八年级数学练习题13.1--13.2
人教版 八年级数学 13.1 ---13.3练习题(含答案)
人教版八年级数学13.1 轴对称一、选择题(本大题共12道小题)1. 下列倡导节约的图案中,属于轴对称图形的是()2. 如图,线段AB与A′B′(AB=A′B′)不关于直线l成轴对称的是()3. 关于轴对称和轴对称图形,下列说法错误的是()A.轴对称图形是对一个图形来说的B.轴对称是对两个图形来说的C.对称轴可以是直线、线段或射线D.一个轴对称图形的对称轴可能不止一条4. 将一张长与宽的比为2∶1的长方形纸片按图①②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④中的纸片展开铺平,所得到的图案是()5. 在汉字“生活中的日常用品”中,是轴对称图形的有()A.2个B.3个C.4个D.5个6. 若点A(2m,2-m)和点B(3+n,n)关于y轴对称,则m,n的值分别为()A.1,-1 B.5 3,13C .-5,7D .-13,-737. 如图,已知钝角三角形ABC ,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C 为圆心,CA 长为半径画弧①;步骤2:以点B 为圆心,BA 长为半径画弧②,交弧①于点D ; 步骤3:连接AD ,交BC 的延长线于点H.则下列叙述正确的是( )A .BH 垂直平分线段ADB .AC 平分∠BAD C .S △ABC =BC ·AH D .AB=AD8. 如图,在RtABC 中,90ACB ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于D E ,两点,作直线DE 交AB 于点F ,交BC 于点G ,连接CF .若3AC =,2CG =,则CF 的长为A .52B .3C .2D .729. 如图,线段AB 外有C ,D 两点(在AB 同侧),且CA=CB ,DA=DB ,∠ADB=80°,∠CAD=10°,则∠ACB的度数为()A.80°B.90°C.100°D.110°10. [2018·河北] 图是由“○”和“□”组成的轴对称图形,则该图形的对称轴是直线()A.l1B.l2C.l3D.l411. 如图,在△ABC中,点D在BC上,将点D分别以AB,AC为对称轴,画出对称点E,F,并连接AE,AF.根据图中标示的角度,∠EAF的度数为()A.113°B.124°C.129°D.134°12. 把一张长方形纸片按图2①②所示的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是图3中的()二、填空题(本大题共6道小题)13. 如图K-16-10,四边形ABCD是轴对称图形,BD所在的直线是它的对称轴,AB=5 cm,CD=3.5 cm,则四边形ABCD的周长为________ cm.14. 如图,△ABO是关于y轴对称的轴对称图形,点A的坐标为(-2,3),则点B的坐标为________.15. 如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为E,F,G,H的四个图形,则剪前与剪后拼接的图形的对应关系是:A与________对应,B与________对应,C与________对应,D与________对应.16. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是________.17. 如图,在△ABC中,AB,AC的垂直平分线分别交BC于点E,F.若△AEF的周长为10 cm,则BC的长为cm.18. 数学活动课上,两名同学围绕作图问题:“如图①,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥直线l于点Q.”分别作出了如图②③所示的两个图形,其中作法正确的为图(填“②”或“③”).三、解答题(本大题共3道小题)19. 如图,在△ABE中,AD⊥BE于点D,C是BE上一点,DC=BD,且点C 在AE的垂直平分线上.若△ABC的周长为22 cm,求DE的长.20. 如图,在△ABC中,∠ACB=90°,BE平分∠ABC交AC于点E,DE垂直平分AB交AB于点D.求证:BE+DE=AC.21. 如图,将长方形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G 处,EF为折痕.(1)求证:△FGC≌△EBC;(2)若AB=8,AD=4,求四边形ECGF(阴影部分)的面积.人教版 八年级数学 13.1 轴对称 课时训练-答案一、选择题(本大题共12道小题)1. 【答案】B2. 【答案】A3. 【答案】C4. 【答案】A5. 【答案】B[解析] 根据轴对称图形的定义,在汉字“生活中的日常用品”中,是轴对称图形的有“中”“日”“品”3个.故选B .6. 【答案】C[解析] ∵点A(2m ,2-m)和点B(3+n ,n)关于y 轴对称,∴2m +3+n =0,2-m =n ,解得m =-5,n =7.7. 【答案】A[解析] 如图,连接CD ,BD.∵CA=CD ,BA=BD ,∴点C ,B 都在线段AD 的垂直平分线上. ∴BH 垂直平分线段AD. 故选A .8. 【答案】A【解析】由作法得GF 垂直平分BC , ∴FB FC =,2CG BG ==,FG BC ⊥, ∵90ACB ∠=︒,∴FG AC ∥,∴BF CF =, ∴CF 为斜边AB 上的中线, ∵22345AB =+=,∴1522CF AB==.故选A.9. 【答案】C10. 【答案】C[解析] 沿着直线l3折叠,直线两旁的部分能够互相重合,因此该图形的对称轴是直线l3.11. 【答案】D[解析] 连接AD.∵点D分别以AB,AC为对称轴,画出对称点E,F,∴∠EAB=∠BAD,∠FAC =∠CAD.∵∠B=62°,∠C=51°,∴∠BAC=∠BAD+∠CAD=67°.∴∠EAF=2∠BAC=134°.12. 【答案】C二、填空题(本大题共6道小题)13. 【答案】1714. 【答案】(2,3)[解析] ∵△ABO是关于y轴对称的轴对称图形,∴点A(-2,3)与点B关于y轴对称.∴点B的坐标为(2,3).15. 【答案】G E F H[解析] A剪开后是三个三角形,B剪开后是两个直角梯形和一个三角形,C剪开后是一个直角三角形和两个四边形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H 对应.16. 【答案】3[解析] ∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE =1.∵DE是AB的垂直平分线,∴AD=BD.∴∠B=∠DAB.∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B.∵∠C=90°,∴∠CAD+∠DAB+∠B=90°.∴∠B=30°.∴BD=2DE=2.∴BC=BD+CD=2+1=3.17. 【答案】10[解析] ∵AB,AC的垂直平分线分别交BC于点E,F,∴AE=BE,AF=CF.∴BC=BE+EF+CF=AE+EF+AF=10 cm.18. 【答案】③三、解答题(本大题共3道小题)19. 【答案】解:∵BD=DC,AD⊥BE,∴AB=AC.∵点C在AE的垂直平分线上,∴AC=CE.∵△ABC的周长是22 cm,∴AC+AB+BD+CD=22 cm.∴AC+CD=11 cm.∴DE=CD+CE=CD+AC=11 cm.20. 【答案】证明:∵∠ACB=90°,∴AC⊥BC.又∵DE⊥AB,BE平分∠ABC,∴CE=DE.∵DE垂直平分AB,∴AE=BE.∵AC=AE+CE,∴BE+DE=AC.21. 【答案】解:(1)证明:在长方形ABCD中,DA=BC,∠A=∠D=∠B=∠BCD=90°.由折叠的性质,得GC =DA ,∠G =∠D =90°,∠GCE =∠A =90°. ∴GC =BC ,∠GCF +∠FCE =90°,∠FCE +∠BCE =90°. ∴∠GCF =∠BCE.又∵∠G =∠B =90°,GC =BC , ∴△FGC ≌△EBC(ASA). (2)由(1)知,DF =GF =BE , ∴S四边形ECGF =S △FGC +S △EFC =S △EBC +S △EFC =S四边形BCFE =(BE +CF )·AD2=(DF +CF )·AD 2=8×42=16.13.2 画轴对称图形一、选择题(5道小题,每题7分,共35分)更 正ABC 中,AB 的中垂线交BC 于点E ,若BE=2则A 、E 两点 的距离是( ).A.4B.2C.3D.122、如图,AB 垂直平分CD ,若AC=1.6cm ,BC=2.3cm ,则四边形ABCD 的周长是( )cm.A.3.9B.7.8C.4D.4.6 3、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC , 现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ; ④AO=OC 其中正确的结论有( )A .1个B 2个C 3个D 4个4、下列说法:①若直线PE 是线段AB 的垂直平分线,则EA=EB ,PA=PB ; ②若PA=PB ,EA=EB ,则直线PE 垂直平分线段AB ; ③若PA=PB ,则点P 必是线段AB 的垂直平分线上的点;④若EA=EB ,则过点E 的直线垂直平分线段AB .其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个5、在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是( ) A 、三角形三条角平分线的交点;B 、三角形三条垂直平分线的交点; C 、三角形三条中线的交点;D 、三角形三条高的交点。
(2021年整理)八年级数学上册全期同步练习题及答案
八年级数学上册全期同步练习题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册全期同步练习题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册全期同步练习题及答案的全部内容。
12.1。
1 平方根(第一课时)◆随堂检测1、若x 2= a ,则 叫 的平方根,如16的平方根是 ,972的平方根是2、3±表示 的平方根,12-表示12的3、196的平方根有 个,它们的和为4、下列说法是否正确?说明理由 (1)0没有平方根; (2)—1的平方根是1±; (3)64的平方根是8; (4)5是25的平方根; (5)636±=5、求下列各数的平方根(1)100 (2))8()2(-⨯- (3)1.21 (4)49151◆典例分析例 若42-m 与13-m 是同一个数的平方根,试确定m 的值◆课下作业●拓展提高一、选择1、如果一个数的平方根是a+3和2a —15,那么这个数是( )A 、49B 、441C 、7或21D 、49或441 2、2)2(-的平方根是( )A 、4B 、2C 、-2D 、2±二、填空3、若5x+4的平方根为1±,则x=4、若m —4没有平方根,则|m —5|=5、已知12-a 的平方根是4±,3a+b-1的平方根是4±,则a+2b 的平方根是 三、解答题6、a 的两个平方根是方程3x+2y=2的一组解 (1) 求a 的值 (2)2a 的平方根7、已知1-x +∣x+y —2∣=0 求x-y 的值● 体验中考1、(09河南)若实数x ,y 满足2-x +2)3(y -=0,则代数式2x xy -的值为2、(08咸阳)在小于或等于100的非负整数中,其平方根是整数的共有 个3、(08荆门)下列说法正确的是( )A 、64的平方根是8B 、-1 的平方根是1±C 、—8是64的平方根D 、2)1(-没有平方根12。
(完整版)八年级数学上册同步练习题及答案
12.1.1平方根(第一课时)◆随堂检测1、若x 2=a ,则叫的平方根,如16的平方根是,972的平方根是 2、3±表示的平方根,12-表示12的3、196的平方根有个,它们的和为4、下列说法是否正确?说明理由(1)0没有平方根;(2)—1的平方根是1±;(3)64的平方根是8;(4)5是25的平方根;(5)636±=5、求下列各数的平方根(1)100(2))8()2(-⨯-(3)1.21(4)49151 ◆典例分析例若42-m 与13-m 是同一个数的平方根,试确定m 的值◆课下作业●拓展提高一、选择1、如果一个数的平方根是a+3和2a-15,那么这个数是()A 、49B 、441C 、7或21D 、49或4412、2)2(-的平方根是()A 、4B 、2C 、-2D 、2±二、填空3、若5x+4的平方根为1±,则x=4、若m —4没有平方根,则|m —5|=5、已知12-a 的平方根是4±,3a+b-1的平方根是4±,则a+2b 的平方根是三、解答题6、a 的两个平方根是方程3x+2y=2的一组解(1)求a 的值(2)2a 的平方根7、已知1-x +∣x+y-2∣=0求x-y 的值●体验中考1、(09河南)若实数x ,y 满足2-x +2)3(y -=0,则代数式2x xy -的值为2、(08咸阳)在小于或等于100的非负整数中,其平方根是整数的共有个3、(08荆门)下列说法正确的是()A 、64的平方根是8B 、-1的平方根是1±C 、-8是64的平方根D 、2)1(-没有平方根◆随堂检测1、259_____ 2、一个数的算术平方根是9,则这个数的平方根是3x 的取值范围是,若a ≥04、下列叙述错误的是()A 、-4是16的平方根B 、17是2(17)-的算术平方根C 、164的算术平方根是18D 、0.4的算术平方根是0.02 ◆典例分析例:已知△ABC 的三边分别为a 、b 、c 且a 、b |4|0b -=,求c 的取值范围分析:根据非负数的性质求a 、b 的值,再由三角形三边关系确定c 的范围◆课下作业●拓展提高一、选择12=,则2(2)m +的平方根为()A 、16B 、16±C 、4±D 、2±2A 、4B 、4±C 、2D 、2±二、填空3、如果一个数的算术平方根等于它的平方根,那么这个数是42(4)y +=0,则x y =三、解答题5、若a 是2(2)-的平方根,b 是16的算术平方根,求2a +2b 的值6、已知a 为170的整数部分,b-1是400的算术平方根,求a b +的值●体验中考.(2009年山东潍坊)一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是()A .1a +B .21a +C .21a +D .1a +2、(08年泰安市)88的整数部分是;若a<57<b ,(a 、b 为连续整数),则a=,b=3、(08年广州)如图,实数a 、b 在数轴上的位置,化简222()a b a b ---=4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米2的房间,小明想知道每块瓷砖的规格,请你帮助算一算.12.1.2立方根◆随堂检测1、若一个数的立方等于—5,则这个数叫做—5的,用符号表示为,—64的立方根是,125的立方根是;的立方根是—5.2、如果3x =216,则x =.如果3x =64,则x =.3、当x 为时,32x -有意义.4、下列语句正确的是()A 、64的立方根是2B 、3-的立方根是27C 、278的立方根是32±D 、2)1(-立方根是1- 典例分析例若338x 51x 2+-=-,求2x 的值.●拓展提高一、选择1、若22)6(-=a ,33)6(-=b ,则a+b 的所有可能值是()A 、0B 、12-C 、0或12-D 、0或12或12-2、若式子3112a a -+-有意义,则a 的取值范围为() A 、21≥aB 、1≤aC 、121≤≤a D 、以上均不对 二、填空 3、64的立方根的平方根是4、若162=x ,则(—4+x )的立方根为三、解答题5、求下列各式中的x 的值(1)1253)2(-x =343(2)64631)1(3-=-x 6、已知:43=a ,且03)12(2=-++-c c b ,求333c b a ++的值●体验中考1、(09宁波)实数8的立方根是2、(08泰州市)已知0≠a ,a ,b 互为相反数,则下列各组数中,不是互为相反数的一组是()A 、3a 与3bB 、a +2与b +2C 、2a 与2b -D 、3a 与3b3、(08益阳市)一个正方体的水晶砖,体积为100cm 3,它的棱长大约在()A 、4~5cm 之间B 、5~6cm 之间C 、6~7cm 之间D 、7~8cm 之间12.2实数与数轴◆随堂检测1、下列各数:23,722-,327-,414.1,3π-,12122.3,9-,••9641.3中,无理数有个,有理数有个,负数有个,整数有个.2、33-的相反数是,|33-|=57-的相反数是,21-的绝对值=3、设3对应数轴上的点A ,5对应数轴上的点B ,则A 、B 间的距离为4、若实数a<b<0,则|a||b|;大于17小于35的整数是; 比较大小:6334112535、下列说法中,正确的是()A .实数包括有理数,0和无理数B .无限小数是无理数C .有理数是有限小数D .数轴上的点表示实数.◆典例分析例:设a 、b 是有理数,并且a 、b 满足等式2522-=++b b a ,求a+b 的平方根◆课下作业●拓展提高一、选择1、如图,数轴上表示1,2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,则点C 表示的实数为()A .2-1B .1-2C .2-2D .2-22、设a 是实数,则|a|-a 的值()A .可以是负数B .不可能是负数C .必是正数D .可以是整数也可以是负数二、填空3、写出一个3和4之间的无理数4、下列实数1907,3π-,0,49-,21,31-1…(每两个1之间的0的个数逐次加1)中,设有m 个有理数,n 个无理数,则n m =三、解答题5、比较下列实数的大小(1)|8-|和3(2)52-和9.0-(3)215-和87 6、设m 是13的整数部分,n 是13的小数部分,求m-n 的值.●体验中考.(2011年青岛二中模拟)如图,数轴上A B ,两点表示的数分别为1-,点B 关于点A 的对称点为C ,则点C 所表示的数为()A.2-B.1- C.2- D.1+.(2011年湖南长沙)已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为()C A 0B(第46题图)A .1B .1-C .12a -D .21a - 3、(2011年江苏连云港)实数a b ,在数轴上对应点的位置如图所示,则必有()A .0a b +>B .0a b -<C .0ab >D .0a b< 4、(2011年浙江省杭州市模2)如图,数轴上点A 所表示的数的倒数是( )A .2-B .2C .12D .12- §13.1幂的运算1.同底数幂的乘法试一试(1)23×24=()×()=2();(2)53×54=5();(3)a 3·a 4=a ().概括:a m ·a n =()()==a n m +.可得a m ·a n =a n m +这就是说,同底数幂相乘,.例1计算:(1)103×104;(2)a ·a 3;(3)a ·a 3·a 5.练习1.判断下列计算是否正确,并简要说明理由.(1)a ·a 2=a 2;(2)a +a 2=a 3;(3)a 3·a 3=a 9;(4)a 3+a 3=a 6.2.计算:(1)102×105;(2)a 3·a 7;(3)x ·x 5·x 7.3.填空:(1)ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c ,指数为3,这个数为________;(第8题图)(3)4)2(-表示________,42-表示________;(4)根据乘方的意义,3a =________,4a =________,因此43a a ⋅=)()()(+同底数幂的乘法练习题1.计算:(1)=⋅64a a (2)=⋅5b b(3)=⋅⋅32m mm (4)=⋅⋅⋅953c c c c (5)=⋅⋅p n m a a a(6)=-⋅12m t t (7)=⋅+q q n 1(8)=-+⋅⋅112p p n n n 2.计算:(1)=-⋅23b b (2)=-⋅3)(a a(3)=--⋅32)()(y y (4)=--⋅43)()(a a (5)=-⋅2433(6)=--⋅67)5()5((7)=--⋅32)()(q q n (8)=--⋅24)()(m m (9)=-32(10)=--⋅54)2()2((11)=--⋅69)(b b (12)=--⋅)()(33a a3.下面的计算对不对?如果不对,应怎样改正? (1)523632=⨯;(2)633a a a =+;(3)n n n yy y 22=⨯;(4)22m m m =⋅; (5)422)()(a a a =-⋅-;(6)1243a a a=⋅; (7)334)4(=-;(8)6327777=⨯⨯;(9)42-=-a ;(10)32n n n =+.4.选择题:(1)22+m a 可以写成( ).A .12+m a B .22a a m +C .22a a m ⋅D .12+⋅m a a(2)下列式子正确的是( ).A .4334⨯=B .443)3(=-C .4433=-D .3443=(3)下列计算正确的是( ).A .44a a a =⋅B .844a a a =+C .4442a a a =+D .1644a a a =⋅2.幂的乘方根据乘方的意义及同底数幂的乘法填空:(1)(23)2=×=2();(2)(32)3=×=3();(3)(a 3)4=×××=a ().概括(a m )n =(n 个)=(n 个)=a mn可得(a m )n =a mn (m 、n 为正整数).这就是说,幂的乘方,.例2计算:(1) (103)5;(2)(b 3)4.练习1.判断下列计算是否正确,并简要说明理由.(1)(a 3)5=a 8;(2)a 5·a 5=a 15;(3)(a 2)3·a 4=a 9.2.计算:(1)(22)2;(2)(y 2)5;(3)(x 4)3;(4)(y 3)2·(y 2)3.3、计算: (1)x·(x 2)3(2)(x m )n ·(x n )m (3)(y 4)5-(y 5)4(4)(m 3)4+m 10m 2+m·m 3·m 8(5)[(a -b )n ]2[(b -a )n -1]2(6)[(a -b )n ]2[(b -a )n -1]2(7)(m 3)4+m 10m 2+m·m 3·m 8幂的乘方一、基础练习1、幂的乘方,底数_______,指数____.(a m )n =___(其中m 、n 都是正整数)2、计算:(1)(23)2=_____;(2)(-22)3=______;(3)-(-a 3)2=______;(4)(-x 2)3=_______。
2024-2025学年初中数学八年级上册(冀教版)教案第13章全等三角形
第十三章全等三角形13.1 命题与证明(1(2题教学反思例1 判断下列命题的真假,写出逆命题,并判断逆命题的真假:(1)如果两条直线相交,那么它们只有一个交点;(2)如果a >b ,那么a 2>b 2;(3)如果两个数互为相反数,那么它们的和为零; (4)如果ab <0,那么a >0,b <0. 教师引导,学生分析:可以先把原命题的条件和结论写出来,然后调换条件和结论即可得逆命题,最后判断真假性.教师提示:写逆命题并不是简简单单地把条件和结论互换即可,还要使命题的语句具有逻辑性. 解:(1)命题是真命题.逆命题为:如果两条直线只有一个交点,那么它们相交.是真命题.(2)是假命题.逆命题为:如果a 2>b 2,那么a >b ,是假命题.(3)是真命题.逆命题为:如果两个数的和为零,那么它们互为相反数,是真命题.(4)是假命题.逆命题为:如果a >0,b <0,那么ab <0.是真命题. 练习:请写出下列命题的逆命题,并指出原命题和逆命题的真假性:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. (2)如果两个角是对顶角,那么这两个角相等.(3)如果一个数能被3整除,那么这个数也能被6整除. (4)已知两数a ,b .如果a +b >0,那么a -b <0. 学生独立完成,教师点评:(1)原命题是真命题,逆命题为:两条直线被第三条直线所截,如果这两条直线平行,那么内错角相等.逆命题也为真命题.(2)原命题是真命题,逆命题为:如果两个角相等,那么这两个角是对顶角. 逆命题为假命题.(3)原命题是假命题,逆命题为:如果一个数能被6整除,那么这个数也能被3整除.逆命题为真命题.(4)原命题是假命题,逆命题为:如果a -b <0,那么a +b >0.逆命题为假命题. 2.证明教师提问:刚才你们是怎么判断一个命题是假命题的? 学生:举反例推翻这个命题.教师:那怎么判断一个命题是真命题呢?也用举例吗?仅仅举几个例子足以说明它是真命题吗?命题有真命题,也有假命题,要说明一个命题是假命题,只要举出反例即可;要说明一个命题是真命题,则需要进行推理论证,即证明.定义:要说明一个命题是真命题,则要从命题的条件出发,根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理.这种推理的过程叫做证明. 例2 证明:平行于同一条直线的两条直线平行.已知:如图 ,直线a ,b ,c ,a ∥c , b ∥c . 求证: a ∥b .证明:如图,作直线d ,分别与直线 a ,b ,c 相交∵ a ∥c (已知),∴ ∠1=∠2(两直线平行,同位角相等). ∵ b ∥c (已知), 教学反思A BDCE∴ ∠2=∠3(两直线平行,同位角相等). ∴ ∠1=∠3(等量代换). ∴ a ∥b (同位角相等,两直线平行). 即平行于同一条直线的两条直线平行.教师:通过这个题,如何做证明题?(学生讨论) 证明的步骤:第一步:根据题意画图,将文字语言转换为符号(图形)语言; 第二步:根据条件、结论、 图形写出已知、求证; 第三步:根据基本事实、已有定理等进行证明.定义:如果一个定理的逆命题是真命题,那么这个逆命题也可以称为原定理的逆定理.我们已经知道命题“两直线平行,内错角相等”和它的逆命题“内错角相等,两直线平行”都是定理,因此它们就是互逆定理..练习:已知:如图,点O 在直线AB 上,OD ,OE 分别是BOC AOC ∠∠,的平分线. 求证:OD ⊥OE .学生独立完成,教师点评:证明:∵ 点O 在直线AB 上,∴ ∠AOC +∠BOC =180°(平角的定义). ∵ OD ,OE 分别是∠AOC ,∠BOC 的平分线,∴ ∠DOC =21∠AOC ,∠EOC = 21∠BOC (角平分线的定义), ∴ ∠DOC +∠EOC =21(∠AOC +∠BOC )=21×180°=90°.∴ OD ⊥OE .课堂练习1.命题“如果a =b ,那么3a =3b ”的逆命题是______________________.2.写出下列命题的逆命题:(1)如果两直线都和第三条直线垂直,那么这两直线平行; (2)若a +b >0,则a >0,b >0; (3)等腰三角形的两个底角相等.3.已知:如图,直线a ,b 被直线c 所截,∠1与∠2互补. 求证:a ∥b.参考答案1.如果3a =3b ,那么a =b.2.解: (1)如果两直线平行,那么这两直线都和第三条直线垂直.(2)若a >0,b >0,则a +b >0.(3)有两个角相等的三角形是等腰三角形.3.证明:∵ ∠1和∠3是对顶角,教学反思O∴ ∠1=∠3.又∵ ∠1与∠2互补,∴ ∠1+∠2=180°.∴ ∠2+∠3=180°,∴ ∠1=∠3(等角的补角相等). ∴ a ∥b (同旁内角互补,两直线平行).课堂小结(学生总结,教师点评) 1.互逆命题 2.证明证明的一般步骤:第一步,依据题意画图,将文字语言转换为符号(图形)语言.第二步,根据图形写出已知、求证. 第三步,根据基本事实、已有定理等进行证明.布置作业完成教材第34页习题第1,2,3题.板书设计 13.1 命题与证明教学反思一个命题的条件和结论分别为另一个命题的结论和条件的两个命题,称为互逆命题.命题与证明互逆命题命题与证明要说明一个命题是真命题,则要从命题的条件出发,根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理.这种推理的过程叫做证明.第十三章全等三角形13.2 全等图形教学目标1.理解全等图形,了解全等图形的对应点、对应边和对应角.2.理解全等三角形的概念,能识别全等三角形的对应边、对应角.3.知道全等三角形的性质.教学重难点重点:了解全等图形的对应点、对应边和对应角;知道全等三角形的性质.难点:理解全等三角形的概念,能识别全等三角形的对应边、对应角.教学过程导入新课观察思考:(学生观察,教师引导)问题:如图,观察给出的五组图形.(1)每组图形中,两个图形的形状和大小各有怎样的关系?(2)先在半透明纸上画出同样大小的图形,再将每组中的一个图形叠放到另一个图形上,观察它们是否能够完全重合.(4)探究新知1.全等图形同桌两人合作完成,学生回答,教师评价.实验发现:(1)(2)(3)组中的两个图形能够完全重合,(4)(5)组中的两个图形不能完全重合.定义:能够完全重合的两个图形叫做全等图形.考考你对全等图形的理解:观察下面三组图形,它们是不是全等图形?(1)(2)(3)教师归纳:全等图形的性质:全等图形的形状和大小都相同.有关的概念:对应点当两个全等的图形重合时,互相重合的点叫对应点.如图,△ABC与△A′B′C′是两个全等三角形,点A和点A′,点B和点B′,点C和点C′分别是对应点.教学反思对应边当两个全等的图形重合时,互相重合的边叫对应边.如AB和A′B′,CB和C′B′,AC和A′C′.对应角当两个全等的图形重合时,互相重合的角叫对应角.如∠A和∠A′,∠B和∠B′, ∠C和∠C′.2.全等三角形全等的表示方法“全等”用符号“≌”表示,读作“全等于”.如△ABC与△A′B′C′全等,记作△ABC≌△A′B′C′,读作三角形ABC全等于三角形A′B′C′.(教师提示:书写时应把对应顶点写在对应的位置上)3.全等三角形的性质根据以下几个问题归纳全等三角形有哪些性质?(教师引导,学生讨论)1.两个能够完全重合的线段有什么关系?2.两个能够完全重合的角有什么关系?3.两个全等三角形的对应边之间有什么关系?对应角之间有什么关系?师生共同归纳:全等三角形的性质:全等三角形的对应边相等,对应角相等.全等三角形的性质的几何语言:(学生完成填空)如图,∵△ABC≌△A′B′C′,∴AB=____,AC=____,BC=_____(全等三角形对应边_____),∠A=_____,∠B=_____,∠C=_____(全等三角形对应角_____).练习:如图1,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个全等三角形的对应角.教师引导,学生分析:找对对应点是解决此题的关键(△BOD与△COE中,B-C,D-E,O-O;△ADO与△AEO中A-A,D-E,O-O)解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.图1图2例已知:如图2,△ABC≌△DEF,∠A=78°,∠B=35°,BC=18.(1)写出△ABC和△DEF的对应边和对应角.(2)求∠F的度数和边EF的长.(学生独立完成,教师评价)解:(1)边AB和边DE,边BC和边EF,边AC和边DF分别是对应边;教学反思AB CE DF∠A 和∠D , ∠B 和∠DEF , ∠ACB 和∠F 分别是对应角. (2)在△ABC 中,∵ ∠A +∠B +∠ACB =180°(三角形内角和定理), ∴ ∠ACB =180°-∠A -∠B =180°-78°-35°=67°. ∵ △ABC ≌△DEF ,∴ ∠F =∠ACB = 67°,EF =BC =18. 拓展:(1)全等三角形的对应元素相等.其中,对应元素包括对应边、对应角、对应中线、对应高、对应角平分线、对应周长、对应面积等;(2)全等三角形的性质是证明线段相等、角相等的常用依据.课堂练习1.如图1,△ABC ≌△BAD ,如果AB =6 cm , BD =4 cm ,AD =5 cm ,那么BC 的长是( )A .7 cmB .5 cmC .4 cmD .无法确定2.如图2,△ABC ≌△ADE ,∠B =80°,∠C =30°,∠DAC =35°,则∠EAC 的度数为( )A .40°B .35°C .30°D .25°3.如图3,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C ,下列选项不正确的是( ) A.AB =AC B.∠BAE =∠CAD C.BE =DC D.AD =CD4.如图4,△ABC ≌ △ADE ,若∠D =∠B , ∠C = ∠AED ,则∠DAE =__________.5.如图5,△ABC ≌△DEF ,且B ,C ,F ,E 在同一直线上,判断AC 与DF 的位置关系,并证明.参考答案1.B2. B3.D4.∠BAC5.解:AC ∥DF . 理由如下:∵ △ABC ≌△DEF ,∴ ∠ACB =∠DFE , ∴ 180°-∠ACB =180°-∠DFE , 即∠ACF =∠DFC ,∴ AC ∥DF .教学反思A DB C A BC DE F图1 图2 图3 图4 AB C DE 图5课堂小结13.2全等图形布置作业完成教材第37页习题A组、B组.板书设计1.全等图形及相关的概念;2.全等三角形的表示方法及性质.教学反思全等图形:能够完全重合的两个图形叫做全等图形全等图形全等三角形:能够完全重合的两个三角形叫做全等三角形全等三角形的性质全等三角形的对应边相等全等三角形的对应角相等第十三章 全等三角形13.3 全等三角形的判定第1课时 边边边教学目标1.进行三角形全等条件的探索,积累数学活动经验;2.掌握基本事实一,利用基本事实一证明两个三角形全等;3.会利用三角形全等证明线段相等、角相等.教学重难点 重点:掌握基本事实一,利用基本事实一证明两个三角形全等;难点:会利用三角形全等证明线段相等、角相等.教学过程 导入新课1.什么叫全等三角形?能够完全重合的两个三角形叫全等三角形.2.如图,已知△ABC ≌△DEF①AB =DE,② BC =EF ,③CA =FD ;④∠A =∠D , ⑤∠B =∠E ,⑥∠C =∠F .探究新知 一、探究互动一 思考1:满足上述六个条件可以保证△ABC ≌△DEF 吗?思考2:可以用较少的条件判定△ABC ≌△DEF 吗?在以上六个条件中,能否选择其中部分条件,简捷地判定两个三角形全等呢?教师引导,学生探究(小组合作)探究1 只给一个条件,可以分哪几种情况?能够判断两个三角形全等吗?两个三角形不全等;两个三角形不全等; 结论:一个条件不能够判断两个三角形全等.探究2 只给两个条件.①两条边对应相等:若AB =DE ,AC =DF ,但两个三角形不全等;教学反思②一条边和一个角对应相等:若AB =DE ,∠A = ∠D ,但两个三角形不全等;③两个角对应相等:若∠A = ∠D ,∠C = ∠AFE ,但两个三角形不全等.结论:两个条件也不能够判断两个三角形全等.探究3 给出三个条件.⎧⎪⎪⎨⎪⎪⎩①三角对应相等;②三边对应相等;三个条件③两边一角对应相等;④两角一边对应相等.问题 有三个角对应相等的两个三角形全等吗?结论:不一定全等.小亮认为,剩下的三种情况才有可能判断两个三角形全等,你赞同他的说法吗?二、探究互动二——基本事实一问题1:准备一些长都是13 cm 的细铁丝.和同学一起,每人用一根铁丝,折成一个边长分别是3 cm ,4 cm ,6 cm 的三角形. 把你做出的三角形和同学做出的三角形进行比较,它们能重合吗?问题2:准备一些长都是13 cm 的细铁丝.和同学一起,每人用一根铁丝,余下 1 cm ,用其余部分折成边长分别是3 cm ,4 cm ,5 cm 的三角形. 再和同学做出的三角形进行比较,它们能重合吗? 小组互动,教师指导. 归纳:基本事实一:如果两个三角形的三边对应相等,那么这两个三角形全等(可简记为“_______”或“_____”).几何语言:如图,在△ABC 和△ DEF 中,,,,AB CA BC ⎧⎪⎨⎪⎩= = = ∴ △ABC ≌△ DEF ( ).例1 如图1,已知点A ,D ,B ,F 在一条直线上,AC =FE ,BC =DE ,AD =FB .求证:△ABC ≌△FDE . 教师指导,学生分析:在两个三角形中分别找到对应的三条边,然后证明它们分别相等. 证明:∵ AD =FB ,∴ AD +DB =FB +DB ,即AB =FD .教学反思在△ABC 和△FDE 中,∵ ,,AC FE AB FD BC DE ⎧⎪⎨⎪⎩===,∴ △ABC ≌△FDE (SSS ).图1 图2例2 如图2,已知:AB =AC ,AD =AE ,BD =CE . 求证:∠BAC =∠DAE .证明:在△ABD 和△ACE 中,∵ AB AC AD AE BD CE =,=,=,⎧⎪⎨⎪⎩∴ △ABD ≌△ACE (SSS),∴ ∠BAD =∠CAE . ∴ ∠BAD +∠DAC =∠CAE +∠DAC , 即∠BAC =∠DAE .练习:1.如图,下列三角形中,与△ABC 全等的是_______.2.已知:如图,AB =DE ,AC =DF ,BF =CE . 求证:(1)∠A =∠D ;(2)AB ∥DE . 学生独立完成,教师评价 1.③ 2.证明:(1) ∵ BF =CE ,∴ BF +FC =FC +CE ,即BC =EF .在△ABC 和△DEF 中, ∵,,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩,∴ △ABC ≌△DEF (SSS), ∴ ∠A =∠D .(2)由(1)△ABC ≌△DEF ,可得∠B =∠E ,∴ AB ∥DE .三、三角形的稳定性问题1 问题2:观察右面两组木架,如果分别扭动它们,会得到怎样的结果?教学反思教师归纳:教学反思三角形的特性:三角形木架的形状_________,也就是说三角形是具有_____的图形.四边形的特性:四边形木架的形状_______,也就是说四边形是_________的图形.理解“稳定性”只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做“三角形的稳定性”.这就是说,三角形的稳定性不是“拉得动、拉不动”的问题,其实质应是“三角形边长确定,其形状和大小就确定了”.想一想:在我们日常生活中,还有哪些地方运用到了三角形的稳定性?你能举出例子来吗?课堂练习1.如图1,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定( )A.△ABD≌△ACDB.△BDE≌△CDEC.△ABE≌△ACED.以上都不对2.下列关于三角形稳定性和四边形不稳定性的说法中正确的是( )A.稳定性总是有益的,而不稳定性总是有害的B.稳定性有利用价值,而不稳定性没有利用价值C.稳定性和不稳定性均有利用价值D.以上说法都不对3.在生活中我们常常会看见如图2所示的情况加固电线杆,这是利用了三角形的________.4.如图3,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有( )A. 1个B. 2个C. 3个D. 4个5.如图4,D,F是线段BC上的两点,AB=CE,AF=DE,要使△ABF≌△ECD,还需要条件________ (填一个条件即可).6.如图5,AD=BC,AC=BD.求证:∠C=∠D .图1 图2 图3图4图5参考答案1.C2.C3.稳定性4.C5.BD=CF(答案不唯一)如果两个三角形的三边对应相等,那么这两个三角形全等(简写成“边边边”或“SSS”)内容解题思路应用边边边注意事项三角形的稳定性结合图形找隐含条件和现有条件,找出三边对应相等1.证明两三角形全等所需的条件应按对应边的顺序书写.2.结论中所出现的边必须在所证明的两个三角形中6.证明:连接AB(图略),在△ABD和△BAC中,,,, AD BC BD AC AB BA ⎧⎪⎨⎪⎩===∴△ABD≌△BAC(SSS),∴∠D=∠C.课堂小结1.基本事实一;2.基本事实一的应用;3.三角形的稳定性.布置作业完成教材第40页习题.板书设计13.3全等三角形的判定第1课时边边边教学反思第十三章全等三角形13.3 全等三角形的判定第2课时边角边教学目标教学反思1.探索并正确理解三角形全等的判定方法“SAS”;2.会用“SAS”判定方法证明两个三角形全等及进行简单的应用;3.了解“SSA”不能作为两个三角形全等的条件.教学重难点重点:会用“SAS”判定方法证明两个三角形全等及进行简单的应用;难点:了解“SSA”不能作为两个三角形全等的条件.教学过程旧知回顾回顾基本事实一的内容.导入新课问题情境小明不小心将一块大脸猫的玻璃摔成了三块(如图所示),为了配一块和原来完全一样的玻璃,他带哪一块玻璃就可以了? 你能替他解决这个难题吗? 带着问题我们还是一块儿来学习一下这节课的内容吧!探究新知观察思考:问题1:画一个三角形,使它的两条边长分别是1.5cm,2.5cm,并且使长为1. 5cm的这条边所对的角是30°.小明的画图过程如图所示.小明根据所给的条件,画出了两个形状不同的三角形,这说明两个三角形的两条边和其中一边的对角对应相等时,这两个三角形不一定全等.那么两边和它们的夹角对应相等,这两个三角形又将是怎样的呢?问题2:已知:如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,BC=B′C′.(1)将△ABC叠放在△A′B′C′上,使顶点B与顶点B′重合,边BC落在边B′C′上,点A与点A′在边B′C′的同侧.点C与点C′是否重合,边BC与边B′C′是否重合? 边BA 是否落在边B ′A ′上,点A 与点A ′是否重合? (2)由“两点确定一条直线”,能不能得到边AC 与边A ′C ′重合,△ABC 和△A ′B ′C ′全等?教师引导,学生自主探索. 归纳:基本事实二如果两个三角形的________和它们的______对应相等,那么这两个三角形全等.(可简写成“________”或“_____”)几何语言:在△ABC 和△ DEF 中, ____________AB A AC ⎧⎪⎨⎪⎩=,∠=,=, ∴ △ABC ≌△ DEF (______).例 已知:如图,AD ∥BC ,AD =CB . 求证:△ADC ≌△CBA . 教师引导,学生分析: 由两条直线平行可得内错角相等,还有隐含条件AC是公共边,可由SAS 证得结论.证明:∵AD ∥BC (已知),∴∠1=∠2(两直线平行,内错角相等).在△ADC 和△CBA 中,∵(),12(),(),AD CB AC CA ⎧⎪⎨⎪⎩=已知∠=∠已推出=公共边 ∴△ADC ≌△CBA (SAS ).三角形全等在实际生活中也有很广泛的应用.下图是一种测量工具的示意图.其中AB =CD ,并且AB ,CD 的中点O 被固定在一起, AB ,CD 可以绕点O 张合.在图中,只要量出AC 的长,就可以知道玻璃瓶的内径是多少.这是为什么?请把你的想法和同学进行交流.原理:SAS. 练习:在下列推理中填写需要补充的条件,使结论成立: 如图,在△AOB 和△DOC 中, AO =DO (已知),______=________( ),BO =CO (已知),∴ △AOB ≌△DOC ( ).学生独立完成,教师评价.答案:∠ AOB ∠ DOC 对顶角相等 SAS 课堂练习 1.如图,△ABC 中,已知AD 垂直于BC ,D 为BC 的中点,则下列结论不正确的是( ) A . △ABD ≌△ACD B . ∠B =∠CC . AD 是∠BAC 的平分线 D . △ABC 是等边三角形2.如果两个三角形两边对应相等,且其中一边所对的角也相等,那么这两个三角形( )A .一定全等B .一定不全等C .不一定全等D .面积相等 3.如图1,AB ,CD ,EF 交于点O ,且它们都被点O 平分,则图中共有______对全等教学反思内容 应用 边角边 如果两个三角形的两边和它们的夹角对应相等,那么这两个三角形全等.(简写成 “边角边”或“SAS ”)1.“SSA ”不能作为判断三角形全等的依据;2. 根据已知条件,找到图形中的隐含条件,如公共边,公共角,对顶角,邻补角,外角,平角等,证明三角形全等.三角形.图1 图2 4.如图2,△ABC 和△EFD 分别在线段AE 的两侧,点C ,D 在线段AE 上,AC =DE ,AB ∥EF ,AB =EF .求证:△ABC ≌△EFD .5.某大学计划为新生配备如图3所示的折叠凳,图4是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB 和CD 的长相等,O 是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD 设计为30 cm ,则由以上信息可推得CB 的长度是多少? 参考答案 1.D 2.C 3.34.证明:∵ AB ∥EF ,∴ ∠A =∠E .在△ABC 和△EFD 中,,,,AC ED A E AB EF ⎧⎪⎨⎪⎩=∠=∠=∴ △ABC ≌△EFD (SAS ).5.解:∵ O 是AB ,CD 的中点,∴ OA =OB ,OD =OC .∴ CB =AD .在△AOD 和△BOC 中,OA OB AOD BOC OD OC ⎧⎪⎨⎪⎩=,∠=∠,=, ∴ △AOD ≌△BOC (SAS ). ∵ AD =30 cm ,∴ CB =AD =30 cm.课堂小结1.基本事实二;2.SAS 的应用. 布置作业完成教材第43页习题.板书设计 13.3 全等三角形的判定第2课时 边角边 教学反思第十三章 全等三角形13.3 全等三角形的判定 第3课时 角边角、角角边教学目标1.分不同情况探索“两角一边”条件下两个三角形是否全等;2.掌握AAS 或ASA ,并会利用其证明两个三角形全等;3.会利用三角形全等证明线段相等、角相等.教学重难点 重点:掌握AAS 或ASA ,并会利用其证明两个三角形全等;难点:分不同情况探索“两角一边”条件下两个三角形是否全等.教学过程 导入新课探究新知1.角边角、角角边 问题1:如图,在△ABC和△A ′B ′C ′中,∠B =∠B ′,BC =B ′C ′.∠C =∠C ′.把△ABC 和△A ′B ′C ′叠放在一起,它们能够完全重合吗? 问题2:提出你的猜想,并试着说明理由.学生讨论会发现:将△ABC 叠放在△A ′B ′C ′上,使边BC 落在边B ′C ′上,顶点A 与顶点A ′在边B ′C ′的同侧.由BC =B ′C ′可得边BC 与边B ′C ′完全重合.因为∠B =∠B ′,∠C =∠C ′ ,∠B 的另一边BA 落在边B ′A ′上, ∠C 的另一边落在边C ′A ′上,所以∠B 与∠B ′完全重合, ∠C 与∠C ′完全重合.由于“两条直线相交只有一个交点”,所以点A 与点A ′重合.所以, △ABC 和△A ′B ′C ′全等. 归纳:基本事实三如果两个三角形的 两个角和它们的夹边对应相等,那么这两个三角形全等.(可简写成“角边角”或“ASA ”)几何语言: 如图,在△ABC 和△ DEF 中,∠A =∠D ,AB =DE ,∠B =∠E ,教学反思∴ △ABC ≌△ DEF (ASA ).问题3:已知:如问题1中的图,在△ABC 和△A ′B ′C ′中, ∠A =∠A ′, ∠B = ∠B ′,BC =B ′C ′. 求证: △ABC ≌△A ′B ′C ′.教师引导,学生观察:可将∠A =∠A ′这个条件转化为∠C =∠C ′. 证明:∵∠A +∠B +∠C =180°,∠ A ′ +∠ B ′ +∠ C ′ =180°(三角形内角和定理), 又∵ ∠A =∠A ′, ∠B = ∠B ′(已知), ∴ ∠C =∠C ′(等量代换).在△ABC 和△A ′B ′C ′中,,,,B B BC B C C C ∠=∠⎧⎪=⎨⎪∠=∠⎩′′′′ ∴ △ABC ≌△A ′B ′C ′(ASA ). 想一想:从中我们可以得到什么规律? 归纳:全等三角形的判定定理 如果两个三角形的 两角及其中一个角的对边对应相等,那么这两个三角形全等.(可简写成“角角边”或“AAS ”)几何语言:在△ABC 和△ DEF 中,∠B =∠E ,∠A =∠D ,BC =EF , ∴ △ABC ≌△ DEF (AAS ). 例 已知:如图,AD =BE ,∠A =∠FDE ,BC ∥EF . 求证:△ABC ≌△DEF .教师引导,学生分析.通过BC ∥EF ,可得∠ABC =∠E ,再根据等量代换可得AB =DE .证明:∵ AD =BE (已知),∴ AB =DE (等式的性质). ∵ BC ∥EF (已知), ∴∠ABC =∠E (两直线平行,同位角相等).在△ABC 和△DEF 中,,A FDE AB DE ABC E ⎧⎪⎨⎪⎩∠=∠,=,∠=∠∴ △ABC ≌△DEF (ASA ). 练习:1.如图1,已知△ABC 的三条边和三个角,则甲、乙两个三角形中和△ABC 全等的图形是( )A.甲B.乙C.甲、乙D.甲、乙都不是图1 图22.如图2,点D ,E 分别在线段AB ,AC 上,BE ,CD 相交于点O ,AE =AD ,要使△ABE ≌△ACD ,根据“AAS ”需添加的一个条件是___________. 学生独立完成,教师评价.答案:1.B 2.∠B =∠C (答案不唯一)课堂练习1.在△ABC 与△A ′B ′C ′中,已知∠A =44°,∠B =67°,∠C ′=69°,∠A ′教学反思=44°,且AC=A′C′,那么这两个三角形________________.2.如图1,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=________.图1 图23.如图2,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若BD=2cm,CF=4cm,则AB的长为( )A.2cmB.4cmC.6cmD.8cm4.如图3,∠1=∠2,∠3=∠4.求证:△ABC≌△ABD.5.已知:如图4,AB⊥BC,AD⊥DC,∠1=∠2, 求证:AB=AD.图3 图4参考答案1.全等2.33.C4.证明:∵∠3=∠4,∴∠ABC=∠ABD.在△ABC和△ABD中,12,,, AB ABABC ABD ⎧⎪⎨⎪⎩∠=∠=∠=∠∴△ABC≌△ABD(ASA). 5.证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90 °.在△ABC和△ADC中,12B DAC AC⎧⎪⎨⎪⎩∠=∠,∠=∠,=(公共边),∴△ABC≌△ADC(AAS),∴AB=AD.课堂小结1.角边角、角角边的内容;2.利用角边角、角角边解决问题.布置作业完成教材第47页习题.教学反思板书设计13.3全等三角形的判定第3课时角边角、角角边教学反思角边角角角边内容应用如果两个三角形的两个角和它们的夹边对应相等,那么这两个三角形全等(简写成“ASA”)如果两个三角形的两角及其中一个角的对边对应相等,那么这两个三角形全等(简写成“AAS”)注意“AAS”“ASA”中两角与边的区别第十三章 全等三角形13.3 全等三角形的判定第4课时 具有特殊位置关系的三角形全等教学目标1.会从图形变换的角度,认识两个可能全等的三角形的位置关系;2.会综合运用本节学过的基本事实及相关定理证明两个三角形全等.教学重难点重点:会从图形变换的角度,认识两个可能全等的三角形的位置关系;难点:会综合运用本节学过的基本事实及相关定理证明两个三角形全等. 教学过程 导入新课1.图形的变换---平移、旋转;2.三角形全等的几个基本事实. 探究新知 问题:如图,每组图形中的两个三角形都是全等三角形.观察每组中的两个三角形,请你说出其中一个三角形经过怎样的变换(平移或旋转)后,能够与另一个三角形重合.学生讨论会发现: (1)、(2)图通过平移重合;(3)、(4)、(5)、(6)通过旋转重合. 归纳:实际上,在我们遇到的两个全等三角形中,有些图形具有特殊的位置关系,即其中一个三角形是由另一个三角形经过平移或旋转(有时是两种变换) 得到的.发现两个三角形间的这种特殊关系,能够帮助我们找到命题证明的途径,较快地解决问题.例1 已知:如图,在△ABC 中, D 是BC 的中点,DE ∥AB,交AC 于点 E ,DF ∥AC ,交AB 于点F .求证:△BDF≌△DCE .教师引导,学生分析:将△BDF 沿BC 方向向右平移可使△BDF △DCE 重合. 证明:∵ D 是BC 的中点(已知),∴ BD =DC (线段中点定义∵ DE ∥AB ,DF ∥AC ,(已知)∴ ∠B =∠EDC ,∠BDF =∠C ,(两直线平行,同位角相等)在△BDF 和△DCE 中,B EDC BD DC BDF C ⎧⎪⎨⎪⎩∠=∠,=,∠=∠,∴ △BDF ≌△DCE (ASA ).例2 已知:如图,在△ABC 中,D ,E 分别是AB ,AC 的中点,CF ∥AB ,交DE 的延长线于点F . 求证:DE =FE .教师引导,学生分析:将△ADE 绕点E 旋转,可与△CFE 重合.证明:∵CF ∥AB (已知),∴∠A =∠ECF (两直线平行,内错角相等). 在△EAD 和△ECF 中, 教学反思,A ECF AE CE AED CEF ⎧⎪⎨⎪⎩∠=∠,=,∠=∠ ∴△EAD ≌△ECF (ASA ).∴DE =FE (全等三角形的对应边相等). 练习: 1.如图1,由∠1=∠2,BC =DC ,AC =EC ,得△ABC ≌△EDC 的根据是( ) A .SAS B .ASA C .AAS D .SSS图1 图2 2.已知:如图2,AB ∥CD ,AD ∥BC . 求证:AB =CD ,AD =BC .学生独立完成,教师评价.答案:1.A2.证明:连接AC (图略),∵ AD ∥BC ,∴ ∠DAC =∠ACB.∵ AB ∥CD ,∴ ∠BAC =∠DCA. 在△BAC 和△DCA 中,BAC DCA AC CA BCA DAC ⎧⎪⎨⎪⎩∠=∠,=,∠=∠,∴ △BAC ≌△DCA , ∴ AB =CD ,AD =BC . 课堂练习 1. 如图1,在△ABC 中,分别以AC ,BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点O ,则∠AOB 的度数为________.2.如图2,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则这两个滑梯与地面夹角∠ABC 与∠DFE 的度数和是( )A.60°B.90°C.120°D.150° 图1 图2 图3 图4 3.如图3,小敏做了一个角平分仪ABCD ,其中AB =AD ,BC =DC .将仪器上的点A与∠PR Q 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C画一条射线AE ,AE 就是∠PR Q 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠Q A E =∠P AE .则说明这两个三角形全等的依据是( )A .SASB .ASAC .AASD .SSS4.如图4,AE =AC ,AB =AD ,∠EAB =∠CAD ,试说明:∠B =∠D.参考答案 1.120° 2.B 3.D 4.证明:∵ ∠ EAB =∠ CAD ,∴ ∠ EAB +∠ BAD =∠ CAD +∠ BAD , 即∠ EAD =∠ CAB .教学反思。
苏教版初中八年级上册数学课本习题答案
§13.1平方根(三)
一、1. D 2. C
二、1. ,2 2, 3.
三、1.(1)(2)(3)(4)
2.(1)(2)-13 (3)11 (4)7 (5) 1.2 (6)-
3.(1)(2)(3)(4)
4.,这个数是4
5. 或
§13.2立方根(一)
一、1. A 2. C
二、1. y= x- 2. (1,-4)四 3. y=2x
三、图略
§14.4课题学习选择方案
1. (1)y1=3x;y2=2x+15;(2)169网;(3)15小时
2. (1)y=50x+1330,3≤x≤17;(2)A校运往甲校3台,A
校运往乙校14台,B校运往甲校15台;1480元 3.(1)
3.(1) (2) (3) (4)x=-4 (5)x= (6)x= +1
§13.3实数(一)
一、1. B 2. A
二、1.
2. ±3
3.
三、1. (1)-1,0,1,2;(2)-4,-3,-2,-1,0,1,2,3,4
2. 略
3.16cm、12cm
4. a= ,b=-
§13.3实数(二)
一、1. D 2. D
§14.3.2一次函数与一元一次不等式
一、1. C 2. C
二、1. x=1; x<1 2. 0<x<1 3. x<-2
三、1. x≤1;图象略
2. (1)与y轴交点为(0,2),与x轴交点为(2,0)(2) x≤2
3.(1) x>(2)x<(3)x>0
§14.3.3一次函数与二元一次方程(x+5;(2) 2.(1)0.5;0.9;(2)当0≤x≤50,y=0.5x;当x>50时,y=0.9x-20
数学分析课后习题答案--高教第二版(陈纪修)--13章
F (x, y) = f (x) , (x, y) ∈ D 。
证明 F (x, y) 在 D 上可积。
证 将[a,b] 、[c, d ] 分别作划分:
a = x0 < x1 < x2 < < xn−1 < xn = b
和
m c = y0 < y1 < y2 < < ym−1 < ym = d , o 则 D 分成了 nm 个小矩形 ∆Dij (i = 1,2, , n, j = 1,2, , m) 。
2π 3
≤
∫∫∫
Ω
1
+
dxdxdz x2 + y2 +
z
2
≤
4π 3
。
m 4.计算下列重积分:
co (1) ∫∫(x3 + 3x2 y + y3 )dxdy ,其中 D 为闭矩形[0,1] × [0,1] ;
. D
aw (2) ∫∫ xy ex2+y2 dxdy ,其中 D 为闭矩形[a,b] × [c,d ];
课 证明
H ( x, y) = max{ f ( x, y), g( x, y)}
和
h( x, y) = min{ f ( x, y), g( x, y)}
也在 D 上可积。
证 首先我们有
H (x, y) = 1 ( f (x, y) + g(x, y) + f (x, y) − g(x, y) ), 2
D
khd (3)
∫∫∫ Ω
dxdydz (x + y + z)3
,其中
Ω
为长方体 [1,2]
×
[1,2]
人教版八年级数学上册全部课时小练习(含答案)
第十一章三角形11.1 与三角形有关的线段11.1.1 三角形的边1.下面是小强用三根火柴组成的图形,其中符合三角形概念的是()2.以下列各组线段的长为边长,能组成三角形的是()A.2,3,5 B.3,4,5C.3,5,10 D.4,4,83.下列说法正确的有()①等腰三角形是等边三角形;②三角形按边分可分为等腰三角形、等边三角形和不等边三角形;③等腰三角形至少有两边相等;④三角形按角分应分为锐角三角形、直角三角形和钝角三角形.A.①②B.①③④C.③④D.①②④4.如图,图中共有________个三角形,在△ABE中,AE所对的角是________,∠ABE所对的边是________;在△ADE中,AD是________的对边;在△ADC中,AD是________的对边.5.若a,b,c为△ABC的三边长,且a,b满足|a-3|+(b-2)2=0.(1)求c的取值范围;(2)若第三边长c是整数,求c的值.11.1.2三角形的高、中线与角平分线11.1.3 三角形的稳定性1.桥梁拉杆、电视塔底座都是三角形结构,这是利用三角形的________性.2.如图,在△ABC中,AB边上的高是________,BC边上的高是________;在△BCF中,CF边上的高是________.第2题图第3题图3.如图,在△ABC中,BD是∠ABC的平分线.已知∠ABC=80°,则∠DBC=________°. 4.若AE是△ABC的中线,且BE=4cm,则BC=________cm.5.如图,BD是△ABC的中线,AB=5,BC=3,则△ABD和△BCD的周长差是________.第5题图第6题图6.如图,在△ABC中,D是BC的中点,S△ABC=4cm2,则S△ABD=________cm2.7.如图,AD,CE是△ABC的两条高.已知AD=5,CE=4.5,AB=6.(1)求△ABC的面积;(2)求BC的长.11.2 与三角形有关的角11.2.1 三角形的内角第1课时三角形的内角和1.在△ABC中,∠A=20°,∠B=60°,则∠C的度数为()A.80°B.90°C.20°D.100°2.如图所示是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,则这块三角形木板的另一个角的度数是()A.30°B.40°C.50°D.60°第2题图第3题图3.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,则∠DBC的度数是________.4.根据下图填空.(1)n=________;(2)x=________;(3)y=________.5.如图,在△ABC中,点D在BA的延长线上,DE∥BC,∠BAC=65°,∠C=30°,求∠BDE 的度数.第2课时直角三角形的两锐角互余1.在Rt△ABC中,∠C=90°,∠A=61°,则∠B的度数为()A.61°B.39°C.29°D.19°2.在△ABC中,∠A=60°,∠C=30°,则△ABC是()A.直角三角形B.钝角三角形C.锐角三角形D.等边三角形3.直角三角形的一个锐角是另一个锐角的2倍,则较小锐角的度数是() A.60°B.36°C.54°D.30°4.如图,∠ACB=90°,CD⊥AB,垂足为D,则与∠A互余的角的个数是() A.1个B.2个C.3个D.4个第4题图第5题图5.如图,在△ABC中,∠A=25°,∠ACB=105°,则∠D的度数为________.6.如图,在△ABC中,CE,BF是两条高.若∠A=70°,∠BCE=30°,求∠EBF和∠FBC 的度数.7.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.11.2.2三角形的外角1.如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为________.2.如图,∠2________∠1(填“>”“<”或“=”).3.如图,在△ABC中,CD是∠ACB的平分线,∠A=70°,∠ACB=60°,则∠BDC的度数为()A.80°B.90°C.100°D.110°4.如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E的度数为()A.30°B.40°C.60°D.70°5.如图,在△ABC中,延长CB到D,延长BC到E,∠A=80°,∠ACE=140°,求∠1的度数.11.3多边形及其内角和11.3.1多边形1.下列图形中,凸多边形有()A.1个B.2个C.3个D.4个2.下列关于正六边形的说法错误的是()A.边都相等B.对角线长都相等C.内角都相等D.外角都相等3.四边形一共有________条对角线()A.1 B.2 C.3 D.44.已知从一个多边形的一个顶点最多可以引出3条对角线,则它是() A.五边形B.六边形C.七边形D.八边形5.若一个六边形的各条边都相等,当边长为3cm时,它的周长为________cm.6.从七边形的一个顶点出发,最多可以引________条对角线,这些对角线可以将这个多边形分成________个三角形.7.如图,请回答问题:(1)该多边形如何表示?指出它的内角;(2)作出这个多边形所有过顶点A的对角线;(3)在这个多边形的一个顶点处作出它的一个外角.11.3.2多边形的内角和1.五边形的内角和是()A.180°B.360°C.540°D.720°2.已知一个多边形的内角和为900°,则这个多边形为()A.七边形B.八边形C.九边形D.十边形3.若一个多边形的每一个外角都等于45°,则这个多边形的边数为() A.3 B.4 C.5 D.84.若正多边形的一个内角是120°,则该正多边形的边数是()A.12 B.6 C.16 D.85.如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C的度数为________.第5题图第6题图6.图中x的值为________.7.若一个多边形的内角和是外角和的3倍,则它是几边形?8.如果四边形ABCD的四个外角的度数之比为3∶4∶5∶6,那么这个四边形各内角的度数分别是多少?第十二章全等三角形12.1全等三角形1.下列各组的两个图形属于全等图形的是()2.如图,△ABD≌△ACE,则∠B与________,∠AEC与________,∠A与________是对应角;则AB与________,AE与________,EC与________是对应边.第2题图第3题图3.如图,△ABC≌△CDA,∠ACB=30°,则∠CAD的度数为________.4.如图,若△ABO≌△ACD,且AB=7cm,BO=5cm,则AC=________cm.第4题图第5题图5.如图,△ACB≌△DEB,∠CBE=35°,则∠ABD的度数是________.6.如图,△ABC≌△DCB,∠ABC与∠DCB是对应角.(1)写出其他的对应边和对应角;(2)若AC=7,DE=2,求BE的长.12.2三角形全等的判定第1课时“边边边”1.如图,下列三角形中,与△ABC全等的是()A.①B.②C.③D.④2.如图,已知AB=AD,CB=CD,∠B=30°,则∠D的度数是()A.30°B.60°C.20°D.50°第2题图第3题图3.如图,AB=DC,请补充一个条件:________,使其能由“SSS”判定△ABC≌△DCB. 4.如图,A,C,F,D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.5.如图,AB=AC,AD=AE,BD=CE.求证:∠ADE=∠AED.第2课时“边角边”1.如图,已知点F、E分别在AB、AC上,且AE=AF,请你补充一个条件:________,使其能直接由“SAS”判定△ABE≌△ACF.第1题图第2题图2.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是________.3.如图,AB=AD,∠1=∠2,AC=AE. 求证:△ABC≌△ADE.4.如图,AE∥DF,AE=DF,AB=CD.求证:(1)△AEC≌△DFB;(2)CE∥BF.第3课时“角边角”“角角边”1.如图,已知∠1=∠2,∠B=∠C,若直接推得△ABD≌△ACD,则其根据是() A.SAS B.SSS C.ASA D.AAS第1题图第2题图2.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,直接由“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠CDA=∠BDAC.AB=AC D.BD=CD3.如图,已知MA∥NC,MB∥ND,且MB=ND.求证:△MAB≌△NCD.4.如图,在△ABC中,AD是BC边上的中线,E,F为直线AD上的两点,连接BE,CF,且BE∥CF.求证:(1)△CDF≌△BDE;(2)DE=DF.第4课时“斜边、直角边”1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是() A.HL B.ASA C.SAS D.AAS第1题图第2题图2.如图,在Rt△ABC与Rt△DCB中,∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是________.3.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:∠AEB=∠F.4.如图,点C,E,B,F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.12.3 角的平分线的性质第1课时 角平分线的性质1.如图,在Rt △ACB 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于点E .若CD =6,则DE 的长为( )A .9B .8C .7D .6第1题图 第2题图2.如图,在△ABC 中,∠C =90°,按以下步骤作图:①以点B 为圆心,以小于BC 的长为半径画弧,分别交AB ,BC 于点E ,F ;②分别以点E ,F 为圆心,以大于12EF 的长为半径画弧,两弧相交于点G ;③作射线BG ,交AC 边于点D .若CD =4,则点D 到斜边AB 的距离为________. 3.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,求CD 的长.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O ,且AO 平分∠BAC .求证:OB =OC .第2课时角平分线的判定1.如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF.若∠DBC=50°,则∠ABC的度数为()A.50°B.100°C.150°D.200°第1题图第3题图2.在三角形内部,到三角形的三边距离都相等的点是()A.三角形三条高的交点B.三角形三条角平分线的交点C.三角形三条中线的交点D.以上均不对3.如图,∠ABC+∠BCD=180°,点P到AB,BC,CD的距离都相等,则∠PBC+∠PCB 的度数为________.4.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为E,F,AE=AF.求证:(1)PE=PF;(2)AP平分∠BAC.5.如图,B是∠CAF内的一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF 的面积相等.求证:AB平分∠CAF.第十三章轴对称13.1轴对称13.1.1轴对称1.下列图形中,是轴对称图形的是()2.下列轴对称图形中,对称轴条数是四条的图形是()3.如图,△ABC和△A′B′C′关于直线l对称,下列结论中正确的有()①△ABC≌△A′B′C′;②∠BAC=∠B′A′C′;③直线l垂直平分CC′;④直线BC和B′C′的交点不一定在直线l上.A.4个B.3个C.2个D.1个第3题图第4题图4.如图,△ABC与△A′B′C′关于直线l对称,且∠A=105°,∠C′=30°,则∠B的度数为() A.25°B.45°C.30°D.20°5.如图,△ABC关于直线MN对称的三角形的顶点分别为A′,B′,C′,其中∠A=90°,A =8cm,A′B′=6cm.(1)求AB,A′C′的长;(2)求△A′B′C′的面积.13.1.2线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定1.如图,在△ABC中,AB的垂直平分线交AC于点P,P A=5,则线段PB的长度为() A.3 B.4 C.5 D.6第1题图第2题图2.如图,AC=AD,BC=BD,则有()A.AB与CD互相垂直平分B.CD垂直平分ABC.AB垂直平分CD D.CD平分∠ACB3.如图,在△ABC中,D为BC上一点,且BC=BD+AD,则点D在线段________的垂直平分线上.第3题图第4题图4.如图,在Rt△ABC中,斜边AB的垂直平分线交边AC于点D,交边AB于点E,且∠CBD =∠ABD,则∠A=________°.5.如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,求BC的长.第2课时 线段垂直平分线的有关作图1.如图,已知线段AB ,分别以点A ,点B 为圆心,以大于12AB 的长为半径画弧,两弧交于点C 和点D ,作直线CD ,在CD 上取两点P ,M ,连接P A ,PB ,MA ,MB ,则下列结论一定正确的是( ) A .P A =MA B .MA =PE C .PE =BE D .P A =PB2.已知图中的图形都是轴对称图形,请你画出它们全部的对称轴.3.已知下列两个图形关于直线l 成轴对称.(1)画出它们的对称轴直线l ;(2)填空:两个图形成轴对称,确定它们的对称轴有两种常用方法,经过两对对称点所连线段的________画直线;或者画出一对对称点所连线段的____________.4.如图,在某条河l 的同侧有两个村庄A 、B ,现要在河道上建一个水泵站,这个水泵站建在什么位置,能使两个村庄到水泵站的距离相等?13.2画轴对称图形第1课时画轴对称图形1.已知直线AB和△DEF,作△DEF关于直线AB的轴对称图形,将作图步骤补充完整(如图所示).(1)分别过点D,E,F作直线AB的垂线,垂足分别是点________;(2)分别延长DM,EP,FN至________,使________=________,________=________,________=________;(3)顺次连接________,________,________,得△DEF关于直线AB的对称图形△GHI. 2.如图,请画出已知图形关于直线MN对称的部分.3.如图,以AB为对称轴,画出已知△CDE的轴对称图形.第2课时用坐标表示轴对称1.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标是() A.(2,3) B.(2,-3)C.(-2,-3) D.(3,-2)2.在平面直角坐标系中,点P(-3,4)关于y轴的对称点的坐标为() A.(4,-3) B.(3,-4)C.(3,4) D.(-3,-4)3.平面内点A(-2,2)和点B(-2,-2)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=-24.已知△ABC在直角坐标系中的位置如图所示,若△A′B′C′与△ABC关于y轴对称,则点A 的对称点A′的坐标是()A.(-3,2) B.(3,2)C.(-3,-2) D.(3,-2)第4题图第5题图5.如图,点A关于x轴的对称点的坐标是________.6.已知点M(a,1)和点N(-2,b)关于y轴对称,则a=________,b=________.7.如图,在平面直角坐标系中有三点A(-1,5),B(-1,0),C(-4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积是________.13.3等腰三角形13.3.1等腰三角形第1课时等腰三角形的性质1.已知等腰三角形的一个底角为50°,则其顶角为________.2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=________cm.第2题图第3题图3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为() A.35°B.45°C.55°D.60°4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为()A.50°B.80°C.50°或80°D.40°或65°5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数.6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF.求证:DE=DF.第2课时等腰三角形的判定1.在△ABC中,∠A=40°,∠B=70°,则△ABC为()A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=________.3.如图,在△ABC中,AD⊥BC于点D,请你再添加一个条件,使其可以确定△ABC为等腰三角形,则添加的条件是________.第3题图第4题图4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有________个等腰三角形.5.如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF.求证:AB=AC.6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G.求证:△EFG是等腰三角形.13.3.2等边三角形第1课时等边三角形的性质与判定1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为________.第1题图第3题图2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B.能判定△ABC为等边三角形的有________.3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=________.4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD 的度数.5.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD.求证:(1)△ABE≌△ACD;(2)△ADE为等边三角形.第2课时含30°角的直角三角形的性质1.如图,在Rt△ABC,∠C=90°,∠A=30°,AB=10,则BC的长度为( ) A.3 B.4 C.5 D.6第1题图第2题图第3题图2.如图,在△ABC中,∠C=90°,AC=3,∠B=30°,P是BC边上的动点,则AP的长不可能是( )A.3.5 B.4.2 C.5.8 D.73.如图,△ABC是等边三角形,D是BC上一点,BD=2,DE⊥BC交AB于点E,则BE的长为________.4.如图,△ABC是边长为20的等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF ⊥AC于点F,求BE+CF的值.5.如图所示是某种帐篷支架屋顶的侧面示意图,它是底角为30°的等腰三角形.已知中柱BD垂直于底边AC,支柱DE垂直于腰AB,测得BE=1米,求AB的长.13.4 课题学习最短路径问题1.已知点A,点B都在直线l的上方,试用尺规作图在直线l上求作一点P,使得PA+PB 的值最小,则下列作法正确的是( )2.如图,已知直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是( )A.转化思想B.三角形两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于与它不相邻的一个内角第2题图第3题图3.如图,点P是直线l上的一点,线段AB∥l,能使PA+PB取得最小值的点P的位置应满足的条件是( )A.点P为点A到直线l的垂线的垂足B.点P为点B到直线l的垂线的垂足C.PB=PAD.PB=AB4.如图,在直线l的两侧分别有A和B两点,试在直线l上确定一点P,使点P到点A和到点B的距离之和最短,并说明理由.第十四章 整式的乘法与因式分解14.1 整式的乘法14.1.1 同底数幂的乘法1.化简a 2·a 的结果是( )A .a 2B .a 3C .a 4D .a 5 2.下列计算正确的是( )A .x 2·x 2=x 4B .x 3·x ·x 4=x 7C .a 4·a 4=a 16D .a ·a 2=a 2 3.填空:(1)(-a )5·(-a )2=________;(2)(a -b )·(a -b )2=________(结果用幂的形式表示); (3)a 3·a 2·(________)=a 11. 4.计算:(1)a 2·a 5+a ·a 3·a 3; (2)⎝⎛⎭⎫1104×⎝⎛⎭⎫1103.5.(1)若2x =3,2y =5,求2x +y 的值;(2)若32×27=3n ,求n 的值.1.计算(x3)4的结果是()A.x7B.x12C.x81D.x642.下列运算正确的是()A.(x3)2=x5B.(-x)5=-x5C.x3·x2=x6D.3x2+2x3=5x53.已知5y=2,则53y的值为()A.4 B.6 C.8 D.94.计算:(1)a6·(a2)3=________;(2)(-a3)2=________.5.计算:(1)(x3)2·(x2)3; (2)(-x2)3·x5;(3)-(-x2)3·(-x2)2-x·(-x3)3.6.若(27x)2=36,求x的值.1.计算(x 2y )2的结果是( )A .x 6yB .x 4y 2C .x 5yD .x 5y 2 2.计算(-2a 2b )3的结果是( )A .-6a 6b 3B .-8a 6b 3C .8a 6b 3D .-8a 5b 3 3.若m 2·n 2=25,且m ,n 都为正实数,则mn 的值为( )A .4B .5C .6D .7 4.计算:(1)(mn 3)2=________; (2)(2a 3)3=________; (3)(-2x 2y )3=________;(4)⎝⎛⎭⎫-12x 3y 3=________. 5.计算:(1)(ab 2c 4)3; (2)(3a 2)3+(a 2)2·a 2;(3)(x n y 3n )2+(x 2y 6)n; (4)(-2×103)2;(5)4100×0.25100.14.1.4整式的乘法第1课时单项式与单项式、多项式相乘1.计算x3·4x2的结果是()A.4x5B.5x6C.4x6D.5x52.化简x(2-3x)的结果为()A.2x-6x2B.2x+6x2C.2x-3x2D.2x+3x23.下列各式中,计算正确的是()A.3a2·4a3=12a6B.2xy(3x2-4y)=6x3-8y2C.2x3·3x2=6x5D.(3x2+x-1)(-2x)=6x3+2x2-2x4.计算:(1)(6ab)·(3a2b)=__________;(2)(-2a2)2·a=__________;(3)(-2a2)(a-3)=__________.5.若一个长方形的长、宽分别是3x-4、2x,则它的面积为________.6.计算:(1)ab·(-3ab)2; (2)(-2a2)·(3ab2-5ab3).7.已知a=1,求代数式a(a2-a)+a2(5-a)-9的值.第2课时多项式与多项式相乘1.计算(x-1)(x-2)的结果为()A.x2+3x-2 B.x2-3x-2C.x2+3x+2 D.x2-3x+22.若(x+3)(x-5)=x2+mx-15,则实数m的值为()A.-5 B.-2 C.5 D.23.下列各式中,计算结果是x2+7x-18的是()A.(x-2)(x+9) B.(x+2)(x+9)C.(x-3)(x+6) D.(x-1)(x+18)4.计算:(1)(2x+1)(x+3)=________________;(2)(y+3x)(3x-2y)=________________.5.一个长方形相邻的两条边长分别为2a+1和3a-1,则该长方形的面积为____________.6.计算:(1)(a+1)(2-b)-2a;(2)x(x-6)-(x-2)(x+1).7.先化简,再求值:(2a-3b)(a+2b)-a(2a+b),其中a=3,b=1.第3课时 整式的除法1.计算a 6÷a 2的结果为( )A .4a 4B .3a 3C .a 3D .a 4 2.下列计算正确的是( )A .x 8÷x 2=x 4B .(-x )6÷(-x )4=-x 2C .36a 3b 4÷9a 2b =4ab 3D .(2x 3-3x 2-x )÷(-x )=-2x 2+3x 3.计算:(1)20180=________; (2)a 8÷a 5=________; (3)a 6b 2÷(ab )2=________; (4)(14a 3b 2-21ab 2)÷7ab 2=________. 4.当m ________时,(m -2019)0的值等于1. 5.计算:(1)(-6m 4n 5)÷⎝⎛⎭⎫12m 2n 2; (2)(x 4y +6x 3y 2-x 2y 3)÷3x 2y .6.一个等边三角形框架的面积是4a 2-2a 2b +ab 2,一边上的高为2a ,求该三角形框架的边长.14.2 乘法公式14.2.1 平方差公式1.计算(4+x )(4-x )的结果是( )A .x 2-16B .16-x 2C .x 2+16D .x 2-8x +162.下列多项式乘法中可以用平方差公式计算的是( )A .(b -a )(a -b )B .(x +2)(x +2)C.⎝⎛⎭⎫y +x 3⎝⎛⎭⎫y -x 3 D .(x -2)(x +1)3.若m +n =5,m -n =3,则m 2-n 2的值是( )A .2B .8C .15D .164.计算:(1)(a +3)(a -3)=________;(2)(2x -3a )(2x +3a )=________;(3)(a +b )(-a +b )=________;(4)98×102=(100-______)(100+______)=(______)2-(______)2=______.5.计算:(1)⎝⎛⎭⎫16x -y ⎝⎛⎭⎫16x +y ; (2)20182-2019×2017;(3)(x -1)(x +1)(x 2+1).6.先化简,再求值:(2-a )(2+a )+a (a -4),其中a =-12.14.2.2完全平方公式第1课时完全平方公式1.计算(x+2)2正确的是()A.x2+4 B.x2+2 C.x2+4x+4 D.2x+42.下列关于962的计算方法正确的是()A.962=(100-4)2=1002-42=9984B.962=(95+1)(95-1)=952-1=9024C.962=(90+6)2=902+62=8136D.962=(100-4)2=1002-2×4×100+42=92163.计算:(1)(3a-2b)2=____________;(2)(-3x+2)2=________;(3)(-x+y)2=____________;(4)x(x+1)-(x-1)2=________.4.计算:(1)(-2m-n)2; (2)(-3x+y)2;(3)(2a+3b)2-(2a-3b)2; (4)99.82.5.已知a+b=3,ab=2.(1)求(a+b)2的值;(2)求a2+b2的值.第2课时添括号法则1.下列添括号正确的是()A.a+b-c=a-(b+c)B.-2x+4y=-2(x-4y)C.a-b-c=(a-b)-cD.2x-y-1=2x-(y-1)2.若运用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是() A.[x-(2y+1)]2B.[x+(2y+1)]2C.[x+(2y-1)][x-(2y-1)]D.[(x-2y)+1][(x-2y)-1]3.填空:(1)a+b-c=a+(________);(2)a-b+c-d=(a-d)-(________);(3)(x+y+2z)2=[(________)+2z]2=________________________.4.已知a-3b=3,求代数式8-a+3b的值.5.运用乘法公式计算:(1)(2a+3b-1)(1+2a+3b); (2)(x-y-2z)2.14.3因式分解14.3.1提公因式法1.下列变形,是因式分解的是()A.x(x-1)=x2-x B.x2-x+1=x(x-1)+1C.x2-x=x(x-1) D.2a(b+c)=2ab+2ac2.多项式12ab3c+8a3b中各项的公因式是()A.4ab2B.4abc C.2ab2D.4ab3.把多项式m2-9m分解因式,结果正确的是()A.m(m-9) B.(m+3)(m-3)C.m(m+3)(m-3) D.(m-3)24.分解因式:(1)5a-10ab=____________;(2)x4+x3+x2=________________;(3)m(a-3)+2(3-a)=________________.5.计算:20182-2018×2017.6.分解因式:(1)2mx-6my; (2)3x(x+y)-(x+y)2. 7.先分解因式,再求值:a2b+ab2,其中a+b=3,ab=2.14.3.2公式法第1课时运用平方差公式分解因式1.多项式x2-4分解因式的结果是()A.(x+2)(x-2) B.(x-2)2C.(x+4)(x-4) D.x(x-4)2.下列多项式中能用平方差公式分解因式的是()A.a2+b2B.5m2-20mnC.x2+y2D.x2-93.分解因式3x3-12x,结果正确的是()A.3x(x-2)2B.3x(x+2)2C.3x(x2-4) D.3x(x-2)(x+2)4.因式分解:(1)9-b2=____________;(2)m2-4n2=____________.5.利用因式分解计算:752-252=________.6.若a+b=1,a-b=2007,则a2-b2=________.7.因式分解:(1)4x2-9y2; (2)-16+9a2;(3)9x2-(x+2y)2; (4)5m2a4-5m2b4.第2课时 运用完全平方公式分解因式1.把多项式x 2-8x +16分解因式,结果正确的是( )A .(x -4)2B .(x -8)2C .(x +4)(x -4)D .(x +8)(x -8)2.下列各式中,能用完全平方公式进行因式分解的是( )A .x 2-2x -2B .x 2+1C .x 2-4x +4D .x 2+4x +13.若代数式x 2+kx +49能分解成(x -7)2的形式,则实数k 的值为________.4.若x 2+kx +9是完全平方式,则实数k =________.5.因式分解:(1)x 2-6x +9=________;(2)-2a 2+4a -2=________.6.因式分解:(1)4m 2-2m +14; (2)2a 3-4a 2b +2ab 2;(3)(x +y )2-4(x +y )+4.7.先分解因式,再求值:x 3y +2x 2y 2+xy 3,其中x =1,y =2.第十五章 分 式15.1 分 式15.1.1 从分数到分式1.下列各式不是分式的是( )A.x yB.y π+yC.x 2D.1+x a 2.若分式x +1x -1有意义,则x 的取值范围是( ) A .x ≠1 B .x ≠-1 C .x =1 D .x =-13.如果分式|x |-1x -1的值为零,那么x 的值为( ) A .1 B .-1 C .0 D .±14.某人种了x 公顷的棉花,总产量为y 千克,则棉花的单位面积产量为________千克/公顷.5.当x =________时,分式x 2-9x -3的值为零. 6.x 取何值时,下列分式有意义?(1)x +22x -3; (2)6(x +3)|x |-12;(3)x +6x 2+1; (4)x (x -1)(x +5).15.1.2 分式的基本性质1.下列分式是最简分式的是( )A.x -13x -3B.3(x 2-y 2)x -yC.x -12x +1D.2x 4-2x2.分式x 5y 与3x 2y 2的最简公分母是( ) A .10xy B .10y 2 C .5y 2 D .y 23.根据分式的基本性质填空:(1)a +b ab =( )a 2b; (2)x 2+xy x 2=x +y ( ); (3)a -2a 2-4=1( ). 4.下列式子变形:①b a =b +1a +1;②b a =b -1a -1;③b -2a =2b -42a ;④a 2+a a 2-1=a a -1.其中正确的有________(填序号).5.约分:(1)-4x 2y 6xy 2=________; (2)a 2+2a a 2+4a +4=________. 6.通分:(1)x ac ,y bc ; (2)24-x 2,x x +2; (3)1x 2-6x +9,13x -9.15.2 分式的运算15.2.1 分式的乘除第1课时 分式的乘除1.计算a bc ·c 2a 2的结果是( )A.c 2a 2b B.c ab C.c 2ab D.a 2bc2.计算2x 3÷1x 的结果是( )A .2x 2B .2x 4C .2xD .43.化简:(1)a 2+aba -b ÷aba -b =________;(2)2x +2y 5a 2b ·10ab 2x 2-y 2=________.4.计算:(1)xx 2-1÷1x +1; (2)x 2-9x 2+6x +9·3x 3+9x 2x 2-3x .5.先化简,再求值:x -2x +3·x 2-9x 2-4x +4,其中x =-1.第2课时 分式的乘方1.计算⎝⎛⎭⎫x2y 3的结果是( )A.x 38y 3 B.x 36y 3 C.x 8y 3 D.x 38y2.计算a 2·⎝⎛⎭⎫1a 3的结果是( )A .aB .a 5 C.1a D.1a 53.已知⎝⎛⎭⎫x3y 22·⎝⎛⎭⎫-y3x 2=6,则x 4y 2的值为( )A .6B .36C .12D .34.计算:(1)⎝⎛⎭⎫3b2a 2=________;(2)a 2b ·b2a =________;(3)⎝⎛⎭⎫-y 2ax 2÷y 24x =________.5.计算:(1)⎝⎛⎭⎫-3ac 2b 2; (2)a -b b ·b a 2-b 2; (3)-a 32b ÷⎝⎛⎭⎫-a 2b 3·b 2.6.先化简,再求值:a -a 2a 2-1÷a a -1·⎝ ⎛⎭⎪⎫a +1a -12,其中a =2.15.2.2 分式的加减第1课时 分式的加减1.计算x -1x +1x的结果是( )A.x +2xB.2xC.12 D .12.化简4x x -2-x2-x的结果是( )A.3x x -2B.5x 2-xC.5x x -2D.3x 2-x 3.计算: (1)1a 2-1+aa 2-1=________; (2)1a -1-1a (a -1)=________. 4.计算:(1)5a +3b a 2-b 2-2a a 2-b 2; (2)m m +n +m m -n -m 2m 2-n 2.5.先化简:x 2+x x 2+2x +1+1-xx 2-1,然后从-1≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值.第2课时 分式的混合运算1.化简⎝⎛⎭⎫1+1x -2·x 2-2xx -1的结果为( )A .4xB .3xC .2xD .x2.化简:(1)⎝⎛⎭⎪⎫a +1a -1+11-a ÷a 1-a=________;(2)x 2-4x 2-2x +1·x -1x -2-x x -1=________. 3.计算:(1)a 2-16a +64a -8÷⎝⎛⎭⎫1-8a ; (2)⎝ ⎛⎭⎪⎫x 2-1x 2-2x +1+x +1x -1·1-x 1+x ;(3)⎝⎛⎭⎫x -1x ÷⎝⎛⎭⎫2x -1+x 2x ; (4)⎝⎛⎭⎫b 2a 2÷⎝⎛⎭⎫b a -14a ·23b .4.先化简,后求值:⎝⎛⎭⎫1x -1-1x +1÷xx 2-1,其中x =2.15.2.3 整数指数幂第1课时 负整数指数幂1.计算5-2的值是( )A .-125 B.125 C .25 D .-252.计算⎝⎛⎭⎫-12-1的结果是( ) A .-12 B.12 C .2 D .-23.计算a 3·a -5的结果是( )A .a 2B .a -2C .-a 2D .-a -2 4.若b =-3-2,c =⎝⎛⎭⎫13-2,d =⎝⎛⎭⎫-130,则( ) A .b <c <d B .b <d <c C .d <c <b D .c <d <b 5.计算:(1)(-2)0×3-2=________;(2)(x -1)2·x 3=________. 6.计算:(1)⎝⎛⎭⎫23-2×3-1+(π-2018)0÷⎝⎛⎭⎫13-1;(2)(ab -2)-2·(a -2)3;(3)(2xy -1)2·xy ÷(-2x -2y ).第2课时用科学记数法表示绝对值小于1的数1.0.000012用科学记数法表示为()A.120×10-4B.1.2×10-5C.-1.2×10-5D.-1.2×1052.生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为()A.0.432×10-5B.4.32×10-6C.4.32×10-7D.43.2×10-73.PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称可入肺颗粒物.若将0.0000025用科学记数法表示为2.5×10n(n为整数),则n 的值为()A.-7 B.-6 C.-5 D.64.用科学记数法把0.000009405表示成a×10-6,则a=________.5.用科学记数法表示下列各数:(1)0.0000314; (2)-0.0000064.6.用小数表示下列各数:(1)2×10-7; (2)2.71×10-5.7.纳米是一种长度单位,常用于度量物质原子的大小,1纳米=10-9米.已知某种植物孢子的直径约为45000纳米,用科学记数法表示该孢子的直径约为多少米?15.3 分式方程第1课时 分式方程及其解法1.下列方程是分式方程的是( )A.12-x 3=0B.4x =-2 C .x 2-1=3 D .2x +1=3x2.以下是解分式方程1-x 2-x -3=1x -2时,去分母后的结果,其中正确的是( )A .1-x -3=1B .x -1-3x +6=1C .1-x -3x +6=1D .1-x -3x +6=-1 3.分式方程12x =2x +3的解是________.4.当实数m =________时,方程2m -1x =3的解为x =1.5.若关于x 的方程3x -1=1-k1-x 无解,则k 的值为________.6.解方程:(1)3x =2x +1; (2)3x +5-1x -1=0;(3)1x -2=4x 2-4; (4)1-13x -1=56x -2.第2课时 分式方程的应用1.某工程队要铺建一条长2000米的管道,采用新的施工方式,工作效率提高了25%,结果比原计划提前2天完成了任务.设这个工程队原计划每天要铺建x 米管道,则依题意所列方程正确的是( )A.2000x +2=20001.25xB.2000x =20001.25x -2C.2000x +20001.25x =2D.2000x -20001.25x=22.某特快列车在最近一次的铁路大提速后,平均时速提高了30千米/时,则该列车行驶350千米所用的时间比原来少用1小时.若该列车提速前的速度是x 千米/时,下列所列方程正确的是( )A.350x -350x -30=1B.350x -350x +30=1C.350x +30-350x =1D.350x -30-350x=13.学校最近新配备了一批图书需要甲、乙两人进行整理,若甲单独整理完成需要4小时;若甲、乙共同整理2小时后,乙再单独整理2小时才能完工,则乙单独整理完成需要多少小时?4.某校初二年级的同学乘坐大巴车去北京展览馆参观“砥砺奋进的五年”大型成就展,北京展览馆距离该校12千米,1号车出发3分钟后,2号车才出发,结果两车同时到达.已知2号车的平均速度是1号车的平均速度的1.2倍,求2号车的平均速度.第十一章 三角形 11.1 与三角形有关的线段11.1.1 三角形的边1.C 2.B 3.C 4.6 ∠B AE ∠AED ∠C5.解:(1)∵|a -3|+(b -2)2=0,∴a -3=0,b -2=0,∴a =3,b =2.由三角形三边关系得3-2<c <3+2,即1<c <5.(2)∵c 为整数,1<c <5,∴c =2或3或4.11.1.2 三角形的高、中线与角平分线11.1.3 三角形的稳定性1.稳定 2.CE AD BC 3.40 4.8 5.2 6.2 7.解:(1)S △ABC =12AB ·CE =12×6×4.5=13.5.(2)∵S △ABC =12BC ·AD ,∴BC =2S △ABC AD =2×13.55=5.4.11.2 与三角形有关的角11.2.1 三角形的内角 第1课时 三角形的内角和1.D 2.B 3.30° 4.(1)27 (2)29 (3)595.解:∵∠BAC =65°,∠C =30°,∴∠B =85°.∵DE ∥BC ,∴∠BDE =180°-∠B =180°-85°=95°.第2课时 直角三角形的两锐角互余1.C 2.A 3.D 4.B 5.40° 6.解:∵∠A =70°,CE ,BF 是△ABC 的两条高,∴∠EBF =20°,∠ECA =20°.又∵∠BCE =30°,∴∠ACB =50°,∴在Rt △BCF 中,∠FBC =40°. 7.证明:∵∠ACB =90°,∴∠A +∠B =90°.∵∠ACD =∠B ,∴∠A +∠ACD =90°,∴∠ADC=90°,∴CD ⊥AB .11.2.2 三角形的外角1.70° 2.> 3.C 4.A 5.解:∵∠ACE =140°,∴∠ACB =40°.∵∠A =80°,∴∠1=40°+80°=120°.11.3 多边形及其内角和11.3.1 多边形1.A 2.B 3.B 4.B 5.18 6.4 57.解:(1)六边形ABCDEF ,它的内角是∠A ,∠B ,∠C ,∠D ,∠E ,∠F .(2)如图所示.(3)如图,∠DCG 即为点C 处的一个外角(答案不唯一).11.3.2 多边形的内角和1.C 2.A 3.D 4.B 5.230° 6.1307.解:设该多边形是n 边形.由题意可得(n -2)·180°=3×360°,解得n =8.故该多边形为八边形.8.解:根据题意,设四边形ABCD 的四个外角的度数分别为3x ,4x ,5x ,6x ,则3x +4x +5x +6x =360°,解得x =20°.∴这四个外角的度数分别为60°,80°,100°,120°,则这个四边形各内角的度数分别为120°,100°,80°和60°.第十二章 全等三角形 12.1 全等三角形1.D 2.∠C ∠ADB ∠A AC AD DB 3.30° 4.7 5.35°6.解:(1)对应边:AB 与DC ,AC 与DB ,BC 与CB .对应角:∠A 与∠D ,∠ACB 与∠DBC .(2)由(1)可知DB =AC =7,∴BE =BD -DE =7-2=5.12.2 三角形全等的判定第1课时 “边边边”1.C 2.A 3.AC =BD4.证明:∵AF =DC ,∴AF -CF =DC -CF ,即AC =DF .在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF (SSS).5.证明:在△ABD 与△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE (SSS),∴∠ADB =∠AEC .∵∠ADB +∠ADE =180°,∠AEC +∠AED =180°,∴∠ADE =∠AED .第2课时 “边角边”1.AB =AC 2.SAS3.证明:∵∠1=∠2,∴∠BAC =∠DAE .在△ABC 与△ADE 中,∵⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).4.证明:(1)∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AC =DB .在△AEC 与△DFB 中,⎩⎪⎨⎪⎧AE =DF ,∠A =∠D ,AC =DB ,∴△AEC ≌△DFB (SAS). (2)由(1)知△AEC ≌△DFB ,∴∠ECA =∠FBD ,∴CE ∥BF .第3课时 “角边角”“角角边”1.D 2.B3.证明:∵MB ∥ND ,∴∠MBA =∠D .∵MA ∥NC ,∴∠A =∠NCD .在△MAB 与△NCD 中,⎩⎪⎨⎪⎧∠MBA =∠D ,∠A =∠NCD ,MB =ND ,∴△MAB ≌△NCD (AAS). 4.证明:(1)∵AD 是△ABC 的中线,∴BD =CD .∵BE ∥CF ,∴∠FCD =∠EBD .在△CDF和△BDE 中,⎩⎪⎨⎪⎧ ∠FCD =∠EBD ,CD =BD ,∠CDF =∠BDE ,∴△CDF ≌△BDE (ASA).(2)由(1)知△CDF ≌△BDE ,∴DF =DE .第4课时 “斜边、直角边”1.A 2.AB =DB (答案不唯一)3.证明:∵∠ABC =90°,∴∠CBF =90°.在Rt △ABE 和Rt △CBF 中, ∵⎩⎪⎨⎪⎧AE =CF ,AB =CB ,∴Rt △ABE ≌Rt △CBF (HL).∴∠AEB =∠F .4.证明:∵AB ⊥CF ,DE ⊥CF ,∴∠ABC =∠DEF =90°.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,∴Rt △ABC ≌Rt △DEF (HL),∴BC =EF ,∴BC -BE =EF -BE ,即CE =BF . 12.3 角的平分线的性质第1课时 角平分线的性质1.D 2.43.解:∵S △ABD =15,AB =10,∴点D 到AB 的距离h =2×1510=3.∵AD 平分∠BAC ,∠C=90°,∴DC =h =3. 4.证明:∵CD ⊥AB ,BE ⊥AC ,AO 平分∠BAC ,∴OD =OE ,∠ODB =∠OEC =90°.在△DOB与△EOC 中,⎩⎪⎨⎪⎧∠DOB =∠EOC ,OD =OE ,∠ODB =∠OEC ,∴△DOB ≌△EOC (ASA),∴OB =OC .第2课时 角平分线的判定1.B 2.B 3.90°4.证明:(1)∵PE ⊥AB ,PF ⊥AC ,∴∠AEP =∠AFP =90°.在Rt △AEP 和Rt △AFP 中,⎩⎪⎨⎪⎧AP =AP ,AE =AF ,∴Rt △AEP ≌Rt △AFP (HL),∴PE =PF . (2)∵PE ⊥AB ,PF ⊥AC ,PE =PF ,∴点P 在∠BAC 的平分线上,故AP 平分∠BAC . 5.证明:∵DC =EF ,△DCB 和△EFB 的面积相等,∴点B 到AC ,AF 的距离相等,∴AB平分∠CAF .第十三章 轴对称 13.1 轴对称13.1.1 轴对称1.A 2.A 3.B 4.B5.解:(1)∵AB 与A ′B ′是对应线段,∴AB =A ′B ′=6cm.又∵AC 与A ′C ′是对应线段,∴A ′C ′=AC =8cm.(2)∵∠A ′与∠A 是对应角,∴∠A ′=∠A =90°,∴S △A ′B ′C ′=A ′B ′·A ′C ′÷2=24(cm 2).13.1.2 线段的垂直平分线的性质 第1课时 线段垂直平分线的性质和判定1.C 2.C 3.AC 4.305.解:∵AB 的垂直平分线交AB 于E ,交BC 于D ,∴AD =BD .∵△ADC 的周长为11cm ,∴AC +CD +AD =AC +CD +BD =AC +BC =11cm.∵AC =4cm ,∴BC =7cm.第2课时 线段垂直平分线的有关作图1.D2.解:如图所示.。
人教版数学八年级上册 第13章 基础复习题含答案
13.1轴对称一.选择题1.以下四个汽车车标中,不是轴对称图形的是()A.B.C.D.2.如图,在△ABD中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13B.15C.18D.213.如图,△ABC的边长AB=8cm,AC=10cm,BC=4cm,作BC的垂直平分线交AC于D,则△ABD的周长为()A.18cm B.14cm C.20cm D.12cm4.如图,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5,PN=3,MR=7,则线段QN的长为()A.1B.1.5C.2D.2.55.如图是台球桌面示意图,阴影部分表示四个入球孔,小明按图中方向击球(球可以多次反弹),则球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋6.如图,若△ABC与△A'B'C′关于直线MN对称,BB'交MN于点O.则下列说法中不一定正确的是()A.∠ABC=∠A'B'C′B.AA'⊥MNC.AB∥A′B′D.BO=B′O7.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.∠A、∠B两内角的平分线的交点处B.AC、AB两边高线的交点处C.AC、AB两边中线的交点处D.AC、AB两边垂直平分线的交点处8.如图,△ABC和△AB'C'关于直线l对称,l交CC'于点D,若AB=4,B'C'=2,CD=0.5,则五边形ABCC′B'的周长为()A.14B.13C.12D.119.如图,在△ABC中,∠A=30°,∠C=110°,AB的垂直平分线交AB于点D,交边AC 于点E,则∠EBC的度数是()A.10°B.15°C.20°D.25°10.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=35°,则∠A+∠C=()A.30°B.40°C.17.5°D.35°二.填空题11.如图,在△ABC中,DE是AC的垂直平分线,AE=3,△BCD的周长为13,则△ABC 的周长是.12.雨后,地上的积水犹如一块澄澈的平面镜,某路段监控摄像头在雨后拍摄,由于位置偏离,拍摄中心聚集在了水面上,摄像头侦测到一小轿车超速行驶,积水中倒映的车牌为“”,那么该小轿车的真实车牌号为.13.如图,△ABC与△DEF关于直线l对称,若∠A=65°,∠B=80°,则∠F=.14.如图,线段AB,BC的垂直平分线l1,l2交于点O.若∠B=35°,则∠AOC=°.15.已知:△ABC是三边都不相等的三角形,点P是三个内角平分线的交点,点O是三边垂直平分线的交点,当P、O同时在不等边△ABC的内部时,那么∠BOC和∠BPC的数量关系是:∠BOC=.三.解答题16.如图,在ΔABC中,∠C=90°,DE是AB的垂直平分线.(1)若AC=5,BC=7,求ΔACD的周长;(2)若∠BAD:∠CAD=2:1,求∠B的度数.17.如图,在△ABE中,AD⊥BE于点D,C是BE上一点,BD=DC,且点C在AE的垂直平分线上,若△ABC的周长为18cm,求DE的长.18.如图所示,在△ABC中,AB,AC的垂直平分线分别交BC于D,E,垂足分别是M,N.(1)若△ADE的周长为6,求BC的长;(2)若∠BAC=100°,求∠DAE的度数.19.求证:到线段两端距离相等的点在线段的垂直平分线上.已知:;求证:.参考答案与试题解析一.选择题1.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.2.【解答】解:连接OC,∵点O是边BC,AC的垂直平分线的交点,∴OB=OC,OA=OC,∴OA=OB,∵OB=5,∴OA=OB=5,∵AB=8,∴△AOB的周长是AB+OA+OB=8+5+5=18,故选:C.3.【解答】解:∵BC的垂直平分线交AC于D,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=8+10=18(cm),故选:A.4.【解答】解:∵点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R 落在MN的延长线上,∴PM=MQ,PN=NR,∵PM=2.5,PN=3,MR=7,∴RN=3,MN=MR﹣NR=7﹣3=4,MQ=MP=2.5,即NQ=MN﹣MQ=4﹣2.5=1.5,故选:B.5.【解答】解:如图所示,,球最后落入的球袋是2号袋,故选:B.6.【解答】解:∵△ABC与△A'B'C′关于直线MN对称,BB'交MN于点O,∴△ABC≌△A'B'C′,AA′⊥MN,OB=OB′∴∠ABC=∠A′B′C′,故A,B,D正确,故选:C.7.【解答】解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在AC、AB两边垂直平分线的交点处,故选:D.8.【解答】解:∵△ABC和△AB'C'关于直线l对称,l交CC'于点D,∴AB=AB′,BC=B′C′,DC=DC′,∵AB=4,B'C'=2,CD=0.5,∴AB′=4,BC=2,DC′=0.5,∴五边形ABCC′B'的周长为:4+2+0.5+0.5+2+4=13.故选:B.9.【解答】解:∵AB的垂直平分线交AB于点D,交边AC于点E,∴∠ABE=∠A=30°,∵∠A=30°,∠C=110°,∴∠ABC=180°﹣30°﹣110°=40°,∴∠EBC=40°﹣30°=10°,故选:A.10.【解答】解:连接OB,∵线段AB、BC的垂直平分线l1、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∠A=∠ABO,∠C=∠CBO,∴∠A+∠C=∠ABC,∵∠DOE+∠1=180°,∠1=35°,∴∠DOE=145°,∴∠ABC=360°﹣∠DOE﹣∠BDO﹣∠BEO=35°;故选:D.二.填空题(共5小题)11.【解答】解:∵DE是AC的垂直平分线,AE=3,∴DA=DC,AC=2AE=6,∵△BCD的周长为13,∴BC+BD+CD=13,∴BC+BD+DA=BC+AB=13,∴△ABC的周长=BC+AB+AC=13+6=19,故答案为:19.12.【解答】解:利用轴对称的性质得出:该汽车牌照号码为:苏N2020N.故答案为:苏N2020N.13.【解答】解:∵∠A=65°,∠B=80°,∴∠C=180°﹣∠A﹣∠B=180°﹣65°﹣80°=35°,∵△ABC与△DEF关于直线l对称,∴∠C=∠F=35°,故答案为:35°.14.【解答】解:连接BO并延长,点D在BO的延长线上∵线段AB,BC的垂直平分线l1,l2交于点O,∴OA=OB,OC=OB,∴∠OAB=∠OBA,∠OCB=∠OBC,∴∠AOD=2∠ABO,∠COD=2∠CBO,∴∠AOC=∠AOD+∠COD=2(∠ABO+∠CBO)=70°,故答案为:70.15.【解答】解:∵BP平分∠ABC,CP平分∠ACB,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(∠ABC+∠ACB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠BAC)=90°+∠BAC,即∠BAC=2∠BPC﹣180°;如图,连接AO.∵点O是这个三角形三边垂直平分线的交点,∴OA=OB=OC,∴∠OAB=∠OBA,∠OAC=∠OCA,∠OBC=∠OCB,∴∠AOB=180°﹣2∠OAB,∠AOC=180°﹣2∠OAC,∴∠BOC=360°﹣(∠AOB+∠AOC)=360°﹣(180°﹣2∠OAB+180°﹣2∠OAC),=2∠OAB+2∠OAC=2∠BAC=2(2∠BPC﹣180°)=4∠BPC﹣360°,故答案为:4∠BPC﹣360°.三.解答题(共4小题)16.【解答】解:(1)∵DE是AB的垂直平分线,∴DA=DB,∴ΔACD的周长=AC+CD+DA=AC+CD+DB+AC+CB=5+7=12;(2)∵DA=DB,∴∠BAD=∠B,设∠CAD=x,则∠BAD=∠B=2x,∵∠C=90°,∴∠CAB+∠B=90°,即x+2x+2x=90°,解得,x=18°,∴∠B=2x=36°.17.【解答】解:∵点C在AE的垂直平分线上,∴CA=CE,∵AD⊥BE,BD=DC,∴AB=AC,∵△ABC的周长为18,∴AB+BC+AC=18,∴2AC+2DC=18,∴AC+DC=9,∴DE=DC+CE=AC+CD=9(cm).18.【解答】解:(1)∵DM和EN分别垂直平分AB和AC,∴AD=BD,EA=EC,∵△ADE的周长为6,∴AD+DE+EA=6.∴BD+DE+EC=6,即BC=6;(2)∵DM和EN分别垂直平分AB和AC,∴AD=BD,EA=EC,∴∠B=∠BAD=∠ADE,∠C=∠EAC=∠AED.∵∠BAC=∠BAD+∠DAE+∠EAC=∠B+∠DAE+∠C=100°,∴∠B+∠C=100°﹣∠DAE,在△ADE中,∠DAE=180°﹣(∠ADE+∠AED)=180°﹣(2∠B+2∠C)∴∠DAE=180°﹣2(100°﹣∠DAE)∴∠DAE=20°.19.【解答】已知:如图,QA=QB,求证:点Q在线段AB的垂直平分线上.证明:当点Q在线段AB上时,∵QA=QB∴点Q为线段AB的中点,∴点Q在线段AB的垂直平分线上;当点Q在线段AB外时,过点Q作QM⊥AB,垂足为点M,如图,则∠QMA=∠QMB=90°,在Rt△QMA和Rt△QMB中,,∴Rt△QMA≌Rt△QMB(HL)13.2 画轴对称图形一.填空题1.在平面直角坐标系中,点A(a,﹣3)向左平移3个单位得点A′,若点A和A′关于y 轴对称,则a=.2.已知点P(﹣1,2),那么点P关于直线x=1的对称点Q的坐标是.3.如图,在平面直角坐标系中,已知点A的坐标为(4,4),若△ABC是关于直线y=1的轴对称图形,则点B的坐标为;若△ABC是关于直线y=a的轴对称图形,则点B的坐标为.4.若P关于x轴的对称点为(3,a),关于y轴对称的点为(b,2),则P点的坐标为.5.已知点A(a,2),B(﹣3,b)关于y轴对称,则ab=.6.若点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则ab的值为.7.如果A(a﹣1,3),A′(4,b﹣2)关于x轴对称,则a=,b=.8.已知P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则(a+b)2019的值为.9.如图,在平面直角坐标系中,一颗棋子从点P(0,﹣2)处开始依次关于点A(﹣1,﹣1),B(1,2),C(2,1)作循环对称跳动,即第一次跳到点P关于点A的对称点M处,接着跳到点M关于点B的对称点N处,第三次再跳到点N关于点C的对称点处,…,如此下去.则经过第2011次跳动之后,棋子落点的坐标为.10.已知P1点关于x轴的对称点P2(3﹣2a,2a﹣5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是.二.解答题11.在平面直角坐标系xOy中,△ABC的位置如图所示.(1)顶点A关于x轴对称的点的坐标A'(,),顶点C先向右平移3个单位,再向下平移2个单位后的坐标C'(,);(2)将△ABC的纵坐标保持不变,横坐标分别乘﹣1得△DEF,请你直接画出图形;(3)在平面直角坐标系xOy中有一点P,使得△ABC与△PBC全等,这样的P点有个.(A点除外)12.在直角坐标系中,△ABC的顶点坐标如图所示,(1)请你在图中先作出△ABC关于直线m(直线m上点的横坐标均为﹣1)对称图形△A1B1C1,再作出△A1B1C1关于直线n(直线n上点的纵坐标均为2)对称图形△A2B2C2;(2)线段BC上有一点M(a,b),点M关于直线m的对称点为N,点N关于直线的n 的对称点为E,求N、E的坐标(用含a,b的代数式表示).13.如图,在棋盘中有A(﹣1,1)、O(0,0)、B(1,0)三个棋子,若再添加一个棋子A、O、B、P四个棋子成为一个轴对称图形,请在三个图中分别画出三种不同的对称轴分别写出棋子P的坐标.14.已知△ABC,A(﹣4,1)、B(﹣1,﹣1)、C(﹣3,2).(1)请在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)请在同一平面直角坐标系中画出△A1B1C1关于直线m(直线m上各点的横坐标都是1)对称的△A2B2C2,并直接写出点A2,C2的坐标;(3)直接写出△ABC边上一点M(x,y),经过上述两次图形变换后得到△A2B2C2上的对应点M2的坐标.15.在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在如图给出的图中画出4个这样的△DEF.(每个3×3正方形格点图中限画一种,若两个图形中的对称轴是平行的,则视为一种)16.如图,△ABC中,A点坐标为(2,4),B点坐标为(﹣3,﹣2),C点坐标为(3,1).(1)在图中画出△ABC关于x轴对称的△A'B'C'并在下面填写出点A',B',C'的坐标:A'(,);B'(,);C'(,).(2)求出△ABC的面积为(填出结果即可)17.如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为点B关于y轴对称的点坐标为点C关于原点对称的点坐标为(2)若网格上的每个小正方形的边长为1,则△ABC的面积是.参考答案一.填空题1.1.5.2.(3,2).3.(4,﹣2),(4,2a﹣4).4.(3,2).5.6.6.﹣10.7.a=5,b=﹣1.8.﹣1.9.(﹣2,0).10.(﹣1,1).二.解答题11.解:(1)∵A(﹣4,3),C(﹣2,5),∴A′(﹣4,﹣3),C'(1,3);故答案为:﹣4,﹣3;1,3;(2)如图所示:即为所求;(3)△ABC与△PBC全等,这样的P点有3个.故答案为:3.12.解:(1)如图所示,△A1B1C1,△A2B2C2即为所求;(2)设点N的坐标为(x,y),点E的坐标为(p,q),∵点M与点N关于直线m对称,∴=﹣1,y=b,解得x=﹣2﹣a,y=b,∴点N的坐标为(﹣2﹣a,b),又∵点N与点E关于直线n对称,∴p=﹣2﹣a,=2,解得p=﹣2﹣a,q=4﹣b,∴点E的坐标为(﹣2﹣a,4﹣b).13.解:如图所示,棋子P的坐标分别为(﹣1,﹣1),(2,1),(0,﹣1),(﹣1,2).(答案不唯一)14.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求,点A2,C2的坐标分别为(6,﹣1)和(5,﹣2);(3)点M(x,y)关于x轴对称的点M1的坐标为(x,﹣y),点M1关于直线m对称的点M2的坐标为(﹣x+2,﹣y).∴经过上述两次图形变换后得到△A2B2C2上的对应点M2的坐标为(﹣x+2,﹣y).15.解:如图,△DEF即为所求.(答案不唯一)16.解:(1)如图所示,△A'B'C'即为所求:由图可得:A'(2,﹣4);B'(﹣3,2);C'(3,﹣1).故答案为:2,﹣4;﹣3,2;3,﹣1.(2)△ABC的面积为:6×6﹣×1×3﹣×3×6﹣×5×6=36﹣﹣9﹣15=10.故答案为:10.17.解:(1)点A关于x轴对称的点坐标为(﹣1,﹣3);点B关于y轴对称的点坐标为:(﹣2,0);点C关于原点对称的点坐标为:(3,1);故答案为:(﹣1,﹣3),(﹣2,0),(3,1);(2)△ABC的面积是:4×5﹣×2×4﹣×3×3﹣×1×5=9.故答案为:9.13.3等腰三角形一.选择题1.等腰三角形的一边长为6,一边长为2,则该等腰三角形的周长为()A.8B.10C.14D.10或142.在△ABC中,∠B=∠C,∠A=20°,则∠B的大小为()A.20°B.70°C.80°D.160°3.如图,△ABC是等边三角形,D是AC边的中点,延长BC到点E,使CE=CD,连接DE,则下列结论错误是()A.CE=AB B.BD=ED C.∠BDE=∠DCE D.∠ADE=120°4.下列条件不能得到等边三角形的是()A.有一个内角是60°的锐角三角形B.有一个内角是60°的等腰三角形C.顶角和底角相等的等腰三角形D.腰和底边相等的等腰三角形5.已知一个等腰三角形的两边长分别为2cm和4cm,那么该等腰三角形的周长为()A.8cm B.10cm C.8cm或10cm D.不能确定6.三个等边三角形的摆放位置如图所示,若∠1+∠2=110°,则∠3的度数为()A.90°B.70°C.45°D.30°7.如图,点D在△ABC的边AC上,且AD=BD=CD,若∠A=40°,则∠C=()A.40°B.50°C.60°D.45°8.如图,已知OC=CD=DE,且∠BDE=72°,则∠CDE的度数是()A.63°B.65°C.75°D.84°9.如图,在△ABC中,∠BAC=90°,AB=6,AC=8,BC=10,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠F AG=2∠ACF;④AD=2.4.A.①②③④B.①②③C.①②④D.③④10.已知三个城镇中心A、B、C恰好位于等边三角形的三个顶点,在A、B、C之间铺设光缆连接,实线为所铺的路线,四种方案中光缆铺设路线最短的是()A.B.C.D.二.填空题11.如果一等腰三角形的顶角为钝角,过这个等腰三角形的一个顶点的直线将这个等腰三角形分成两个等腰三角形,那么这个等腰三角形的顶角的度数为.12.已知O为平面直角坐标系的坐标原点,等腰三角形△AOB中,A(2,4),点B是x轴上的点,则△AOB的面积为.13.等腰三角形的一个内角为130°,则这个等腰三角形顶角的度数为.14.在△ABC中,AD为∠BAC的角平分线,AB∥DE,AC=7,CD=3,则△CDE的周长为.15.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若AB=6,AC=8,则△AMN的周长为.三.解答题16.如图,已知AD平分∠EAC,且AD∥BC,求证AB=AC.17.如图,在△ABC中,线段AB、AC的垂直平分线分别交BC于点P、Q两点,且BP=PQ=QC.试证明△APQ为等边三角形.18.用一条长为20cm的细绳能围成有一边的长为4cm的等腰三角形吗?说明理由.19.在△ABC中,∠B=∠C,点D在BC上,点E在AC上,连接DE且∠ADE=∠AED.{计算发现}(1)若∠B=70°,∠ADE=80°,则∠BAD=,∠CDE=.{猜想验证}(2)当点D在BC(点B,C除外)边上运动时(如图1),且点E在AC边上,猜想∠BAD与∠CDE的数量关系式,并证明你的猜想.{拓展思考}(3)①当点D在BC(点B,C除外)边上运动时(如图2),且点E在AC边上,若∠BAD=25°,则∠CDE=.②当点D在BC(点B,C除外)边上运动时(如图2),且点E在AC边所在的直线上,若∠BAD=25°,则∠CDE=.参考答案与试题解析一.选择题1.【解答】解:①当2为底时,其它两边都为6,2、6、6可以构成三角形,则该等腰三角形的周长为14;②当2为腰时,其它两边为2和6,∵2+2<6,∴不能构成三角形,故舍去.∴这个等腰三角形的周长为14.故选:C.2.【解答】解:因为三角形的内角和是180°,∠A=20°,∠B=∠C,那么∠B=(180°﹣20°)=80°.故选:C.3.【解答】解:∵△ABC是等边三角形,D是AC边的中点,∴AB=AC,CD=AC,∴CD=AB,∵CE=CD,∴CE=AB,A选项结论正确,不符合题意;∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵D是AC边的中点,∴∠DBC=30°,∵CD=CE,∴∠E=∠EDC=∠ACB=30°,∴∠DBC=∠E,∴BD=ED,B选项结论正确,不符合题意;∵△ABC是等边三角形,D是AC边的中点,∴∠BDC=90°,∴∠BDE=120°,∵∠DCE=120°﹣∠ACB=120°,∴∠BDE=∠DCE,C选项结论正确,不符合题意;∠ADE=180°﹣30°=150°,D选项错误,符合题意;故选:D.4.【解答】解:因为有一个内角是60°的等腰三角形是等边三角形,所以A选项符合题意;所以B选项不符合题意;因为顶角和底角相等的等腰三角形是等边三角形,所以C不符合题意;因为腰和底边相等的等腰三角形是等边三角形,所以D选项不符合题意.故选:A.5.【解答】解:当4cm的边长为腰时,三角形的三边长为:4cm、4cm、2cm,满足三角形的三边关系,其周长为4+2+4=10(cm),当2cm的边长为腰时,三角形的三边长为:2cm、2cm、4cm,此时4=2+2,不满足三角形的三边关系,所以此时不存在三角形,故选:B.6.【解答】解:如图,∵∠3+∠6+60°=180°,∠2+∠4+60°=180°,∠1+∠5+60°=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=540°﹣180°,∴∠3=180°﹣(∠1+∠2)=70°,故选:B.7.【解答】解:∵AD=BD=CD,∴∠ABD=∠A,∠C=∠DBC,∵∠A=40°,∴∠C=(180°﹣40°×2)÷2=50°.故选:B.8.【解答】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=72°,∴∠ODC=24°,∵∠CDE+∠ODC=180°﹣∠BDE=108°,∴∠CDE=108°﹣∠ODC=84°.故选:D.9.【解答】解:∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠F AG=2∠ACF,故③正确;∵∠BAC=90°,AD是高,=ABAC=ADBC,∴S△ABC∵AB=6,AC=8,BC=10,∴AD==4.8,故④错误,故选:B.10.【解答】解:设等边三角形ABC的边长为a,A、铺设的电缆长为a+a=2a;C、如图1:∵△ABC为等边三角形,AD⊥BC,∴D为BC的中点,∴BD=DC=BC=a,在Rt△ABD中,根据勾股定理得:AD===,则铺设的电缆长为a+a=a;B、由垂线段最短得:方案B中光缆比方案C中长;D、如图2所示,∵△ABC为等边三角形,且O为三角形三条高的交点,∴设DO=x,则BO=2x,BD=,故x2+()2=(2x)2,解得:x=a,则BO=a,则铺设的电缆长为AO+OB+OC=3×a=a,∵a<a<2a,∴方案D中光缆最短;故选:D.二.填空题(共5小题)11.【解答】解:①如图,∠ACB是钝角,直线CD将这个等腰三角形分成两个等腰三角形,AC=BC=BD,AD=CD,设∠B=x°,∵AC=BC,∴∠A=∠B=x°,∵AD=CD,∴∠ACD=∠A=x°,∴∠BDC=∠A+∠ACD=2x°,∵BC=BD,∴∠BCD=∠BDC=2x°,∴∠ACB=3x°,∴x+x+3x=180,解得x=36°,∴顶角是108°.②若过A或B作直线,则不能将这个等腰三角形分成两个等腰三角形.综上所述,这个等腰三角形的顶角的度数为108°.故答案为:108°.12.【解答】解:如图所示:过点A作AE⊥x轴于点E,∵点O(0,0),A(2,4),∴AE=4,OE=2,OA==2,=AE==8;当OA=AB时,B的坐标为(4,0),此时S△AOB当OA=OB时,B的坐标为(,0),此时S=AE=×4=4;△AOB=AE==10;当OB=AB时,B的坐标为(5,0),此时S△AOB∴△AOB的面积为:8或4或10.故答案为:8或4或10.13.【解答】解:∵若这个130°的内角是底角,则这两个底角的和就大于180°,∴等腰三角形的一个内角为130°,则这个等腰三角形顶角的度数为130°,故答案为130°.14.【解答】解:∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵AB∥DE,∴∠BAD=∠ADE,∴∠DAE=∠ADE,∴AE=DE,∴△CDE的周长=CE+DE+CD=AE+CE+CD=AC+CD,∵AC=7,CD=3,∴△CDE的周长为7+3=10,故答案为:10.15.【解答】解:∵EB平分∠ABC,∴∠ABE=∠EBC,∵MN∥BC,∴∠EBC=∠BEM,∴∠ABE=∠BEM,∴BM=EM同理可得CN=EN,∴△AMN的周长=AM+ME+EN+AN=AM+BM+CN+AN=AB+AC,∵AB=6,AC=8,∴△AMN的周长=6+8=14,故答案为:14.三.解答题(共4小题)16.【解答】证明:∵AD平分∠EAC,∴∠1=∠2,∵AD∥BC,∴∠1=∠B,∠2=∠C,∴∠B=∠C,∴AB=AC.17.【解答】证明:∵线段AB、AC的垂直平分线分别交BC于点P、Q两点,∴BP=AP,QC=AQ,∵BP=PQ=QC,∴AP=AQ=PQ,∴△APQ是等边三角形.18.【解答】解:能围成有一边的长为4cm的等腰三角形.理由:若腰长为4cm,则底边长为20﹣2×4=12(cm),∵4+4+<12,∴不能围成腰长为4cm的等腰三角形;若底边长为4cm,则腰长为×(20﹣4)=8(cm),∵4+8>8,∴能围成底边长为4cm的等腰三角形,综上,可以围成底边是4cm的等腰三角形.19.【解答】解:(1)∵∠B=∠C,∠ADE=∠AED,∠B=70°,∠ADE=80°,∴∠C=70°,∠AED=80°,∴∠CDE=∠AED﹣∠C=10°,∠DAE=180°﹣∠ADE﹣∠AED=20°,∴∠BAD=180°﹣∠B﹣∠C﹣∠DAE=20°,故答案为:20°;10°;(2)∠BAD=2∠CDE.理由如下:设∠B=x,∠ADE=y,∵∠B=∠C,∴∠C=x,∵∠AED=∠ADE,∴∠AED=y,∴∠CDE=∠AED﹣∠C=y﹣x,∠DAE=180°﹣∠ADE﹣∠AED=180°﹣2y,∴∠BAD=180°﹣∠B﹣∠C﹣∠DAE=180°﹣x﹣x﹣(180°﹣2y)=2(y﹣x),∴∠BAD=2∠CDE;(3)①由(2)知,∠BAD=2∠CDE,∴∠CDE=∠BAD=,故答案为:12.5°;②当E点在AC的延长线上时,AD<AC<AE,此时∠ADE≠∠AED,故点E不可能在AC的延长线上,分两种情况:当点E在线段AC上时,与①相同,∠CDE=12.5°;当点E在CA的延长线上时,如图2,在AC边上截取AE′=AE,连接DE′,∵∠ADE =∠AED,∴AE=AD=AE′,∴∠ADE=∠AE′D,由①知,∠CDE′=12.5°,∴∠ADE+∠ADE′=∠AED+∠AE′D,∵∠ADE+∠ADE′+∠AED+∠AE′D=180°。
八年级数学上册各单元练习题
第12章数的开方练习1. 说出下列各数的平方根:49.(1)64;(2)0.25;(3)812. 用计算器计算:(1)676;(2)8784.27;(3)225.4(精确到0.01).3. 下列说法正确吗?为什么?如果不正确,那么请你写出正确答案.(1)0.09的平方根是0.3;(2)25=±5.2. 立方根问题现有一只体积为216cm3的正方体纸盒,它的棱长是多少?思考这个实际问题,在数学上可以提出怎样的一个计算问题?从这里可以抽象出一个什么数学概念?复习题A组1. 根据表格中所给信息填空:2. 将下列各数按从小到大的顺序排列,用“<”号连结起来:22, 5, -π/2, 0, -1.6。
B 组3. 观察下列各方格图中的带阴影的图形,如果它们都可以剪开,重新拼成正方形,那么所拼成的正方形的边长各为多少?这些正方形一样大吗?(如果你有兴趣,可以试试如何剪拼成一个正方形)(第3题)4. 如果把棱长分别为2.15cm 、3.24cm 的两个正方体铁块熔化,制成一个大的正方体铁块,那么这个大正方体的棱长有多大?(用一个式子表示,并用计算器进行计算,最后结果保留2个有效数字)C 组5.(1)用计算器计算:=+2243________________; =+224433_______________; =+22444333_____________; =+2244443333____________.(2)观察(1)中各式的计算结果,你能发现什么规律?(3)试运用发现的规律猜想出下式的结果,并用计算器验证你的猜想。
=+224444433333__________。
第13章 整式的乘除练习1. 判断下列计算是否正确,并简要说明理由: (1) a ·a 2=a 2;(2) a +a 2=a 3; (3)a 3·a 3=a 9;(4)a 3+a 3=a 6.2. 计算:(1) 102×105;(2) a 3·a 7;(3) x ·x 5·x 7.练习1. 判断下列计算是否正确,并简要说明理由: (1) (a 3)5=a 8; (2) a 5·a 5=a 15; (3) (a 2)3·a 4=a 9.2. 计算:(1) (22)2;(2) (y 2)5;(3) (x 4)3;(4) (y 3)2·(y 2)3.练习1. 判断下列计算是否正确,并说明理由:(1) (xy 3)2=xy 6;(2) (-2x )3=-2x 3. 2. 计算:(1) (3a )2;(2) (-3a )3;(3)(ab2)2;(4)(-2×103)3.练习1. 填空:(1)a5·()=a9;(2)()·(-b)2=(-b)7;(3)x6÷()=x;(4)()÷(-y)3=(-y)7.2. 计算:(1)a10÷a2;(2)(-x)9÷(-x)3;(3)m8÷m2·m3;(4)(a3)2÷a6.习题13.11. 计算(以幂的形式表示):(1)93×95;(2)a7·a8;(3)35×27;(4)x2·x3·x4.2. 计算(以幂的形式表示):(1)(103)3;(2)(a3)7;(3)(x2)4;(4)(a2)3·a5.3. 判断下列等式是否正确,并说明理由:(1)a2·a2=(2a)2;(2)a2·b2=(ab)4;(3)a12=(a2)6=(a3)4=(a5)7.4. 计算(以幂的形式表示):(1)(3×105)2;(2)(2x)2;(3)(-2x)3;(4)a2·(ab)3;(5)(ab)3·(ac)4.5. 计算:(1)x12÷x4;(2)(-a)6÷(-a)4;(3)(p3)2÷p5;(4)a10÷(-a2)3.6. 判断下列计算是否正确,错误的给予纠正:(1)(a2b)2=a2b2;(2)a5÷b2=a3b;(3)(3xy2)2=6x2y4;(4)(-m)7÷(-m)2=m5.7. 计算:(1)(a3)3÷(a4)2;(2)(x2y)5÷(x2y)3;(3)x2·(x2)3÷x5;(4)(y3)3÷y3÷(-y2)2.8. 用多少张边长为a的正方形硬纸卡片,能拼出一个新的正方形?试写出三个答案,并用不同的方法表示新正方形的面积.从不同的表示方法中,你能发现什么?练习1. 计算:(1)3a2·2a3;(2)(-9a2b3)·8ab2;(3)(-3a2)3·(-2a3)2;(4)-3xy2z·(x2y)2.2. 光速约为3×108米/秒,太阳光射到地球上的时间约为5×102秒,则地球与太阳的距离约是多少米?3. 小明的步长为a厘米,他量得一间屋子长15步,宽14步,这间屋子的面积有多少平方厘米练习1. 计算:(1)(x+5)(x-7);(2)(x+5y)(x-7y);(3)(2m+3n)(2m-3n);(4)(2a+3b)(2a+3b).2. 小东找来一张挂历纸包数学课本.已知课本长a厘米,宽b厘米,厚c厘米,小东想将课本封面与封底的每一边都包进去m厘米.问小东应在挂历纸上裁下一块多大面积的长方形?习题13.21. 计算:(1)5x3·8x2;(2)11x12·(-12x11);(3)2x2·(-3x)4;(4)(-8xy2)·-(1/2x)3.2. 世界上最大的金字塔——胡夫金字塔高达146.6米,底边长230.4米,用了约2.3×106块大石块,每块重约2.5×103千克.请问:胡夫金字塔总重约多少千克?3. 计算:(1)-3x·(2x2-x+4);(2)5/2xy·(-x3y2+4/5x2y3).4. 化简:(1)x(1/2x+1)-3x(3/2x-2);(2)x2(x-1)+2x(x2-2x+3).5. 一块边长为xcm的正方形地砖,被裁掉一块2cm宽的长条.问剩下部分的面积是多少?6. 计算:(1)(x+5)(x+6);(2)(3x+4)(3x-4);(3)(2x+1)(2x+3);(4)(9x+4y)(9x-4y).7. 一块长a厘米、宽b厘米的玻璃,长、宽各减少c厘米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小).问台面面积是多少?§13.3 乘法公式1.两数和乘以这两数的差做一做计算:(a+b)(a-b).这两个特殊的多项式相乘,得到的结果特别简洁:(a+b)(a-b)=a2-b2.这就是说,两数和与这两数差的积,等于这两数的平方差.试一试图13.3.1先观察图13.3.1,再用等式表示下图中图形面积的运算:=-.练习1. 计算:(1)(2x+1/2)(2x-1/2);(2)(-x+2)(-x-2);(3)(-2x+y)(2x+y);(4)(y-x)(-x-y).2. 计算:(1) 498×502;(2) 999×1001.3. 用一定长度的篱笆围成一个矩形区域,小明认为围成一个正方形区域时面积最大,而小亮认为不一定.你认为如何?练习1. 计算:(1) (x +3)2;(2) (2x +y )2. 2. 计算:(1) (x -3)2;(2) (2m -n )2. 3. 计算:(1) (-2m +n )2;(2) (-2m -n )2.4. 要给一边长为a 米的正方形桌子铺上正方形的桌布,桌布的四周均超出桌面0.1米,问需要多大面积的桌布?习题13.31. 计算:(1) (a +2b )(a -2b );(2) (2a +5b )(2a -5b ); (3) (-2a -3b )(-2a +3b );(4) (-31a +21b )(31a +21b ). 2. 计算:(1) (3a +b )2;(2) (2a +31b )2;(3) (2a +1)(-2a -1). 3. 计算:(1) (2a -4b )2;(2)(21a -31b )2. 4. 填空:(1)a2+6a+=(a+)2;(2)4x2-20x+=(2x-)2;(3)a2+b2=(a-b)2+;(4)(x-y)2+=(x+y)2.5. 有一块边长为a米的正方形空地,现准备将这块空地四周均留出b 米宽修筑围坝,中间修建喷泉水池.你能计算出喷泉水池的面积吗? 练习1. 计算:(1)(3ab-2a)÷a;(2)(5ax2+15x)÷5x;(3)(12m2n+15mn2)÷6mn;(4)(x3-2x2y)÷(-x2).2. 计算:(1)(4a3b3-6a2b3c-2ab5)÷(-2ab2);(2)x2y3-1/2x3y2+2x2y2÷1/2xy2.习题13.41.计算:(1)-21a2b3÷7a2b;(2)7a5b2c3÷(-3a3b);(3)-1/2a4x4÷-1/6a3x2;(4)(16x3-8x2+4x)÷(-2x).2.计算:(1)(6a3b-9a2c)÷3a2;(2)(4a3-6a2+9a)÷(-2a)(3)(-4m4+20m3n-m2n2)÷(-4m2);(4)x2y-1/2xy2-2xy÷1/2xy.3.计算:(1)(12p3q4+20p3q2r-6p4q3)÷(-2pq)2;(2)[4y(2x-y)-2x(2x-y)]÷(2x-y).4. 一颗人造地球卫星的速度是8×103米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?5. 聪聪在一次数学课外活动中发现了一个奇特的现象:他随便想一个非零的有理数,把这个数平方,再加上这个数,然后把结果除以这个数,最后减去这个数,所得结果总是1.你能说明其中的道理吗? 练习1. 判断下列因式分解是否正确,并简要说明理由.如果不正确,请写出正确答案.(1)4a2-4a+1=4a(a-1)+1;(2)x2-4y2=(x+4y)(x-4y).2. 把下列多项式分解因式:(1)a2+a;(2)4ab-2a2b;(3)9m2-n2;(4)2am2-8a;(5)2a2+4ab+2b2.3. 丁丁和冬冬分别用橡皮泥做了一个长方体和圆柱体,放在一起,恰好一样高.丁丁和冬冬想知道哪一个体积较大,但身边又没有尺子,只找到了一根短绳,他们量得长方体底面的长正好是3倍绳长,宽是2倍绳长,圆柱体的底面周长是10倍绳长.你知道哪一个体积较大吗?大多少?(提示:可设绳长为a厘米,长方体和圆柱体的高均为h厘米)习题13.51. 把下列多项式分解因式:(1)3x+3y;(2)-24m2x-16n2x;(3)x2-1;(4)(xy)2-1;(5)a4x2-a4y2;(6)3x2+6xy+3y2;(7)(x-y)2+4xy;(8)4a2-3b(4a-3b).2. 先将下列代数式分解因式,再求值:2x(a-2)-y(2-a),其中a=0.5,x=1.5,y=-2.3. 在一块边长为a=6.6米的正方形空地的四角均留出一块边长为b =1.7米的正方形修建花坛,其余的地方种草坪.问草坪的面积有多大?4. 一块边长为a米的正方形广场,扩建后的正方形边长比原来长2米,问扩建后的广场面积增大了多少?你会读吗复习题A组1. 计算:(1)a10·a8;(2)(xy)2·(xy)3;(3)[(-x)3]2;(4)[(-x)2]3;(5)(-2mn2)3;(6)(y3)2·(y2)4.2. 计算:(1)(4×104)×(2×103);(2)2a·3a2;(3)(-3xy)·(-4yz);(4)(-2a2)2·(-5a3);(5)(-3x)·(2x2-x-1);(6)(x+2)(x+6);(7)(x-2)(x-6);(8)(2x-1)(3x+2).3. 计算:(1)(x+2)(x-2);(2)(m+n)(m-n);(3)(-m-n)(-m+n);(4)(-m-n)(m+n);(5)(-m+n)(m-n);(6)2/3x+3/4y2.4. 计算:(1)20012-2002×2000;(2)(2x+5)2-(2x-5)2;(3)-12xy·3x2y-x2y·(-3xy);(4)2x·1/2x-1-3x1/3x+2/3;(5)(-2x2)·(-y)+3xy·1-1/3x;(6)(-6x2)2+(-3x)3·x.5. 计算:(1)a·a4÷a3;(2)(-x)6÷(-x)2·(-x)3;(3)27x8÷3x4;(4)-12m3n3÷4m2n3;(5)(6x2y3z2)2÷4x3y4;(6)(-6a2b5c)÷(-2ab2)2.6. 计算:(1)(6a4-4a3-2a2)÷(-2a2);(2)(4x3y+6x2y2-xy3)÷2xy;(3)(x4+2x3-1/2x2)÷(-1/2x)2;(4)(2ab2-b3)2÷2b3.7. 计算:[(x-2y)2+(x-2y)(x+2y)-2x(2x-y)]÷2x.8. 把下列多项式分解因式:(1)x2-25x;(2)2x2y2-4y3z;(3)am-an+ap;(4)x3-25x;(5)1-4x2;(6)25x2+20xy+4y2;(7)x3+4x2+4x.9. 先化简,再求值:(1)3a(2a2-4a+3)-2a2(3a+4),其中a=-2;(2)(a-3b)2+(3a+b)2-(a+5b)2+(a-5b)2,其中a=-8,b=-6.10. 一个正方形的边长增加3cm,它的面积增加了45cm2.求这个正方形原来的边长.若边长减少3cm,它的面积减少了45cm2,这时原来边长是多少呢?11. 1千克镭完全蜕变后,放出的热量相当于3.75×105千克煤放出的热量,据估计地壳里含1×1010千克镭.试问这些镭完全蜕变后放出的热量相当于多少千克煤放出的热量.B组12. 求下列各式的值:(1)(3x4-2x3)÷(-x)-(x-x2)·3x,其中x=-1/2;(2)[(ab+1)(ab-2)-2a2b2+2]÷(-ab),其中a=3/2,b=-4/3.13. 已知(x+y)2=1,(x-y)2=49,求x2+y2与xy的值.14. 已知a+b=3,ab=2,求a2+b2的值.15. 已知a-b=1,a2+b2=25,求ab的值.16. 把下列各式分解因式:(1)x(x+y)-y(x+y);(2)(a+b)2+2(a+b)+1;(3)4x4-4x3+x2;(4)x2-16ax+64a2;(5)(x-1)(x-3)+1;(6)(ab+a)+(b+1).C组17. 一个长方形的长增加4cm,宽减少1cm,面积保持不变;长减少2cm,宽增加1cm,面积仍保持不变.求这个长方形的面积.18. 当整数k取何值时,多项式x2+4kx+4恰好是另一个多项式的平方?19. 试判断下列说法是否正确,并说明理由:(1)两个连续整数的平方差必是奇数;(2)若a为整数,则a3-a能被6整除.第14章勾股定理练习1. 如图,小方格都是边长为1的正方形,求四边形ABCD的面积与周长.(精确到0.1)2. 假期中,王强和同学到某海岛上去探宝旅游,按照探宝图(如图),他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,再折向北走到6千米处往东一拐,仅走1千米就找到宝藏,问登陆点A到宝藏埋藏点B的直线距离是多少千米?(第1题)(第2题)2. 直角三角形的判定古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后如图14.1.10那样用桩钉钉成一个三角形,他们认为其中一个角便是直角.你知道这是什么道理吗?练习1. 设三角形的三边长分别等于下列各组数,试判断各三角形是否是直角三角形.若是,指出哪一条边所对的角是直角.(1)12,16,20;(2)8,12,15;(3)5,6,8.2. 有哪些方法可以判断一个三角形是直角三角形?习题14.11. 将图14.1.6沿中间的小正方形的对角线剪开,得到如图所示的梯形.利用此图的面积表示式验证勾股定理.(第1题)2. 已知△ABC中,∠B=90°,AC=13cm,BC=5cm,求AB的长.3. 已知等腰直角三角形斜边的长为2cm,求这个三角形的周长.4. 如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心、正方形边长的一半为半径作圆.试探索这三个圆的面积之间的关系.(第4题)(第5题)5. 如图,已知直角三角形ABC的三边分别为6、8、10,分别以它的三边为直径向上作三个半圆,求图中阴影部分的面积.6. 试判断以如下的a、b、c为三边长的三角形是不是直角三角形。
初中数学:13.1-13.2 轴对称、画轴对称图形
N
轴对称图形
区别
一个图形
两个图形成轴对称
两个图形
1.沿一条直线折叠,直线两旁的部分能够互相重合.
2.都有对称轴.
联系 3.如果把一个轴对称图形沿对称轴分成两个图形, 那么这两个图形关于这条直线对称.
4.如果把两个成轴对称的图形看成一个图形,那么 这个图形就是轴对称图形.
例3 如图,△ABC和△A′B′C′关于直线MN对称,点A′,B′,
B C
M A
D
N
C' B'
解:∵ 五边形ABCC′B′是轴对称图形 ∴ ∠B′=∠B=120°,∠C′=∠C=110°,
CD=C′D=1/2CC′=2 cm 又∵五边形ABCC′B′的内角和为540°, ∴ ∠BAB′=540°-∠B′-∠B-∠C′-∠C=80°
B C
M A
D
N
C' B'
初中数学
总结
证明两条线段相等 线段的垂直平分线的性质
MN⊥AB,AP=BP
AM=BM,AN=BN
线段的垂直平分线的判定
证明两线的位置关系(垂直平分)
互逆定理
例4 如图,已知线段AB,用直尺和圆规作AB的垂直平分线. 思路:找两个到点A、B距离相等的点.
A
B
例4 如图,已知线段AB,用直尺和圆规作AB的垂直平分线.
关键词
中点 垂直 直线MN 线段AA
M
P
A
A′
N
图形轴对称的性质
如果两个图形关于某条直线对称,那么对称轴是任何一对 对应点所连线段的垂直平分线.
M
A
A'
B C
B' D D'
沪科版八年级数学上册第13章测试题及答案
沪科版八年级数学上册第13章测试题及答案13.1 三角形中的边角关系1、如果一个三角形的两边长分别为2和4,则第三边长可能是()A、2B、4C、6D、82、下列长度的三条线段能组成三角形的是()A、3,4,8B、5,6,11C、5,6,10D、1,2,33、下列能判定三角形是等腰三角形的是()A、有两个角为30°,60°B、有两个角为40°,80°C、有两个角为50°,80°D、有两个角为100°,120°4、已知△ABC的外角∠CBE,∠BCF的角平分线BP,CP交于P点,则∠BPC是()A、钝角B、锐角C、直角D、无法确定5、如图,∠2 大于∠1的是()A、 B、C、 D、6、下列说法不正确的是()A、三角形按边分可分为不等边三角形、等腰三角形B、等腰三角形的内角可能是钝角或直角C、三角形外角一定是钝角D、三角形的中线把三角形分成面积相等的两部分7、如图,已知D为BC上一点,∠B=∠1,∠BAC=78°,则∠2=()A、78°B、80°C、50°D、60°8、如图,∠1=________度.9、如图,已知BE和CF是△ABC的两条高,∠ABC=48°,∠ACB=76°,则∠FDE=________.10、如图,CE是△ABC的外角∠ACD的平分线,若∠B=40°,∠ACE=60°,则∠A =________度.11、如图,∠A=90°,∠B=21°,∠C=32°,求∠BDC的度数.12、如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,判断∠BAC,∠B,∠E之间的关系,并说明理由.参考答案1、B解析:设第三边长为x,则由三角形三边关系定理得4﹣2<x<4+2,即2<x<6.因此,本题的第三边应满足2<x<6.2,6,8都不符合不等式2<x<6,只有4符合不等式.故选B.2、C解析:3+4<8,则3,4,8不能组成三角形,A不符合题意;5+6=11,则5,6,11不能组成三角形,B不合题意;5+6>10,则5,6,10能组成三角形,C符合题意;1+2=3,则1,2,3不能组成三角形,D不合题意.故选C.3、C解析:A、因为有两个角为30°,60°,则第三个角为90°,所以此选项不正确; B、因为有两个角为40°,80°,则第三个角为60°,所以此选项不正确;C、因为有两个角为50°,80°,则第三个角为50°,有两个角相等,所以此选项正确;D、因为100°+120°>180°,所以此选项不正确.故选C.4、B解析:∵△ABC的外角平分线BP,CP交于P点,∴∠PBC= ∠EBC,∠BCP= ∠BCF.∵∠CBE,∠BCF是△ABC的两个外角,∴∠CBE+∠BCF=360°﹣(180°﹣∠A)=180°+∠A,∴∠PBC+∠BCP= (∠EBC+∠BCF)= (180°+∠A)=90°+ ∠A.∵在△PBC中,∠BPC=180°﹣(∠PBC+∠BCP)=180°﹣(90°+ ∠A)=90°﹣∠A<90°,∴∠BPC是锐角.故选B.5、B解析:A、∠2 和∠1的关系不能确定,故错误; B、∠2>∠1,故正确;C、∠2 和∠1的关系不能确定,故错误;D、∠2=∠1,故错误,故选B.6、C解析:三角形按边分可分为不等边三角形、等腰三角形,故A不正确;等腰三角形的内角可能是钝角或直角,故B不正确;三角形外角可能是钝角、直角或锐角,故C正确;三角形的中线把三角形分成面积相等的两部分,故D不正确;故选C.7、A解析:∵∠2=∠B+∠BAD,∠BAC=∠1+∠BAD,又∵∠B=∠1,∴∠2=∠BAC,∵∠BAC=78°,∴∠2=78°.故选A.8、130解析:如图,∠2=180°﹣100°=80°,则∠1=50°+∠2=130°.9、124°解析:(方法一)在△ABC中,∵∠A+∠ABC+∠ACB=180°,∴∠A=180°﹣48°﹣76°=56°.在四边形AFDE中,∵∠A+∠AFC+∠AEB+∠FDE=360°,又∵∠AFC=∠AEB=90°,∠A=56°,∴∠FDE=360°﹣90°﹣90°﹣56°=124°.(方法二)∵∠AEB=∠ACB+∠EBC=90°,∠AFC=∠ABC+∠FCB=90°,∴∠CBE=14°,∠FCB=42°.∵∠BDC=180°﹣∠CBE﹣∠FCB=124°,∴∠FDE=124°.10、80解析:∵∠ACE=60°,CE是△ABC的外角∠ACD的平分线,∠ACD=2∠ACE=120°,∠ACD=∠A+∠B,∠B=40°,∴∠A=∠ACD﹣∠B=80°.11、解:如图,连接AD并延长AD至点E,∵∠BDE=∠BAE+∠B,∠CDE=∠CAD+∠C,∴∠BDC=∠BDE+∠CDE=∠CAD+∠C+∠BAD+∠B=∠BAC+∠B+∠C.∵∠A=90°,∠B=21°,∠C=32°,∴∠BDC=90°+21°+32°=143°.12、解:∠BAC=∠B+2∠E.理由:在△BCE中,∠DCE=∠B+∠E.因为CE是△ABC的外角∠ACD的平分线,所以∠DCE=∠ACE.在△ACE中,∠BAC=∠E+∠ACE=∠E+∠B+∠E=∠B+2∠E,即∠BAC=∠B+2∠E.13.2 命题与证明1.下列语句属于命题的是()A.等角的余角相等B.两点之间,线段最短吗C.连接P,Q两点D.花儿会不会在春天开放2.下列命题为真命题的是()A.对顶角相等B.同位角相等C.若a2=b2,则a=bD.同旁内角相等,两直线平行3.能说明命题“对于任何实数a,a2≥a”是假命题的一个反例可以是()A.a=﹣2B.a=1C.a=0D.a=0.24.下列命题:①同旁内角互补,两直线平行;②若|a|=|b|,则a=b;③直角都相等;④相等的角是对顶角.它们的逆命题是真命题的个数是()A.4B.3C.2D.15.两个角的两边分别平行,那么这两个角()A.相等B.互补C.互余D.相等或互补6.下列说法正确的是()A.相等的角是对顶角B.同旁内角相等,两直线平行C.直线外一点到这条直线的垂线段,叫做点到直线的距离D.经过直线外一点,有且只有一条直线与这条直线平行7.“如果∠A和∠B的两边分别平行,那么∠A和∠B相等”是()A.真命题B.假命题C.定理D.以上选项都不对8.在一次1 500米比赛中,有如下的判断.甲说:丙第一,我第三.乙说:我第一,丁第四.丙说:丁第二,我第三.结果是每人的两句话中都只说对了一句,则可判断第一名是()A.甲B.乙C.丙D.丁9.写出“同位角相等,两直线平行的题设为________,结论为________.10.命题“直角三角形两锐角互余”的逆命题是:________.11.在四边形ABCD中,给出下列论断:①AB∥DC;②AD=BC;③∠A=∠C,以其中两个作为题设,另外一个作为结论,用“如果…那么…”的形式,写出一个你认为正确的结论:________.12.“如果一个数是整数,那么它是有理数”这个命题的条件是________.13.证明命题“三角形的三内角和为180°”是真命题.14.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.(1)一个角的补角大于这个角;(2)已知直线a、b、c若a⊥b,b⊥c,则a⊥c.参考答案与解析1.A解析:A是用语言可以判断真假的陈述句,是命题,B,C,D均不是可以判断真假的陈述句,都不是命题.故选A.2.A解析:A.对顶角相等,所以A选项为真命题; B.两直线平行,同位角相等,所以B选项为假命题;C.若a2=b2,则a=b或a=﹣b,所以C选项为假命题;D.同旁内角相等,两直线平行,所以D选项为假命题.故选A.3.D解析:当a=0.2时,a2=0.04,所以a2<a.故选D.4. B解析:①同旁内角互补,两直线平行的逆命题是两直线平行,同旁内角互补,是真命题;②若|a|=|b|,则a=b的逆命题是若a=b,则|a|=|b|,是真命题;③直角都相等的逆命题是相等的角是直角,是假命题;④相等的角是对项角的逆命题是对顶角是相等的角,是真命题;它们的逆命题是真命题的个数是3.故选B.5.D解析:两个角的两边分别平行,这两个角可能是同位角或同旁内角,因此相等或互补.故选D.6.D解析:A.相等的角不一定是对顶角,故错误;B.同旁内角互补,两直线平行,故错误;C.直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故错误;D.经过直线外一点,有且只有一条直线与已知直线平行,故正确.故选D.7. B解析:如图,∠A和∠B的关系是相等或互补.∴“如果∠A和∠B的两边分别平行,那么∠A和∠B相等”是假命题,故选B.8. B解析:根据分析,知第一名应是乙.故选B.9.同位角相等;两直线平行解析:命题中,已知的事项是“同位角相等”,由已知事项推出的事项是“两直线平行”,所以“同位角相等”是命题的题设部分,“两直线平行”是命题的结论部分.故答案:同位角相等;两直线平行.10.如果三角形有两个角互余,那么这个三角形是直角三角形解析:因为“直角三角形两锐角互余”的题设是“三角形是直角三角形”,结论是“两个锐角互余”,所以逆命题是“如果三角形有两个角互余,那么这个三角形是直角三角形”.11.如果AB∥DC,∠A=∠C,那么AD=BC12.一个数是整数解析:“如果一个数是整数,那么它是有理数”这个命题的条件是“一个数是整数”.13.已知:∠A,∠B,∠C为△ABC的三个内角,求证:∠A+∠B+∠C=180°,证明:作射线BD,过C点作CE∥AB,如图,∵CE∥AB,∴∠1=∠A,∠2=∠B,而∠C+∠1+∠2=180°,∴∠A+∠B+∠C=180°.所以命题“三角形的三内角和为180°”是真命题.14.解:(1)一个角的补角大于这个角,是假命题,例如这个角是直角或钝角时,这个角的补角等于或小于这个角;(2)已知直线a,b,c若a⊥b,b⊥c,则a⊥c,是假命题,例如若a⊥b,b⊥c,则a∥c.。
冀教版八年级数学上册第13章测试题及答案
冀教版八年级数学上册第13章测试题及答案13.1 命题与证明1.如图13–1–1所示,下面证明正确的是( )A.因为AB∥CD,所以∠1=∠3 B.因为∠2=∠4,所以AB∥CDC.因为AE∥CF,所以∠2=∠4 D.因为∠1=∠4,所以AE∥CD2.如图13–1–2所示,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为( )A.70°B.80°C.90°D.100°图13–1–1 图13–1–2 图13–1–33.如图13–1–3所示.①∵∠1=∠2(已知),∴∥( ).②∵∠3=∠4(已知),∴∥( ).③∵+ =180°,∴AB∥CD.4.请你写出下列命题的逆命题.并判断真假性,若是假命题,请举出一个反例.(1)如果a能被4整除,那么a一定是偶数;(2)若|a|=|b|,则a=b.5.如图13–1–4所示,在△ABC中,D,E,F分别为AB,AC,BC上的点,且DE∥BC,EF∥AB.求证:∠ADE=∠EFC.图13–1–4参考答案1.B 解析:本题必须找到平行线与角之间的关系,∠2与∠4是由直线AC截直线AB和CD得到的同位角,根据同位角相等,两直线平行可知B正确.2.B 解析:设AB与EC交于点F,∵AB∥CD,∴∠EFB=∠C.∵∠C=125°,∴∠EFB=125°.又∵∠EFB=∠A+∠E,∠A=45°,∴∠E=125°-45°=80°.3.①AD BC 内错角相等,两直线平行②AB CD 内错角相等,两直线平行③∠ABC∠BCD(或∠BAD∠ADC)4.解:(1)如果a是偶数,那么a能被4整除.假命题.反例:如a=2是偶数,但2不能被4整除.(2)若a=b,则a=b.真命题.5.证明:∵DE∥BC(已知),∴∠ADE=∠B (两直线平行.同位角相等).又∵EF∥AB(已知),∴∠EFC=∠B(两直线平行,同位角相等).∴∠ADE=∠EFC(等量代换).13.2全等图形一、选择题1.如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是()A. ASAB. SSSC. SASD. AAS2.下列说法正确的是()A. 能够完全重合的两个图形叫做全等图形B. 周长相等的三角形是全等三角形C. 各角相等的三角形是全等三角形D. 面积相等的三角形是全等三角形3.已知△ABC≌△DEF,∠A=80°,∠E=40°,则∠F等于()A. 80°B. 40°C. 120°D. 60°4.已知△ABC与△DEF全等,∠B与∠F,∠C与∠E是对应角,那么①BC=EF;②∠C的平分线与∠E的平分线相等;③AC边上的高与DE边上的高相等;④AB边上的中线与DE边上的中线相等.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个5.下列说法错误的是()A. 关于某直线对称的两个图形一定能完全重合B. 全等的两个三角形一定关于某直线对称C. 轴对称图形的对称轴至少有一条D. 线段是轴对称图形6.如图,在△ABC中,∠BAC=45°,以AB为直径的圆分别交BC,AC于D,E两点,AD交BE于F点,现给出下列命题:①DE+BD=AD;②△ABE与△ABD的面积差为ED2,则()A. ①是假命题,②是真命题B. ①是真命题,②是假命题C. ①是假命题,②是假命题D. ①是真命题,②是真命题7.下列说法中,不正确的是()①全等形的面积相等;②形状相同的两个三角形是全等三角形;③全等三角形的对应边,对应角相等;④若两个三角形全等,则其中一个三角形一定是由另一个三角形旋转得到的.A. ①与②B. ③与④C. ①与③D. ②与④8.如图,△ABC≌△DEF,则下列判断错误的是()A. AB=DEB. BE=CFC. AC∥DFD. ∠ACB=∠DEF9.下列各组图形中,属于全等图形的是()A. B.C. D.10.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A. B.C. D.二、填空题11.已知平面直角坐标系xOy中,点A、B的坐标分别为(1,0),(1,3),以A、B、P为顶点的三角形与△ABO全等,写出一个符合条件的点P的坐标:________ .12.如图,在3×3的正方形ABCD中,由A向各交叉点引连线,构成∠1,2,…∠9,则这9个角的和为________ 度.13.如图,四边形ABCD与四边形A′B′C′D′全等,则∠A′=________,∠A=________ ,B′C′=________,AD=________ .14.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=4cm,CE=3cm,则DE=________cm.15.一个三角形的三边长分别为2,5,m,另一个三角形的三边长分别为n,6,2,若这两个三角形全等,则m+n=________.16.如图是两个全等三角形,图中的字母表示三角形的边长,那么根据图中提供的信息可知∠1的度数为________.17.如图,△ABC中,AB=AC,点D,E在BC边上,当________ 时,△ABD≌△ACE.(添加一个适当的条件即可)18.如图,△ABC≌△ADE,则,AB=________,∠E=________.若∠BAE=120°,∠BAD=40°,则∠BAC=________.三、解答题19.如图,已知△ACF≌△DBE,AD=9厘米,BC=5厘米,求AB的长.20.如图,AB⊥BE,DE⊥BE,垂足分别为B,E,点C,F在BE上,BF=EC,AC=DF.求证:∠A=∠D.21.如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,求∠A的度数.22.如图,已知△ABC≌△BAD,AC与BD相交于点O,求证:OC=OD.23.在四边形ABCD中,对角线AC与BD交于点O,△ABO≌△CDO. (1)求证:四边形ABCD为平行四边形;(2)若∠ABO=∠DCO,求证:四边形ABCD为矩形.参考答案一、选择题1.B2.A3.D4.C5.B6.D7.D8.D9.C 10.A二、填空题11.(0,3)或(2,3)或(2,0)12. 40513. 120°;70°;12;614. 715. 1116. 70°17.BD=CE18.AB;∠C;80°三、解答题19.解:∵△ACF≌△DBE,∴CA=BD,∴CA﹣BC=DB﹣BC,即AB=CD,∴AB+CD=2AB=AD﹣BC=9﹣5=4(cm),20.解:∵BF=CE,∴BF+FC=CE+FC.即BC=EF.∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°.在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠A=∠D.21.解:∵△ABO≌△CDO,∴OB=OD,∠ABO=∠D,∴∠OBD=∠D=(180°﹣∠BOD)=×(180°﹣30)=75°,∴∠ABC=180°﹣75°×2=30°,∴∠A=∠ABC=30°.22.证明:∵△ABC≌△BAD,∴∠CAB=∠DBA,AC=BD,∴OA=OB,∴AC﹣OA=BD﹣OB,即:OC=OD.23.解;(1)∵△ABO≌△CDO ∴AO=CO,BO=DO,∴AC、BD互相平分,∴四边形ABCD是平行四边形. (2)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABO=∠CDO.∵∠ABO=∠DCO,∴∠DCO =∠CDO,∴CO=DO.∵△ABO≌△CDO,∴AO=CO,BO=DO,∴AO=CO=BO=DO.即AC=BD,∴□ABCD是矩形.13.3 三角形全等的判定—(SSS)基础题---初显身手1.如图所示,已知AB=AC,BD=CD,则可推出()A.ΔBAD≌ΔBCDB.ΔABD≌ΔACDC.ΔACD≌ΔBCDD.ΔACE≌ΔBDE2.如图,若AB=DE,AC=DF,BC=EF,则∠E等于()A.30°B.50°C.60°D.100°3.如图所示,已知AB=AD,需要添加一个条件_______,根据“SSS”可得ΔABC≌ΔADC能力题--挑战自我4.如果ΔABC的三边长分别为3,5,7,ΔDEF的三边长分别是3,3x-2,5若这两个三角形全等,则x等于()A.7/3 B.4 C.3 D.不能确定5.如图,A B=AE,AC=AD,BD=CE,求证:△ABC ≌ΔADE。
人教版数学八年级上册 第13章 13.1--13.3随堂练习题含答案
13.1轴对称一.选择题1.下列图形中是轴对称图形的是()A.B.C.D.2.三角形中,到三个顶点距离相等的点是()A.三边垂直平分线的交点B.三条中线的交点C.三条角平分线的交点D.三条高线的交点3.如图,AC=AD,BC=BD,则下列判断正确的是()A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB4.如图,在Rt△ABC中,∠ACB=90°,若△ACD的周长为50,DE为AB的垂直平分线,则AC+BC=()A.25cm B.45cm C.50cm D.55cm5.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,连接EF交AD 于G.下列结论:①AD垂直平分EF;②EF垂直平分AD;③AD平分∠EDF;④当∠BAC为60°时,AG=3DG,其中不正确的结论的个数为()A.1B.2C.3D.46.下列说法错误的是()A.关于某直线成轴对称的两个图形一定能完全重合B.线段是轴对称图形C.全等的两个三角形一定关于某直线成轴对称D.轴对称图形的对称轴至少有一条7.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()A.1 cm B.2 cm C.3 cm D.4cm8.下列条件中,不能判定直线MN是线段AB(M,N不在AB上)的垂直平分线的是()A.MA=MB,NA=NB B.MA=MB,MN⊥ABC.MA=NA,MB=NB D.MA=MB,MN平分AB9.下列图形中,对称轴的条数最少的图形是()A.B.C.D.10.如图,在△ABC中,分别以点A,B为圆心,大于AB长为半径画弧,两弧分别交于点D,E,则直线DE是()A.∠A的平分线B.AC边的中线C.BC边的高线D.AB边的垂直平分线二.填空题11.如图,在△ABC中,点D、E在直线AB上,且点D、E分别是线段AC、BC的垂直平分线上的点.若∠ACB=30°,则∠DCE=12.如图,在△ABC中,∠C=90°,∠A=30°,边AB的垂直平分线DE交AC于D,若CD=2cm,则AD=cm.13.已知△ABC中,AB边的垂直平分线交BC边于点D,AC边的垂直平分线交BC边于点E,若AD=5,AE=7,DE=3,则BC=.14.如图,在△ABC中,DE是AC的中垂线,∠C=30°,∠BAD=50°,则∠B=.15.如图,AB=AC,DE垂直AB于D,交AC于E,且AD=BD,若△BEC的周长为20,BC=6,那么△ABC的周长为.三.解答题16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.17.已知甲村和乙村靠近公路a、b,为了发展经济,甲乙两村准备合建一个工厂,经协商,工厂必须满足以下要求:(1)到两村的距离相等;(2)到两条公路的距离相等.你能帮忙确定工厂的位置吗?18.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.19.如图1,△ABC中,AB=AC,∠BAC=130°,边AB、AC的垂直平分线交BC于点P、Q.(1)求∠P AQ的度数;(2)如图2,△ABC中,AB>AC,且90°<∠BAC<180°,边AB、AC的垂直平分线交BC于点P、Q.①若∠BAC=130°,则∠P AQ=°,若∠BAC=α,则∠P AQ用含有α的代数式表示为;②当∠BAC=°时,能使得P A⊥AQ;③若BC=10cm,则△P AQ的周长为cm.参考答案与试题解析一.选择题1.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项符合题意;D、不是轴对称图形,故本选项不符合题意.故选:C.2.【解答】解:∵垂直平分线上任意一点,到线段两端点的距离相等,∴到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:A.3.【解答】解:在△ABC与△BDC中,,∴△ABC≌△ABD,∴∠CAB=∠DAB,∴AB垂直平分CD,故选:A.4.【解答】解:∵DE为AB的垂直平分线,∴AD=BD,∴AC+CD+AD=AC+CD+BD=AC+BC=50,故选:C.5.【解答】解:∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF,∠AED=∠AFD=90°,在Rt△AED和Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∠ADE=∠ADF,∴AD平分∠EDF;③正确;∵AD平分∠BAC,∵AE=AF,DE=DF,∴AD垂直平分EF,①正确;②错误,∵∠BAC=60°,∴∠DAG=30°,∴AG=AE,AD=AE,∴DG=AE,∴AG=3DG,④正确.故选:A.6.【解答】解:A、关于某直线成轴对称的两个图形一定能完全重合,正确,故本选项错误;B、线段是轴对称图形,正确,故本选项错误;C、全等的两个三角形不一定关于某直线成轴对称,但关于某直线成轴对称的两个三角形一定,故本选项正确;D、轴对称图形的对称轴至少有一条,正确,故本选项错误.故选:C.7.【解答】解:∵MN是线段AB的垂直平分线,∴AN=BN,∵△BCN的周长是7cm,∴BN+NC+BC=7(cm),∴AN+NC+BC=7(cm),∵AN+NC=AC,∴AC+BC=7(cm),又∵AC=4cm,∴BC=7﹣4=3(cm).故选:C.8.【解答】解:∵MA=MB,NA=NB,∴直线MN是线段AB的垂直平分线;∵MA=MB,MN⊥AB,∴直线MN是线段AB的垂直平分线;当MA=NA,MB=NB时,直线MN不一定是线段AB的垂直平分线;∵MA=MB,MN平分AB,∴直线MN是线段AB的垂直平分线,故选:C.9.【解答】解:A、有4条对称轴,故此选项错误;B、有3条对称轴,故此选项错误;C、有2条对称轴,故此选项正确;D、有4条对称轴,故此选项错误;故选:C.10.【解答】解:∵分别以点A,B为圆心,大于AB长为半径画弧,两弧分别交于点D,E,∴DA=DB,EA=EB,∴点D,E在线段AB的垂直平分线上,故选:D.二.填空题(共5小题)11.【解答】解:∵∠ACB=30°,∴△ABC中,∠ABC+∠BAC=150°,∵点D、E分别是线段AC、BC的垂直平分线上的点,∴EB=EC,DC=DA,∴∠E=180°﹣2∠ABC,∠D=180°﹣2∠BAC,∴△DCE中,∠DCE=180°﹣(∠E+∠D)=180°﹣(180°﹣2∠ABC+180°﹣2∠BAC)=180°﹣180°+2∠ABC﹣180°+2∠BAC=2(∠ABC+∠BAC)﹣180°=2×150°﹣180°=120°.故答案为:120°.12.【解答】解:∵在△ABC中,∠C=90°,∠A=30°,∴∠ABC=60°.∵AB的垂直平分线DE交AC于D,∴∠ABD=∠A=30°,∴∠DBC=30°.∵CD=2cm,∴BD=2CD=4cm,∴AD=4cm.故答案为:4.13.【解答】解:分两种情况:①如图,∵DF、EG分别是线段AB、AC的垂直平分线,∴BD=AD=5,CE=AE=7,∴BC=BD+DE+CE=5+3+7=15;②如图,∵DF、EG分别是线段AB、AC的垂直平分线,∴BD=AD=5,CE=AE=7,∴BC=BD﹣DE+CE=5﹣3+7=9;综上所述,BC的长为15或9.故答案为:15或9.14.【解答】解:∵DE是AC的中垂线,∴DA=DC,∴∠DAC=∠C=30°,∴∠BAC=80°,∴∠B=180°﹣(∠BAC+∠C)=70°,故答案为:70°.15.【解答】解:∵DE垂直AB于D,且AD=BD,∴DE是线段AB的垂直平分线,∴EA=EB,∵△BEC的周长为20,∴BC+CE+BE=BC+CE+AE=BC+AC=20,∴AC=20﹣BC=14,∴△ABC的周长=AC+AB+BC=34,故答案为:34.三.解答题(共4小题)16.【解答】证明:∵AD是高,∴AD⊥BC,又∵BD=DE,∴AD所在的直线是线段BE的垂直平分线,∴AB=AE,∴AB+BD=AE+DE,又∵AB+BD=DC,∴DC=AE+DE,∴DE+EC=AE+DE∴EC=AE,∴点E在线段AC的垂直平分线上.17.【解答】解:①以O为圆心,以任意长为半径画圆,分别交直线a、b于点A、B;②分别以A、B为圆心,以大于AB为半径画圆,两圆相交于点C,连接OC;③连接ED,分别以E、D为圆心,以大于ED为半径画圆,两圆相交于F、G两点,连接FG;④FG与OC相交于点H,则H即为工厂的位置.同法可得H′也满足条件,故点H或H′即为工厂的位置.18.【解答】解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF.19.【解答】解:(1)∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=130°,∴∠B+∠C=180°﹣∠BAC=50°,∴∠BAP+∠CAQ=50°,∴∠P AQ=∠BAC﹣(∠BAP+∠CAQ)=130°﹣50°=80°;(2)①∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=130°,∴∠B+∠C=180°﹣∠BAC=50°,∴∠BAP+∠CAQ=50°,∴∠P AQ=∠BAC﹣(∠BAP+∠CAQ)=130°﹣50°=80°;∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∴∠BAP=∠B,∠CAQ=∠C,∵∠BAC=α,∴∠B+∠C=180°﹣∠BAC=180°﹣α,∴∠BAP+∠CAQ=180°﹣α,∴∠P AQ=∠BAC﹣(∠BAP+∠CAQ)=α﹣(180°﹣α)=2α﹣180°;②当∠P AQ=90°,即2α﹣180°=90°时,P A⊥AQ,解得:α=135°,∴当∠BAC=135°时,能使得P A⊥AQ;③∵边AB、AC的垂直平分线交BC于点P、Q,∴AP=BP,AQ=CQ,∵BC=10cm,即BP+PQ+CQ=AP+PQ+AQ=10cm,∴△P AQ的周长为10cm.故答案为:①80,2α﹣180°;②135;③10.13.2 画轴对称图形一、选择题(5道小题,每题7分,共35分)更正1、如图,在△ABC中,AB的中垂线交BC于点E,若BE=2则A、E两点的距离是().A.4B.2C.3D.122、如图,AB垂直平分CD,若AC=1.6cm,BC=2.3cm,则四边形ABCD的周长是()cm.A.3.9B.7.8C.4D.4.63、如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC其中正确的结论有()A.1个 B 2个 C 3个 D 4个4、下列说法:①若直线PE是线段AB的垂直平分线,则EA=EB,PA=PB;②若PA=PB,EA=EB,则直线PE垂直平分线段AB;③若PA=PB,则点P必是线段AB的垂直平分线上的点;④若EA=EB,则过点E的直线垂直平分线段AB.其中正确的个数有()A.1个B.2个C.3个D.4个5、在三角形内部,有一点P到三角形三个顶点的距离相等,则点P一定是()A、三角形三条角平分线的交点;B、三角形三条垂直平分线的交点;C、三角形三条中线的交点;D、三角形三条高的交点。
人教版数学八年级上册 第十三章 13.1---13.3同步测试题含答案
人教版数学八年级上册第十三章13.1 轴对称一、选择题1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC2. 如图,在△ABC中,BC=8,△ABC的周长为20,BC边的垂直平分线交AB于点E.则△AEC的周长为()A.24B.20C.16D.123. 如下图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是()A.①B.②C.⑤D.⑥4. 在汉字“生活中的日常用品”中,是轴对称图形的有()1A.2个B.3个C.4个D.5个5. 如图,在Rt△ABC中∠C=90°,AB>BC,分别以顶点A、B为圆心,大于12AB长为半径作圆弧,两条圆弧交于点M、N,作直线MN交边CB于D.若AD=5,CD=3,则BC长是()A.7B.8C.12D.136. 将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()7. 点M(3,2)关于x轴对称的点的坐标为()A. (-3,2)B. (3,-2)C. (-3,-2)D. (3,2)8. 在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有()A.1个B.2个C.3个D.4个9.如图,△ABC和△A′B′C′关于直线对称,下列结论中:正确的有()23①△ABC ≌△A′B′C′;②∠BAC′=∠B′AC ;③l 垂直平分CC′;④直线BC 和B′C′的交点不一定在l 上,A .4个B .3个C .2个D .1个10. 如图所示,线段AB ,AC 的垂直平分线相交于点P ,则PB 与PC 的关系是( )A .PB >PCB .PB =PC C .PB <PCD .PB =2PC 11. 如图,在△ABC 中,DE 垂直平分AB ,交AB 于点E ,交BC 于点D ,若AD=4,BC=3DC ,则BC 等于 ( )A.4B.4.5C.5D.612. 在数学课上,老师提出如下问题:如图,已知△ABC 中,AB<BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PB=BC.下面是四名同学的作法,其中正确的是 ( )二、填空题13. 如图是某时刻在镜子中看到准确时钟的情况,则实际时间是14. 若点A(1﹣m,6)与B(2+n,6)关于某坐标轴对称,则m﹣n= .15. 如图所示的五角星是轴对称图形,它的对称轴共有________条.16.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有个.17. 如图4×5的方格纸中,在除阴影之外的方格中任意选择一个涂黑,与图中阴影部分构成轴对称图形的涂法有______种.18. 如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.4三、解答题19. 如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为.20. 如图所示,两个四边形关于直线l对称,∠C=90°,试写出边a,b的长,并求出∠G的度数.521. 如图,在四边形ABCD中,AB=AD,BC边的垂直平分线MN经过点A.求证:点A在线段CD的垂直平分线上.622. 如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点D,交AC于点E,若△ABC与△EBC的周长分别是26 cm和16 cm,求AC的长.23. 如图,将长方形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G 处,EF为折痕.(1)求证:△FGC≌△EBC;(2)若AB=8,AD=4,求四边形ECGF(阴影部分)的面积.724. 如图,已知△ABC.(1)用直尺和圆规分别作出AB,AC边的垂直平分线l1,l2;(2)若直线l1,l2的交点为O,连接OB,OC.求证:OB=OC.8人教版数学八年级上册第十三章13.1 轴对称9培优练习—参考答案一、选择题1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC【答案】C2. 如图,在△ABC中,BC=8,△ABC的周长为20,BC边的垂直平分线交AB 于点E.则△AEC的周长为()A.24B.20C.16D.12【答案】D【解答】解:∵△ABC的周长为20,∴AB+AC+BC=20,∵BC=8,∴AB+AC=12,∵BC边的垂直平分线交AB于点E,∴EB=EC,∴△AEC的周长=AE+EC+AC=AE+EB+AC=AB+AC=12,故选:D.10113. 如下图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是( )A.①B.②C.⑤D.⑥【答案】答案为:B4. 在汉字“生活中的日常用品”中,是轴对称图形的有( )A.2个B.3个C.4个D.5个【答案】B[解析] 根据轴对称图形的定义,在汉字“生活中的日常用品”中,是轴对称图形的有“中”“日”“品”3个.故选B.5. 如图,在Rt △ABC 中∠C =90°,AB >BC ,分别以顶点A 、B 为圆心,大于12AB 长为半径作圆弧,两条圆弧交于点M 、N ,作直线MN 交边CB 于D .若AD =5,CD =3,则BC 长是( )A .7B .8C .12D .13【答案】B6. 将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是( )【答案】答案为:B.7. 点M(3,2)关于x轴对称的点的坐标为()A. (-3,2)B. (3,-2)C. (-3,-2)D. (3,2)【答案】B8. 在4×4的正方形网格中,已将图中的四个小正方形涂上阴影(如图),若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有()A.1个B.2个C.3个D.4个【答案】C9.如图,△ABC和△A′B′C′关于直线对称,下列结论中:正确的有()①△ABC≌△A′B′C′;②∠BAC′=∠B′AC;③l垂直平分CC′;④直线BC和B′C′的交点不一定在l上,A.4个B.3个C.2个D.1个12【答案】B10. 如图所示,线段AB,AC的垂直平分线相交于点P,则PB与PC的关系是()A.PB>PC B.PB=PCC.PB<PC D.PB=2PC【答案】B[解析] 如图,连接AP.∵线段AB,AC的垂直平分线相交于点P,∴AP=PB,AP=PC.∴PB=PC.11. 如图,在△ABC中,DE垂直平分AB,交AB于点E,交BC于点D,若AD=4,BC=3DC,则BC等于()A.4B.4.5C.5D.6【答案】D[解析] ∵DE垂直平分AB,AD=4,∴BD=AD=4.∵BC=3DC,∴BD=2CD.∴CD=2.∴BC=BD+CD=6.故选D.12. 在数学课上,老师提出如下问题:如图,已知△ABC中,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PB=BC.下面是四名同学的作法,其中正确的是()1314【答案】C[解析] ∵PA+PB=BC ,而PC+PB=BC ,∴PA=PC. ∴点P 为线段AC 的垂直平分线与BC 的交点.显然只有选项C 符合题意.二、填空题13. 如图是某时刻在镜子中看到准确时钟的情况,则实际时间是【答案】答案为:4:40.14. 若点A(1﹣m ,6)与B(2+n ,6)关于某坐标轴对称,则m ﹣n= .【答案】答案为:3.15. 如图所示的五角星是轴对称图形,它的对称轴共有________条.【答案】5 [解析] 如图,五角星的对称轴共有5条.16. 如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有 个.【答案】答案为:4.17. 如图4×5的方格纸中,在除阴影之外的方格中任意选择一个涂黑,与图中阴影部分构成轴对称图形的涂法有______种.【答案】答案为:4.18. 如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.【答案】13【解析】∵DE垂直平分AB,∴AE=BE,∵AE+EC=8,∴EC+BE=8,∴△BCE的周长为BE+EC+BC=13.三、解答题19. 如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,则六边形AA′B′C′CB的面积为.15【答案】解:(1)如图所示;(2)S六边形AA′B′C′CB=3×6﹣×2×1﹣×2×1﹣×2×1﹣×2×1=18﹣1﹣1﹣1﹣1=14.故答案为:14.20. 如图所示,两个四边形关于直线l对称,∠C=90°,试写出边a,b的长,并求出∠G的度数.【答案】解:∵两个四边形关于直线l对称,∴四边形ABCD≌四边形FEHG,∴∠H=∠C=90°,∠A=∠F=80°,∠E=∠B=135°,a=5 cm,b=4 cm.∴∠G=360°-∠H-∠E-∠F=55°.161721. 如图,在四边形ABCD 中,AB =AD ,BC 边的垂直平分线MN 经过点A .求证:点A 在线段CD 的垂直平分线上.【答案】证明:连接AC.∵点A 在线段BC 的垂直平分线MN 上,∴AB=AC.∵AB =AD ,∴AC =AD.∴点 A 在线段CD 的垂直平分线上.22. 如图,在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若△ABC 与△EBC 的周长分别是26 cm 和16 cm ,求AC 的长.【答案】解:∵DE 是AB 的垂直平分线,∴AE =BE.∵△EBC 的周长是16 cm ,∴BC +BE +EC =16 cm ,即BC +AE +EC =AC +BC =16 cm.∵△ABC 的周长是26 cm ,∴AB+AC+BC=26 cm,∴AC=AB=10 cm.23. 如图,将长方形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G 处,EF为折痕.(1)求证:△FGC≌△EBC;(2)若AB=8,AD=4,求四边形ECGF(阴影部分)的面积.【答案】解:(1)证明:在长方形ABCD中,DA=BC,∠A=∠D=∠B=∠BCD=90°.由折叠的性质,得GC=DA,∠G=∠D=90°,∠GCE=∠A=90°.∴GC=BC,∠GCF+∠FCE=90°,∠FCE+∠BCE=90°.∴∠GCF=∠BCE.又∵∠G=∠B=90°,GC=BC,∴△FGC≌△EBC(ASA).(2)由(1)知,DF=GF=BE,∴S四边形ECGF =S△FGC+S△EFC=S△EBC+S△EFC=S四边形BCFE=(BE+CF)·AD2=(DF+CF)·AD2=8×42=16.24. 如图,已知△ABC.18(1)用直尺和圆规分别作出AB,AC边的垂直平分线l1,l2;(2)若直线l1,l2的交点为O,连接OB,OC.求证:OB=OC.【答案】解:(1)如图所示.(2)证明:如图,连接OA.∵l1是AB的垂直平分线,∴OA=OB.同理,OA=OC.∴OB=OC.解:(1)如图所示.(2)证明:如图,连接OA.∵l1是AB的垂直平分线,∴OA=OB.同理,OA=OC.∴OB=OC.13.2画对称图形一.选择题19201.点A (﹣3,1)关于x 轴的对称点为( )A . C .2.点M (3,﹣2)与Q (a ,b )关于y 轴对称,则a +b 的值为( )A .5B .﹣5C .1D .﹣13.下列语句正确的是( )A .平行于x 轴的直线上所有点的横坐标都相同B .表示两个不同的点C .若点P (a ,b )在y 轴上,则b =0D .若点Q (﹣2,﹣1),则Q 关于x 轴对称点的坐标为(2,﹣1)4.已知点A (3,2)是点B (a ,b )关于y 轴的对称点,则a ,b 的值分别为( ) A .﹣3,2 B .3,﹣2 C .﹣3,﹣2 D .2,35.如图,在平面直角坐标系xOy 中,△ABC 的顶点C (3,﹣1),则点C 关于x 轴、y 轴对称的点的坐标分别为( )A .B .C .D . 6.如图,小琪和小亮下棋,小琪执圆形棋子,小亮执方形棋子,若棋盘中心的圆形棋子位置用(﹣1,1)表示,小亮将第4枚方形棋子放入棋盘后,所有棋子构成轴对称图形,则小亮放方形棋子的位置可能是()A.C.7.点P(﹣2,3)关于y轴对称点的坐标在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限8.在平面直角坐标系中,把一个封闭图形的各个顶点的横坐标都乘以﹣1,纵坐标不变,并把得到的顶点依次连接,那么得到的封闭图形与原来图形相比位置上()A.向左平移了1个单位B.关于y轴对称C.关于x轴对称D.向下平移了2个单位9.如果点S(3a﹣3,2+a)关于y轴的对称点S′在第二象限,那么a的取值范围是()A.a<1B.a>﹣2C.a>1D.﹣2<a<1 10.已知点P(﹣2,3),作点P关于x轴的对称点P1,再作点P1关于y轴的对称点P2,接着作P2关于x轴的对称点P3,继续作点P3关于y轴的对称点P4,按照这种方法一直做下去,则P2017的坐标为()A.C.二.填空题11.若点A(a,2)与B(3,b)关于x轴对称,则a﹣b=.12.已知点A(2a﹣b,5+a),B(2b﹣1,﹣a+b),关于y轴对称,则(4a+b)2020的值是.2113.在平面直角坐标系中,将点P(﹣3,2)向右平移3个单位得到点P',则点P'关于x轴的对称点的坐标为.14.在平面直角坐标系中有一个对称图形,点A(3,2)与点B(3,﹣2)是此图形上的互为对称点,则在此图形上的另一点C(﹣1,﹣3)的对称点坐标为.15.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),经过第1次变换后所得的A1坐标是(a,﹣b),则经过第2020次变换后所得的点A2020坐标是.三.解答题16.;(2)一个多边形的内角和与外角和的和是1440°,求它的边数.17.在如图所示的直角坐标系中,解答下列问题:(1)A、B两点的坐标分别为,;(2)画出△ABC关于x轴对称的图形△AB1C1;(3)B1C1的长为.2218.分别在下面正方形网格中按要求画图:(1)在图(1)中画出以MN为轴,对折后的图形;(2)在图(2)中画出向右平移两格后的图形.19.如图,已知△ABC的三个顶点坐标分别为A(﹣1,2),B(﹣1,﹣4),C(2,﹣3).(1)将△ABC先向右平移4个单位,再向上平移6个单位,得到△A1B1C1,作出△A1B1C1,线段AC在平移过程中扫的面积为;(2)作出△A1B1C1关于y轴对称的图形△A2B2C2,则坐标C2为;(2)若△ABD与△ABC全等,则点D的坐标为(点C与点D不重合)2324参考答案与试题解析一.选择题1.【解答】解:点A(﹣3,1)关于x轴的对称点为(﹣3,﹣1),故选:B.2.【解答】解:∵点M(3,﹣2)与Q(a,b)关于y轴对称,∴a=﹣3,b=﹣2,∴a+b=﹣5,故选:B.3.【解答】解:A.平行于x轴的直线上所有点的纵坐标都相同,故本选项错误;B.表示两个不同的点,故本选项正确;C.若点P(a,b)在y轴上,则a=0,故本选项错误;D.若点Q(﹣2,﹣1),则Q关于x轴对称点的坐标为(﹣2,1),故本选项错误;故选:B.4.【解答】解:∵点A(3,2)是点B(a,b)关于y轴的对称点,∴a=﹣3,b=2,故选:A.5.【解答】解:∵在平面直角坐标系xOy中,△ABC的顶点C(3,﹣1),∴点C关于x轴、y轴对称的点的坐标分别为.故选:A.6.【解答】解:如图:符合题意的点为(﹣1,2)25故选:D.7.【解答】解:点P(﹣2,3)关于y轴的对称点的坐标为(2,3),则此点在第一象限.故选:A.8.【解答】解:∵封闭图形的各个顶点的横坐标都乘以﹣1,纵坐标不变,∴原图形各点的纵坐标相同,横坐标互为相反数,∴得到的封闭图形与原来图形相比位置上关于y轴对称.故选:B.9.【解答】解:∵点S(3a﹣3,2+a)关于y轴的对称点S′在第二象限,∴点S在第一象限,∴,解得:a>1,故选:C.10.【解答】解:∵点P(﹣2,3),∴点P关于x轴的对称点P1(﹣2,﹣3),∴点P1关于y轴的对称点P2(2,﹣3),26∴P2关于x轴的对称点P3(2,3),∴点P3关于y轴的对称点P4(﹣2,3),依此类推,2017÷4=506…1,∴P2017的坐标(﹣2,﹣3),故选:C.二.填空题(共5小题)11.【解答】解:∵点A(a,2)与点B(3,b)关于x轴对称,∴a=3,b=﹣2,∴a﹣b=3﹣(﹣2)=3+2=5,故答案为:5.12.【解答】解:∵点A(2a﹣b,5+a),B(2b﹣1,﹣a+b),关于y轴对称,∴,解得,则(4a+b)2020=(﹣4+3)2020=1,故答案为:1.13.【解答】解:∵将点P(﹣3,2)向右平移3个单位得到点P',∴点P'坐标为:(0,2),∴点P'关于x轴的对称点的坐标为(0,﹣2).故答案为:(0,﹣2).2714.【解答】解:∵点A(3,2)与点B(3,﹣2)是此图形上的互为对称点,∴点A与点B关于x轴对称,∴此图形上的另一点C(﹣1,﹣3)的对称点坐标为(﹣1,3),故答案为:(﹣1,3).15.【解答】解:点A第一次关于x轴对称后在第四象限,点A第二次关于y轴对称后在第三象限,点A第三次关于x轴对称后在第二象限,点A第四次关于y轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2020÷4=505,∴经过第2020次变换后所得的A点与第一次变换的位置相同,在第四象限,坐标为(a,﹣b).故答案为(a,﹣b).三.解答题(共4小题)16.【解答】解:(1)如图所示,直线l即为所求;28(2)设此多边形的边数为n,则:(n﹣2)180=1440+360,解得:n=12.答:这个多边形的边数为12.17.【解答】解:(1)A点坐标为(2,0),B点坐标为(﹣1,﹣4);(2)如图,△AB1C1为所作;(3)B1C1的长==.故答案为(2,0),(﹣1,﹣4),.18.【解答】解:(1)对折后的图形,如图(1)所示:(2)向右平移两格后的图形,如图(2)所示:2919.【解答】解:(1)如图,△A1B1C1为所作;线段AC在平移过程中扫的面积=11×7﹣13.3轴对称与等腰三角形-等腰三角形性质与判定一、选择题1.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12B.16C.20D.16或202.等腰三角形的一条边长为6,另一边长为13,则它的周长为( )A.25B.25或32C.32D.193.如图,在△ABC中,AB=AC=4,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC分别交AB、AC于M、N,则△AMN的周长为()A.12B.4C.8D.不确定4.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()30A.BD=CE B.AD=AE C.DA=DE D.BE=CD5.若等腰三角形的顶角为40°,则它的底角度数为()A.40° B.50° C.60° D.70°6.如果等腰三角形的一个底角为α,那么()A.α不大于45°B.0°<α<90°C.α不大于90°D.45°<α<90°7.如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P 点,则()A.BC>PC+AP B.BC<PC+AP C.BC=PC+AP D.BC≥PC+AP8.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°9.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()31A.110°B.120°C.130°D.140°10.如图,已知下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③二、填空题11.一个等腰三角形的一个角为80°,则它的顶角的度数是.12.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为.13.若等腰三角形的一个外角为70°,则它的底角为度.14.已知等腰三角形的顶角为40°,则它一腰上的高与底边的夹角为.15.如图,在△ABC中,AB=AC,AD⊥BC于D点,点E、F分别是AD的三等分点,若△ABC 的面积为18cm2,则图中阴影部分面积为 cm2.3216.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).三、解答题17.如图,已知D、E两点在线段BC上,AB=AC,AD=AE.证明:BD=CE.18.如图所示,已知在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.3319.在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E,若AB=5,求线段DE的长.20.如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,求证:EF=BE+CF.21.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.3422.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.35参考答案1.C2.C3.C4.C5.D6.B7.C8.A9.答案为:A.10.A.11.答案为:80°或20°.12.答案为:120°或20°.13.答案为:35.14.答案为:20°.15.答案为:9.16.答案为:45.17.证明:36过A作AF⊥BC于F,∵AB=AC,AD=AE,AF⊥BC,∴BF=CF,DF=EF,∴BF﹣DF=CF﹣EF,∴BD=CE.18.解:在△ABC中,AB=AD=DC,∵AB=AD,在三角形ABD中,∠B=∠ADB=(180°﹣26°)×=77°,又∵AD=DC,在三角形ADC中,∴∠C==77°×=38.5°.19.解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,∵AD⊥DB,∴∠ADB=90°,∴∠EAD+∠ABD=90°,∠ADE+∠BDE=∠ADB=90°,∴∠ABD=∠BDE,∴DE=BE,∵AB=5,∴DE=BE=AE==2.5.3720.解:∵△ABC中BD、CD平分∠ABC、∠ACB,∴∠1=∠2,∠5=∠6,∵EF∥BC,∴∠2=∠3,∠4=∠6,∴∠1=∠3,∠4=∠5,根据在同一三角形中等角对等边的原则可知,BE=ED,DF=FC,故EF=ED+DF=BE+CF.21.解:∵DE=EB∴设∠BDE=∠ABD=x,∴∠AED=∠BDE+∠ABD=2x,∵AD=DE,∴∠AED=∠A=2x,∴∠BDC=∠A+∠ABD=3x,∵BD=BC,∴∠C=∠BDC=3x,∵AB=AC,∴∠ABC=∠C=3x,在△ABC中,3x+3x+2x=180°,解得x=22.5°,∴∠A=2x=22.5°×2=45°.3822.证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,39在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).40。
八年级数学滚动周练卷(三)同步训练新人教版
滚动周练卷(三)[时间:45分钟 测试范围:13.1~13.2 分值:100分]一、选择题(每题5分,共30分)1.[2016·松北模拟]下列平面图形中,不是轴对称图形的是( )A B C D2.[2016·奉贤区二模]下列说法中,正确的是( ) A .关于某条直线对称的两个三角形一定全等 B .两个全等三角形一定关于某条直线对称 C .面积相等的两个三角形一定关于某条直线对称 D .周长相等的两个三角形一定关于某条直线对称3.[2016春·户县期末]如图1,△ABC 与△A ′B ′C ′关于直线l 成轴对称,则下列结论中错误的是( )图1A .AB =A ′B ′ B .∠B =∠B ′C .AB ∥A ′C ′D .直线l 垂直平分线段AA ′4.[2016·龙岩模拟]如图2,在△ABC 中,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧分别交于点D ,E ,则直线DE 是( )图2A .∠A 的平分线B.AC边的中线C.BC边的高线D.AB边的垂直平分线5.[2016·深圳期末]如图3,△ABC中,AB的垂直平分线交AC于D,如果AC=5 cm,BC=4 cm,那么△DBC的周长是( )图3A.6 cm B.7 cm C.8 cm D.9 cm6.[2016·邹城市一模]若点A(a-2,3)和点B(-1,b+5)关于y轴对称,则点C(a,b)在( )A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题(每题4分,共24分)7.[2016·临河校级月考]在直角坐标系中,点P(-3,2)关于x轴对称的点Q的坐标是__ __.8.下面是在计算器上出现的一些数字,其中是轴对称图形的是__ _.图4 9.[2016·黄岛期末]如图5,点P在∠AOB内,点M,N分别是点P关于AO,BO的对称点,若△PEF的周长等于20 cm,则MN的长为__ __.图510.[2016·永新期末]如图6,AD是△ABC的对称轴,点E,F是AD上的两点,若BD =2,AD=3,则图中阴影部分的面积是__ __.图611.[2016·祁阳期末]△ABC与△DEF关于直线m对称,AB=4,BC=6,△DEF的周长是15,则AC=__ __.12.[2016·江阴期中]如图7,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10 cm,AB=4 cm,则AC=____cm.图7三、解答题(共46分)13.(8分)[2016·玄武期末]如图8,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)画出△A1B1C1沿x轴向右平移4个单位长度后得到的△A2B2C2;(3)如果AC上有一点M(a,b),请写出经过上述两次变换所得的对应边A2C2上的点M2的坐标.图814.(8分)[2016·西市期中]电信部门要修建一座电视信号发射塔P,按照设计要求,发射塔P到两城镇A,B的距离必须相等,到两条高速公路m和n的距离也必须相等.请在图中作出发射塔P的位置(尺规作图,不写作法,保留作图痕迹).图915.(10分)[2016·青海期中]已知A(a+b,1),B(-2,2a-b),若点A,B关于x轴对称,求a,b的值.16.(10分)[2016·历下区一模]如图10,在△ABC中,∠ACB=90°,BE平分∠ABC交AC于点E,DE垂直平分AB于D.求证:BE+DE=AC.图1017.(10分)如图11,已知OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.求证:图11(1)PO平分∠APB;(2)OP是AB的垂直平分线.参考答案1.A 2.A 3.C 4.D 5.D 6.D7.(-3,-2) 8.2005 9.20 cm 10.3 11.5 12.613.解:(1)如答图所示:△A1B1C1即为所求;第13题答图(2)如答图所示:△A 2B 2C 2即为所求; (3)M 2(-a +4,b ). 14.第14题答图解:设两条公路相交于O 点.P 应为线段AB 的垂直平分线与∠MON 的平分线交点或与∠QON 的平分线交点.如答图,满足条件的点有两个,即P ,P ′.15.解:∵A (a +b ,1),B (-2,2a -b )关于x 轴对称,∴⎩⎪⎨⎪⎧a +b =-2,①2a -b =-1,② ①+②得,3a =-3, 解得a =-1,将a =-1代入①得,-1+b =-2, 解得b =-1, ∴a =-1,b =-1.16.证明:∵∠ACB =90°,∴AC ⊥BC , ∵ED ⊥AB ,BE 平分∠ABC , ∴CE =DE , ∵DE 垂直平分AB , ∴AE =BE , ∵AE +CE =AC , ∴BE +DE =AC .17.证明:(1)∵OP 平分∠AOB ,PA ⊥OA ,PB ⊥OB ,∴PA =PB ,在Rt△AOP 和Rt△BOP 中,⎩⎪⎨⎪⎧PA =PB ,OP =OP , ∴Rt△AOP ≌Rt△BOP ,∴∠APO =∠BPO ,即PO 平分∠APB ; (2)∵Rt△AOP ≌Rt△BOP , ∴OA =OB ,又∵PA =PB , ∴OP 是AB 的垂直平分线.。
8年级数学人教版上册同步练习-轴对称和画轴对称图形(含答案解析)
第十三章轴对称13.1轴对称13.2画轴对称图形专题一轴对称图形1.【2012·连云港】下列图案是轴对称图形的是()2.众所周知,几何图形中有许多轴对称图形,写出一个你最喜欢的轴对称图形是:______________________.(答案不唯一)3.如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内涂黑两个小正方形,使它们成为轴对称图形.专题二轴对称的性质4.如图,△ABC和△ADE关于直线l对称,下列结论:①△ABC≌△ADE;②l垂直平分DB;③∠C=∠E;④BC与DE的延长线的交点一定落在直线l上.其中错误的有()A.0个B.1个C.2个D.3个5.如图,∠A=90°,E为BC上一点,A点和E点关于BD对称,B点、C点关于DE对称,求∠ABC和∠C的度数.6.如图,△ABC和△A′B′C′关于直线m对称.(1)结合图形指出对称点.(2)连接A、A′,直线m与线段AA′有什么关系?(3)延长线段AC与A′C′,它们的交点与直线m有怎样的关系?其他对应线段(或其延长线)的交点呢?你发现了什么规律,请叙述出来与同伴交流.专题三灵活运用线段垂直平分线的性质和判定解决问题7.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A.3 B.2 C.3D.18.如图,在△ABC中,BC=8,AB的垂直平分线交BC于D,AC的垂直平分线交BC与E,则△ADE的周长等于________.9.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,那么线段AB、BD、DE之间有什么数量关系?并加以证明.专题四利用关于坐标轴对称点的坐标的特点求字母的取值范围10.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-511.已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是__________.状元笔记【知识要点】1.轴对称图形与轴对称轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线是它的对称轴.轴对称:把一个平面图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴.2.轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.线段的垂直平分线的性质和判定性质:线段垂直平分线上的点与这条线段两个端点的距离相等.判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.4.关于x轴、y轴对称的点的坐标的特点点(x,y)关于x轴对称的点的坐标为(x,-y);点(x,y)关于y轴对称的点的坐标为(-x,y);【温馨提示】1.轴对称图形是针对一个图形而言,是指一个具有对称的性质的图形;轴对称是针对两个图形而言,它描述的是两个图形的一种位置关系.2.在平面直角坐标系中,关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.参考答案:1.D 解析:∵将D图形上下或左右折叠,图形都能重合,∴D图形是轴对称图形,故选D.2.圆、正三角形、菱形、长方形、正方形、线段等3.如图所示:4.A 解析:根据轴对称的定义可得,如果△ABC和△ADE关于直线l对称,则△ABC≌△ADE,即①正确;因为如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对应线段、对应角相等,故l垂直平分DB,∠C=∠E,即②,③正确;因为成轴对称的两个图形对应线段或延长线如果相交,那么,交点一定在对称轴上,故BC与DE的延长线的交点一定落在直线l上,即④正确.综上所述,①②③④都是正确的,故选A.5.解:根据题意A点和E点关于BD对称,有∠ABD=∠EBD,即∠ABC=2∠ABD=2∠EBD.B点、C点关于DE对称,有∠DBE=∠BCD,∠ABC=2∠BCD.且已知∠A=90°,故∠ABC+∠BCD=90°.故∠ABC=60°,∠C=30°.6.解:(1)对称点有A和A',B和B',C和C'.(2)连接A、A′,直线m是线段AA′的垂直平分线.(3)延长线段AC与A′C′,它们的交点在直线m上,其他对应线段(或其延长线)的交点也在直线m上,即若两线段关于直线m对称,且不平行,则它们的交点或它们的延长线的交点在对称轴上.7.B 解析:在Rt△FDB中,∵∠F=30°,∴∠B=60°.在Rt△ABC中,∵∠ACB=90°,∠ABC=60°,∴∠A=30°.在Rt△AED中,∵∠A=30°,DE=1,∴AE=2.连接EB. ∵DE 是AB的垂直平分线,∴EB=AE=2. ∴∠EBD=∠A=30°.∵∠ABC=60°,∴∠EBC=30°.∵∠F=30°,∴EF=EB=2.故选B.AF ED8.8 解析:∵DF是AB的垂直平分线,∴DB=DA.∵EG是AC的垂直平分线,∴EC=EA.∵BC=8,∴△ADE的周长=DA+EA+DE=DB+DE+EC=BC=8.9.解:AB+BD=DE.证明:∵AD⊥BC,BD=DC,∴AB=AC.∵点C在AE的垂直平分线上,∴AC=CE.∴AB=CE.∴AB+BD=CE+DC=DE.10.C 解析:关于y轴对称的点横坐标互为相反数,纵坐标相等,∴a=2,b=3.∴a+b=5.解得1.5<a<2.5,又因为a必须为整数,∴a=2.∴点P2(-1,-1).∴P1点的坐标是(-1,1).12.3 角的平分线的性质专题一利用角的平分线的性质解题1.如图,在△ABC中,AC=AB,D在BC上,若DF⊥AB,垂足为F,DG⊥AC,垂足为G,且DF=DG.求证:AD⊥BC.2.如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC.求证:OB=OC.3.如图,在Rt△ABC中,∠C=90°,21BAC B∠∠,AD是∠BAC的角平分线,DE⊥AB∶∶于点E,AC=3 cm,求BE的长.专题二角平分线的性质在实际生活中的应用4.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在()A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处5.如图,要在河流的南边,公路的左侧M区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A处的距离为1cm(指图上距离),则图中工厂的位置应在__________,理由是__________.6.已知:有一块三角形空地,若想在空地中找到一个点,使这个点到三边的距离相等,试找出该点.(保留作图痕迹)状元笔记【知识要点】1.角的平分线的性质角的平分线上的点到角的两边的距离相等.2.角的平分线的判定角的内部到角的两边的距离相等的点在角的平分线上.【温馨提示】1.到三角形三边距离相等的点是三角形三条角平分线的交点,不是其他线段的交点.2.到三角形三边距离相等的点不仅有内角的平分线的交点,还有相邻两外角的平分线的交点,这样的点共有4个.【方法技巧】1.利用角的平分线的性质解决问题的关键是:挖掘角的平分线上的一点到角两边的垂线段.若已知条件存在两条垂线段——直接考虑垂线段相等,若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段.2.利用角平分线的判定解决问题的策略是:挖掘已知图形中一点到角两边的垂线段.若已知条件存在两条垂线段——先证明两条垂线段相等,然后说明角平分线或角的关系;若已知条件存在一条垂线段——考虑通过作辅助线补出另一条垂线段,再证明两条垂线段相等;若已知条件不存在垂线段——考虑通过作辅助线补出两条垂线段后,证明两条垂线段相等.参考答案:1.证明:∵DF AB DG AC DF DG ⊥⊥=,,,∴AD 是BAC ∠的平分线, ∴BAD CAD =∠∠. 在ABD △和ACD △中,⎪⎩⎪⎨⎧=∠=∠=(公共边)(已求)已知)AD AD DAC DAB AC AB (∴SAS)ABD ACD (△≌△.∴ADB ADC =∠∠.又∵180BDA CDA +=︒∠∠,∴90BDA =︒∠,∴AD BC ⊥. 2.证明:∵AO 平分∠BAC ,OD ⊥AB ,OE ⊥AC ,∴OD =OE ,在Rt △BDO 和Rt △CEO 中,⎪⎩⎪⎨⎧∠=∠=∠=∠,,COE DOB OEOD CEO BDO∴(ASA)BDO CEO △≌△.∴OB =OC . 3.解:∵∠C =90°,∴∠BAC +∠B =90°,又DE ⊥AB ,∴∠C =∠AED =90°, 又21BAC B =∶∶∠∠,∴∠A =60°,∠B =30°, 又∵AD 平分∠BAC ,DC ⊥AC ,DE ⊥AB , ∴DC =DE ,∴3AE AC ==cm .在Rt △DAE 和Rt △DBE 中,⎪⎩⎪⎨⎧=∠=∠∠=∠.DE DE BED AED B DAE∴△DAE ≌△DBE (AAS ), ∴3BE AE == cm .4.C 解析:根据角平分线的性质,集贸市场应建在∠A 、∠B 两内角平分线的交点处.故选C .5.∠A 的角平分线上,且距A1cm 处 角平分线上的点到角两边的距离相等 6.解:作两个角的平分线,交点P 就是所求作的点.。
勤学早2018-2019学年度八年级数学(上)第13章《轴对称》周测(一)(word版含答案)
勤学早八上数学第13章《轴对称》周测一(测试范围:13.1轴对称~13.2画轴对称图形 参考时间:90分钟,满分:120分)一.选择题(每小题3分,共30分)1.下列图形中,不是轴对称图形的是( )2.等边三角形的对称轴共有( )A .2条B .3条C .5条D .10条3.△ABC 和△'''A B C 关于直线l 对称,若△ABC 的周长为24cm ,则'''A B C 的周长为( ) A .24cm B .12cm C .6cm D .4cm 4.点A (-2,-3)关于x 轴对称的点'A 的坐标为( ) A .(-2,-3) B .(-2, 3) C .(2,-3) D .(3,-2) 5.已知点A (x ,4)与点B (3,y )关于y 轴对称,那么x +y 的值为( ) A .-1 B .-7 C .7 D .1 6.如图,△ABC 与△111A B C 与关于直线l 对称,则∠B 的度数为( ) A .30° B .105° C .90° D .100°l30°45°第6题图B 1B C 1A 1CA第7题图DABC第9题图MNAB DC7.如图,点在AC 的垂直平分线上,AB ∥CD ,若∠D =140°,则∠BAC 的度数是( ) A .15° B .20° C .25° D .30° 8.点(3,5)关于直线x =1的对称点的坐标为( ) A .(-1,5) B .(-3,5) C .(4,5) D .(0,5)9.如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,若△ADC 的周长的15,AB =7,则△ABC 的周长为( ) A .7 B .14 C .17 D .2210.如图,已知A (2,4)是OB 的垂直平分线上一点,P 为y 轴上一点且∠OPB =∠OAB ,则OP +PB 的值是( )A .4B .6C .8D .10y x第10题图OB AP l第11题图C'B'A'ABCB A第13题图NMP P 1OP二.填空题(每小题3分,共18分)11.如图,AB =8,AC =10,BC =6,△ABC 与△'''A B C 关于直线l 对称 ,则的长为 . 12.如图,点A 关于y 轴对称的点的坐标是 .13.如图,∠AOB 内一点P ,1P ,2P 分别是点P 关于OA 、OB 的对称点,1P 2P 交OA 于M ,交OB 于N ,若1P 2P =7cm ,则△PMN 的周长是 cm .14.如图,将长方形纸片ABCD 折叠,使点D 与点B 重合,点C 落在'C 处,折痕为EF ,若AB =1,BC =2,则△ABE 和△B 'C F 的周长之和为 .第14题图第15题图第16题图15.如图,△ABC 的面积为4cm 2,AP 与∠B 的平分线垂直,垂足是点P ,则△PBC 的面积为 cm 2. 16.如图,在△ABC 中,∠C =90°,AC =6cm ,BC =8 cm ,将直角边AC 沿直线AM 折叠,使点C 恰好落在斜边AB 上的点N ,BN =4 cm ,则CM 的长是 cm . 三.解答题 17.(本题8分)如图,点A 在BD 的垂直平分线上,BF ⊥AD 于F ,DE ⊥AB 于E . 求证:AF =AE .18.(本题8分)如图,将长方形ABCD 沿EF 折叠,使CD 落在GH 的位置,GH 交BC 于M ,若∠HMB =54°,求∠HEF 的度数.GE19.(本题8分)已知点A (2m +n ,2),B(1,n -m ),当m 、n 分别为何值时? (1)A 、B 关于x 轴对称; (2)A 、B 关于y 轴对称.20.(本题8分)已知A 、B 两点的坐标分别为(-2,1)和(2,3).(1)在图1中分别画出线段AB 关于x 轴和y 轴的对称线段11A B 及22A B ,并写出相应端点的坐标;(2)在图2中分别画出线段AB 关于直线x =1和直线y =1的对称线段33A B 及44A B ,并写出相应端点的坐标.21.(本题8分)如图,∠AOB =45°,角内有一点P ,1P 、2P 分别是点P 关于两边OA 、OB 的对称点,连接1P 2P 与角两边交于点Q 、R . (1)连接O 1P ,O 2P ,则△O 1P 2P 为_________三角形; (2)求∠QPR 的度数.B A RQP 21OP22.(本题10分)如图,在△ABC 中,边AB 、AC 的垂直平分线分别交BC 于D 、E . (1)已知BC =10,求△ADE 的周长. (2)已知∠BAC =128°,求∠DAE 的度数.M NEDBA C23.(本题10分)在△ABC 中,BD 平分∠ABC 交AC 于点D .(1)作图:如图1,作BC 边的垂直平分线分别交BC 、BD 于点E 、F .(用尺规作图,保留作图痕迹,不要求写作法)(2)在(1)的条件下,连接CF ,若∠A =60°,∠ABD =24°,求∠ACF 的度数; (3)如图2,若CF 平分∠ACB 交AB 于点E ,∠A =60°,求证:BE +CD =BC .图1图224.(本题12分)已知A (a ,0),B (b ,0)||0a b +=. (1)如图1,求证:OA =OB ; (2)如图2,将△A OB 沿x 轴翻折得△AOC ,D 为线段AB 上一动点,OE ⊥OD 交AC 于点,E ,求ODAE S 四边形; (3)如图3,D 为AB 上一点,过点B 作BF ⊥OD 于点G ,交x 轴于点F ,点H 为x 轴正半轴上一点,OH =AF ,连接DH ,求证:∠BFO =∠DHO .1-5ABABD 6-10BBADC二.填空题(每小题3分,共18分) 11. 6 . 12.(5.5,5). 13. 714. 6 . 15. 2 16. 3解:AM 平分∠CAB ,∠C =∠MNA =90°, AC =AN =6 cm ,∴CM =MN ,AB =BN +AN =4+6=10 cm ,设CM =MN =x cm ,则BM =BC -CM =(8-x )cm ,ABM S ∆=12BM AC •=12AB MN •,即12(8-x ) ×6=12×10x ,解得x =3,∴CM =3cm .三.解答题 17.解:证△BF A ≌△DEA . 18.解:∠HEF =72°. 19.. 解:(1)∵A (2m +n ,2),B (1,n -m ),A 、B 关于x 轴对称, ∴2m +n=1,n -m=-2,解得m=1,n=-1. (2) ∵A (2m +n ,2),B(1,n -m ),A 、B 关于y 轴对称, ∴2m +n =-1,n -m =2,解得m =-1,n =1 20. 解:(1)1A (-2,-1),1B (2,-3),2A (2, 1),2B (-2,3); (2)3A (4, 1),3B (0, 3),4A (-2, 1),4B (2,-1). 21. 解:(1)等腰直角,(2)∠QPR =90°. 22. 解:(1)∵AB 、AC 的垂直平分线分别交BC 于D 、E ,∴AD =BD ,AE =CE .ADE C ∆=AD +DE +AE =BD +DE +CE =BC =10. (2) ∵AB 、AC 的垂直平分线分别交BC 于D 、E , ∴AD =BD ,AE =CE .∴∠B =∠BAD ,∠C =∠CAE . ∵∠BAC =128°,∴∠B +∠C =52°,∴∠DAE =∠BAC -(∠BAD +∠CAE )= ∠BAC -(∠B +∠C )=76°.23. 解:(1)略;(2)∵BD 平分∠ABC ,∴∠ABC =2∠ABD ,∠ABD =∠CBD , ∵∠ABD =24°,∴∠ABC =48°,∠DBC =24°, ∵∠A =60°,∴∠ACB =180°-60°-48°=72°, ∵EF 是BC 的垂直平分线,∴BF =C F , ∴∠FCB =∠FBC =24°, ∴∠A CF =72°-24°=48°.(3)设CE 与BD 相交于O ,在 BC 上截取CK =CD , 易证∠BOE =∠COD =60°,再证△COD ≌△COK ,△BOE ≌△BOK , ∴BE =BK ,CD =CK ,∴BE +CD =BK +CK =BC .24. 解:(1)OA =OB =2(2)ODAE S 四边形=AOB S =2(3)过O 作OM 平分∠AOB 交BF 于M , 证△BOM ≌△OAD ,则OM =AD ,再证△FOM ≌△HAD ,∠BFO=∠DHO .。
2022秋华师版八年级数学上册 点训 第13章 随堂小练
第13章全等三角形13.1命题、定理与证明1.命题1.下列命题正确的是()①同位角相等,两直线平行;②相等的两个角是对顶角;③同旁内角互补;④在同一平面内,过一点有且只有一条直线与已知直线垂直.A.①③④B.①③C.①④D.②③2.命题“两条直线相交只有一个交点”是__________命题(填“真”或“假”).3.把命题“对顶角相等”改写成“如果……那么……”的形式为______________________________________________________,它是________命题(填“真”或“假”).4.写出命题“如果a2>b2,那么a>b”的题设和结论,判断此命题是真命题还是假命题,如果是假命题,举出一个反例.第13章全等三角形13.1 命题、定理与证明1. 命题1.C 2.真3.如果两个角是对顶角,那么它们相等;真4.解:题设:a2>b2,结论:a>b,此命题是假命题,例如:a=-3,b=2,a2>b2,但a<b,所以此命题是假命题.第13章全等三角形13.1命题、定理与证明2.定理与证明1.如图,直线a、b被直线c所截,现给出下列四个条件:①∠1=∠4;②∠2=∠5;③∠2+∠3=180°;④∠2=∠4.其中能判定a ∥b的条件的序号是________.(第1题)2.如图,点G在CD上,已知∠BAG+∠AGD=180°,AE平分∠BAG,GF平分∠AGC,请说明AE∥GF的理由.(第2题)第13章全等三角形13.1 命题、定理与证明2. 定理与证明1.①④2.解:∵∠BAG+∠AGD=180°,∠AGC+∠AGD=180°,∴∠BAG=∠AGC.∵AE平分∠BAG,GF平分∠AGC,∴∠1=12∠BAG,∠2=12∠AGC,∴∠1=∠2,∴AE∥GF.第13章全等三角形13.2三角形全等的判定第1课时全等三角形1.如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=() A.∠B B.∠A C.∠EMF D.∠AFB(第1题)(第2题)2.如图,若△ABC≌△DEF,AF=2,FD=8,则FC的长度是________.3.如图,将△ABC沿着BC的方向平移到△DEF的位置,∠B=57°,∠D=77°,求∠F的度数.(第3题)第13章全等三角形13.2 三角形全等的判定第1课时全等三角形1.A 2.63.解:由题意知△ABC≌△DEF,∠B=57°,∴∠DEF=∠B=57°,∴∠F=180°-∠D-∠DEF=180°-77°-57°=46°.第13章全等三角形13.2三角形全等的判定第2课时边角边1.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠BC.AD∥BC D.DF∥BE(第1题)(第2题)2.如图,已知∠ABC=∠DCB,要使△ABC≌△DCB,根据“S.A.S.”判定方法,需要再添加的一个条件是________.3.如图,在△ADC与△BDC中,∠1=∠2, AD=BD,求证:∠A =∠B.(第3题)第13章全等三角形13.2 三角形全等的判定第2课时边角边1.B 2.AB=CD3.证明:∵CD=CD,∠1=∠2,AD=BD,∴△ADC≌△BDC(S.A.S.),∴∠A=∠B.第13章全等三角形13.2三角形全等的判定第3课时角边角(1)1.根据下列已知条件,能确定△ABC的形状和大小的是()A.∠A=50°,∠B=60°,∠C=70°B.∠A=50°,∠B=50°,AB=5 cmC.AB=5 cm,AC=4 cm,∠B=30°D.AB=6 cm,BC=4 cm,∠A=30°2.如图,已知∠ABC=∠DCB,要用“A.S.A.”直接证明△ABC≌△DCB,只需添加一个条件,这个条件是______________.(第2题)3.如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.(第3题)第13章全等三角形13.2 三角形全等的判定第3课时角边角(1)1.B 2.∠ACB=∠DBC3.证明:∵AC∥DF,∴∠ACB=∠DFE.∵BF=CE,∴BC=EF.在△ABC 和△DEF 中,⎩⎪⎨⎪⎧∠B =∠E ,BC =EF ,∠ACB =∠DFE ,∴△ABC ≌△DEF (A.S.A.).第13章 全等三角形13.2 三角形全等的判定第4课时 角边角(2)1.如图,在△ABC 与△ADC 中,已知∠BAC =∠DAC ,在不添加任何辅助线的前提下,要用“A.A.S.”直接证明△ABC ≌△ADC ,则需添加的一个条件是 ________.(第1题)2.如图,AB =AE ,AB ∥DE ,∠1=70°,∠D =110°.求证:△ABC ≌△EAD .(第2题)第13章 全等三角形13.2 三角形全等的判定第4课时 角边角(2)1.∠B =∠D2.证明:∵∠1=70°,∴∠2=110°.又∵∠D =110°,∴∠2=∠D .∵AB ∥DE ,∴∠3=∠E .在△ABC 和△EAD 中,⎩⎪⎨⎪⎧∠2=∠D ,∠3=∠E ,AB =EA ,∴△ABC ≌△EAD (A.A.S.).第13章 全等三角形13.2 三角形全等的判定第5课时 边边边1.图①~④的三角形中,与△ABC 全等的图形编号是________.(第1题)2.如图,在△ABC 和△ADC 中,AB =AD ,BC =DC ,∠B =128°,求∠D 的度数.(第2题)第13章 全等三角形13.2 三角形全等的判定第5课时 边边边1.③2.解:在△ABC 和△ADC 中,⎩⎪⎨⎪⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC (S.S.S.),∴∠B =∠D =128°.第13章 全等三角形13.2 三角形全等的判定第6课时 斜边直角边1.如图,BE =CF ,AE ⊥BC ,DF ⊥BC ,要根据“H.L.”证明Rt △ABE≌Rt △DCF ,则还要添加的一个条件是( )A .AB =DC B .∠A =∠DC .∠B =∠CD .AE =DF(第1题) (第2题) 2.如图,在△ABC 中,AD ⊥BC 于点D ,再添加一个条件____________,就可确定△ABD ≌△ACD .3.如图,已知△ABC ,BD ⊥AC 于点D ,CE ⊥AB 于点E ,请你增加一个条件,写出一个三角形全等的结论,并证明你写出的结论.(不再增加辅助线)(第3题)你增加的一个条件是________.你给出的一个结论是________.第13章全等三角形13.2 三角形全等的判定第6课时斜边直角边1.A 2.AB=AC(答案不唯一)3.解:CE=BD;Rt△BCE≌Rt△CBD证明:∵BD⊥AC,∴△CBD是直角三角形.∵CE⊥AB,∴△BCE是直角三角形.又CE=BD,BC=BC,∴Rt△BCE≌Rt△CBD.(答案不唯一)第13章全等三角形13.3等腰三角形1.等腰三角形的性质1.[中考·青海]等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A.55°,55°B.70°,40°或70°,55°C.70°,40°D.55°,55°或70°,40°2.[中考·黔南州]已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A.9 B.17或22 C.17 D.223.如图,直线a,b过等边三角形ABC的顶点A和C,且a∥b,∠1=42°,则∠2的度数为________.(第3题)4.如图,在△ABC中,AB=AC,点D为边BC的中点,∠1=25°,求∠C的度数.(第4题)第13章全等三角形13.3 等腰三角形1. 等腰三角形的性质1.D 2.D 3.102°4.解:∵AB=AC,点D为边BC的中点,∴∠2=∠1=25°,AD⊥BC,∴∠ADC=90°,∴∠C=90°-25°=65°.第13章全等三角形13.3等腰三角形2.等腰三角形的判定1.下列三角形中,不是等腰三角形的是()A BC D2.已知△ABC中,AB=AC,∠A=60°,若BC=5 cm,则AC=________ cm.3.如图,在△ABC中,AB=AC,BP,CQ是△ABC两腰上的高.求证:△BCO是等腰三角形.(第3题)第13章全等三角形13.3 等腰三角形2. 等腰三角形的判定1.A 2.53.证明:在△ABC中,AB=AC,∴∠ABC=∠ACB.∵BP,CQ分别是两腰AC、AB上的高,∴∠BQC=∠CPB=90°.∵∠OBC=90°-∠ACB,∠OCB=90°-∠ABC,∴∠OBC=∠OCB.∴OB=OC,∴△BCO是等腰三角形.第13章全等三角形13.4尺规作图第1课时作已知线段与已知角1.作图题:如图,已知∠AOB,利用尺规作∠A′O′B′,使∠A′O′B′=2∠AOB.(不写作法,只保留作图痕迹)(第1题)2.如图,已知线段a和线段AB.(1)尺规作图:延长线段AB到C,使BC=a(不写作法,保留作图痕迹);(2)在(1)的条件下,若AB=4,BC=2,取线段AC的中点O,求线段OB的长.(第2题)第13章全等三角形13.4 尺规作图第1课时作已知线段与已知角1.解:如图.(第1题)2.解:(1)如图,BC=a即为所求.(第2题)(2)∵AB=4,BC=2,∴AC=AB+BC=6. ∵点O是线段AC的中点,∴OA=OC=12AC=12×6=3,∴OB=AB-OA=4-3=1.第13章全等三角形13.4尺规作图第2课时作已知角的平分线1.已知∠AOB,求作射线OC,使OC平分∠AOB.作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD,OE,使OD=OE;③分别以D,E为圆心,大于12DE的长为半径作弧,在∠AOB内两弧交于点C.A.①②③B.②①③C.②③①D.③②①2.如图,在△ABC中,AC=BC,∠A=28°,观察图中尺规作图的痕迹,则∠BCG的度数为________.(第2题)3.如图,已知∠α与∠β,求作一个角,使它等于12(∠α+∠β).(第3题)第13章全等三角形13.4 尺规作图第2课时作已知角的平分线1.C2.62°3.解:如图,∠ABD即为所求作的角.(第3题)第13章全等三角形13.4尺规作图第3课时经过一已知点作已知直线的垂线1.如图,已知点C和直线AB,求作:过点C作直线AB的垂线CF.作法如下:①以点C为圆心,CK的长为半径作弧,交AB于点D和E;②作直线CF;③分别以点D和点E为圆心,大于12DE的长为半径作弧,两弧相交于点F;④任意取一点K,使点K和C 在AB的两旁.已知以上作法步骤是排乱的,则正确的排序是()(第1题)A.④③①②B.④①③②C.①③④②D.①④③②2.如图,已知△ABC,以A为圆心,AC的长为半径画弧与BC相交于另一点E.(第2题)(1)用尺规作图的方法,作出△ABC的高AD(垂足为D).(2)求证:ED=CD.第13章全等三角形13.4 尺规作图第3课时经过一已知点作已知直线的垂线1.B2.(1)解:如图,AD为所作.(第2题)(2)证明:由作法得AC=AE,∴△ACE为等腰三角形.∵AD⊥CE,∴AD为△ACE的中线,∴ED=CD.第13章全等三角形13.4尺规作图第4课时作已知线段的垂直平分线1.通过如下尺规作图,能确定点D是边BC中点的是()A B C D2.如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)(第2题)3.如图,在长方形ABCD中,E为边BC的中点,将∠D折起,使点D落在点E处,请你用尺规作出折痕.(不要求写已知、求作和作法,保留作图痕迹)(第3题)第13章全等三角形13.4 尺规作图第4课时作已知线段的垂直平分线1.A2.解:如图,直线AD即为所求.(第2题)3.略.第13章全等三角形13.5逆命题与逆定理1.互逆命题与互逆定理1.下列命题中,其逆命题是真命题的是()A.如果a=b,则|a|=|b|B.两直线平行,同位角相等C.全等三角形的对应高相等D.正方形的四个角都相等2.命题“如果一个数的绝对值是它本身,那么这个数是正数”的逆命题是________命题(填“真”或“假”).3.同位角相等,两直线平行的逆定理为________________________________________________________ ________________.4.请写出一对互逆命题,并判断它们是真命题还是假命题.第13章全等三角形13.5 逆命题与逆定理1. 互逆命题与互逆定理1.B 2.真3. 两直线平行,同位角相等4.解:(答案不唯一)同旁内角互补,两直线平行;两直线平行,同旁内角互补.这两个命题都是真命题.第13章全等三角形13.5逆命题与逆定理2.线段垂直平分线1.在△ABC纸片上有一点P,且PA=PB,则P点一定() A.是边AB的中点B.在边AB的垂直平分线上C.在边AB的高上D.在边AB的中线上2.如图,△ABC中,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,若BC=15 cm,则△ADE的周长为________cm.(第2题) 3.如图,DF垂直平分AB,EG垂直平分AC,若∠BAC=110°,求∠DAE的度数.(第3题)第13章全等三角形13.5 逆命题与逆定理2. 线段垂直平分线1.B 2.153.解:∵∠BAC=110°,∴∠B+∠C=180°-∠BAC=180°-110°=70°.∵DF垂直平分AB,EG垂直平分AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∴∠DAB+∠EAC=∠B+∠C=70°,∴∠DAE=∠BAC-(∠DAB+∠EAC)=40°.第13章全等三角形13.5逆命题与逆定理3.角平分线1.在△ABC纸片上有一点P,若P到AB,AC的距离相等,则点P 一定()A.在边BC的中线上B.在边BC的垂直平分线上C.在边BC的高上D.在∠BAC的平分线上2.【中考·南昌】如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON 于点F,OA=OB,则图中有________对全等三角形.(第2题)3.如图,已知AC 平分∠BAD ,CE ⊥AB ,CD ⊥AD ,点E ,D 分别为垂足,CF =CB .求证:BE =FD .(第3题)第13章 全等三角形13.5 逆命题与逆定理3. 角平分线1.D 2.33.证明:∵AC 平分∠BAD ,CE ⊥AB ,CD ⊥AD ,∴CD =CE .在Rt △CBE 和Rt △CFD 中,⎩⎪⎨⎪⎧CB =CF ,CE =CD ,∴Rt △CBE ≌Rt △CFD ,∴BE =FD .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学13.1轴对称--13.2.作轴对称图形
一、知识点梳理
1、轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做 ,
这条直线就叫做 .折叠后重合的点是对应点,叫做 .
2、轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直
线 ,•这条直线叫做 ,折叠后重合的点是对应点,叫做 . (说明:两个图形关于某条直线对称也叫两个图形成轴对称). 3、轴对称图形与轴对称的区别和联系:
区别:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,
而轴对称图形是对一个图形来说的.
联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称
的两个图形看成一个整体,那么它就是一个轴对称图形.
4、用坐标表示轴对称:点(x ,y )关于x 轴对称的点的坐标为 ;
点(x ,y )关于y 轴对称的点的坐标为 ;点(x ,y )关于原点对称的点的坐标为 .
5、线段的垂直平分线:经过线段的 点并且 这条线段的直线,叫做这条线段的垂直平分线.
6、线段的垂直平分线的性质:线段垂直平分线上的点到这条线段两个端点的距离 . 反过来,到一条线段两个端点距离相等的点,在这条线段的 平分线上. 二、水平测试
1.观察下面的轴对称图形,它们各有几条对称轴?
2.填空:如图,AD ⊥BC ,BD=DC ,点C 在AE 的垂直平分线上, 则:AB= = .
3.填空:如图,在△ABC 中,DE 是AB 的垂直平分线, 已知AC=3.5,BC=2.5,则△BDC 的周长= .
4.完成下面的证明过程: 已知:如图,AM 是BC 的垂直平分线. 求证:∠1=∠2. 证明:∵AM 是BC 的垂直平分线,
∴AB= ,MB= . 在△ABM 与△ACM 中,
AB ______,MB ______,AM AM,⎧=⎪
=⎨⎪=⎩
∴△ABM ≌△ACM( ). E
D C A
B A B
C
D
E 2
1A B
C
M
5.如图,已知△ABC 和直线l ,作出与△ABC 关于直线l 对称的图形.
6.如图,把下面图形补成关于直线l 对称的图形.
7.如图,填空:
(1) 点A 的坐标是( , ), 点B 的坐标是( ,
)点C 的坐标是( , ), 点D 的坐标是( , )(2)点A 与点 关于x 轴对称, 点A 与点 关于y 轴对称
8.在上图中描出下列各点:
E (2,3),
F (2,-3),
G (-2,-3),
H (-2,3).
9.探究题:
如图,填空:
(1)已知点A (3,4
),画出点A 关于x 轴的对称点A ′,
点A ′的坐标是( , );
(2)已知点A (3,4),画出点A 关于y 轴的对称点A ′′, 点A ′′的坐标是( , );
(3)从上面的例子你发现,点(x,y )关于x 轴的
对称点的坐标是( , ),
点(x ,y )关于y 轴的对称点的坐标是( , ).
C A B l l
A
B C D
O
E
10.填空:
(1)点(-2,6)关于x 轴的对称点的坐标是( , ), 关于y 轴的对称点的坐标是( , );
(2)点(1,-2)关于x 轴的对称点的坐标是( , ),关于y 轴的对称点的坐标是( , ); (3)点(1,3)关于x 轴的对称点的坐标是( , ),关于y 轴的对称点的坐标是( , ); (4)点(-4,-2)关于x 轴的对称点的坐标是( , ),关于y 轴的对称点的坐标是( , ); (5)点(1,0)关于x 轴的对称点的坐标是( , ),关于y 轴的对称点的坐标是( , ). 11.点A (3,-12),B (3,12)关于_______轴对称,点C (-5.4,-10),D (5.4,-10)关于________轴对称。
12.如图,△ABC 的三个顶点的坐标分别为A (4,4),B (0,2),C (3,0),作出与△ABC 关于x 轴对称的图形.
13.观察字母A 、E 、H 、O 、T 、W 、X 、Z ,其中不是轴对称的字母是______________. 14.已知点(2,a )和点(b,3)关于x 轴对称,则(a+b )2009=__________. 15..如图,△ABD 、△ACE 都是正三角形,BE 和CD
交于O 点,则∠BOC =__________.
16.如图,由4个小正方形组成的田字格中, ABC △的顶点都是小正方形的顶点.在田字格上画与 ABC △成轴对称的三角形,且顶点都是小正方形的顶点,
则这样的三角形(不包含ABC △本身)共有________个.
17.已知∠AOB=30°,点P 在∠AOB 内部,P 1与P 关于OB 对称, P 2与P 关于OA 对称,则P 1,O,P 2三点构成的三角形是 ( )
(A)直角三角形 (B)钝角三角形 (C)等腰三角形 (D)等边三角形
18.圆、正方形、长方形、等腰梯形中有唯一条对称轴的是( ) (A)圆 (B)正方形 (C)长方形 (D)等腰梯形 19.点(3,-2)关于x 轴的对称点是 ( )
(A )(-3,-2) (B )(3,2) (C )(-3,2) (D )(3,-2)
A B C (第16题)
A
B
C
D
E
A
B
l
20.由16个相同的小正方形拼成的正方形网格,现将其中的两个 小正方形涂黑(如图).请你用两种不同的方法分别在上图中再将 两个空白的小正方形涂黑,使它成为轴对称图形.
21..①在直线l 上找一点P ,使PA=PB.(保留作图痕迹) ②在直线l 上找一点Q ,使PA+PB 的值最小.(保留作图痕迹)
22..如图:△ABC 和△ADE 是等边三角形.证明:BD=CE.。