2013台州中考数学试题及答案
【2013版中考12年】浙江省台州市2002-2013年中考数学试题分类解析 专题06 函数的图像与
台州市2002-2013年中考数学试题分类解析 专题06:函数的图像与性质一、选择题1. (2002年浙江台州4分)二次函数 2y x 10x 5=+-的最小值为【 】 (A )-35(B )-30(C )-5(D )202. (2002年浙江台州4分)已知甲,乙两弹簧的长度y(cm)与所挂物体质量x(kg)之间的函数解析式分别为y 1=k 1x +a 1和y 2=k 2x +a 2, 图象如下,设所挂物体质量均为2kg 时,甲弹簧长为y 1 ,乙弹簧长为y 2则y 1与y 2的大小关系为【 】(A )y l >y 2 (B )y 1=y 2 (C )y 1< y 2 (D )不能确定 【答案】A 。
【考点】一次函数的应用,数形结合思想的应用。
【分析】由图象可知,当x=2时,y 1=k 1x +a 1在y 2=k 2x +a 2, 图象之上,因此,当所挂物体质量均为2kg 时, y 1与y 2的大小关系为y l >y 2。
故选A 。
3. (2003年浙江台州4分)关于二次函数2y x 4x 7=+-的最大(小)值,叙述正确的是【 】A 、当x =2时,函数有最大值B 、当x =2时,函数有最小值C 、当x =-2时,函数有最大值D 、当x =-2时,函数有最小值4. (2006年浙江台州4分)若反比例函数ky x =的图象经过(-2, 1 ),则k 的值为【 】 (A)-2 (B) 2 (C) 12- (D) 12【答案】A 。
【考点】曲线上点的坐标与方程的关系。
【分析】根据点在曲线上点的坐标满足方程的关系,将(-2, 1 )代入k y x =,得k12=-,解得k 2=-。
故选A 。
5. (2009年浙江台州4分)已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:x… 1-0 1 3 … y…3-131…则下列判断中正确的是【 】A .抛物线开口向上B .抛物线与y 轴交于负半轴C .当x =4时,y >0D .方程2ax bx c 0++=的正根在3与4之间 【答案】D 。
2013年浙江省台州市初中毕业生学业考试(中考)(含答案解析)
5 —52013年浙江省初中毕业生学业考试(台州市卷)科学(相对原子质量:H—1C—12O—16Cl—35.5Ca—40)卷Ⅰ一、选择题(本题有20小题,每小题4分,共80分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.最先研究电流与电压、电阻并得出三者之间关系的科学家是()A.欧姆B.伽利略C.牛顿D奥斯特2.今年4月20日四川雅安市发生7.0级地震。
地震时正确的逃生和自救措施非常重要,以下做法正确的是()A.高处跳楼逃生B.乘电梯快速下楼C.向窗外大声呼救D.躲到卫生间墙角3.下面是单质家属“四兄妹”的对话,其中属于化学性质的是()4.继“神九”升空后,“神十”将于今年6月至8月发射,再次实现与天宫一号进行载人交会对接,我国探索宇宙又向前迈进一大步。
下列对宇宙的有关认识正确的是() A.月球表面有山、有空气,但没有水B.宇宙的大小结构层次为:宇宙→太阳系→银河系→地月系C.现在有很多证据证明宇宙是有边的、膨胀的D.太阳是一颗能自行发光发热的气体星球5.下列所示的四种现象中,可用光的直线传播原理解释的是()6.人工合成的立方氮化硼(BN),其硬度已超过金刚石。
氮化硼中氮元素的化合价为-3价,则硼元素的化合价为()A.-3 B.0C.+1 D.+37.自来水中常含有次氯酸(HClO)。
次氯酸不稳定,易发生化学反应,其微观变化过程可用如图表示。
该反应类型属于()A.化合反应B.置换反应C.分解反应D.复分解反应8.植被的破坏容易引发泥石流,对泥石流的防治工作,我们可以做一些力所能及的事。
下列行为不恰当...的是()A.打草稿纸时充分利用纸张的正、反面B.就餐时使用一次性筷子和纸杯C.旅行时爱护树木,不践踏草坪D.将废报纸送到回收站9.下列图文描述一致的是()10.根据如图所示的溶解度曲线,下列叙述正确的是()A.硝酸钾的溶解度比氯化钠大B.t1℃时,氯化钠和硝酸钾的溶解度相等C.t2℃时,80克硝酸钾溶于100克水中得到的溶液为饱和溶液D.t1℃硝酸钾的饱和溶液温度升高到t2℃,溶液质量分数增大11.下图是《科学》教材中的几个实验,其中图文描述不.一致..的是()12.以下诗文或谚语与所蕴含的科学知识不对应...的是()A.种瓜得瓜,种豆得豆——生物的变异现象B.螳螂捕蝉,黄雀在后——生物间的食物关系C.落红不是无情物,化作春泥更护花——自然界的物质循环D.人间四月芳菲尽,山寺桃花始盛开——温度影响植物开花13.“鸡蛋撞地球”的实验中,实验者把装有鸡蛋的装置挂在3个气球下面,使其从三楼落下,结果鸡蛋落地时完好无损,其主要原因是减少了鸡蛋的()A.重力B.浮力C.下落时间D.着地速度14.下列生物的功能与其结构相对应的是()A.花粉萌发形成花粉管,有利于传粉B.人体毛细血管的总面积可达6000米2,有利于物质交换C.蕨类植物的孢子囊分布在叶的背面,有利于水分的吸收D.每个肾脏约含有100多万个肾单位,有利于二氧化碳的排出15.斯波曼等科学家用转基因的方法培育出一种“食电”细菌,它“吃进”电能,把二氧化碳和水合成甲烷,能量转化率高达80%。
【2013版中考12年】浙江省台州市2002-2013年中考数学试题分类解析 专题07 统计与概率
某某市2002-2013年中考数学试题分类解析专题07:统计与概率一、选择题1. (2007年某某某某4分)抛掷一枚硬币,正面向上的概率为【】A.1 B.12C.13D.142. (2007年某某某某4分)数据10,10,10,11,12,12,15,15的众数是【】A.10 B.11 C.12 D.15【答案】A。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是10,故这组数据的众数为10。
故选A。
3. (2008年某某某某4分)一组数据9.5,9,8.5,8,7.5的极差是【】A.0.5 B.8.5 C.2.5 D.2【答案】D。
【考点】极差。
【分析】根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差是9.5-7.5=2。
故选D。
4. (2009年某某某某4分)数据1,2,2,3,5的众数是【】A.1 B.2 C.3 D.5【答案】B。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是2,故这组数据的众数为2。
故选B。
5. (2009年某某某某4分)盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是【】A.23B.15C.25D.35【答案】C。
【考点】概率。
【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
因此,从5支笔芯中任意拿出一支笔芯,则拿出黑色笔芯的概率是22=325。
故选C。
6. (2010年某某某某4分)下列说法中正确的是【】A.“打开电视,正在播放《新闻联播》”是必然事件;B.某次抽奖活动中奖的概率为1100,说明每买100X奖券,一定有一次中奖;C.数据1,1,2,2,3的众数是3;D.想了解某某市城镇居民人均年收入水平,宜采用抽样调查.发生,买100X奖券,也不一定中奖,选项错误;C.数据1,1,2,2,3的众数是1,2,选项错误;D.想了解某某市城镇居民人均年收入水平,宜采用抽样调查,选项正确。
2013年全国中考数学试题汇编----轴对称
(2013•郴州)在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?(2013凉山州)如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为( )A .30°B .45°C .60°D .75°考点:生活中的轴对称现象;平行线的性质.分析:要使白球反弹后能将黑球直接撞入袋中,则∠2=60°,根据∠1、∠2对称,则能求出∠1的度数.解答:解:要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,∴∠1=60°.故选C .点评:本题是考查图形的对称、旋转、分割以及分类的数学思想.(2013•绵阳)下列“数字”图形中,有且仅有一条对称轴的是( )(2013•潜江)如图,在△ABC 中,AB =AC ,∠A =120°,BC =6cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为A .4cmB .3cmC .2cmD .1cmA .B. C.(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()B点A在第一象限且AB⊥BO,点E是线段AO的中点,点M在线段AB上.若点B和点E关于直线OM对称,且则点M的坐标是( ,) .(1,3)(2013•宁夏)如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.(2013•苏州)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B的坐标为(3),点C 的坐标为(12,0),点P 为斜边OB 上的一动点,则PA +PC 的最小值为A BC D .(2013•宿迁)在平面直角坐标系xOy 中,已知点(01)A ,,(1,2)B ,点P 在x 轴上运动,当点P 到A 、B 两点距离之差的绝对值最大时,点P 的坐标是 ▲ .(2013•苏州)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,),点C 的坐标为(,0),点P 为斜边OB 上的一个动点,则PA+PC 的最小值为( )B,OB=2×AB=AM=×AD=,由勾股定理得:(﹣﹣DC=的最小值是(2013•泰州)如图,△ABC中,AB+AC=6cm, BC的垂直平分线l与AC相交于点D,则△ABD的周长为___________cm.【答案】:6.(2013•日照)下面所给的交通标志图中是轴对称图形的是答案:A解析:A中,等边三角形底边的中算线为对称轴,是轴对称图形,其它都不是轴对称图形。
【解析版】浙江省台州地区2013年中考第二次模拟考试数学试卷
2013浙江省台州地区中考数学二模试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)×=22.(4分)(2008•台州)如图是由四个小正方体叠成的一个立体图形,那么它的俯视图是()B.24.(4分)(2009•资阳)在数轴上表示不等式组的解集,正确的是()B.解:解不等式组得,再分别表示在数轴上为:5.(4分)(2013•滨城区二模)如图,四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则sin∠APB等于()B.某次抽奖活动中奖的概率为,说明每买7.(4分)(2013•台州二模)如图,双曲线y=﹣的一个分支为()8.(4分)(2013•宁波模拟)如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为()B.;OB=,OD=;,﹣))﹣;9.(4分)(2009•资阳)如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC的边相切,当点P第一次回到它的初始位置时所经过路径的长度是()B=,构成的三角形的三边分别是,,+16=.10.(4分)(2008•河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90°,则完成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是()二、填空题(本题有6小题,每小题5分,共30分)11.(5分)(2013•平凉)分解因式:x2﹣9=(x+3)(x﹣3).12.(5分)(2013•台州二模)写出一个在函数y=2x﹣1图象上的点的坐标(0,﹣1)答案不唯一.13.(5分)(2010•南通)质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是奇数的概率为.,则向上一面的数字是奇数的概率为=故答案为:.14.(5分)(2009•太原)如图AB、AC是⊙O的两条弦,∠A=30°,过点C的切线与OB的延长线交于点D,则∠D的度数为30度.15.(5分)(2009•武汉)如图,直线y=x与双曲线y=(x>0)交于点A.将直线y=x向右平移个单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,若,则k=12.a∵=2个单位,的坐标为(a+a,的图象上,×a=a+a16.(5分)(2013•台州二模)阅读材料,完成填空:在平面直角坐标系中,当函数的图象产生平移,则函数的解析式会产生有规律的变化;反之,我们可以通过分析不同解析式的变化规律,推想到相应的函数图象间彼此的位置和形状的关联.不妨约定,把函数图象先往左侧平移2个单位,再往上平移1各单位,则不同类型函数解析式的变化可举例如下:y=3x2→y=3(x+2)2+1;y=3x3→y=3(x+2)3+1;y=3→y=3+1;y=3→y=3+1;y=→y=+1;…(1)若把函数y=+1图象再往右平移3个单位,所得函数图象的解析式为y=+1;(2)分析下列关于函数y=+1图象性质的描述:①图象关于(1,1)点中心对称;②图象必不经过第二象限;③图象与坐标轴共有2个交点;④当x>0时,y 随着x取值的变大而减小.其中正确的是:①③.(填序号)向右平移一个单位,向上平移的图象、性质易得答案.y=+1+1向右平移一个单位,向上平移y=y=y=三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)(2013•台州二模)(1)计算:2sin60°﹣+(2)解方程:x2+4x+1=0.×﹣﹣+3±,﹣18.(8分)(2009•本溪)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.19.(8分)(2009•吉林)在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于10.=.20.(8分)(2009•广安)在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树(如图)的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为35°;(2)在点A和大树之间选择一点B(A,B,D在同一直线上),测得由点B看大树顶端C的仰角恰好为45°;(3)量出A,B两点间的距离为4.5米.请你根据以上数据求出大树CD的高度.(精确到0.1米)(可能用到的参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70),;,∴AD=CBD=,∴;﹣=4.521.(10分)(2010•宁波)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.AO=OECE=DE=CO=AO=CEO=,==2=22.(12分)(2013•台州二模)如图是一种新型的滑梯的示意图,其中线段PA是高度为6米的平台,滑道AB是函数的图象的一部分,滑道BCD是二次函数图象的一部分,两滑道的连接点B为抛物线的顶点,且B点到地面的距离为2米,当甲同学滑到C点时,距地面的距离为1米,距点B的水平距离CE也为1米.(1)试求滑道BCD所在抛物线的解析式.(2)试求甲同学从点A滑到地面上D点时,所经过的水平距离.x=y=,x=;所经过的水平距离为+5﹣+23.(12分)(2009•资阳)如图1,已知O是锐角∠XAY的边AX上的动点,以点O为圆心、R为半径的圆与射线AY切于点B,交射线OX于点C,连接BC,作CD⊥BC,交AY于点D.(1)求证:△ABC∽△ACD;(2)若P是AY上一点,AP=4,且sinA=,①如图2,当点D与点P重合时,求R的值;②当点D与点P不重合时,试求PD的长(用R表示).,== AC=R∴∴.R∴R=4R=.)R>AP=R<﹣>PD=R)时,PD=|R24.(14分)(2009•资阳)如图,已知抛物线y=x2﹣2x+1的顶点为P,A为抛物线与y轴的交点,过A与y轴垂直的直线与抛物线的另一交点为B,与抛物线对称轴交于点O′,过点B和P的直线l交y轴于点C,连接O′C,将△ACO′沿O′C翻折后,点A落在点D的位置.(1)求直线l的函数解析式;(2)求点D的坐标;(3)抛物线上是否存在点Q,使得S△DQC=S△DPB?若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.y=﹣()y=y=,解得C=2据面积关系,有×,.∴,•,•,=,的坐标为(,﹣(,﹣y=y=﹣x2x+1=x,=x,得,,)。
浙江省台州市中考数学真题试题(含解析)
浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.(4分)计算2a﹣3a,结果正确的是()A.﹣1 B.1 C.﹣a D.a2.(4分)如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.圆柱D.球3.(4分)台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为()A.5.952×1011B.59.52×1010C.5.952×1012D.5952×109 4.(4分)下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,11 5.(4分)方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,x n,可用如下算式计算方差:s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2],其中“5”是这组数据的()A.最小值B.平均数C.中位数D.众数6.(4分)一道来自课本的习题:小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是()A.+=B.+=C.+=D.+=7.(4分)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC 相切,则⊙O的半径为()A.2B.3 C.4 D.4﹣8.(4分)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD 交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于()A.B.C.D.9.(4分)已知某函数的图象C与函数y=的图象关于直线y=2对称.下列命题:①图象C与函数y=的图象交于点(,2);②点(,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是()A.①②B.①③④C.②③④D.①②③④10.(4分)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A.:1 B.3:2 C.:1 D.:2二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:ax2﹣ay2=.12.(5分)若一个数的平方等于5,则这个数等于.13.(5分)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是.14.(5分)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC 上,连接AE.若∠ABC=64°,则∠BAE的度数为.15.(5分)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共个.16.(5分)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且=,则m+n的最大值为.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:+|1﹣|﹣(﹣1).18.(8分)先化简,再求值:﹣,其中x=.19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=﹣x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY 22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;()②若AD=BE=CF,则六边形ABCDEF是正六边形.()23.(12分)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.24.(14分)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.(4分)计算2a﹣3a,结果正确的是()A.﹣1 B.1 C.﹣a D.a【分析】根据合并同类项法则合并即可.【解答】解:2a﹣3a=﹣a,故选:C.【点评】本题考查了合并同类项法则的应用,能熟记合并同类项法则的内容是解此题的关键.2.(4分)如图是某几何体的三视图,则该几何体是()A.长方体B.正方体C.圆柱D.球【分析】根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个圆,故该几何体是一个圆柱,故选:C.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.3.(4分)台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为()A.5.952×1011B.59.52×1010C.5.952×1012D.5952×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数字595200000000科学记数法可表示为5.952×1011元.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,11【分析】根据三角形的三边关系即可求【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.【点评】此题主要考查三角形的三边关系,要掌握并熟记三角形的三边关系:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.5.(4分)方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,x n,可用如下算式计算方差:s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2],其中“5”是这组数据的()A.最小值B.平均数C.中位数D.众数【分析】根据方差的定义可得答案.【解答】解:方差s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2]中“5”是这组数据的平均数,故选:B.【点评】本题考查方差,解题的关键是掌握方差的定义:一组数据中各数据与它们的平均数的差的平方的平均数叫做这组数据的方差.6.(4分)一道来自课本的习题:小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是()A.+=B.+=C.+=D.+=【分析】直接利用已知方程得出上坡的路程为x,平路为y,进而得出等式求出答案.【解答】解:设未知数x,y,已经列出一个方程+=,则另一个方程正确的是:+=.故选:B.【点评】此题主要考查了二元一次方程组的应用,正确理解题意得出等式是解题关键.7.(4分)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC 相切,则⊙O的半径为()A.2B.3 C.4 D.4﹣【分析】设⊙O与AC的切点为E,连接AO,OE,根据等边三角形的性质得到AC=8,∠C =∠BAC=60°,由切线的性质得到∠BAO=∠CAO=BAC=30°,求得∠AOC=90°,解直角三角形即可得到结论.【解答】解:设⊙O与AC的切点为E,连接AO,OE,∵等边三角形ABC的边长为8,∴AC=8,∠C=∠BAC=60°,∵圆分别与边AB,AC相切,∴∠BAO=∠CAO=BAC=30°,∴∠AOC=90°,∴OC=AC=4,∵OE⊥AC,∴OE=OC=2,∴⊙O的半径为2,故选:A.【点评】本题考查了切线的性质,等边三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.8.(4分)如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD 交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于()A.B.C.D.【分析】由“ASA”可证△CDM≌△HDN,可证MD=DN,即可证四边形DNKM是菱形,当点B与点E重合时,两张纸片交叉所成的角a最小,可求CM=,即可求tanα的值.【解答】解:如图,∵∠ADC=∠HDF=90°∴∠CDM=∠NDH,且CD=DH,∠H=∠C=90°∴△CDM≌△HDN(ASA)∴MD=ND,且四边形DNKM是平行四边形∴四边形DNKM是菱形∴KM=DM∵sinα=sin∠DMC=∴当点B与点E重合时,两张纸片交叉所成的角a最小,设MD=a=BM,则CM=8﹣a,∵MD2=CD2+MC2,∴a2=4+(8﹣a)2,∴a=∴CM=∴tanα=tan∠DMC==故选:D.【点评】本题考查了矩形的性质,菱形的判定,勾股定理,全等三角形的判定和性质,求CM的长是本题的关键.9.(4分)已知某函数的图象C与函数y=的图象关于直线y=2对称.下列命题:①图象C与函数y=的图象交于点(,2);②点(,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是()A.①②B.①③④C.②③④D.①②③④【分析】函数y=的图象在第一、三象限,则关于直线y=2对称,点(,2)是图象C与函数y=的图象交于点;①正确;点(,﹣2)关于y=2对称的点为点(,6),在函数y=上,②正确;y=上任意一点为(x,y),则点(x,y)与y=2对称点的纵坐标为4﹣;③错误;A(x1,y1),B(x2,y2)关于y=2对称点为(x1,4﹣y1),B(x2,4﹣y2)在函数y=上,可得4﹣y1=,4﹣y2=,当x1>x2>0或0>x1>x2,有y1>y2;④不正确;【解答】解:∵函数y=的图象在第一、三象限,则关于直线y=2对称,点(,2)是图象C与函数y=的图象交于点;∴①正确;点(,﹣2)关于y=2对称的点为点(,6),∵(,6)在函数y=上,∴点(,﹣2)在图象C上;∴②正确;∵y=中y≠0,x≠0,取y=上任意一点为(x,y),则点(x,y)与y=2对称点的纵坐标为4﹣;∴③错误;A(x1,y1),B(x2,y2)关于y=2对称点为(x1,4﹣y1),B(x2,4﹣y2)在函数y=上,∴4﹣y1=,4﹣y2=,∵x1>x2>0或0>x1>x2,∴4﹣y1<4﹣y2,∴y1>y2;∴④不正确;故选:A.【点评】本题考查反比例函数图象及性质;熟练掌握函数关于直线后对称时,对应点关于直线对称是解题的关键.10.(4分)如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A.:1 B.3:2 C.:1 D.:2【分析】如图,作DC⊥EF于C,DK⊥FH于K,连接DF.求出△DFN与△DNK的面积比即可.【解答】解:如图,作DC⊥EF于C,DK⊥FH于K,连接DF.由题意:四边形DCFK是正方形,∠CDM=∠MDF=∠FDN=∠NDK,∴∠CDK=∠DKF=90°,DK=FK,DF=DK,∴===(角平分线的性质定理,可以用面积法证明),∴==,∴图案中A型瓷砖的总面积与B型瓷砖的总面积之比为:1,故选:A.【点评】本题考查图形的拼剪,正方形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:ax2﹣ay2=a(x+y)(x﹣y).【分析】应先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】本题主要考查提公因式法分解因式和平方差公式分解因式,需要注意分解因式一定要彻底.12.(5分)若一个数的平方等于5,则这个数等于±.【分析】直接利用平方根的定义分析得出答案.【解答】解:若一个数的平方等于5,则这个数等于:±.故答案为:±.【点评】此题主要考查了平方根,正确把握相关定义是解题关键.13.(5分)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是.【分析】画出树状图然后根据概率公式列式即可得解.【解答】解:画树状图如图所示:一共有9种等可能的情况,两次摸出的小球颜色不同的有4种,∴两次摸出的小球颜色不同的概率为;故答案为:.【点评】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.14.(5分)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为52°.【分析】直接利用圆内接四边形的性质结合三角形外角的性质得出答案.【解答】解:∵圆内接四边形ABCD,∴∠D=180°﹣∠ABC=116°,∵点D关于AC的对称点E在边BC上,∴∠D=∠AEC=116°,∴∠BAE=116°﹣64°=52°.故答案为:52°.【点评】此题主要考查了圆内接四边形的性质以及三角形的外角,正确得出∠AEC的度数是解题关键.15.(5分)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共 3 个.【分析】求出第一次编号中砸碎3的倍数的个数,得余下金蛋的个数,再求第二次编号中砸碎的3的倍数的个数,得余下金蛋的个数,依次推理便可得到操作过程中砸碎编号是“66”的“金蛋”总个数.【解答】解:∵210÷3=70,∴第一次砸碎3的倍数的金蛋个数为70个,剩下210﹣70=140个金蛋,重新编号为1,2,3, (140)∵140÷3=46…2,∴第二次砸碎3的倍数的金蛋个数为46个,剩下140﹣46=94个金蛋,重新编号为1,2,3, (94)∵94÷3=31…1,∴第三次砸碎3的倍数的金蛋个数为31个,剩下94﹣31=63个金蛋,∵63<66,∴砸三次后,就不再存在编号为66的金蛋,故操作过程中砸碎编号是“66”的“金蛋”共有3个.故答案为:3.【点评】此题主要考查了推理与论证,正确得出每次砸掉的和余下的金蛋个数是解题关键.16.(5分)如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且=,则m+n的最大值为.【分析】过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM=y,得到DM=y﹣4,DN=4﹣x,根据相似三角形的性质得到xy=mn,y=﹣x+10,由=,得到n=m,于是得到(m+n)最大=m,然后根据二次函数的性质即可得到结论.【解答】解:过B作BE⊥l1于E,延长EB交l3于F,过A作AN⊥l2于N,过C作CM⊥l2于M,设AE=x,CF=y,BN=x,BM=y,∵BD=4,∴DM=y﹣4,DN=4﹣x,∵∠ABC=∠AEB=∠BFC=∠CMD=∠AND=90°,∴∠EAB+∠ABE=∠ABE+∠CBF=90°,∴∠EAB=∠CBF,∴△ABE∽△BFC,∴,即=,∴xy=mn,∵∠ADN=∠CDM,∴△CMD∽△AND,∴=,即=,∴y=﹣x+10,∵=,∴n=m,∴(m+n)最大=m,∴当m最大时,(m+n)最大=m,∵mn=xy=x(﹣x+10)=﹣x2+10x=m2,∴当x=﹣=时,mn最大==m2,∴m最大=,∴m+n的最大值为×=.故答案为:.【点评】本题考查了平行线的性质,相似三角形的判定和性质,二次函数的性质,正确的作出辅助线是解题的关键.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:+|1﹣|﹣(﹣1).【分析】分别根据二次根式的性质、绝对值的性质化简即可求解.【解答】解:原式=.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算.18.(8分)先化简,再求值:﹣,其中x=.【分析】根据分式的加减运算法则把原式化简,代入计算即可.【解答】解:﹣==,当x=时,原式==﹣6.【点评】本题考查的是分式的化简求值,掌握同分母分式的减法法则是解题的关键.19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).【分析】过点A作AD⊥BC于点D,延长AD交地面于点E,根据锐角三角函数的定义即可求出答案.【解答】解:过点A作AD⊥BC于点D,延长AD交地面于点E,∵sin∠ABD=,∴AD=92×0.94≈86.48,∵DE=6,∴AE=AD+DE=92.5,∴把手A离地面的高度为92.5cm.【点评】本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=﹣x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.【分析】(1)根据函数图象中的数据可以得到y关于x的函数解析式;(2)分别令h=0和y=0求出相应的x的值,然后比较大小即可解答本题.【解答】解:(1)设y关于x的函数解析式是y=kx+b,,解得,,即y关于x的函数解析式是y=﹣x+6;(2)当h=0时,0=﹣x+6,得x=20,当y=0时,0=﹣x+6,得x=30,∵20<30,∴甲先到达地面.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY【分析】(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:;(2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×=5.31万(人);(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:=8.9%,活动前全市骑电瓶车“都不戴”安全帽的百分比:,8.9%<17.7%,因此交警部门开展的宣传活动有效果.【解答】解:(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:;答:宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51%,(2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×=5.31万(人),答:估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人;(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:=8.9%,活动前全市骑电瓶车“都不戴”安全帽的百分比:,8.9%<17.7%,因此交警部门开展的宣传活动有效果.【点评】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;(真)②若AD=BE=CF,则六边形ABCDEF是正六边形.(真)【分析】(1)①由SSS证明△ABC≌△BCD≌△CDE≌△DEA≌EAB得出∠ABC=∠BCD=∠CDE =∠DEA=∠EAB,即可得出结论;②由SSS证明△ABE≌△BCA≌△DEC得出∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,由SSS证明△ACE≌△BEC得出∠ACE=∠CEB,∠CEA=∠CAE =∠EBC=∠ECB,由四边形ABCE内角和为360°得出∠ABC+∠ECB=180°,证出AB∥CE,由平行线的性质得出∠ABE=∠BEC,∠BAC=∠ACE,证出∠BAE=3∠ABE,同理:∠CBA =∠D=∠AED=∠BCD=3∠ABE=∠BAE,即可得出结论;(2)①证明△AEF≌△CAB≌△ECD得出∠F=∠B=∠D,∠FEA=∠FAE=∠BAC=∠BCA =∠DCE=∠DEC,由等边三角形的性质得出∠EAC=∠ECA=∠AEC=60°,设∠F=∠B=∠D=y,∠FEA=∠FAE=∠BAC=∠BCA=∠DCE=∠DEC=x,则y+2x=180°①,y﹣2x =60°②,求出y=120°,x=30°,得出∠F=∠B=∠D=∠BAF=∠BCD=∠DEF=120°,即可得出结论;②证明△BFE≌△FBC得出∠BFE=∠FBC,证出∠AFE=∠ABC,证明△FAE≌△BCA得出AE =CA,同理:AE=CE,得出AE=CA=CE,由①得:六边形ABCDEF是正六边形.【解答】(1)①证明:∵凸五边形ABCDE的各条边都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、EAB中,,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五边形ABCDE是正五边形;②解:若AC=BE=CE,五边形ABCDE是正五边形,理由如下:在△ABE、△BCA和△DEC中,,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,在△ACE和△BEC中,,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,∵四边形ABCE内角和为360°,∴∠ABC+∠ECB=180°,∴AB∥CE,∴∠ABE=∠BEC,∠BAC=∠ACE,∴∠CAE=∠CEA=2∠ABE,∴∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,∴五边形ABCDE是正五边形;(2)解:①若AC=CE=EA,如图3所示:则六边形ABCDEF是正六边形;真命题;理由如下:∵凸六边形ABCDEF的各条边都相等,∴AB=BC=CD=DE=EF=EA,在△AEF、△CAB和△ECD中,,∴△AEF≌△CAB≌△ECD(SSS),∴∠F=∠B=∠D,∠FEA=∠FAE=∠BAC=∠BCA=∠DCE=∠DEC,∵AC=CE=EA,∴∠EAC=∠ECA=∠AEC=60°,设∠F=∠B=∠D=y,∠FEA=∠FAE=∠BAC=∠BCA=∠DCE=∠DEC=x,则y+2x=180°①,y﹣2x=60°②,①+②得:2y=240°,∴y=120°,x=30°,∴∠F=∠B=∠D=120°,∠FEA=∠FAE=∠BAC=∠BCA=∠DCE=∠DEC=30°,∴∠BAF=∠BCD=∠DEF=30°+30°+60°=120°,∴∠F=∠B=∠D=∠BAF=∠BCD=∠DEF,∴六边形ABCDEF是正六边形;故答案为:真;②若AD=BE=CF,则六边形ABCDEF是正六边形;真命题;理由如下:如图4所示:连接AE、AC、CE,在△BFE和△FBC中,,∴△BFE≌△FBC(SSS),∴∠BFE=∠FBC,∵AB=AF,∴∠AFB=∠ABF,∴∠AFE=∠ABC,在△FAE和△BCA中,,∴△FAE≌△BCA(SAS),∴AE=CA,同理:AE=CE,∴AE=CA=CE,由①得:六边形ABCDEF是正六边形;故答案为:真.【点评】本题是四边形综合题目,考查了正多边形的判定、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.23.(12分)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.【分析】(1)将点(﹣2,4)代入y=x2+bx+c,c=2b;(2)m=﹣,n=,得n=2b﹣m2;(3)y=x2+bx+2b=(x+)2﹣+2b,当b≤0时,c≤0,函数不经过第三象限,则c =0;此时y=x2,最大值与最小值之差为25;当b>0时,c>0,函数不经过第三象限,则△≤0,得0≤b≤8当﹣5≤x≤1时,函数有最小值﹣+2b,当﹣5≤﹣<﹣2时,函数有最大值1+3b,当﹣2<﹣≤1时,函数有最大值25﹣3b;当最大值1+3b时,1+3b+﹣2b=16,b=6;当最大值25﹣3b时,b=2;【解答】解:(1)将点(﹣2,4)代入y=x2+bx+c,得﹣2b+c=0,∴c=2b;(2)m=﹣,n=,∴n=,∴n=2b﹣m2,(3)y=x2+bx+2b=(x+)2﹣+2b,对称轴x=﹣,当b≤0时,c≤0,函数不经过第三象限,则c=0;此时y=x2,当﹣5≤x≤1时,函数最小值是0,最大值是25,∴最大值与最小值之差为25;(舍去)当b>0时,c>0,函数不经过第三象限,则△≤0,∴0≤b≤8,∴﹣4≤x=﹣≤0,当﹣5≤x≤1时,函数有最小值﹣+2b,当﹣5≤﹣<﹣2时,函数有最大值1+3b,当﹣2<﹣≤1时,函数有最大值25﹣3b;函数的最大值与最小值之差为16,当最大值1+3b时,1+3b+﹣2b=16,∴b=6或b=﹣10,∵4≤b≤8,∴b=6;当最大值25﹣3b时,25﹣3b+﹣2b=16,∴b=2或b=18,∵2≤b≤4,∴b=2;综上所述b=2或b=6;【点评】本题考查二次函数的图象及性质;熟练掌握二次函数的图象,数形结合解题是关键.24.(14分)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求的值;(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.【分析】(1)设AP=FD=a,通过证明△AFP∽△DFC,可得,可求AP的值,即可求AF的值,则可求解;(2)在CD上截取DH=AF,由“SAS”可证△PAF≌△HDF,可得PF=FH,由勾股定理可求CE=EP=,可得CM=CH=﹣1,由“SAS”可证△FCM≌△FCH,可得FM=FH=PF;(3)以A原点,AB为y轴,AD为x轴建立平面直角坐标系,用待定系数法可求BN解析式,即可求B'坐标,计算B'Q'的长度,即可判断点B旋转后的对应点B'是否落在线段BN上.【解答】解:(1)设AP=FD=a,∴AF=2﹣a,∵四边形ABCD是正方形∴AB∥CD。
七年级数学下册轴对称图形(湘教版)
•
十九、要想成就伟业,除了梦想,必须行动。——佚名
•
二十、忘掉今天的人将被明天忘掉。──歌德
•
二十一、梦境总是现实的反面。——伟格利
•
二十二、世界上最快乐的事,莫过于为理想而奋斗。——苏格拉底
•
二十三、“梦想”是一个多么“虚无缥缈不切实际”的词啊。在很多人的眼里,梦想只是白日做梦,可是,如果你不曾真切的拥有过梦想,你就不会理解梦想的珍贵。——柳岩
4.下列图形中对轴称只有两条的是( )
A.圆
B.等边三角形
C.长方形
D.等腰梯形
【解析】选C.圆有无数条对称轴,故A选项错误;等边三角形有3
条对称轴,故B选项错误;长方形有2条对称轴,故C选项正确;等腰
梯形有1条对称轴,故D选项错误.
5.如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为 cm2.
•
四十三、梦想家的缺点是害怕命运。——斯·菲利普斯
•
四十四、从工作里爱了生命,就是通彻了生命最深的秘密。——纪伯伦
•
四十五、穷人并不是指身无分文的人,而是指没有梦想的人。——佚名
•
四十六、不要怀有渺小的梦想,它们无法打动人心。——歌德
•
四十七、人生最苦痛的是梦醒了无路可走。做梦的人是幸福的;倘没有看出可以走的路,最要紧的是不要去惊醒他。——鲁迅
•
二十八、青少年是一个美好而又是一去不可再得的时期,是将来一切光明和幸福的开端。——加里宁
•
二十九、梦想家命长,实干家寿短。——约·奥赖利
•
三十、青年时准备好材料,想造一座通向月亮的桥,或者在地上造二所宫殿或庙宇。活到中年,终于决定搭一个棚。——佚名
•
三十一、在这个并非尽善尽美的世界上,勤奋会得到报偿,而游手好闲则要受到惩罚。——毛姆
浙江省初中毕业生学业考试(台州市卷)数学参考答案和评分细则
2013年浙江省初中毕业生学业考试(台州市卷)数学参考答案和评分细则11.2x 12. ()2,1-- 13. 36 14.25 15. 2916. ① 3 ② 255 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.解:原式=641-+- …………………………………………………………………………………6分=3-. ………………………………………………………………………………………2分 18.解:原式=221x x -- ……………………………………………………………………………………5分 =1- . …………………………………………………………………………………………3分 19.解:把⎩⎨⎧==,2,1y x 代入⎩⎨⎧=-=+,432,7ny mx ny mx 得⎩⎨⎧=-=+.462,72n m n m ………………………………………………4分 解得: .1,5==n m …………………………………………………………………………………4分 20.解:设这个班要胜x 场,则负)28(x -场. ……………………………………………………………1分 由题意,得 ()32843,x x +-≥ ………………………………………………………………………4分215,x ≥7.5.x ≥ …………………………………………………………………………………1分因为场次x 为正整数,故8.x ≥答:这个班至少要胜8场. …………………………………………………………………………………2分21.解:(1) .501015360365=÷=︒︒÷=a ……………………………………………………………… 2分 .20)20532(50=+++-=b ………………………………………………………………2分(2) 150. …………………………………………………………………………………………………2分 (3)).(3424.345020382034530326222分≈=⨯+⨯+⨯+⨯+⨯ ………………………………3分可用样本的平均分来估计总体的平均分,因此,该校九年级学生这次体育测试成绩的平均分为34分. ……………………………………………………………………1分22.证明:(1) 在□ABCD 中, CD AB //, ∴.2FEC ∠=∠……………………………………3分 由折叠,得.1FEC ∠=∠ …………………………3分∴.21∠=∠ ……………………………………1分(2) 由(1)知:12∠=∠,∴.GF EG = …………………………………………………………………………………1分 ∵CD AB //,∴.EGF DEG ∠=∠ 由折叠,得 B F C E ''//, ∴.EGF FG B ∠='∠∴.DEG FG B ∠='∠ …………………………………………………………………………2分∵,F B BF DE '==∴.F B DE '=∴△DEG ≌△FG B '. …………………………………………………………………………1分 ∴.G B DG '= …………………………………………………………………………………1分 (用其它方法证明的也按相应给分点给分)23.(1)当0=x 时,,22=+-=x y)2,0(A ∴,把)2,0(A 代入,得 12k += ,1=∴k .)1,1(B ∴. ……………………………………………………………………………………2分 )2,(h h D - , ……………………………………………………………………………………1分当,222,x h y x h h ==-+=-+=-时上在直线点l D ∴. ………………………………………………………………………………1分(2)①1)1(2+-m 或h h m -+-2)(2.……………………………………………………………………2分 由题意,得 1)1(2+-m =h h m -+-2)(2,h h mh m m m -++-=++-22112222,………………………………………………………… 1分 h h m mh -=-222. ……………………………………………………………………………1分1>h , 2222hh h h m =--=∴. …………………………………………………………………2分②过点C 作y 轴的垂线,垂足为E ,过点D 作CE DF ⊥于点F ..,90CDF ACE ACD ∠=∠∴︒=∠又DFC AEC ∠=∠ ,∴△ACE ∽△CDF .DFCFEC AE =∴. 又∵C )22,(2+-m m m ,)22,2(m m D -,,22m m AE -=∴2m DF =,m CF CE ==.222mm m m m =-∴.122=-∴m m ,解得12+±=m . ∵,1>h ∴ .212>=h m .12+=∴m ……………………………………………………………………………………………2分24. (1)画图正确. ……………………………………………………………………………………………4分(2)取AC 中点D ,连接BD , …………………………………………………………………………1分90,tan C A ∠=︒=,23=∴AC BC . ……………1分设,2BC AC x ==则,2BD x ∴== . ………1分BD AC =∴.∴△ABC 是“好玩三角形”. ……………………………………………………………………1分(3)①若45β=︒时,当点P 在AB 上时,△APQ 是等腰直角三形,不可能是“好玩三角形”. 当P 在BC 上时,连接AC ,交PQ 于点E ,延长AB 交QP 的延长线于点F ,∵CQ PC =,ACD ACB ∠=∠, ∴AC 是QP 的垂直平分线.∴AQ AP =. ∵ACP CAB ∠=∠,AEF CEP ∠=∠, ∴△AEF ∽△CEP .∴2AE AF AB BP sCE PC PC a s +===-. ∵CE PE =. ∴2AE sPE a s=-.ⅰ)当底边PQ 与它的中线AE 相等,即PQ AE =时,221AE s PE a s ==-,∴34a s =.………… 2分 ⅱ) 当腰AP 与它的中线QM 相等,即QM AP =时, 作AP QN ⊥于N ,∴AN MN ==PM 21.F∴MN QN 15=.∴APQ ∠tan =315315==MN MN PN QN .∴tan APE ∠=23AE s PE a s ==-.∴1102a s =+ .……………………………………………………………………………………… 2分 ②315<tan β<2. ……………………………………………………………………………………2分 (4)选做题:若0tan 3β<<,则在Q P ,的运动过程中,使得△APQ 成为‘好玩三角形’的个数为2. ……………………………………2分。
2013年浙江台州中考数学试卷及答案(word解析版)
2013年台州市中考数学卷一.选择题1(2013浙江台州,1,4分)-2的倒数为()A21-B21C2 D1【答案】A2(2013浙江台州,2,4分)有一篮球如图放置,其主视图为()【答案】B3(2013浙江台州,3,4分)三门湾核电站的1号机组将于2013年10月建成,其功率将达到1250000千瓦,其中1250000可用科学记数法表示为()A125×104B125×105C125×106D0125×107【答案】C4(2013浙江台州,4,4分)下列四个艺术字中,不是轴对称的是()A金B木C水D火【答案】C5(2013浙江台州,5,4分)在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/ m3)与体积v(单位:m3)满足函数关系式ρ=vk(k为常数,k≠0)其图象如图所示,则k的值为()A9 B-9 C4 D-4【答案】A6(2013浙江台州,6,4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都约为88环,方差分别为42.0,48.051.063.02222====丁丙乙甲,,SSSS,则四人中A(6,1.5)vρO成绩最稳定的是( )A 甲B 乙C 丙D 丁 【答案】D7 (2013浙江台州,7,4分)若实数a ,b ,c 在数轴上对应点的位置如图所示,则下列不等式成立的是( )A ac >bcB ab >cbC a +c >b +cD a +b >c +b【答案】B8 (2013浙江台州,8,4分)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,且21==AC AD AB AE ,则BCED AD E S S 四边形:∆的值为( ) A 1∶3B 1∶2C 1∶3D 1∶4【答案】C9 (2013浙江台州,9,4分)如图,已知边长为2的正三角形ABC 顶点A 的坐标为(0,6),BC的中点D 在y 轴上,且在A 的下方,点E 是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE 的最小值为( )A 3B 34-C 4D 326-【答案】BA B CE DOx yBEDcab10(2013浙江台州,10,4分)已知△A 1B 1C 1与△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1= A 2B 2,A 1C 1=△A 2C 2则△A 1B 1C 1≌△A 2B 2C 2 ②若,∠A 1=∠A 2,∠B 1=∠B 2则△A 1B 1C 1≌△A 2B 2C 2 对于上述的连个判断,下列说法正确的是( )A ①正确②错误B ①错误②正确C ①,②都错误D ①,②都正确 【答案】D二、填空题11 (2013浙江台州,11,5分)计算:x 5÷x 3= 【答案】x 212 (2013浙江台州,12,5分)设点M (1,2)关于原点的对称点为M ′,则M ′的坐标为 【答案】(-1,-2)13 (2013浙江台州,13,5分)如图,点B ,C ,E ,F 在一直线上,AB ∥DC ,DE ∥GF ,∠B =∠F =72°,则∠D = 度【答案】36°14 (2013浙江台州,14,5分)如图,在⊙O 中,过直径AB 延长线上的点C 作⊙O 的一条切线,切点为D ,若AC =7,AB =4,则sinC 的值为【答案】2515 (2013浙江台州,15,5分)在一个不透明的口袋中,有3个完全相同的小球,它们的标号分别为2,3,4,从袋中随机地摸取一个小球后然后放回,再随机地摸取一个小球,则两次摸取的小球标号之和为5的概率是 【答案】2916 (2013浙江台州,16,5分)任何实数a ,可用[]a 表示不超过a 的最大整数,如[][]13,44==,现对72进行如下操作:[][][]122887272321=→=→=→次第次第次第,这样对72只需进行3次操作后变ABC DOA 72°CED72°G为1,类似地,①对81只需进行 次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是 【答案】3、255三、解答题17 (2013浙江台州,17,8分)计算:0)2(4)2(3--+-⨯【答案】解:原式=-6+4-1=-318 (2013浙江台州,18,8分)化简:2)1)(1(x x x --+ 【答案】解:原式=x 2-1- x 2=-119 (2013浙江台州,19,8分)已知关于x ,y 的方程组7234mx ny mx ny +=⎧⎨-=⎩的解为12x y =⎧⎨=⎩,求m ,n 的值; 【答案】把12x y =⎧⎨=⎩代入原方程组得27264m n m n +=⎧⎨-=⎩,解得51m n =⎧⎨=⎩20 (2013浙江台州,20,8分)某校班际篮球联赛中,每场比赛都要胜负,每队胜1场得3分,负1场得1分,如果某班在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?【答案】解:设这个班要胜x 场,则负(28-x )场, 由题意,得3x +(28-x )≥43, 解得x ≥75因为场次x 为正整数,故x ≥8 答:这个班至少要胜8场21 (2013浙江台州,21,10分)有一学校为了了解九年级学生某次体育的测试成绩,现对这次体育测试成绩进行抽样调查,结果统计如下,其中扇形统计图中C 组所在的扇形圆心角为36°根据上面图表提供的信息,回答下列问题: (1)计算频数分布表中a 与b 的值;(2)根据C 组3228≤<x 的组中值为30,估计C 组中所有数据的和为 (3)请估计该校九年级学生这次体育测试成绩的平均分(结果取整数)【答案】解:(1)a =5÷36360︒︒=50b =50-(2+3+5+20)=20(2)150 (3)2222633420382050⨯+⨯+⨯+⨯=3424≈34(分)可用样本的平均分来估计总体的平均分,因此,该校九年级学生这次体育测试成绩的平均分约为34分22 (2013浙江台州,22,12分)如图,在□ABCD 中,点E ,F 分别在边DC ,AB 上,DE =BF ,把平行四边形沿直线EF 折叠,使得点B ,C 分别落在点B ′,C ′处,线段EC ′与线段AF 交于点G ,连接DG ,B ′G求证:(1)∠1=∠2 (2)DG =B ′G21GB'C'F CBA【答案】证明:在□ABCD 中,AB ∥CD , ∴∠2=∠FE C由折叠,得∠1=∠FEC ,∴∠1=∠2 (2)由(1)知:∠1=∠2, ∴EG =GF∵AB ∥CD ,∴∠DEG =∠EGF 由折叠,得EC ′∥FB ′, ∴∠B ′FG =∠EGF ∴∠B ′FG =∠DEG ∵DE =BF =B ′F , ∴DE =B ′F∴△DEG ≌△B ′FG ∴DG =B ′G23 (2013浙江台州,23,12分)如图1,已知直线l :y =-x +2与y 轴交于点A ,抛物线y =(x-1)2+k 经过点A ,其顶点为B ,另一抛物线y =(x -h )2+2-h (h >1)的顶点为D ,两抛物线相交于点C(1)求点B 的坐标,并说明点D 在直线l 的理由; (2)设交点C 的横坐标为m①交点C 的纵坐标可以表示为: 或 ,由此请进一步探究m 关于h 的函数关系式;②如图2,若︒=∠90ACD ,求m 的值 【答案】解:(1)当x =0,y =-x +2=2,∴A (0,2),把A (0,2)代入,得1+k =2,∴k =1 ∴B (1,1) ∵D (h ,2-h ),当x =h 时,y =-x +2=-h +2=2-h , ∴点D 在直线l 上 (2)①(m -1)²+1或(m -h )²+2-h 由题意,得(m -1)²+1=(m -h )²+2-h , m 2-2m +1+1=m 2-2mh +h 2+2-h , 2mh -2m =h 2-h , ∵h >1,∴m =2222h h hh -=- ②过点C 作y 轴的垂线,垂足为E ,过点D 作DF ⊥CE 于点F ∵∠ACD =90°,∴∠ACE =∠CDF又∵∠AEC =∠DFC ,∴△ACE ∽△CDF ∴AE CFEC DF=又∵C (m ,m 2-2m +2),D (2m ,2-2m ), ∴AE =m 2-2m ,DF =m 2,CE =CF =m∴222m m mm m-=,∴m 2-2m =1,解得m =2±+1,∵h >1,∴m =2h >12,∴m =21+24 (2013浙江台州,24,13分)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”(1)请用直尺与圆规画一个“好玩三角形”; (2)如图1,在Rt △ABC 中,∠C =90°,23tan =A ,求证:△ABC 是“好玩三角形”; (3)如图2,已知菱形ABCD 的边长为a , ∠ABC =2β,点P ,Q 从点A 同时出发,以相同的速度分别沿折线AB -BC 和AD -DC 向终点C 运动,记点P 所经过的路程为S ①当β=45°时,若△APQ 是“好玩三角形”,试求sa的值 ②当tan β的取值在什么范围内,点P ,Q 在运动过程中,有且只有一个△APQ 能成为“好玩三角形”请直接写出tan β的取值范围 (4)本小题为选做题依据(3)中的条件,提出一个关于“在点P ,Q 的运动过程中,tan β的取值范围与△APQ 是“好玩三角形”的个数关系的真命题(“好玩三角形”的个数限定不能为1)【答案】(1)图略(2)取AC 中点D ,连接BD , ∵∠C =90°,tan A =3,∴3BC AC =,设BC =3x ,则AC =2x ,∴BD = 22223CD BC x x +=+=2x ,∴AC =BD ,∴△ABC 是“好玩三角形”(3)①若β=45°,当点P 在AB 上时,△APQ 是等腰直角三角形,不可能是“好玩三角形”当P 在BC 上时,连接AC ,交PQ 于点E ,延长AB 交QP 的延长线于点F ,∵PC =CQ ,∠ACB =∠ACD ,∴AC 是QP 的垂直平分线,∴AP =AQ ∵∠CAB =∠ACP , ∠AEF =∠CEP ∴△AEF ∽△CEP ∴2AE AF AB BP sCE PC PC a s +===- ∵PE =CE , ∴2AE sPE a s=- BAC备用图DB ADCPQABCi )当底边PQ 与它的中线AE 相等,即AE =PQ 时, 2AE s PE a s =-=21,∴34a s = ii )当腰AP 与它的中线QM 相等,即AP =QM 时, 作QN ⊥AP 于N ,∴MN =AN =12PM∴QN =15MN ∴tan ∠APQ =151533QN MN PN MN == ∴tan ∠APE =2AE sPE a s=-=153 ∴151102a s =+ ②153<tan β<2 (4)选做题: 若0<tan β<15,则在P 、Q 的运动过程中,使得△APQ 成为“好玩三角形”的个数为2 其他参考情形: tan β的取值范围 “好玩三角形”的个数 0<tan β<1532 153<tan β<2 1 tan β>2 0tan β=153或tan β=2 无数个。
【解析版】2013年浙江省台州市中考数学试卷及答案
浙江省台州市2013年中考数学试卷一、选择题(本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选均不得分)1.(4分)(2013•台州)﹣2的倒数为()A.﹣B.C.2D.1考点:倒数.分析:根据倒数的定义即可求解.解答:解:﹣2的倒数是:﹣.故选A.点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(4分)(2013•台州)有一篮球如图放置,其主视图为()A.B.C.D.考点:简单几何体的三视图.分析:根据主视图是分别从物体正面看所得到的图形可直接得到答案.解答:解:篮球的主视图是圆.故选:B.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(4分)(2013•台州)三门湾核电站的1号机组将于2013年的10月建成,其功率将达到1 250 000千瓦.其中1 250 000可用科学记数法表示为()A.125×104B.12.5×105C.1.25×106D.0.125×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1 250 000用科学记数法表示为1.25×106.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2013•台州)下列四个艺术字中,不是轴对称的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误;故选C.点评:本题考查了轴对称图形的知识,判断是轴对称图形的关键是寻找对称轴.5.(4分)(2013•台州)在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也随之改变.密度ρ(单位:kg/m3)与体积V(单位:m3)满足函数关系式ρ=(k为常数,k≠0),其图象如图所示,则k的值为()A.9B.﹣9 C.4D.﹣4考点:反比例函数的应用.分析:由图象可知,反比例函数图象经过点(6,1.5),利用待定系数法求出函数解形式即可求得k值.解答:解:由图象可知,函数图象经过点(6,1.5),设反比例函数为ρ=,则1.5=,解得k=9,故选A.点评:此题主要考查图象的识别和待定系数法求函数解形式.同学们要认真观察图象.6.(4分)(2013•台州)甲,乙,丙,丁四人进行射击测试,每人10次射击成绩的平均数都约为8.8环,方差分别为s=0.63,s=0.51,s=0.48,s=0.42,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵S=0.63,S=0.51,S=0.48,S=0.42,∴S最小,∴四人中成绩最稳定的是丁;故选D.点评:此题考查了方差,用到的知识点是方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.(4分)(2013•台州)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()A.a c>bc B.a b>cb C.a+c>b+c D.a+b>c+b考点:实数与数轴.分析:根据数轴判断出a、b、c的正负情况,然后根据不等式的性质解答.解答:解:由图可知,a<b<0,c>0,A、ac<bc,故本选项错误;B、ab>cb,故本选项正确;C、a+c<b+c,故本选项错误;D、a+b<c+b,故本选项错误.故选B.点评:本题考查了实数与数轴,不等式的基本性质,根据数轴判断出a、b、c的正负情况是解题的关键.8.(4分)(2013•台州)如图,在△ABC中,点D,E分别在边AB,AC上,且,则S△ADE:S四边形BCED的值为()A.1:B.1:2 C.1:3 D.1:4考点:相似三角形的判定与性质.分析:首先根据两边对应成比例且夹角相等的两三角形相似,证得△ADE∽△ACB,再由相似三角形面积的比等于相似比的平方即可求得答案.解答:解:在△ADE与△ACB中,,∴△ADE∽△ACB,∴S△ADE:S△ACB=(AE:AB)2=1:4,∴S△ADE:S四边形BCED=1:3.故选C.点评:此题考查了相似三角形的判定与性质.注意相似三角形的面积的比等于相似比的平方.9.(4分)(2013•台州)如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A.3B.4﹣C.4D.6﹣2考点:正多边形和圆;坐标与图形性质;等边三角形的性质.分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.解答:解:如图,当点E旋转至y轴上时DE最小;∵△ABC是等边三角形,D为BC的中点,∴AD⊥BC∵AB=BC=2∴AD=AB•cos∠B=,∵正六边形的边长等于其半径,正六边形的边长为2,∴OE=OE′=2∵点A的坐标为(0,6)∴OA=6∴D′E=OA﹣AD﹣OE′=4﹣故选B.点评:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.10.(4分)(2013•台州)已知△A1B1C1△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,②错误B.①错误,②正确C.①,②都错误D.①,②都正确考点:全等三角形的判定.分析:根据SSS即可推出△A1B1C1≌△A2B2C2,判断①正确;根据AAA不能推出两三角形全等,即可判断②.解答:解:∵△A1B1C1△A2B2C2的周长相等,A1B1=A2B2,A1C1=A2C2,∴B1C1=B2C2,∴△A1B1C1≌△A2B2C2(SSS),∴①正确;∵∠A1=∠A2,∠B1=∠B2,∴根据三角形的内角和定理∠C1=∠C2,根据三角相等不能推出两三角形全等,∴②错误;故选A.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,而AAA和SSA不能判断两三角形全等.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)(2013•台州)计算:x5÷x3=x2.考点:同底数幂的除法分析:利用同底数的幂的除法法则:底数不变,指数相减即可求解.解答:解:x5÷x3=x5﹣3=x2.故答案是:x2.点评:本题考查了同底数的幂的除法法则:底数不变指数相减.12.(5分)(2013•台州)设点M(1,2)关于原点的对称点为M′,则M′的坐标为(﹣1,﹣2).考点:关于原点对称的点的坐标.分析:根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可直接得到答案.解答:解:点M(1,2)关于原点的对称点M′的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2).点评:此题主要考查了关于原点对称的点的坐标特点,关键是熟练掌握点的坐标的变化规律.13.(5分)(2013•台州)如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D=36度.考点:平行线的性质;三角形内角和定理.分析:根据两直线平行,同位角相等可得∠DCE=∠B,∠DEC=∠F,再利用三角形的内角和定理列式计算即可得解.解答:解:∵AB∥DC,DE∥GF,∠B=∠F=72°,∴∠DCE=∠B=72°,∠DEC=∠F=72°,在△CDE中,∠D=180°﹣∠DCE﹣∠DEC=180°﹣72°﹣72°=36°.故答案为:36.点评:本题考查了两直线平行,同位角相等的性质,三角形的内角和定理,是基础题,熟记性质与定理是解题的关键.14.(5分)(2013•台州)如图,在⊙O中,过直径AB延长线上的点C作⊙O的一条切线,切点为D.若AC=7,AB=4,则sinC的值为.考点:切线的性质;锐角三角函数的定义.分析:连接OD,根据切线的性质可得∠ODC=90°,可得sin∠C=即可求解.解答:解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∵AC=7,AB=4,∴半径OA=2,则OC=AC﹣AO=7﹣2=5,∴sinC==.故答案为:.点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.15.(5分)(2013•台州)在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取的小球标号之和为5的概率是.考点:列表法与树状图法.专题:计算题.分析:列表得出所有可能的情况数,找出之和为5的情况数,即可求出所求的概率.解答:解:列表如下:2 3 42 (2,2)(3,2)(4,2)3 (2,3)(3,3)(4,3)4 (2,4)(3,4)(4,4)所有等可能的结果有9种,其中之和为5的情况有2种,则P之和为5=.故答案为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.16.(5分)(2013•台州)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似的,①对81只需进行3此操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是255.考点:估算无理数的大小.专题:新定义.分析:①根据规律依次求出即可;②先猜想尝试得出255,再求出即可.解答:解:①[]=9,[]=3,[]=1,故答案为:3;②最大的是255,[]=15,[]=3,[]=1,而[]=16,[]=4,[]=2,[]=1,即只需进行3次操作后变为1的所有正整数中,最大的正整数是255,故答案为:255.点评:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和猜想能力.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,满分80分)17.(8分)(2013•台州)计算:3×(﹣2)+|﹣4|﹣()0.考点:实数的运算;零指数幂.分析:分别进行零指数幂、绝对值、有理数的乘法运算,然后合并即可.解答:解:原式=﹣6+4﹣1=﹣3.点评:本题考查了实数的运算,属于基础题,掌握各部分的运算法则.18.(8分)(2013•台州)化简:(x+1)(x﹣1)﹣x2.考点:整式的混合运算.专题:计算题.分析:原式第一项利用平方差公式化简,合并即可得到结果.解答:解:原式=x2﹣1﹣x2=﹣1.点评:此题考查了整式的混合运算,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.19.(8分)(2013•台州)已知关于x,y的方程组的解为,求m,n的值.考点:二元一次方程组的解分析:将x=1,y=2代入方程中得到关于m与n的方程组,求出方程组的解得到m与n的值即可.解答:解:将代入方程组中得:,解得:.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.20.(8分)(2013•台州)在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?考点:一元一次不等式的应用.分析:设这个班要胜x场,则负(28﹣x)场,根据题意列出不等式,解不等式即可求出至少要胜几场.解答:解:设这个班要胜x场,则负(28﹣x)场,由题意得,3x+(28﹣x)≥43,2x≥15,解得:x≥7.5,∵场次x为正整数,∴x≥8.答:这个班至少要胜8场.点评:本题考查了一元一次不等式的应用,难度一般,解答本题的关键是表示出胜场得分和输场得分并列出不等式.21.(10分)(2013•台州)有一学校为了解九年级学生某次体育测试成绩,现对这次体育测试成绩进行抽样调查,结果统计如下,其中扇形统计图中C组所在的扇形的圆心角为36°被抽取的体育测试成绩频数分布表组别成绩频数A 20<x≤24 2B 24<x≤28 3C 28<x≤32 5D 32<x≤36 bE 36<x≤40 20合计 a根据上面的图表提供的信息,回答下列问题:(1)计算频数分布表中a与b的值;(2)根据C组28<x≤32的组中值30,估计C组中所有数据的和为150;(3)请估计该校九年级学生这次体育测试成绩的平均分(结果取整数).考点:频数(率)分布表;用样本估计总体;扇形统计图.分析:(1)首先根据圆心角的度数=360°×百分比可算出C部分所占百分比,再利用总数=频数÷百分比可得总数a;利用总数减去各部分的频数和可得b的值;(2)利用组中值×频数即可;(3)首先利用平均数的求法计算出样本平均数,再利用样本估计总体的方法可得该校九年级学生这次体育测试成绩的平均分.解答:解:(1)a=5÷=50,b=50﹣(2+3+5+20)=20;(2)30×5=150;(3)=34.24≈34(分).可用样本的平均分来估计总体的平均分,因此该校九年级学生这次体育测试成绩平均分约34分.点评:此题主要考查了频数分布表和扇形图,读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形势给出的数学实际问题.22.(12分)(2013•台州)如图,在▱ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G.求证:(1)∠1=∠2;(2)DG=B′G.考点:平行四边形的性质;全等三角形的判定与性质;翻折变换(折叠问题)专题:证明题.分析:(1)根据平行四边形得出DC∥AB,推出∠2=∠FEC,由折叠得出∠1=∠FEC=∠2,即可得出答案;(2)求出EG=B′G,推出∠DEG=∠EGF,由折叠求出∠B′FG=∠EGF,求出DE=B′F,证△DEG≌△B′FG即可.解答:证明:(1)∵在平行四边形ABCD中,DC∥AB,∴∠2=∠FEC,由折叠得:∠1=∠FEC,∴∠1=∠2;(2)∵∠1=∠2,∴EG=GF,∵AB∥DC,∴∠DEG=∠EGF,由折叠得:EC′∥B′F,∴∠B′FG=∠EGF,∵DE=BF=B′F,∴DE=B′F,∴△DEG≌△B′FG,∴DG=B′G.点评:本题考查了平行四边形性质,折叠性质,平行线性质,全等三角形的性质和判定的应用,主要考查学生的推理能力.23.(12分)(2013•台州)如图1,已知直线l:y=﹣x+2与y轴交于点A,抛物线y=(x﹣1)2+k经过点A,其顶点为B,另一抛物线y=(x﹣h)2+2﹣h(h>1)的顶点为D,两抛物线相交于点C.(1)求点B的坐标,并说明点D在直线l上的理由;(2)设交点C的横坐标为m.①交点C的纵坐标可以表示为:(m﹣1)2+1或(m﹣h)2﹣h,由此进一步探究m关于h的函数关系式;②如图2,若∠ACD=90°,求m的值.考点:二次函数综合题.分析:(1)首先求得点A的坐标,然后求得点B的坐标,用h表示出点D的坐标后代入直线的解析式验证即可;(2)根据两种不同的表示形式得到m和h之间的函数关系即可;过点C作y轴的垂线,垂足为E,过点D作DF⊥CE于点F,证得△ACE∽△CDF,然后用m表示出点C和点D的坐标,根据相似三角形的性质求得m的值即可.解答:解:(1)当x=0时候,y=﹣x+2=2,∴A(0,2),把A(0,2)代入,得1+k=2∴k=1,∴B(1,1)∵D(h,2﹣h)∴当x=h时,y=﹣x+2=﹣h+2=2﹣h∴点D在直线l上;(2)①(m﹣1)2+1或(m﹣h)2﹣h+2由题意得(m﹣1)2+1=(m﹣h)2﹣h+2,整理得2mh﹣2m=h2﹣h∵h>1∴m==.②过点C作y轴的垂线,垂足为E,过点D作DF⊥CE于点F∵∠ACD=90°,∴∠ACE=∠CDF又∵∠AEC=∠DFC∴△ACE∽△CDF∴又∵C(m,m2﹣2m+2),D(2m,2﹣2m),∴AE=m2﹣2m,DF=m2,CE=CF=m∴=∴m2﹣2m=1解得:m=±+1∵h>1∴m=>∴m=+1点评:本题考查了二次函数的综合知识,特别是本题中涉及到的用点的坐标表示有关线段的长更是解决本题的关键,在中考中出现的频率很高.24.(14分)(2013•台州)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”;(2)如图在Rt△ABC中,∠C=90°,tanA=,求证:△ABC是“好玩三角形”;(3))如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.①当β=45°时,若△APQ是“好玩三角形”,试求的值;②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.(4)(本小题为选做题,作对另加2分,但全卷满分不超过150分)依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)考点:相似形综合题分析:(1)先画一条线段AB,再确定AB的中点O,过点O作一条线段OC使OC=AB,连接AC、BC,则△ABC是所求作的三角形;(2)取AC的中点D,连接BD,设BC=x,根据条件可以求出AC=2x,由三角函数可以求出BD=2x,从而得出AC=BC,从而得出结论;(3)①当β=45°时,分情况讨论,P点在AB上时,△APQ是等腰直角三角形,不可能是“好玩三角形”,当P在BC上时,延长AB交QP的延长线于点F,可以求出分情况讨论,就可以求出,再分情况讨论就可以求出当AE=PQ时,的值,当AP=QM时,可以求出的值;②根据①求出的两个的值就可以求出tanβ的取值范围;(4)由(3)可以得出0<tanβ<,△APQ为“好玩三角形”的个数为2就是真命题.解答:解:(1)如图1,①作一条线段AB,②作线段AB的中点O,③作线段OC,使OC=AB,④连接AC、BC,∴△ABC是所求作的三角形.(2)如图2,取AC的中点D,连接BD∵∠C=90°,tanA=,∴∴设BC=x,则AC=2x,∵D是AC的中点,∴CD=AC=x∴BD===2x,∴AC=BD∴△ABC是“好玩三角形”;(3)①如图3,当β=45°,点P在AB上时,∴∠ABC=2β=90°,∴△APQ是等腰直角三角形,不可能是“好玩三角形”,当P在BC上时,连接AC交PQ于点E,延长AB交QP的延长线于点F,∵PC=CQ,∴∠CAB=∠ACP,∠AEF=∠CEP,∴△AEF∽△CEP,∴.∵PE=CE,∴.Ⅰ当底边PQ与它的中线AE相等时,即AE=PQ时,,∴,Ⅱ当腰AP与它的中线QM相等,即AP=QM时,作QN⊥AP于N,如图4∴MN=AN=MP.∴QN=MN,∴tan∠APQ=,∴tan∠APE===,∴=②由①可知,当AE=PQ和AP=QM时,有且只有一个△APQ能成为“好玩三角形”,∴<tanβ<2时,有且只有一个△APQ能成为“好玩三角形”.(4)由(3)可以知道0<tanβ<,则在P、Q的运动过程中,使得△APQ成为“好玩三角形”的个数为2.点评:本题是一道相似形综合运用的试题,考查了相似三角形的判定及性质的运用,勾股定理的运用,等腰直角三角形的性质的运用,等腰三角形的性质的运用,锐角三角形函数值的运用,解答时灵活运用三角函数值建立方程求解是解答的关键.。
【2013版中考12年】浙江省台州市2002-2013年中考数学试题分类解析 专题10 四边形
台州市2002-2013年中考数学试题分类解析专题10:四边形一、选择题1. (2008年浙江台州4分)如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为【】A.16a B.12a C.8a D.4a2. (2010年浙江台州4分)梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是【】A.3 B.4 C. 23 D.2+23【答案】B。
【考点】梯形的性质,平行四边形、等边三角形的判定和性质。
【分析】如图,作AE∥CD于E点,∵AD∥BC,AE∥CD,∴四边形AECD是平行四边形。
∵AB=CD=AD=2,∴AE=CD=2,EC=AD=2。
又AB=CD,∠B=60°,∴△ABE是等边三角形。
∴BE=2。
∴BC=4。
故选B。
3. (2011年浙江台州4分)在梯形ABCD中,AD∥BC,∠ABC=90º,对角线AC、BD相交于点O.下列条件中,不能..判断对角线互相垂直的是【】A.∠1=∠2 B.∠1=∠3C.∠2=∠3 D.OB2+OC2=BC24. (2012年浙江台州4分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为【】A. 1 B.3 C. 2 D.3+1【答案】B。
【考点】菱形的性质,线段中垂线的性质,三角形三边关系,垂直线段的性质,矩形的判定和性质,锐角三角函数定义,特殊角的三角函数值。
【分析】分两步分析:(1)若点P,Q固定,此时点K的位置:如图,作点P关于BD的对称点P1,连接P1Q,交BD于点K1。
由线段中垂线上的点到线段两端距离相等的性质,得P1K1 = P K1,P1K=PK。
由三角形两边之和大于第三边的性质,得P1K+QK>P1Q= P1K1+Q K1= P K1+Q K1。
∴此时的K1就是使PK+QK最小的位置。
【2013版中考12年】浙江省台州市2002-2013年中考数学试题分类解析 专题01 实数
台州市2002-2013年中考数学试题分类解析专题01:实数一、选择题1. (2002年浙江台州4分)-2的倒数是【】(A)-2 (B)12(C )12(D)22. (2002年浙江台州4分)台州市2001年财政总收入为6504250000元,比上年增长22.3%.把6504250000用科学记数法表示为6. 50425×10n,则n=【】(A)4 (B)5 (C)9 (D)10【答案】C。
【考点】科学记数法。
【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值。
在确定n的值时,看该数是大于或等于1还是小于1。
当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0)。
6504250000一共10位,从而6504250000=6.50425×109,n=9。
故选C。
3. (2002年浙江台州4分)计算3的正整数次幂:31=3 32=9 33=27 34=8135=243 36=729 37=2187 38=6561……………………归纳各计算结果中的个位数字规律,可得 32002的个位数字为【】(A)1 (B)3 (C)7 (D)9【答案】D。
【考点】探索规律题(数字的变化――循环问题)。
【分析】观察个位数的变化规律:3,9,7,1.之后又是3,9,7,1,即4个数循环。
∵2002÷4=500……2,∴32002的个位数字与32的个位数字相同,即个位数字是9。
故选D。
4. (2003年浙江台州4分)如果零上6℃计作+6℃,那么零下6℃计作【】A、-6℃B、6℃C、6D、-6【答案】A。
【考点】正数和负数。
【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示。
因此,∵“正”和“负”相对,∴零上6℃记作+6℃,则零下6℃可记作-6℃。
【2013版中考12年】浙江省台州市2002-2013年中考数学试题分类解析 专题08 平面几何基础
某某市2002-2013年中考数学试题分类解析专题08:平面几何基础一、选择题1. (2002年某某某某4分)在ΔABC中,∠C=Rt∠,∠A= 800,则∠B的度数是【】(A)10 (B)20 (C)80 (D)100【答案】A。
【考点】直角三角形两锐角的关系。
【分析】根据直角三角形两锐角互余的关系,得∠B=900-∠A= 900-800= 100。
故选A。
2. (2003年某某某某4分)甲、乙两地之间有四条路可走(如图),那么最短路线的序号是【】A、①B、②C、③D、④3. (2003年某某某某4分)天安门广场上五星红旗的旗杆与地面的位置关系属于【】A、直线与直线平行B、直线与直线垂直C、直线与平面平行D、直线与平面垂直【答案】D。
【考点】数学模型的建立。
【分析】旗杆可以认为是直线,地面可以认为是平面.因而旗杆与地面的位置关系属于直线与平面垂直。
故选D。
4. (2003年某某某某4分)经过A、B、C三点的任意两点,可以画出的直线条数为【】A、1或2B、1或3C、2或3D、1或2或3【答案】B。
【考点】两点确定一条直线的性质,分类思想的应用。
【分析】若A、B、C三点在一直线上,则确定唯一的一条直线;若A、B、C三点不在一直线上,则可画三条直线:AB,BC,CA。
∴经过A、B、C三点的任意两点,可以画出的直线条数为1或3。
故选B。
5. (2004年某某某某、某某4分)下面给出的四条线段中,最长的是【】(A) a (B) b (C) c (D) d【答案】D。
【考点】比较线段的长短。
【分析】通过观察比较:d线段长度最长。
故选D。
6. (2004年某某某某、某某4分)高斯用直尺和圆规作出了正十七边形,如图, 正十七边形的中心角∠AOB的度数近似于【】(A) 11° (B) 17° (C) 21° (D) 25°【答案】C。
【考点】正多边形和圆。
【分析】正多边形一定有外接圆,且每条边所对的中心角相等,因此360°÷17≈21°。
浙江省台州地区2013年中考第二次模拟考试数学试卷
新世纪教育网 精品资料版权所有@新世纪教育网2013浙江省台州地区中考数学二模试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)×=22.(4分)(2008•台州)如图是由四个小正方体叠成的一个立体图形,那么它的俯视图是()B.24.(4分)(2009•资阳)在数轴上表示不等式组的解集,正确的是()新世纪教育网-- 中国最大型、最专业的中小学教育资源门户网站。
版权所有@新世纪教育网B.解:解不等式组得,再分别表示在数轴上为:5.(4分)(2013•滨城区二模)如图,四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则sin∠APB等于()B=某次抽奖活动中奖的概率为,说明每买7.(4分)(2013•台州二模)如图,双曲线y=﹣的一个分支为()8.(4分)(2013•宁波模拟)如图,OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图象上,则a的值为()B.;,∠OB=,OD=;,﹣))﹣;9.(4分)(2009•资阳)如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC的边相切,当点P第一次回到它的初始位置时所经过路径的长度是()B2+7a×24a÷2=24×7÷2,解之求得a的值,从而求得所构成的三角形的三边,即可求出周长=解:设三边分别为7a,24a,25a,则:(24a+24)÷2+(7a+7)÷2+(25a+25)÷2+7a×24a÷2=24×7÷2,解得:a=,∴构成的三角形的三边分别是,16,,∴周长=+16=.10.(4分)(2008•河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90°,则完成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是()二、填空题(本题有6小题,每小题5分,共30分)11.(5分)(2013•平凉)分解因式:x2﹣9=(x+3)(x﹣3).12.(5分)(2013•台州二模)写出一个在函数y=2x﹣1图象上的点的坐标(0,﹣1)答案不唯一.13.(5分)(2010•南通)质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是奇数的概率为.,则向上一面的数字是奇数的概率为=故答案为:.14.(5分)(2009•太原)如图AB、AC是⊙O的两条弦,∠A=30°,过点C的切线与OB的延长线交于点D,则∠D的度数为30度.15.(5分)(2009•武汉)如图,直线y=x与双曲线y=(x>0)交于点A.将直线y=x向右平移个单位后,与双曲线y=(x>0)交于点B,与x轴交于点C,若,则k=12.a=2个单位,的坐标为(,+a a的图象上,×a(a16.(5分)(2013•台州二模)阅读材料,完成填空:在平面直角坐标系中,当函数的图象产生平移,则函数的解析式会产生有规律的变化;反之,我们可以通过分析不同解析式的变化规律,推想到相应的函数图象间彼此的位置和形状的关联.不妨约定,把函数图象先往左侧平移2个单位,再往上平移1各单位,则不同类型函数解析式的变化可举例如下:y=3x2→y=3(x+2)2+1;y=3x3→y=3(x+2)3+1;y=3→y=3+1;y=3→y=3+1;y=→y=+1;…(1)若把函数y=+1图象再往右平移3个单位,所得函数图象的解析式为y=+1;(2)分析下列关于函数y=+1图象性质的描述:①图象关于(1,1)点中心对称;②图象必不经过第二象限;③图象与坐标轴共有2个交点;④当x>0时,y随着x取值的变大而减小.其中正确的是:①③.(填序号)向右平移一个单位,向上平移的图象、性质易得答案.y=+1+1向右平移一个单位,向上平移y=y=y=三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)(2013•台州二模)(1)计算:2sin60°﹣+(2)解方程:x2+4x+1=0.(2)把常数项1移项后,应该在左右两边同时加上一次项系数4的一半的平方.解:(1)原式=2×﹣+3,﹣+3,=3;(2)移项,得2+4x=﹣1.配方,得2+4x+22=﹣1+22,即(x+1)2=3,±,﹣18.(8分)(2009•本溪)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.19.(8分)(2009•吉林)在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于10.=.20.(8分)(2009•广安)在数学活动课上,九年级(1)班数学兴趣小组的同学们测量校园内一棵大树(如图)的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A,测得由点A看大树顶端C的仰角为35°;(2)在点A和大树之间选择一点B(A,B,D在同一直线上),测得由点B看大树顶端C的仰角恰好为45°;(3)量出A,B两点间的距离为4.5米.请你根据以上数据求出大树CD的高度.(精确到0.1米)(可能用到的参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)A=,;A=;CBD=;﹣=4.521.(10分)(2010•宁波)如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.AO=OECE=DE=.CO=AO=CEO====2×π×22.(12分)(2013•台州二模)如图是一种新型的滑梯的示意图,其中线段PA是高度为6米的平台,滑道AB是函数的图象的一部分,滑道BCD是二次函数图象的一部分,两滑道的连接点B为抛物线的顶点,且B点到地面的距离为2米,当甲同学滑到C点时,距地面的距离为1米,距点B的水平距离CE也为1米.(1)试求滑道BCD所在抛物线的解析式.(2)试求甲同学从点A滑到地面上D点时,所经过的水平距离.二次函数的应用.(1)B点既在双曲线上,又在抛物线上,根据题中数据可求出B点坐标.又因为点B为抛物线的顶点,且B点到地面的距离为2米,当甲同学滑到C点时,距地面的距离为1米,距点B离CE也为1米.据此可求出解析式.(2)依据前面的解析式求出A、D的横坐标,之间的差距即为所经过的水平距离.解:(1)依题意,B点到地面的距离为2米,设B点坐标为(x,2),代入y=x=y=,x=;所经过的水平距离为+5﹣+23.(12分)(2009•资阳)如图1,已知O是锐角∠XAY的边AX上的动点,以点O为圆心、R为半径的圆与射线AY切于点B,交射线OX于点C,连接BC,作CD⊥BC,交AY于点D.(1)求证:△ABC∽△ACD;(2)若P是AY上一点,AP=4,且sinA=,①如图2,当点D与点P重合时,求R的值;②当点D与点P不重合时,试求PD的长(用R表示).,AO=R AB=R AC=R+R=..RR=4R=.)R>AP=R<﹣>PD=R)时,PD=|R24.(14分)(2009•资阳)如图,已知抛物线y=x2﹣2x+1的顶点为P,A为抛物线与y轴的交点,过A与y轴垂直的直线与抛物线的另一交点为B,与抛物线对称轴交于点O′,过点B和P的直线l交y轴于点C,连接O′C,将△ACO′沿O′C翻折后,点A落在点D的位置.(1)求直线l的函数解析式;(2)求点D的坐标;(3)抛物线上是否存在点Q,使得S△DQC=S△DPB?若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.y=﹣()y=y=,解得.据面积关系,有×AE=AE=AD=2AE=,•AC=•A=,=,的坐标为(,﹣(,﹣y=y=﹣x2x+1=x,=x,得,,)。
浙江省台州地区2013年中考数学第二次模拟考试试卷
1浙江省台州地区2013年第二次模拟考试数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.化简4x 的结果是( )A. 2xB. ±2xC. 2xD. ±2x2.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是( )3.如果2是方程02=-c x 的一个根,那么c 的值是( )A .4B .-4C .2D .-24.在数轴上表示不等式组11,21x x ⎧≥-⎪⎨⎪->-⎩的解集,正确的是( )5.如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小正方形内, 则sin ∠APB 等于( )A .12B . 2 2C . 32 D .1 6.下列说法中正确的是 ( )A .“打开电视,正在播放《天下足球》”是必然事件;B .某次抽奖活动中奖的概率为501,说明每买50张奖券,一定有一次中奖; C .数据3,3,4,4,5的众数是5;D .想了解台州市城镇居民人均年收入水平,宜采用抽样调查. 7.如图,双曲线xy 12-=的一个分支为( ) A .① B .② C .③ D .④ 8.如图,四边形OABC 是边长为1的正方形,OC 与x 轴 正半轴的夹角为15°,点B 在抛物线)0(2<=a ax y 的图像上,则a 的值为( ) A .32-B .32-C .2-D .21-(第2题)A .B .C .D .(第5题)PO BA(第7题)(第8题)29.如图,已知Rt △ABC 的直角边AC=24,斜边AB=25,一个以点P 为圆心、半径为1的圆在△ABC 内部沿顺时针方向滚动,且运动过程中⊙P 一直保持与△ABC 的边相切,当点P 第一次回到 它的初始位置时所经过路径的长度是( ) A.563B. 25C.1123D. 56 10.我们一起来玩一个四等分转盘游戏,在它的上、右、下、左的位置分别挂着“数”、“学”、“好”、“玩”四个字牌,如图1.若将位于上下位置的两个字牌对调,同时将位于左右位置 的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则完成第2011次变换后,“数”字位于转盘的位置是( )A .上B .下C .左D .右 二、填空题(本题有6小题,每小题5分,共30分)11.因式分解x 2-9= .12.写出一次函数y= x -1的图象上的一个点的坐标 .13.质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,投掷这个骰子一次,则向上一面的数字是偶数的概率为14.如图AB 、AC 是O ⊙的两条弦,A ∠=30°,过点C 的切线与OB 的延长线交于点D ,则D ∠的度数为 .15.如图,直线43y x =与双曲线k y x =(0x >)交于点A .将直线43y x =向右平移92个单位后,与双曲线k y x =(0x >)交于点B ,与x 轴交于点C ,若2AOBC=,则k = .16.阅读材料,完成填空:在平面直角坐标系中,当函数的图像产生平移,则函数的解析式会产生有规律的变化;反之,我们可以通过分析不同解析式的变化规律,推想到相应的函数图像间彼此的位置和形状的关联。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省台州市2013年中考数学试卷
一、选择题(本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选均不得分)
﹣
.
2.(4分)(2013•台州)有一篮球如图放置,其主视图为()
B
3.(4分)(2013•台州)三门湾核电站的1号机组将于2013年的10月建成,其功率将达到
B
5.(4分)(2013•台州)在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改
变容器的体积时,气体的密度也随之改变.密度ρ(单位:kg/m 3)与体积V (单位:m 3)
满足函数关系式ρ=(k
为常数,k ≠0),其图象如图所示,则k 的值为( )
=1.5=
6.(4分)(2013•台州)甲,乙,丙,丁四人进行射击测试,每人10次射击成绩的平均数都约为8.8环,方差分别为s=0.63,s=0.51,s=0.48,s=0.42,则四人中成绩
S=0.63S=0.51S=0.42
最小,
7.(4分)(2013•台州)若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是()
8.(4分)(2013•台州)如图,在△ABC中,点D,E分别在边AB,AC上,且,则S△ADE:S四边形BCED的值为()
:
9.(4分)(2013•台州)如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()
﹣2
B=
﹣
10.(4分)(2013•台州)已知△A1B1C1△A2B2C2的周长相等,现有两个判断:
①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;
②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,
二、填空题(本题有6小题,每小题5分,共30分)
11.(5分)(2013•台州)计算:x5÷x3=x2.
12.(5分)(2013•台州)设点M(1,2)关于原点的对称点为M′,则M′的坐标为(﹣1,﹣2).
13.(5分)(2013•台州)如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D=36度.
14.(5分)(2013•台州)如图,在⊙O中,过直径AB延长线上的点C作⊙O的一条切线,
切点为D.若AC=7,AB=4,则sinC的值为.
C=
=.
故答案为:.
15.(5分)(2013•台州)在一个不透明的口袋中,有3个完全相同的小球,他们的标号分别是2,3,4,从袋中随机地摸取一个小球然后放回,再随机的摸取一个小球,则两次摸取
的小球标号之和为5的概率是.
.
故答案为:
16.(5分)(2013•台州)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72[]=8[]=2[]=1,这样对72只需进行3
次操作后变为1,类似的,①对81只需进行3此操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是255.
[][][
[[[[[[][]
三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,满分80分)
17.(8分)(2013•台州)计算:3×(﹣2)+|﹣4|﹣()0.
18.(8分)(2013•台州)化简:(x+1)(x﹣1)﹣x2.
19.(8分)(2013•台州)已知关于x,y的方程组的解为,求m,n的值.
代入方程组中得:
.
20.(8分)(2013•台州)在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?
21.(10分)(2013•台州)有一学校为了解九年级学生某次体育测试成绩,现对这次体育测试成绩进行抽样调查,结果统计如下,其中扇形统计图中C组所在的扇形的圆心角为36°被抽取的体育测试成绩频数分布表
(1)计算频数分布表中a与b的值;
(2)根据C组28<x≤32的组中值30,估计C组中所有数据的和为150;
(3)请估计该校九年级学生这次体育测试成绩的平均分(结果取整数).
÷=50
=34.24
22.(12分)(2013•台州)如图,在▱ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G.
求证:(1)∠1=∠2;
(2)DG=B′G.
23.(12分)(2013•台州)如图1,已知直线l:y=﹣x+2与y轴交于点A,抛物线y=(x﹣1)2+k经过点A,其顶点为B,另一抛物线y=(x﹣h)2+2﹣h(h>1)的顶点为D,两抛物线相交于点C.
(1)求点B的坐标,并说明点D在直线l上的理由;
(2)设交点C的横坐标为m.
①交点C的纵坐标可以表示为:(m﹣1)2+1或(m﹣h)2﹣h,由此进一步探究m关于h的函数关系式;
②如图2,若∠ACD=90°,求m的值.
.
=
±+1 >
24.(14分)(2013•台州)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.
(1)请用直尺和圆规画一个“好玩三角形”;
(2)如图在Rt△ABC中,∠C=90°,tanA=,求证:△ABC是“好玩三角形”;
(3))如图2,已知菱形ABCD的边长为a,∠ABC=2β,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.
①当β=45°时,若△APQ是“好玩三角形”,试求的值;
②当tanβ的取值在什么范围内,点P,Q在运动过程中,有且只有一个△APQ能成为“好玩三角形”.请直接写出tanβ的取值范围.
(4)(本小题为选做题,作对另加2分,但全卷满分不超过150分)
依据(3)的条件,提出一个关于“在点P,Q的运动过程中,tanβ的取值范围与△APQ是‘好玩三角形’的个数关系”的真命题(“好玩三角形”的个数限定不能为1)
BC=
情况讨论,就可以求出时,
的值;
求出的两个
,
tanA=
x
AC=x
=
MP
MN
APQ=
==
=
,。