实验五 信号的采样与恢复

合集下载

信号与系统实验教程

信号与系统实验教程

信号与系统实验教程信号与系统实验是电子信息类专业中一门重要的实验课程。

在这门实验中,学生将学习如何利用实验仪器和软件工具来分析和处理信号,并理解信号在系统中的作用和相互之间的关系。

以下是一些常见的信号与系统实验教程:1. 实验一:信号的采集与表示- 学习使用信号采集仪器(例如信号发生器、示波器等)。

- 了解采样原理和采样频率对信号的影响。

- 学习如何将模拟信号转换为数字信号。

- 使用编程语言或工具对信号进行采样和表示。

2. 实验二:信号的变换与处理- 学习傅里叶变换和信号频谱分析的原理。

- 使用傅里叶变换工具(例如FFT算法)对信号进行频谱分析。

- 学习信号的时域和频域表示之间的转换关系。

- 学习数字滤波器的原理和应用。

3. 实验三:线性时不变系统的特性分析- 学习线性时不变系统的定义和性质。

- 了解系统的单位冲激响应和冲激响应与输入信号的卷积关系。

- 利用实验仪器测量系统的冲激响应。

- 使用软件工具对系统进行时域和频域特性分析。

4. 实验四:信号采样与重构- 学习信号采样和重构的理论基础。

- 利用实验仪器对信号进行采样和重构。

- 学习采样定理的应用和限制。

- 学习插值和抽取技术对信号进行采样和重构。

5. 实验五:系统的频率响应与稳定性- 学习系统的频率响应和稳定性分析。

- 使用频率响应仪器(例如频谱分析仪)对系统进行测量和分析。

- 学习系统的振荡和稳定条件。

- 学习系统的幅频特性和相频特性之间的关系。

以上是信号与系统实验教程的一些基本内容,具体的实验内容和教程可以根据教学大纲和教材进行更详细的设计和安排。

实验5 信号的采样与恢复

实验5 信号的采样与恢复

信号与系统实验报告
称为抽样周期,其
称抽样频率。

图1 矩形抽样脉冲
对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于抽样频率及其谐波频率2、3……。

当抽样信号是周期性窄脉冲时,平移后的频率幅度按 规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的
抽样频率又称“奈奎斯特抽样率”。


___________
【实验结果】
各波形如下:
图1 低频率抽样脉冲(J8) 图2 抽样信号(8K)
图3 抽样信号(16K) 图4 高频率抽样脉冲(J8)
图5 抽样脉冲(J10)图6 抽样信号(抽样倍数:3)
图7 抽样信号(抽样倍数:4)图8 抽样信号(抽样倍数:5)
【思考】
1.如果抽样脉冲→0,抽样信号经低通后不但能复原,而且复原效果趋于原信号。

→0等同于几
乎对原信号所有的点抽样,最大保留了原信号。

2.抽样脉冲的频率应该远大于抽样恢复信号频率,为抽样频率倍原信号占有的频带宽度,不然采样不足
导致滤波输出严重失真。

实验五抽样定理及信号恢复

实验五抽样定理及信号恢复
2. 调节信号源,使其输出f=1KHz,A=1V的三角波;连接 信号源输出端与P41,并把抽样信号Fs(t)的输出端P42 与低通滤波器输入端相连,示波器CH1接原始被抽样 信号输入点P41,CH2接恢复信号输出点TP45,比照观 察信号恢复情况:
3. 设1KHz的三角波信号的有效带宽为3KHz,Fs(t)信号分 别通过截止频率为fc1和fc2低通滤波器,观察其原信号 的恢复情况,并完成以下观察和记录任务:
1台
四. 实验内容和步骤
1. 抽样信号波形的观测 2. 验证抽样定理与信号恢复
1.抽样信号波形的观测
1. 调节信号源,使之输出f=1KHz,幅度A=3V的三角波; 2. 连接信号源输出端与抽样定理模块上点P41; 3. 拨码开关K401拨至左边; 4. 用示波器观察TP42处抽样信号的波形,调整电位器 5. W41改变抽样频率,使抽样频率分别为3K、6K和12K, 6. 观察并记录这3种情况下抽样信号的波形。
2. 验证抽样定理与信号恢复
信号恢复实验方框图如图5-7:
F(பைடு நூலகம்)
抽样器
FS(t)
S(t)
低通 滤波器
F’(t)
图5-7 信号恢复实验方框图
1. 分别设计两个有源低通滤波器,电路形式如图5-6所示。 〔利用U43、R43、R44、C42与C41、C43来实现〕分别 设fc1=2KHz,fc2=4KHz,R1=R2=5.1KΩ,试计算C1 和C2值〔计算公式见5-1,5-2〕。
a. 当抽样频率分别为3KHz、6KHz、和12KHz,截止频 率为2KHz时Fs(t)和F'(t)的波形;
b. 当抽样频率分别为3KHz、6KHz、和12KHz,截止频 率为4KHz时Fs(t)和F'(t)的波形;

数字信号处理实验五

数字信号处理实验五

实验五:抽样定理一、实验目的1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。

2、进一步加深对时域、频域抽样定理的基本原理的理解。

3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和内插公式的编程方法。

二、实验内容及步骤1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。

2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m =1Hz 。

(1)分别显示原连续信号波形和F s =f m 、F s =2f m 、F s =3f m 三种情况下抽样信号的波形;dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; f=sinc(t);subplot(4,1,1);plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-2:Ts:2; f=sinc(n);subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]);课程名称 数字信号处理 实验成绩 指导教师实 验 报 告院系 信息工程学院 班级 学号 姓名 日期end-2-1.5-1-0.50.511.5200.51原连续信号和抽样信号(2)求解原连续信号和抽样信号的幅度谱; dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; N=length(t); f=sinc(t); wm=2*pi*fm; k=0:N-1; w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3;if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-2:Ts:2; N=length(n); f=sinc(n); wm=2*pi*fs; k=0:N-1; w=k*wm/N; F=f*exp(-j*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]); end00.511.522.533.540.20.40.60.811.200.511.522.533.54012(3)用时域卷积的方法(内插公式)重建信号。

信号的采样与恢复实验注意事项

信号的采样与恢复实验注意事项

信号的采样与恢复实验注意事项
1. 实验前应确认所需的信号源和采样设备正常工作,以确保实验结果的准确性。

2. 在采样过程中要注意采样频率的选择,采样频率应满足奈奎斯特采样定理,即采样频率应大于信号的最高频率的两倍。

3. 在采样时,应记录下采样间隔和采样点数,以便后续的数据分析和信号恢复处理。

4. 为了保证采样的准确性,需要尽量避免信号与噪声的干扰。

可以采取一些减小噪声的措施,如使用滤波器对信号进行预处理。

5. 实验中可以尝试不同的采样频率和采样点数,观察采样结果的差异,并对比恢复后的信号与原始信号的差异。

6. 在恢复信号时,可以利用插值等方法对采样数据进行处理,以恢复原始信号。

7. 实验结束后,应及时保存实验数据和实验结果,以备后续分析和报告使用。

8. 在实验过程中,应注意安全和操作规范,避免在实验室中发生意外或损坏设备。

信号的采样与恢复

信号的采样与恢复

深圳大学实验报告课程名称:信号与系统实验项目名称:信号的采样与恢复学院:信息工程专业:电子信息指导教师:报告人:学号:班级:实验时间:实验报告提交时间:教务部制一、实验目的和要求1、了解信号的采样方法与过程以及信号恢复的方法。

2、验证采样定理。

二、实验内容和原理实验原理1、离散时间信号可以从离散信号源获得,也可以从连续时间信号采样而得。

采样信号x s (t )可以看成连续信号x (t )和一组开关函数s (t )的乘积。

s (t )是一组周期性窄脉冲,如图2-5-1,T s 称为采样周期,其倒数f s =1/T s 称采样频率。

图2-5-1 矩形采样信号对采样信号进行傅里叶分析可知,采样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于采样频率f s 及其谐波频率2f s 、3f s ……。

当采样信号是周期性窄脉冲时,平移后的频率幅度按sinx/x 规律衰减。

采样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2、采样信号在一定条件下可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。

3、原信号得以恢复的条件是f s ≥2f max ,f s 为采样频率,f max 为原信号的最高频率。

当fs <2 f max 时,采样信号的频谱会发生混迭,从发生混迭后的频谱中无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的,因此即使f s =2 f max ,恢复后的信号失真还是难免的。

实验中选用f s <2 f max 、f s =2 f max 、f s >2 f max 三种采样频率对连续信号进行采样,以验证采样定理:要使信号采样后能不失真地还原,采样频率f s 必须大于信号最高频率的两倍。

4、连续信号的采样和采样信号的复原原理框图如图2-5-2所示。

信号采样与恢复实验

信号采样与恢复实验

信号的采样与恢复实验1、实验目的a 熟悉信号的采样与恢复的过程b 学习和掌握采样定理c 了解采样频率对信号恢复的影响2、实验原理及内容a 采样定理采样定理:对于一个具有有限频谱且最高频率为w max 的连续信号进行采样,当采样频率w s 满足w s >=2w max 时,采样函数能够无失真地恢复出原信号。

b 采样信号的频谱连续周期信号经过经过周期矩形脉冲抽样后,抽样信号的频谱为)]([)2()(s n s s n j F n Sa T A j F ωωτωτω-=∑+∞-∞= 它包含了原信号频谱以及重复周期为 ωs 的原信号频谱的搬移,且幅度按)2(τωτs n Sa T A 规律变化。

所以抽样信号的频谱便是原信号频谱的周期性拓延。

c 采样信号的恢复将采样信号恢复成原信号,可以是用低通滤波器。

低通滤波器的截止频率f c 应当满足f max ≤f c ≤f x -f max 。

d 单元构成本实验电路由脉冲采样电路和滤波器两个部分构成,滤波器部分不再赘述。

其中的采样保持部分电路由一片 CD4052 完成。

此电路由两个输入端,其中 IN1 端输入被采样信号,Pu 端入采样脉冲。

3、测试步骤3.1 信号的采样a 使波形发生器第一路输出幅值 3V 、频率 10Hz 的三角波信号;第二路输出幅值 5V ,频率 100Hz 、占空比 50%的脉冲信号。

将第一路信号接入 IN1 端,作为输入信号;将第二路信号接入 Pu 端,作为采样脉冲。

b 用示波器分别测量 IN1 端和 OUT1 端,观察采样前后波形的差异c 增加采样脉冲的频率为 200、500、800 等值。

观察 OUT1 端信号的变化。

解释现象的产生。

图1:频率为100Hz 的采样脉冲 图2:频率为200Hz 的采样脉冲图3:频率为500Hz 的采样脉冲 图4:频率为800Hz 的采样脉冲原因:取样的周期不能过大,必须满足ms f T 21≤,)。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

采样定理实验报告

采样定理实验报告

采样定理实验报告采样定理实验报告一、实验目的本实验旨在通过对采样定理的实际应用,验证采样定理的有效性,并了解采样频率对信号恢复的影响。

二、实验原理采样定理,又称奈奎斯特定理,是指在进行信号采样时,采样频率必须大于信号最高频率的两倍,才能完全恢复原始信号。

否则,会出现混叠现象,导致信号失真。

三、实验器材1. 示波器:用于观测信号波形。

2. 信号发生器:用于产生不同频率的信号。

3. 低通滤波器:用于恢复被混叠的信号。

四、实验步骤1. 将信号发生器连接到示波器上,设置合适的信号频率和幅度。

2. 观察信号波形,记录信号的最高频率。

3. 根据采样定理,计算出合适的采样频率。

4. 调整示波器的采样频率,确保其大于信号最高频率的两倍。

5. 观察采样后的信号波形,记录观察结果。

6. 将采样后的信号通过低通滤波器进行恢复。

7. 观察恢复后的信号波形,记录观察结果。

五、实验结果与分析在实验过程中,我们选择了不同频率的信号进行采样,并观察了采样前后的信号波形。

实验结果表明,当采样频率小于信号最高频率的两倍时,混叠现象会导致信号失真。

而当采样频率大于信号最高频率的两倍时,通过低通滤波器可以完全恢复原始信号。

通过实验数据的观察和分析,我们可以得出以下结论:1. 采样定理的有效性得到了验证,采样频率必须大于信号最高频率的两倍,才能完全恢复原始信号。

2. 低通滤波器在信号恢复中起到了关键作用,通过滤除混叠信号的高频成分,使得信号恢复更加准确。

六、实验应用采样定理在现代通信领域有着广泛的应用。

例如,在音频和视频传输中,为了保证信号的质量和准确性,需要按照采样定理的要求进行信号采样和恢复。

此外,在数字信号处理、图像处理、雷达和医学成像等领域中,采样定理也扮演着重要的角色。

七、实验总结通过本次实验,我们深入了解了采样定理的原理和应用,并通过实际操作验证了其有效性。

采样定理对于信号的采样和恢复具有重要意义,是保证信号质量和准确性的基础。

连续信号的采样与恢复实验报告

连续信号的采样与恢复实验报告

实验六、连续信号得采样与恢复一、实验目得1.加深理解采样对信号得时域与频域特性得影响;2.加深对采样定理得理解与掌握,以及对信号恢复得必要性;3.掌握对连续信号在时域得采样与重构得方法。

二、实验原理(1)信号得采样ﻫ信号得采样原理图如下图所示,其数学模型表示为:=ﻫ其中得f(t)为原始信号,为理想得开关信号(冲激采样信号)δTs(t) =,fs(t)为采样后得到得信号称为采样信号。

由此可见,采样信号在时域得表示为无穷多冲激函数得线性组合,其权值为原始信号在对应采样时刻得定义值。

ﻫ令原始信号f(t)得傅立叶变换为F(jw)=FT(f(t)),则采样信号fs(t) 得傅立叶变换Fs(jw)=FT(fs(t))=。

由此可见,采样信号fs(t)得频谱就就是将原始信号f(t)得频谱在频率轴上以采样角频率ws为周期进行周期延拓后得结果(幅度为原频谱得1/Ts)。

如果原始信号为有限带宽得信号,即当|w|>|wm|时,有F(jw)=0,则有:如果取样频率ws≥2wm时,频谱不发生混叠;否则会出现频谱混叠。

(2)信号得重构ﻫ设信号f(t)被采样后形成得采样信号为fs(t),信号得重构就是指由fs(t)经过内插处理后,恢复出原来得信号f(t)得过程。

因此又称为信号恢复。

ﻫ由前面得介绍可知,在采样频率w s≥2wm得条件下,采样信号得频谱Fs(jw)就是以w s为周期得谱线。

选择一个理想低通滤波器,使其频率特性H(jw)满足:H(j w)=式中得wc称为滤波器得截止频率,满足wm≤wc≤ws/2。

将采样信号通过该理想低通滤波器,输出信号得频谱将与原信号得频谱相同。

因此,经过理想滤波器还原得到得信号即为原信号本身。

信号重构得原理图见下图。

通过以上分析,得到如下得时域采样定理:一个带宽为w m得带限信号f(t),可唯一地由它得均匀取样信号fs(n Ts)确定,其中,取样间隔Ts<π/wm,该取样间隔又称为奈奎斯特(Nyquist)间隔。

信号取样与恢复实验报告

信号取样与恢复实验报告

实验四信号取样与恢复一、实验目的1.了解模拟信号取样及恢复的基本方法。

2.理解和掌握时域取样定理,掌握无混叠和有混叠条件下信号取样与恢复的频域分析方法。

3.了解取样频率、取样脉冲宽度、恢复滤波器截止频率等对取样信号和恢复信号的影响。

4.熟悉DDS-3X25虚拟信号发生器的使用方法。

二、实验内容1.无混叠条件下正弦信号取样与恢复测试分析,比较不同取样频率和取样脉冲宽度对取样及恢复信号的影响。

2.有混叠条件下正弦信号的取样与恢复测试分析。

3.非正弦周期信号的取样与恢复测试分析,比较不同恢复滤波器截止频率对恢复信号的影响。

三、实验仪器1.信号与系统实验硬件平台一台2.信号取样与恢复实验电路板一块3.DSO-3064虚拟示波器一台4.DDS-3X25虚拟信号发生器二台5.PC机(含DSO-3064、DDS-3X25驱动及软件)一台四、实验原理1. 信号取样信号取样与恢复实验电路板,如图4.1所示。

该电路板通过背面的两个DB9公头插接到硬件实验平台上使用。

)()()(t s t f t f s =图4.1 信号取样与恢复实验电路板电路板左侧为一个采用模拟开关进行取样的信号取样电路,取样脉冲序列为高电平(高电平对应电压应大于+1V )时模拟开关接通、为低电平(低电平电压应小于-1V )时模拟开关断开。

在“信号输入”端接入被取样模拟信号,通过改变取样脉冲序列(通常为矩形脉冲序列)的频率(该电路取样频率不宜超过256kHz )和占空比,即可在“取样输出”端获得不同频率和不同取样脉冲宽度的取样信号。

取样信号()s f t 可用(4-1)式来描述(4-1)式中()f t 表示被取样模拟信号,()s t 为模拟开关的开关函数,当模拟开关接通时,()1s t =,反之则()0s t =。

电路板右侧是两个用作恢复滤波器的低通滤波器,可根据实验需要选用。

其中“恢复滤波器1”是一个截止频率约为1kHz 、通带增益等于4的二阶低通滤波器,其截止频率不可调节。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告在现代科学与工程领域中,信号与系统是一个至关重要的研究方向。

信号与系统研究的是信号的产生、传输和处理,以及系统对信号的响应和影响。

在这个实验报告中,我们将讨论一些关于信号与系统实验的内容,以及实验结果的分析和讨论。

实验一:信号的采集与展示在这个实验中,我们学习了信号的采集与展示。

信号是通过传感器或其他仪器采集的电压或电流的变化,可以是连续的或离散的。

我们使用示波器和数据采集卡来采集信号,并在计算机上进行展示和分析。

实验二:线性时不变系统的特性线性时不变系统是信号与系统中的重要概念。

在这个实验中,我们通过观察系统对不同的输入信号作出的响应来研究系统的特性。

我们使用信号发生器产生不同的输入信号,并观察输出信号的变化。

通过比较输入信号和输出信号的频谱以及幅度响应,我们可以了解系统的频率响应和幅频特性。

实验三:系统的时域特性分析在这个实验中,我们将研究系统的时域特性。

我们使用了冲击信号和阶跃信号作为输入信号,观察输出信号的变化。

通过测量系统的冲击响应和阶跃响应,我们可以了解系统的单位冲激响应和单位阶跃响应。

实验四:卷积与系统的频域特性在这个实验中,我们学习了卷积的概念和系统的频域特性。

卷积是信号与系统中的重要运算,用于计算系统对输入信号的响应。

我们通过使用傅里叶变换来分析系统的频域特性,观察输入信号和输出信号的频谱变化。

实验五:信号的采样与重构在这个实验中,我们研究了信号的采样与重构技术。

信号的采样是将连续时间的信号转换为离散时间的过程,而信号的重构是将离散时间的信号恢复为连续时间的过程。

我们使用数据采集卡来对信号进行采样,并使用数字滤波器来进行信号的重构。

通过观察信号的采样和重构结果,我们可以了解采样率对信号质量的影响。

实验六:系统的稳定性与性能在这个实验中,我们研究了系统的稳定性与性能。

系统的稳定性是指系统对输入信号的响应是否有界,而系统的性能是指系统对不同频率信号的响应如何。

我们使用极坐标图和Nyquist图来分析系统的稳定性和性能,通过观察图形的变化来评估系统的性能。

信号的采样与恢复

信号的采样与恢复

实验五信号的采样与恢复一、实验目的1.了解电信号的采样方法与过程及信号的恢复。

2.验证采样定理。

二、实验设备1.THBCC-1型信号与系统.控制理论及计算机控制技术实验平台2.PC机(含THBCC-1软件)三、实验内容1 研究正弦信号和三角波信号被采样的过程以及采样后的离散化信号恢复为连续信号的波形。

2.用采样定理分析实验结果。

四、实验原理1.离散时间信号可以从离散信号源获得,也可以从连续时间信号经采样而获得。

采样信号fs(t)可以看成连续信号f(t)和一组开关函数S(t)的乘积。

S(t)是一组周期性窄脉冲。

由对采样信号进行傅立叶级数分析可知,采样信号的频谱包括了原连续信号以及无限多个经过平移的原信号频谱。

平移的频率等于采样频率fs及其谐波频率2fs、3fs· · ·。

当采样后的信号是周期性窄脉冲时,平移后的信号频率的幅度按(sinx)/x规律衰减。

采样信号的频谱是原信号频谱的周期性延拓,它占有的频带要比原信号频谱宽得多。

2.采样信号在一定条件下可以恢复原来的信号,只要用一截止频率等于原信号频谱中最高频率fn 的低通滤波器,滤去信号中所有的高频分量,就得到只包含原信号频谱的全部内容,即低通滤波器的输出为恢复后的原信号。

3.原信号得以恢复的条件是fs≥2B,其中fs 为采样频率,B 为原信号占有的频带宽度。

Fmin=2B 为最低采样频率。

当fs<2B 时,采样信号的频谱会发生混迭,所以无法用低通滤波器获得原信号频谱的全部内容。

在实际使用时,一般取fs=(5-10)B 倍。

实验中选用fs<2B、fs=2B、fs>2B 三种采样频率对连续信号进行采样,以验证采样定理⎯要是信号采样后能不失真的还原,采样频率fs 必须远大于信号频率中最高频率的两倍。

4.用下面的框图表示对连续信号的采样和对采样信号的恢复过程,实验时,除选用足够高的采样频率外,还常采用前置低通滤波器来防止信号频谱的过宽而造成采样后信号频谱的混迭。

信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)

实验一 信号的抽样与恢复(抽样定理)一、实验目的1.了解信号的抽样方法与过程以及信号恢复的方法。

2.验证抽样定理。

二、实验设备1.Dais -XTB 信号与系统实验箱 一台 2.双踪示波器 一台 3.任意函数发生器 一台三、实验原理1.离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号()s x t 可以看成连续信号()x t 和一组开关函数()s t 的乘积。

()s t 是一组周期性窄脉冲,如图1-1,s T 称为抽样周期,其倒数1/s s f T =称抽样频率。

图1-1 矩形抽样信号对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于抽样频率f s 及其谐波频率2f s 、3f s ……。

当抽样信号是周期性窄脉冲时,平移后的频率幅度按sin x /x 规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2.在一定条件下,从抽样信号可以恢复原信号。

只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。

3.原信号得以恢复的条件是f s ≥2f max ,f s 为抽样频率,f max 为原信号的最高频率。

当f s <2 f max 时,抽样信号的频谱会发生混叠,从发生混叠后的频谱中无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的,因此恢复后的信号失真还是难免的。

实验中选用f s <2 f max 、f s =2 f max 、f s >2 f max 三种抽样频率对连续信号进行抽样,以验证抽样定理。

4.连续信号的抽样和抽样信号的复原原理框图如图1-2所示。

除选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱过宽而造成抽样后信号频谱的混迭,但这也会造成失真。

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告

信号的抽样与恢复实验报告信号的抽样与恢复实验报告引言:信号的抽样与恢复是数字信号处理中的重要概念,它涉及到模拟信号的数字化处理和数字信号的还原。

通过对信号进行抽样,可以将连续的模拟信号转化为离散的数字信号,方便存储、传输和处理。

而信号的恢复则是将离散的数字信号重新转化为连续的模拟信号,以便于人们感知和理解。

本实验旨在通过实际操作,探究信号的抽样与恢复原理,并验证其有效性。

一、实验目的本实验旨在:1. 了解信号的抽样与恢复原理;2. 掌握信号抽样的方法和过程;3. 掌握信号恢复的方法和过程;4. 验证信号抽样与恢复的有效性。

二、实验器材和方法1. 实验器材:- 信号发生器:用于产生模拟信号;- 示波器:用于观测信号波形;- 数字示波器:用于观测数字信号;- 信号恢复电路:用于将数字信号恢复为模拟信号。

2. 实验方法:- 将信号发生器与示波器连接,产生连续的模拟信号;- 将信号发生器与数字示波器连接,观测抽样后的数字信号;- 将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号;- 通过示波器观测恢复后的信号波形,与原始信号进行对比。

三、实验过程1. 连接实验器材:将信号发生器与示波器连接,设置合适的频率和振幅,产生连续的模拟信号。

将信号发生器与数字示波器连接,设置适当的抽样频率和采样率,观测抽样后的数字信号。

将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号。

2. 观测信号波形:通过示波器观测连续的模拟信号波形,并记录相关参数,如频率、振幅等。

然后,通过数字示波器观测抽样后的数字信号波形,并记录相关参数,如抽样频率、采样率等。

最后,通过示波器观测恢复后的信号波形,并与原始信号进行对比。

3. 分析实验结果:根据观测到的信号波形,分析信号的抽样与恢复过程。

比较抽样后的数字信号与原始信号的相似性,以及恢复后的信号与原始信号的差异。

根据实验结果,验证信号抽样与恢复的有效性。

四、实验结果与讨论通过实验观测,我们可以发现信号的抽样与恢复过程中存在一定的误差。

信号的采集与恢复

信号的采集与恢复

实验报告课程名称: 信号分析与处理指导老师: 欢老师 成绩:__________________ 实验名称: 信号的采集与恢复 实验类型: 基础实验 同组学生:第一次实验 信号的采集与恢复一、实验目的1.1了解信号的采样方法与过程以及信号恢复的方法; 1.2验证采样定理。

二、实验原理2.1信号采集与时域采样定理对一个连续时域信号的采集,理论上是用一系列冲激函数与信号做乘积,实际中常用占空比尽可能小的周期矩形脉冲作为开关函数来代替冲激函数。

采样信号的频谱,是由原来信号的频谱进行幅值尺度变换并在频率轴(横轴)上做平移延拓组成的,频率轴上平移延拓的“周期”为开关函数的频率值。

具体推导如下:∑∞-∞=-=n sns n F S F )()(ωωω其中,)(ωs F 是采样信号)(t f s的频谱。

n S 为开关函数s (t )的傅里叶级数的傅里叶系数,)(ωF 为连续信号的频谱。

若理想开关函数可表示为周期为T s 的冲激函数序列∑∞-∞=-=n snT t t s )()(δ于是)()()()()(sn ss nT t nT f t s t f t f -==∑∞-∞=δ∑∞-∞=-=n sss n F T F )(1)(ωωω一个典型的例子:矩形脉冲采样信号s(t),作为理想冲激串的替代。

假设脉冲宽度τ,则s(t)的傅里叶变换)2(Sa τωτs s n n T S ⋅=,于是)()2(Sa )(s n s s s n F n T F ωωτωτω-⋅=∑∞-∞= 装订线平移后的频率幅度按Sa(x )规律衰减。

采样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

显然,对于开关函数,若它的频率为f s ,信号的最大频率为f m ,那么为了采样后采样信号的频谱不发生混叠,存在时域采样定理:f s ≥f m (时域采样定理,即香农定理)。

而对于频谱不受限的信号,往往需要先用低通滤波器滤除高频分量,使它近似成为频谱受限的信号,在进行采样。

信号的抽样与恢复(抽样定理)

信号的抽样与恢复(抽样定理)

实验一 信号的抽样与恢复(抽样定理)一、实验目的1.了解信号的抽样方法与过程以及信号恢复的方法。

2.验证抽样定理。

二、实验设备1.Dais -XTB 信号与系统实验箱 一台 2.双踪示波器 一台 3.任意函数发生器 一台三、实验原理1.离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号()s x t 可以看成连续信号()x t 和一组开关函数()s t 的乘积。

()s t 是一组周期性窄脉冲,如图1-1,s T 称为抽样周期,其倒数1/s s f T =称抽样频率。

图1-1 矩形抽样信号对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于抽样频率f s 及其谐波频率2f s 、3f s ……。

当抽样信号是周期性窄脉冲时,平移后的频率幅度按sin x /x 规律衰减。

抽样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2.在一定条件下,从抽样信号可以恢复原信号。

只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。

3.原信号得以恢复的条件是f s ≥2f max ,f s 为抽样频率,f max 为原信号的最高频率。

当f s <2 f max 时,抽样信号的频谱会发生混叠,从发生混叠后的频谱中无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的,因此恢复后的信号失真还是难免的。

实验中选用f s <2 f max 、f s =2 f max 、f s >2 f max 三种抽样频率对连续信号进行抽样,以验证抽样定理。

4.连续信号的抽样和抽样信号的复原原理框图如图1-2所示。

除选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱过宽而造成抽样后信号频谱的混迭,但这也会造成失真。

《计算机控制技术》信号的采样与保持实验报告

《计算机控制技术》信号的采样与保持实验报告

《计算机控制技术》信号的采样与保持实验报告课程名称:计算机控制技术实验实验类型:设计型实验项目名称:信号的采样与保持实验一、实验目的和要求1.熟悉信号的采样与保持过程。

2.学习和掌握香农采样定理。

3.学习使用直线插值法还原信号。

二、实验内容和原理香农(采样) 定理若对于一个具有有限频谱|W|<W max的连续信号f(t)进行采样,当采样频率满足W s≥2W max时,则采样函数f∗(t)能无失真地恢复到原来的连续信号f(t)。

W max为信号的最高频率,W s为采样频率。

按照下图方式连接好实验箱,图中画“○”的线需用户在实验中自行接好,其它线系统已连好。

图1-1这里正弦波单元的“OUT”端输出周期性的正弦波信号,通过控制计算机及其接口单元的“ADC1”端输入,系统用定时器作为基准时钟(初始化为10ms),定时采集“ADC1”端的信号,在中断服务程序中读入转换完的数字量,送到控制计算机及其接口单元,在“DAC1”端输出相应的模拟信号。

由于数模转换器有输出锁存能力,所以它具有零阶保持器的作用。

采样周期T=T k×10ms,通过修改T k 就可以灵活地改变采样周期,后面实验的采样周期设置也是如此。

程序的参考流程图如下图所示:图1-2信号的还原中应用香农定理从香农定理可知,对于信号的采集,只要选择恰当的采样周期,就不会失去信号的主要特征。

在实际应用中,一般总是取实际采样频率W s比2W max大,如:W s≥10W max。

但是如果采用插值法恢复信号,就可以降低对采样频率的要求,香农定理给出了采样频率的下限,但是用不同的插值方法恢复信号需要的采样频率也不相同。

直线插值法(取W s≥5W max)利用下面的公式在点(X0,Y0)和点(X1,Y1)之间插入点(X,Y)Y=Y0+K(X−X0)其中:K=Y1−Y0X1−X0X1−X0为采样间隔,Y1−Y0分别是X1和X0采样时刻的AD采样值。

本实验的连接图与图1-1一致。

连续信号的采样与重构实验报告

连续信号的采样与重构实验报告

信号与系统上机实验报告学院:电子信息学院班级:08011202姓名:王喜成学号:2012301794上机实验 5 连续信号的采样与重构一、实验目的(1)验证采样定理;(2)熟悉信号的抽样与恢复过程;(3)通过实验观察欠采样时信号频域的混迭现象;(4)掌握采样前后信号频域的变化,加深对采样定理的理解;(5)掌握采样频域的确定方法。

二、实验内容和原理信号的采样与恢复示意图如图2.5-1所示图2.5-1 信号的抽样与恢复示意图抽样定理指出:一个有限频宽的连续时间信号)(t f ,其最高频率为m ω,经过等间隔抽样后,只要抽样频率s ω不小于信号最高频率m ω的二倍,即满足m s ωω2≥,就能从抽样信号)(t f s 中恢复原信号,得到)(0t f 。

)(0t f 与)(t f 相比没有失真,只有幅度和相位的差异。

一般把最低的抽样频率m s ωω2min =称为奈奎斯特抽样频率。

当m s ωω2<时,)(t f s 的频谱将产生混迭现象,此时将无法恢复原信号。

f (t )的幅度频谱为)(ωF ;开关信号)(t s 为周期矩形脉冲,其脉宽τ相对于周期s T 非常小,故将其视为冲激序列,所以)(t s 的幅度频谱)(ωS 亦为冲激序列;抽样信号)(t f s 的幅度频谱为)(ωs F ;)(0t f 的幅度频谱为)(0ωF 。

观察抽样信号的频谱)(ωs F ,可以发现利用低通滤波器(其截止频率满足m s c m ωωωω-<<)就能恢复原信号。

信号抽样与恢复的原理框图如图2.5-2所示。

图2.5-2 信号抽样与恢复的原理框图由原理框图不难看出,A/D转换环节实现抽样、量化、编码过程;数字信号处理环节对得到的数字信号进行必要的处理;D/A转换环节实现数/模转换,得到连续时间信号;低通滤波器的作f。

用是滤除截止频率以外的信号,恢复出与原信号相比无失真的信号)(0t三、涉及的MATLAB函数subplot(2,1,1)xlabel('时间, msec');ylabel('幅值');title('连续时间信号x_{a}(t)');axis([0 1 -1.2 1.2])stem(k,xs);grid;linspace(-0.5,1.5,500)';ones(size(n)freqs(2,[1 2 1],wa);plot(wa/(2*pi),abs(ha)buttord(Wp, Ws, 0.5, 30,'s');[Yz, w] = freqz(y, 1, 512);M= input('欠采样因子= ');length(nn1)y = interp(x,L)[b,a] = butter(N, Wn, 's');get(gfp,'units');set(gfp,'position',[100 100 400 300]);fx1=fft(xs1)abs(fx2(n2+1))如有帮助,欢迎下载支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号与系统实验报告
【实验原理】
1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。

抽样信号f s (t )可以看成连续信号f (t )和一组开关函数s (t )的乘积。

s (t )是一组周期性窄脉冲,见图1,T s 称为抽样周期,其倒数T s =1T S
⁄称抽样频率。

图1矩形抽样脉冲
对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。

平移的频率等于抽样频率f s 及其谐波频率2f s 、3f s ……。

当抽样信
号是周期性窄脉冲时,平移后的频率幅度按(sinx)x ⁄规律衰减。

抽样信号的频谱是原信号
频谱周期的延拓,它占有的频带要比原信号频谱宽得多。

2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。

只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。

3、但原信号得以恢复的条件是f s ≥2B ,其中f s 为抽样频率,B 为原信号占有的频带宽度。

而f min =2B 为最低抽样频率又称“奈奎斯特抽样率”。

当f s <2B 时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。

在实际使用中,仅包含有限频率的信号是极少的。

因此即使f s =2B ,恢复后的信号失真还是难免的。

图2画出了当抽样频率f s ≥2B (不混叠时)及当抽样频率f s <2B (混叠时)两种情况下冲激抽样信号的频谱。

(a)连续信号的频谱
(b)高抽样频率时的抽样信号及频谱(不混叠)
(c)低抽样频率时的抽样信号及频谱(混叠)
图2抽样过程中出现的两种情况
4、为了实现对连续信号的抽样和抽样信号的复原,除选用足够高的抽样频率外,常采用前置低通滤波器来防止原信号频谱宽而造成抽样后信号频谱的混叠。

但这也会造成失真。

原始的语音信号带宽为40Hz到10000Hz,但实际中传输的语音信号的带宽为300Hz到3400Hz,并不影响我们的听觉效果,因此本实验加了前置滤波器。

【实验结果与数据处理】
图1 抽样脉冲
图3 抽样倍数为5时的复原信号
图5 抽样倍数为3时的复原信号。

相关文档
最新文档