算。
一些数据旁边有下拉箭头,点开它,会有供你选择的数据。
2.1.3 Xheater 物性数据来源
手工输入。物性数据用户收集、查找,然后输入到 XHeater 中。 使用物性数据库。XHeater 自带了一个简易的物性数据库,使用方法:1)在界面中按 下“平均比热”右边的箭头,打开物性数据库;2)选择物质种类;3)填写温度和压力; 4)按下“计算”按钮;5)按下“确定”按钮。见图 2.1。 使用流程模拟软件。XHeater 能够连接 Hysys,倒入其中的换热器模块数据,使用方法 见图 2.2。
西安市维维计算机技术有限责任公司 Email:htcsoft@
前言
换热器除了列管式之外,还有好多类型的管式换热器,如套管、釜式等。Xheate®是专 门用于同心圆筒结构的一类管式换热器的热力设计计算软件。Xheate®包括直套管式、螺旋 套管式换热器和带夹套以及搅拌的加热釜、槽、罐。这类换热器的共同特征是换热器由两 个同心圆柱体组成,中心和环形通道走两股换热流体。

(完整版)HTRI管壳式换热器设计基础教程讲解

(完整版)HTRI管壳式换热器设计基础教程讲解

传热系数U的影响因素
03
包括流体物性、流速、管壁厚度、管壁材料等。
流体流动与传热性能参数
雷诺数Re
表征流体流动状态的参数, Re<2300为层流,Re>4000为
湍流。
普朗特数Pr
表征流体物性对传热影响的参 数,Pr越大,传热效果越好。
努塞尔数Nu
表征对流换热强度的参数,Nu 越大,对流换热效果越好。
学习要求
学员应具备一定的热力学、流体力学和传热学基础知识,同时需要具备 一定的计算机操作能力和英语水平。
02
管壳式换热器结构与设计原理
管壳式换热器基本结构组成
管束
由多根换热管组成,管内走一 种流体,管外走另一种流体, 实现热量交换。
管板
连接换热管与壳体,同时起到 密封和支撑作用。
壳体
包括筒体、封头、接管等部分 ,
表征换热器实际换热量与理论 最大换热量之比的参数,ε越大
,换热器性能越好。
03
HTRI软件操作入门指南
软件安装与启动方法
安装步骤 下载HTRI软件安装包;
双击安装包,按照提示进行安装;
软件安装与启动方法
启动方法
完成安装后,启动软件。
选择安装路径和相关组件 ;
01
03 02
软件安装与启动方法
性能评估
通过数值模拟或实验手段,对优化后的换热器性能进行评 估,包括传热系数、压降、热效率等。同时,与初步设计 结果进行对比分析,验证优化效果。
05
案例分析:应用HTRI进行实际 项目设计
案例背景介绍及问题阐述
项目背景
某化工企业需设计一款高效、紧凑的管壳式换热器,用于实现两种 不同温度流体的热量交换。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

m2 kg/s/(m2)
/ / / / W/(m2)/K / / W/(m2)/K a 0.17 0.27 1.31
参数名称 一、操作/介质参数 低温介质 进口温度 出口温度 流量 平均温度 比热 热量 流体主体粘度 密度 热导率 K 近壁面粘度
管壳式换热器设计计算软件
符号
数据 管程 液体 32.00 38.00 64939.00 35.00 4.18 6944.06 0.80 1030.00 0.50 0.80
1158.38
W/(m)(K)
16.70 9.84 16.70 41.44
382.86
℃ ℃ ℃
W/(m2)/K
工况选择
2.00
2.00
Y
并流 逆流 单管程单壳程 双管程单壳程 698.28
壳程 0.03 353.74 9826.15 0.00 0.00 0.00 3668.40 0.73 1.00 2664.39 m 0.30 0.37 0.64
Ds
0.50
m 流向形式
nt
500.00

Do
0.03
m 换热器型式
Di
0.02
m
L
5.88
m 高温流体走管内
s
0.03
m
1.00
交错排列
B
0.28
m 直线排列
kt
17.00
W/(m)(K )
929.07
m2ห้องสมุดไป่ตู้
230.79
m2 换热裕度 %
六、校核计算
流通面积 质量流量 雷诺数 hi/(Cp.G) (Re>8,000) hi/(Cp.G) (Re<2,100) hi/(Cp.G) Re=2,100-8,000 预定雷诺数
校正因子 F1 校正因子 Fr W/(m2)/K 修正 hi
4
软件
数据 壳程 液体 80.00 39.00 39000.00 59.50 4.18 4935.88 0.90 1000.00 0.50 0.90
单位
℃ ℃ Kg/hr ℃ KJ/kg.C kw cP kg/m3 W/(m)(K) cP
管壁传热系数 管壁传热系数
管程 0.17 103.98 2599.45 0.00 0.00 0.00 382.85
6800.00
m2 流通面积 kg/s/(m2) 质量流量
/ 雷诺数 / Re>200K hi/(Cp.G) / Re=300~200K hi/(Cp.G) / Re<300 hi/(Cp.G) W/(m2)/K 预定雷诺数
单位 参数名称
高温介质 ℃ 进口温度 ℃ 出口温度 Kg/hr 流量 ℃ KJ/kg.C 比热 kw 热量 cP kg/m3 W/(m)(K ) cP
二、传热参数计算 总传热功率 实际总传热系数 计算总传热系数(无污垢) 对数平均温差(LMTD)
5939.97 1541.24 382.86 16.70
kw W/(m)(K 污垢损失传热 W/(m) )(K
) ℃
三、对数平均温差计算 对数平均温差(LMTD) 换热器型式 P
12.21
9.84 2管程1壳程
49.00
℃ 预定 修正后对数平均温差 M
四、总传热系数计算
1/U
0.00
五、列管换热器结构参数
参数名称
符号
数据
单位
工况选择
外壳直径 列管数 列管外径 列管内径 列管长度 管间距 列管排列方式 挡板间距 列管材质及导热系数 计算换热面积 设计换热面积
相关文档
最新文档