最新七年级数学一元一次方程(培优篇)(Word版 含解析)
(完整word)4一元一次方程培优训练(有答案)
一元一次方程培优训练基础篇一、选择题1。
把方程103.02.017.07.0=--x x 中的分母化为整数,正确的是( ) A 。
132177=--x x B.13217710=--x x C 。
1032017710=--x x D.132017710=--x x2。
与方程x+2=3—2x 同解的方程是( )A.2x+3=11B.-3x+2=1C.132=-x D 。
231132-=+x x 3。
甲、乙两人练习赛跑,甲每秒跑7m,乙每秒跑6。
5m,甲让乙先跑5m,设x秒后甲可追上乙,则下列四个方程中不正确的是( )A 。
7x=6。
5x+5 B.7x+5=6.5x C 。
(7-6.5)x=5 D 。
6。
5x=7x-5 4。
适合81272=-++a a 的整数a 的值的个数是( )A 。
5B 。
4C 。
3D 。
25。
电视机售价连续两次降价10%,降价后每台电视机的售价为a 元,则该电视机的原价为( ) A 。
0。
81a 元 B 。
1.21a 元 C 。
21.1a 元 D 。
81.0a 元6。
一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某学生做了全部试题共得70分,他做对了( )道题。
A.17 B 。
18 C.19 D.207.在高速公路上,一辆长4米,速度为110千米/时的轿车准备超越一辆长12米,速度为100千米/时的卡车,则轿车从开始追击到超越卡车,需要花费的时间约是( ) A。
1.6秒B.4.32秒C.5.76秒D。
345.6秒8.一项工程,甲单独做需x 天完成,乙单独做需y 天完成,两人合作这项工程需天数为( ) A.y x +1 B 。
y x 11+ C 。
xy1 D. yx 111+9、若2x =-是关于x 的方程233x x a +=-的解,则代数式21a a-的值是( ) A 、0 B 、283- C 、29- D 、2910、一个六位数左端的数字是1,如果把左端的数字移到右端,那么所得的六位数等于原数的3倍,则原数为( )A 、142857B 、157428C 、124875D 、175248 二、填空题11.当=a 时,关于x 的方程01214=+-a x 是一元一次方程。
人教版 七年级数学上册 一元一次方程培优专题-绝对值方程(解析版)
2 - 1 =22 2 2 进而 ⎪⎨,解得 ⎪⎨ ⎩ ⎩一元一次方程培优专题——绝对值方程例题1. 解方程: 2 x + 3 = 5【解析】根据绝对值的意义,原方程可化为 2x + 3 = 5 或者 2x + 3 = -5 ,解得 x = 1 或 x = -4【答案】 x = 1 或 x = -4例题2. 解方程 x + 1 - 1 2 - x + 13【解析】原方程整理得: x + 1 = 13 ,即 x + 1 = 13 或者 x + 1 = - 13 ,所以原方程的解为 x = 8 或 x = - 1855 5 5 5【答案】 x = 8 或 x = - 1855例题3. 已知:当 m > n 时,代数式(m 2- n 2+ 3) 和 m 2+ n 2- 5 的值互为相反数,求关于x 的方程m 1 - x = n的解.【解析】因为代数式 (m 2 - n 2 + 3) 和 m 2 + n 2 - 5 的值互为相反数,所以 (m 2 - n 2 + 3) + m 2 + n 2 - 5 = 0 , 所以 (m 2 - n 2 + 3) = 0 , m 2 + n 2 - 5 = 0 ,⎧m 2 - n 2 = -3 ⎪m 2 + n 2 = 5⎧m 2 = 1 ⎪n 2 = 4,所以 m = ±1, n = ±2 ,因为 m > n ,当 m = 1时, n = -2 ;当 m = -1 时, n = -2 ;当 m = 1,n = -2 时,方程为 1 - x = -2 ,该方程无解;当 m = -1, n = -2 时,方程为 - 1 - x = -2 ,解得 x = -1 或 x = 3 .【答案】 x = -1 或 x = 3例题4.解方程4x+3=2x+9【解析】解法一:令4x+3=0得x=-3,将数分成两段进行讨论:4①当x≤-3时,原方程可化简为:-4x-3=2x+9,x=-2在x≤-3的范围内,是方程的解.44②当x>-3时,原方程可化简为:4x+3=2x+9,x=3在x>-3的范围内,是方程的解.44综上所述x=-2和x=3是方程的解.解法二:依据绝对值的非负性可知2x+9≥0,即x≥-9.原绝对值方程可以转化为①4x+3=2x+9,2解得x=3,经检验符合题意.②4x+3=-(2x+9),解得x=-2,经检验符合题意.综合①②可知x=-2和x=3是方程的解.【答案】x=-2或x=3例题5.解方程4x+3=2x+9【答案】x=3或x=-2例题6.a为有理数,a=2a-3,求a的值.【解析】解法一:要想求出a的值,我们必须先化简a=2a-3.采用零点分段讨论的方法.令a=0,2a-3=0得a=3.2①当a≥3时,由原式可得a=2a-3,求得a=3,在a≥3的范围内;22②当0≤a<3时,由原式可得a=3-2a,求得a=1,在0≤a<3的范围内;22③当a<0,由原式可得-a=-2a+3,求得a=3,不在a<0的范围内.综上可得a的值为3或1.x 解法二:依题意, a 的绝对值和 2a - 3 的绝对值相等,可以得出两者相等或互为相反数,即a = 2a - 3或a = -(2a - 3) 解得 a = 3 或 a = 1.【答案】 a = 3 或 a = 1例题7. 解方程 2 x - 1 = 3x + 1【解析】根据两数的绝对值相等,可以判断这两个数相等或者互为相反数,所以由原方程可以得到2x - 1 = 3x + 1 或 2x - 1 = -3x - 1 ,解得 x = -2, = 0 .【答案】 x = -2 或 x = 0例题8. 解方程 x - 1 + x - 3 = 4【解析】令 x - 1 = 0 , x - 3 = 0 得 x = 1 , x = 3 ,它们可以将数轴分成 3 段:①当 x < 1 时,原方程可化简为: -( x - 1) - ( x - 3) = 4 , x = 0 在 x < 1 的范围内是原方程的解;②当 1 ≤ x < 3 时,原方程可化简为: x - 1 - ( x - 3) = 4 ,此方程无解;③当 x ≥ 3 时,原方程可化简为: x - 1 + x - 3 = 4 , x = 4 在 x ≥ 3 的范围内是原方程的解;综上所述,原方程的解为: x = 0 或 x = 4 .【答案】 x = 0 或 x = 4例题9. 解方程 x - 1 + x - 5 = 4【解析】由绝对值的几何意义可知 1 ≤ x ≤ 5 .【答案】 1 ≤ x ≤ 5例题10. 解方程: 2 x + 1 - 2 - x = 3【解析】零点为: x = - 1 , x = 2 ,它们可将数轴分成三段:22 ①当 x < - 1 时,原方程变形为:-(2 x + 1) - (2 - x) =3 ,x = -6 在 x < - 1 的范围内,是方程的解;22②当 - 1 ≤ x < 2 时,原方程变形为: (2 x + 1) - (2 - x) = 3 , x = 4 在 - 1 ≤ x < 2 的范围内,是方程23 2的解;③当 x > 2 时,原方程变形为:(2 x - 1) - ( x - 2) = 3 ,x = 0 不在 x > 2 的范围内,不是方程的解.综上所述原方程的解为: x = -6 或 x = 4 .3【答案】 x = -6 或 x = 43例题11. 解方程:方程 x + 3 + 3 - x = 9 x + 52【解析】对 x 的值分 4 段讨论:①若 x < -3 ,则原方程化为 - x - 3 + 3 - x = - 9 x + 5 ,解得 x = 2 ,与 x < -3 矛盾;2②若 -3 ≤ x < 0 ,则原方程化为 x + 3 + 3 - x = - 9 x + 5 ,解得 x = - 2 ;29③若 0 ≤ x < 3 ,则原方程化为 x + 3 + 3 - x = 9 x + 5 ,解得 x = 2 ;29④若 x ≥ 3 ,则原方程化为 x + 3 + x - 3 = 9 x + 5 ,解得 x = -2 ,与 x ≥ 3 矛盾.2综上所述方程的解为 x = ± 2 .9【答案】 ± 29例题12. 解绝对值方程: x - 3x - 5- 1 = 62【解析】 x - 3x - 5 - 1 = 6 或 -6 ,即 3x - 5 = x - 7 或 3x - 5 = x + 522 2①当 x - 7 ≥ 0 时(即 x ≥ 7 ), 3x - 5 > 0 , 3x - 5 = x - 7 化为 3x - 5 = x - 7 ,解得 x = -9 ;22②当 x + 5≥ 0 时( x ≥ -5 ),若还有 3x - 5 > 0 (即 x ≥ 5 ), 3x - 5 = x + 5 ,解得 x = 15 ;23 2③当 x + 5≥ 0 时( x ≥ -5 ),若还有 3x - 5 < 0 (即 x < 5 ), 3x - 5 = - x - 5 ,解得 x = -1 .23 2再来检验这三个解 x = -9 (舍去)、 x = 15 、 x = -1 .【答案】 x = 15 或 x = -13x + 1 = 0,x = - ; x - 3x + 1 = 0 , x = - , - ,这 3 个零点将数轴分成 4 段,我们分段讨论 8例题13. 解方程: 3x - 5 + 4 = 8【解析】3x - 5 + 4 = 8 或 - (舍),即 3x - 5 = 4 ,所以 3x - 5 = 4 或 -4 ,即 3x = 9 或 3x = 1 ,故 x = 3 或 x = 1 .3【答案】 x = 3 或 x = 13例题14. 求方程 x - 3x + 1 = 4 的解.【解析】解法一:1 1 1 32 4研究可以得到结果为: x = 3 或 x = - 5 ,但其实这么做是没必要的.我们来看看解法二.24解法二:①当 x ≤ - 1 时,方程可化为: 4x + 1 = -4 , x = - 5 ,在 x ≤ - 1 范围内,是方程的解;34 3②当 x > - 1 时,方程可化为 -2 x - 1 = 4 :当 -2x - 1 = 4 时,得 x = - 5 , - 5 < - 1 , x = - 5 不是32 23 2解,舍去;当 -2x - 1 = -4 时,得 x = 3 ,∵ 3 > - 1 ,∴ x = 3 是方程的一个解.22 3 2综上可得,原方程的解为 x = 3 或 x = - 5 .24【答案】 x = 3 或 x = - 524例题15. 当 0 ≤ x ≤1 时,求方程 x - 1 - 1 - 1 = 0 的解【解析】根据 x 所在的范围,可得 x ≥ 0 , x - 1≤ 0 ,因此 x = x ,x - 1 = 1 - x ,按从内到外的顺序逐个去除方程中的绝对值符号,原方程可顺次化为: 1 - x - 1 - 1 = 0 ,即 1 - x = 0 ,所以 x = 1 .【答案】1。
七年级上册一元一次方程(培优篇)(Word版 含解析)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。
(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。
(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。
2.一根长80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米。
2024年北师大版七年级上册数学复习培优拔高练 一元一次方程的应用
(秒).
分以下三种情况讨论:
①当点 M 到达点 B 之前,由题意,得
+
t =4,解得 t =
;
②当点 M 从点 B 返回,追上点 N 之前,由题意,得
1
2
2 (− + )+
解得 t = ;
=4 t + t +4,
③当点 M 追上点 N 之后,由题意,得
付款相同,
因为当购物总额不超过200元时,甲超市实付款肯
定比乙超市低,所以x>200.
由题意得0.88x=200×0.9+(x-200)×0.8,
解得x=250,
所以当购物总额是250元时,甲、乙两家超市实付
款相同.
1
2
(3)小李选择在乙超市购物,实际付款280元,对比去甲超
市购物,小李的选择划算吗?请说明理由.
的左边,与点 A 相距25个单位长度,点 M 从点 A 出发,
以每秒4个单位长度的速度在 A , B 之间往返运动,点 N
从点 B 出发,以一定的速度向右运动.
(1)点 A 表示的数为
5
,点 B 表示的数为
1
2B 处出发2秒后,点 M 才开始运动,点 M 运
动4秒后, M , N 第一次相遇,求点 N 的运动速度;
解:(2)设点 N 的运动速度为每秒 x 个单位长度,
由题意,得4×4+(4+2) x =25,解得 x = .
所以点 N 的运动速度为每秒 个单位长度.
1
2
(3)在(2)的情况下,点 M , N 继续运动 t 秒,当其中一个
人教版数学七年级上习题试卷第三章 一元一次方程(培优)(解析版)
第三章一元一次方程(培优)-七年级数学上册单元培优达标强化卷(解析)一、选择题1.将3x−7=2x变形正确的是()A. 3x+2x=7B. 3x−2x=−7C. 3x+2x=−7D. 3x−2x=7【答案】D解:等式两边都加7得:3x=2x+7,等式两边都减2x得:3x−2x=7.2.已知关于x的方程(m−2)x|m−1|=0是一元一次方程,则m的值是()A. 2B. 0C. 1D. 0或2【答案】B【解析】解:根据题意得:|m−1|=1,整理得:m−1=1或m−1=−1,解得:m=2或0,把m=2代入m−2得:2−2=0(不合题意,舍去),把m=0代入m−2得:0−2=−2(符合题意),即m的值是0,3.方程2x+1=3与2−a−x3=0的解相同,则a的值为()A. 0B. 3C. 5D. 7【答案】D4.若多项式4x−5与2x−12的值相等,则x的值是()A. 1B. 32C. 23D. 2【答案】B解:由题意得,4x−5=2x−12,去分母,2(4x−5)=2x−1,去括号,8x−10=2x−1,最后移项,8x−2x=−1+10,合并同类项,6x=9,系数化为1,x=32.5.已知:|m−2|+(n−1)2=0,则方程2m+x=n的解为()A. x=−4B. x=−3C. x=−2D. x=−1【答案】B解:∵|m−2|=0,(n−1)2=0m=2,n=1,将m=2,n=1代入方程2m+x=n,得4+x=1移项,得x=−3.6.某种商品原先的利润率为20%,为了促销,现降价10元销售,此时利润率下降为10%,那么这种商品的进价是()A. 100元B. 110元C. 120元D. 130元【答案】A解:设这件产品的进价为x元,x(1+20%)−10=x[1+(20%−10%)],解得,x=100即这件商品的进价为100元,7.一项工程甲单独做要40天完成,乙单独做需要60天完成,甲先单独做4天,然后甲乙两人合作x天完成这项工程,则可以列的方程是()A. 440+x40+60=1 B. 440+x40×60=1C. 440+x40+x60=1 D. 440+x60=1【答案】C【解析】解:设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:4 40+x40+x60=1.8.下列说法中,正确的是()A. 若ac =bc ,则a =bB. 若a c =bc ,则a =b C. 若a 2=b 2,则a =bD. 若|a|=|b|,则a =b【答案】B【解析】解:A.若ac =bc ,当c ≠0,则a =b ,故此选项错误; B .若ac =bc ,则a =b ,正确;C .若a 2=b 2,则|a|=|b|,故此选项错误;D .若|a|=|b|,则a =±b ,故此选项错误;9. 某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调调价后售出可获利20%(相对于进价),另一台空调调价后售出则亏本20%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( )A. 要亏本4%B. 可获利2%C. 要亏本2%D. 既不获利也不亏本【答案】A【解析】解:设这两台空调调价后的售价为x ,两台空调进价分别为a 、b . 调价后两台空调价格为:x =a(1+20%);x =b(1−20%). 解得:a =56x ,b =54x , 调价后售出利润为:2x−(a+b)a+b=2x−(56x+54x)56x+54x =−0.04=−4%,10. 小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( )A.B.C.D.【答案】B 【解析】解:A 、设最小的数是x . x +x +7+x +7+1=19, x =43,故本选项不符合题意; B 、设最小的数是x . x +x +6+x +7=19, x =2.故本选项符合题意.C 、设最小的数是x . x +x +1+x +7=19, x =113,故本选项不符合题意.D 、设最小的数是x . x +x +1+x +7+1=19, x =103,故本选项不符合题意.故选:B .二、填空题 11. 若代数式(1−a−14)x 2−5y +4−12(ax 2+2by +16)(a 、b 为常数)的值与字母x 、y的取值无关,则方程3ax +b =0的解为________ 【答案】1 解:(1−a−14)x 2−5y +4−12(ax 2+2by +16)=(1−a −14)x 2−5y +4−12ax 2−by −8 =(1−a −14−12a)x 2−(5+b)y −4 =(54−34a)x 2−(5+b )y −4 ∵代数式(1−a−14)x 2−5y +4−12(ax 2+2by +16)(a 、b 为常数)的值与字母x 、y 的取值无关,∴54−34a =0,5+b =0,∴a =53,b =−5,∴3ax +b =0为53·3x −5=0, ∴5x −5=0, 解得:x =1. 故答案为1.12. 如果a ,b 为定值,关于x 的一次方程2kx+a 3−x−bk 6=2,无论k 为何值时,它的解总是1,则a +2b = . 【答案】−32【解析】解:将x =1代入方程2kx+a 3−x−bk 6=2,∴2k+a 3−1−bk 6=2,∴4k +2a −1+bk =12, ∴4k +bk =13−2a ,∴k(4+b)=13−2a,由题意可知:b+4=0,13−2a=0,∴a=132,b=−4,∴a+2b=132−8=−32.故答案为:−3213.若(a−2)x|a|−1−2=0是关于x的一元一次方程,则a=______.【答案】−2【解析】解:(a−2)x|a|−1−2=0是关于x的一元一次方程,∴a−2≠0,|a|−1=1,解得a=−2.14.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是__________元.【答案】140解:设这件衣服的成本是x元,根据题意得:x(1+50%)×80%−x=28,解得:x=140.答:这件衣服的成本是140元;故答案为140.15.小明按标价的八折购买了一双鞋,比按标价购买节省了40元,这双鞋的实际售价为______元.【答案】200【解析】解:设这双鞋的实际售价为x元,根据题意,得0.8x=x−40x=200.16.已知关于x的方程x−m2=x+m3与方程x−12=3x−2的解互为倒数,则m2−2m−3的值为_________.【答案】0解:x−12=3x−2,解得:x=35,∴方程x−m2=x+m3的解为x=53,代入可得:56−m2=53+m3,解得:m=−1,∴m2−2m−3=1+2−3=0.17.用“∗”表示一种运算,其意义是a∗b=a−2b,如果x∗(3∗2)=3,则x=______.【答案】1【解析】解:3∗2=3−2×2=−1,∵x∗(3∗2)=3,∴x∗(−1)=3,x−2×(−1)=3,x+2=3,x=1,18.有两根同样长度但粗细不同的蜡烛,粗蜡烛可以燃烧6小时,细蜡烛可以燃烧4小时,一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现剩下的粗蜡烛长度是细蜡烛长度的两倍,则停电时间是______小时.【答案】3解:设停电时间为x小时,根据题意得:1−x6=2(1−x4),解得:x=3.19.如果x=1是方程2−13(m−x)=2x的解,那么关于y的方程m(y−3)−2= m(2y−5)的解是______ .【答案】y=0解:∵x=1是方程2−13(m−x)=2x的解,∴2−13(m−1)=2×1,解得m=1,∴关于y的方程为y−3−2=2y−5,移项得,y−2y=−5+2+3,合并同类项得,−y=0,系数化为1得,y=0.20.如图,已知点A、B是直线上两点,AB=12厘米,点C在线段AB上,且BC=4厘米.点P、点Q是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、点B同时出发在直线上运动,则经过___________秒时线段PQ的长为5厘米.【答案】13或1或3或9解:设运动时间为t秒.①如果点P向左、点Q向右运动,由题意,得:t+2t=5−4,解得t=13;②点P、Q都向右运动,由题意,得:2t−t=5−4,解得t=1;③点P、Q都向左运动,由题意,得:2t−t=5+4,解得t=9.④点P向右、点Q向左运动,由题意,得:2t−4+t=5,解得t=3.综上所述,经过13或1或3秒或9秒时线段PQ的长为5厘米.故答案为13或1或3或9.三、解答题21.已知关于x的方程3[x−2(x−a3)]=4x和3x+a12−1−5x8=1有相同的解,那么这个解是多少?【答案】解:由方程(1)得x=27a,由方程(2)得x=27−2a21,由题意得27a=27−2a21,解得a=2714,代入解得x=2728.∴可得这个解为2728.22.甲、乙两人想共同承包一项工程,甲单独做30天完成,乙单独做20天完成,合同规定15天完成,否则每超过1天罚款1000元,甲、乙两人经商量后签订了该合同.(1)正常情况下,甲、乙两人能否履行该合同⋅为什么⋅(2)现两人合作了这项工程的75%,因别处有急事,必须调走1人,问调走谁更合适些⋅为什么⋅【答案】解:(1)设甲、乙合作需要x天完成,由题意,得x30+x20=1,解得:x=12,∵12<15,∴甲、乙两人能履行该合同;(2)34÷(130+120)=9(天)设剩下的工程甲用y天完成,由题意,得y30=14,解得:y=152,9+152=16.5(天)>15(天),不合适;设剩下的工程乙用z天完成,由题意,得y20=14,解得y=5,9+5=14<15,合适,答:调走甲比较合适.23.甲、乙两站相距360千米,一列快车从甲站开出,每小时行160千米,一列慢车从乙站开出,每小时行80千米.(1)若两车同时开出,相向而行多少小时后两车相遇?(2)若两车同向而行,快车在慢车的后面,且慢车提前半小时出发,经过多少小时后快车追上慢车?【答案】解:(1)设两车相向而行x小时后两车相遇,根据题意得:160x+80x=360,解得:x=1.5.答:两车相向而行1.5小时后两车相遇;(2)设经过x小时后快车追上慢车,根据题意得:360+80×0.5+80×x=160x,解得:x=5.答:经过5小时后快车追上慢车.24.某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的12倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价−进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?x+15)件,【答案】解:(1)设第一次购进甲种商品x件,则购进乙种商品(12x+15)=6000,根据题意得:22x+30(12解得:x=150,x+15=90.∴12答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29−22)×150+(40−30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,−30)×90×3=1950+180,根据题意得:(29−22)×150+(40×y10解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.25.已知|a+4|+(b−2)2=0,数轴上A、B两点所对应的数分别是a和b.(1)填空:a=___________,b=____________;(2)数轴上是否存在点C,C点在A点的右侧,且点C到A点的距离是点C到B点的距离的2倍?若存在,请求出点C表示的数;若不存在,请说明理由;(3)点P以每秒2个单位的速度从A点出发向左运动,同时点Q以3个单位每秒的速度从B点出发向右运动,点M以每秒4个单位的速度从原点O点出发向左运动.若N为PQ的中点,当PQ=16时,求MN的长.【答案】解:(1)−4 2 ;(2)设C点表示的数为x,根据题意得,①当点C在A、B之间时,有c+4=2(2−c),解得,c=0;②当点C在B的右侧时,有c+4=2(c−2),解得,c=8.故点C表示的数为0或8;(3)设运动的时间为t秒,根据题意得,2t+3t+AB=16,即2t+3t+6=16,解得,t=2,∴运动2秒后,各点表示的数分别为:=0,P:−4−2×2=−8,Q:2+3×2=8,M:0−4×2=−8,N:−8+82∴MN=0−(−8)=8.11。
部编数学七年级上册培优专题08巧用一元一次方程选择方案解析版含答案
培优专题08 巧用一元一次方程选择方案◎类型一:购买方案决策1.(2022·四川·宜宾市叙州区育才中学校七年级期中)为了打造年级体育啦啦队,某年级准备投入一笔资金为啦啦队队员配置一些花球,经过多方比较,准备在甲、乙两个商家中选择一个.已知花球单价是市场统一标价为20元,由于购买数量多,两个商家都给出了自己的优惠条件(见表):甲商家乙商家购买数量x(个)享受折扣购买数量(个)享受折扣x≤50的部分9.5折y≤100的部分9折50<x≤200的部分8.8折100<y≤200的部分8.5折x>200的部分8折y>200的部分8折(1)如果需要购买100个花球,请问在哪个商家购买会更便宜?(2)经年级学生干部商议,最终决定选择在乙商家购买花球,并根据实际需要分两次共购买了350个花球,且第一次购买数量小于第二次,共花费6140元,请问两次分别购买了多少个花球?【答案】(1)在乙商家购买会更便宜;(2)第一次购买140个花球,第二次购买210个花球.【分析】(1)利用总价=单价×数量,结合两个商家的优惠条件,即可分别求出在两个商家购买所需费用,比较后可得出在乙商家购买会更便宜;(2)设第一次购买m 个花球,则第二次购买(350﹣m )个花球,分0<m ≤100,100<m ≤150及150<m <175三种情况考虑,根据两次购买共花费6140元,即可得出关于m 的一元一次方程,解之即可得出第一次购买花球的数量,再将其代入(350﹣m )中即可求出第二次购买花球的数量.(1)解:在甲商家购买所需费用为20×0.95×50+20×0.88×(100﹣50)=20×0.95×50+20×0.88×50=950+880=1830(元);在乙商家购买所需费用为20×0.9×100=1800(元).∵1830>1800,∴在乙商家购买会更便宜.(2)解:设第一次购买m 个花球,则第二次购买(350﹣m )个花球.当0<m ≤100时,20×0.9m +20×0.9×100+20×0.85×(200﹣100)+20×0.8(350﹣m ﹣200)=6140,解得:m =120(不合题意,舍去);当100<m ≤150时,20×0.9×100+20×0.85(m ﹣100)+20×0.9×100+20×0.85×(200﹣100)+20×0.8(350﹣m ﹣200)=6140,解得:m =140,∴350﹣m =350﹣140=210;当150<m <175时,20×0.9×100+20×0.85(m ﹣100)+20×0.9×100+20×0.85(350﹣m ﹣100)=6150≠6140,∴不存在该情况.答:第一次购买140个花球,第二次购买210个花球.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.2.(2022·黑龙江·哈尔滨市风华中学校七年级阶段练习)某书店准备订购一批图书,现有甲、乙两个供应商,均标价每本20元.为了促销,甲说:“凡来我处进货一律九折.”乙说:“如果订货超出100本,则超出的部分打八折”(1)设该书店准备订购x 本图书()100x >,请用含x 的整式表示在甲供应商所需支付的钱数为______元,在乙供应商所需支付的钱数为______元;(2)在(1)的条件下,当购进多少本图书时,去两个供应商处的进货价钱一样多?(3)已知该书店第一次从乙供应商处购进了500本图书,书店以每本24元全部售出.该书店第二次从乙供应商购进的数量比第一次多20%,如果第二次购进的图书也能全部售出,则第二次购进图书每本售价应为多少元时,书店两批图书的总利润率为50%?【答案】(1)()1816400x x +;(2)当购进200本图书时,去两个供应商处的进货价钱一样多.(3)第二次购进图书每本售价为26元时,书店两批图书的总利润率为50%.【分析】(1)根据题意列式即可;(2)利用两个代数式的值相等,进行计算即可;(3)设第二次购进图书每本售价为y 元,根据题意列方程求解即可.(1)解:由题意得:甲:200.918x x ´´=;乙:()20100100200.816400x x ´+-´´=+,故答案为:()1816400x x +;.(2)解:由题意得:1816400x x =+,解得:200x =,答:当购进200本图书时,去两个供应商处的进货价钱一样多.(3)解:设第二次购进图书每本售价为y 元,由题意得:()()()()(){}2450016500400500120%16500120%4001650040016500120%40050%y ´-´++´+-´´++éùëû=´++´´++´éùëû ,整理得:3600600100009200y +-=,解得:26y =.所以第二次购进图书每本售价为26元时,书店两批图书的总利润率为50%.【点睛】本题考查一元一次方程的应用,根据题意正确的列出代数式,再根据题意正确的列出方程是解题的关键.3.(2021·河北·景县北留智镇中学七年级阶段练习)某校计划购买20个书柜和一批书架(书架不少于20个),现从A 、B 两家超市了解到:同型号的产品价格相同,书柜每个210元,书架每个70元,A 超市的优惠措施为每买一个书柜赠送一个书架,B 超市的优惠措施为所有商品八折出售.设该校购买x (x >20)个书架.(1)若该校到同一家超市选购所有书柜和书架,则到A 超市和B 超市需分别准备多少元货款(用含x 的式子表示)?(2)若规定只能到其中一家超市购买所有书柜和书架,当购买多少个书架时,无论到哪家超市购买所付货款都一样?(3)若该校想购买20个书柜和100个书架,且可到两家超市自由选购,你认为至少需要准备多少元货款?班长负责买票,每班人数都多于40人,票价每张20元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两个优惠方案可选择:方案1:全体人员可打8折;方案2:若打9折,有5人可以免票.(1)七年级二班有48名学生,他该选择哪个方案比较省钱?请说明理由;(2)一班班长思考一会儿说:“我们班无论选择哪种方案要付的钱是一样的”.请求出一班的人数.【答案】(1)方案1比较省钱,详见解析(2)一班的人数为45人,详见解析【分析】(1)根据题意,直接进行计算即可;(2)设一班的人数为a人,根据所付钱数一样,可列方程:()´=´-,解200.8200.95a a方程即可.(1)解:由题意可知,方案1费用为:200.848768=´´(元),方案2费用为:()´´-(元),=200.9485774综上所述,方案1比较省钱;(2)设一班的人数为a人,由题意列方程为:()´=´-,a a200.8200.95解得:a=45,答:一班的人数为45人.【点睛】本题主要考查的是一元一次方程的应用,重点在于根据题意列出方程.◎类型二:上网计费方案决策5.(2021·广东惠州·七年级期末)下表中有两种移动电话计费方式:月使用费主叫限定时间(分钟)主叫超时费(元/分钟)被叫方式一651600.20免费方式二1003800.25免费(月使用费固定收;主叫不超过限定的时间不再收费,主叫超过限定时间的部分加收超时费;被叫免费)(1)若张聪某月主叫通话时间为200分钟,则他按方式一计费需____元,按方式二计费需____元;李华某月按方式二计费需110元,则李华该月主叫通话时间为_____分钟;(2)是否存在某主叫通话时间t(分钟),按方式一和方式二的计费相等?若存在,请求出t 的值;若不存在,请说明理由.(3)直接写出当月主叫通话时间t(分钟)满足什么条件时,选择方式一省钱.【答案】(1)73,100,420t=或560分钟(2)存在,335(3)每月通话时间小于335分钟或大于560分钟时,选择方式一省钱【分析】(1)根据“方式一”的计费方式,可求得通话时间200分钟时的计费,“方式二”的计费方式,可求得通话时间200分钟时的计费,主叫通话时间为x分钟,根据按方式二计费需110元列出方程,解方程即可;(2)根据题中所给出的条件,分三种情况进行讨论:①160t<…;t…;②160380③380t>;(3)根据(2)所求即可得出结论.(1)解:若张聪某月主叫通话时间为200分钟,则他按方式一计费需:650.20(200160)73+´-=(元),设按方式二计费需100元,设主叫通话时间为x分钟,根据题意得x+-=,1000.25(380)110解得420x=.答:主叫通话时间为420分钟.故答案为73,100;420;(2)解:①当160t…时,不存在;②当160380t<…时,设每月通话时间为t分钟时,两种计费方式收费一样多,+´-=,t650.20(160)100解得335t=,符合题意;③当380t>时,设每月通话时间为t分钟时,两种计费方式收费一样多,+´-=+-,t t650.20(160)1000.25(380)解得560t=,故存在某主叫通话时间335t=或560分钟,按方式一和方式二的计费相等;(3)解:结合(2)知,当通话时间335t=或560分钟,按方式一和方式二的计费相等;当每月通话时间少于335分钟时,650.20(160)100+´-<,故选择方式一省钱;t当每月通话时间大于560分钟时,650.20(160)1000.25(380)+´-<+-,故选择方式一省t t钱;当每月通话时间多于335分钟且小于560分钟时,650.20(160)1000.25(380)+´->+-故选t t择方式二省钱.综上所述:当每月通话时间少于335分钟或大于560分钟时,选择方式一省钱.【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.(2019·广西·南宁市三美学校七年级阶段练习)某市上网有两种收费方案,用户可任选其一,A为计时制0.8元/时;B为包月制60元/月,此外每种上网方式都附加通讯费0.2元/时.(1)某用户每月上网50小时,选哪种方式比较合适?(2)某用户每月有100元钱用于上网,选哪种方式比较合算?(3)当每月上网多少小时时,A、B两种方案上网费用一样多?【答案】(1)每月上网50小时,选A方案合算.(2)每月100元上网B方案比较合算.(3)每月上网75小时,A、B两种方案上网费用一样多.【分析】(1)根据题意计算即可得结论;(2)根据题意列方程求得结果进行比较即可得结论;(3)根据题意列方程即可求得结论.(1)A方案收费:50×(0.8+0.2)=50,B方案收费:60+50×0.2=70.答:每月上网50小时,选A方案合算.(2)设每月100元上网x小时.根据题意,得A方案上网:0.8x+0.2x=100,解得x=100B方案上网:60+0.2x=100,解得x=200答:每月100元上网B方案比较合算.(3)设每月上网x小时,A、B两种方案上网费用一样多.根据题意,得0.8x+0.2x=60+0.2x解得x=75.答:每月上网75小时,A、B两种方案上网费用一样多.【点睛】本题考查了一元一次方程的应用,解决方案类问题应用题的关键是根据题意分别列出算式或方程.7.(2021·云南大理·七年级期末)某地上网有两种收费方式,用户可以任选其一:方式A:月租费:40元,上网费:1元/小时;方式B:上网费:3元/小时;设某用户每月上网时间为x小时(1)用含x的式子分别写出两种收费方式下,该用户应付的上网费用;方式A应付费用为:方式B应付费用为:(2)若该用户计划1个月上网50小时,应选用哪种上网方式比较划算?(3)该用户每月上网多少小时的时候,两种上网方式的费用相等?【答案】(1)(40+x);3x;(2)方式A;(3)20小时【分析】(1)根据两种方式的费用标准分别列出代数式;(2)当x=50时,分别计算两种方式的费用,然后进行比较,从而求解;(3)根据两种费用相等,列方程求解.【详解】解:(1)方式A应付费用为:(40+x)元方式B应付费用为:3x元故答案为:(40+x);3x;(2)当x=50时,方式A应付费用:40+50=90(元)方式B应付费用:3×50=150(元)∵90<150∴当上网50小时时,选择方式A比较划算(4)根据题意403x x+=,解得:20x=答:当上网时间是20小时的时候,两种上网方式的费用相等【点睛】本题考查一元一次方程的应用,理解题意正确列代数式及方程求解是解题关键.8.(2021·湖南长沙·七年级期末)下表是两种“5G优惠套餐”计费方式.(月费固定收,主叫不超时,流量不超量不再收费,主叫超时和上网超流量部分加收超时费和超流量费)月费(元)主叫(分钟)流量(G B)接听超时(元/分钟)超流量(元/G B)方式一4920050免费0.203方式二6925060免费0.152(1)若某月小玲主叫通话时间为220分钟,上网流量为80 G B ,则她按方式一计费需_______元,按方式二计费需_______元;若她按方式二计费需129元,主叫通话时间为240分钟,则上网流量为________G B .(2)若上网流量为54 G B ,是否存在某主叫通话时间t (分钟),按方式一和方式二的计费相等?若存在,请求出t 的值;若不存在,请说明理由.【答案】(1)143,109,90;(2)存在,t =240【分析】(1)分别按照方式一与方式二的方案进行计算,求解流量时,要注意先减去月费再用剩余的费用除以超流量的单价,最后要加上套餐内包含的流量;(2)分别在0≤t <200,200≤t ≤250,t >250中进行讨论求解即可.【详解】(1)方式一:49+(220-200)×0.2+(80-50)×3=143元,方式二:69+(80-60)×2=109元,使用流量:(129-69)÷2+60=90GB ,故答案为:143;109;90.(2)当0≤t <200时,49+3(54﹣50)=61≠69,∴此时不存在这样的t ;当200≤t ≤250时,49+0.2(t ﹣200)+3(54﹣50)=69,解得t =240;当t >250时,49+0.2(t ﹣200)+3(54﹣50)=69+0.15(t ﹣250),解得t =210(舍).故若上网流量为54GB ,当主叫通话时间为240分钟时,两种方式的计费相同.【点睛】本题考查了一元一次方程的应用,弄清题意,找准数量关系正确进行计算和列方程是解题的关键.◎类型三:收费方案决策9.(2022·四川·成都七中七年级期中)某校长暑假带领该校“三好学生”去旅游,甲旅行社说:“若校长买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括校长在内都6折优惠.”若全票价是1200元/张,设学生人数是x ,甲旅行社收费为1y ,乙旅行社收费为2y .(1)分别写出两家旅行社的收费与学生人数的关系式.(2)学生们通过计算发现,选择两家旅行社的费用一样多,则共有多少人参加旅游?【答案】(1)11200600y x =+,2720720y x =+(2)5【分析】(1)根据收费总额=学生人数´单价+校长的票价就可以分别求出两个旅行社的收费;(2)令12y y =,求得4x =,然后求出总人数即可.(1)解:学生人数是x ,由题意可知,11200600y x =+,21200(1)0.6720720y x x =+´=+;(2)解:∵两家旅行社的费用一样多,∴12y y =,∴1200600720720x x +=+4x \=,\总人数为5,答:共有5人参加旅游.【点睛】本题考查了一次函数的应用,运用一次函数的解析式解决方案设计问题的运用,在解答时根据两个解析式建立方程是关键.10.(2022·山西阳泉·七年级期末)“春节”期间,小明一家人乘坐高铁前往某市旅游,计划第二天开始租用新能源汽车自驾出游,经了解,甲、乙两公司的收费标准如下:甲公司:一次性收取固定租金80元,另外再按租车时间计费,每小时的租费是15元;乙公司:无固定租金,直接以租车时间收费,每小时的租费是30元.(1)若租车时间为x 小时,则租用甲公司的车所需费用为 元,租用乙公司的车所需费用为元(结果用含x 的代数式表示);(2)当租车时间为11小时时,选择哪一家公司比较合算?(3)当租车多少时间时,两家公司收费相同?联系了标价相同的两家旅行社,经洽谈,A 旅行社给的优惠条件是教师全额付款,学生按七折付款,B 旅行社给的优惠条件是全体师生按八折付款.(1)若两家旅行社的标价都是每人a (0a >)元,学生有x 人,请用含a ,x 的代数式分别表示选择A ,B 家旅行社时他们的旅游费用;(2)学生有多少人时,两家旅行社的收费相同?(3)现有学生20人,那么他们选择哪家旅行社旅游费用少?【答案】(1)A 旅行社:50.7a ax +,B 旅行社:0.8(5)x a +(2)10人(3)A 旅行社【分析】(1)根据学生人数和票价直接写出关系式即可;(2)根据收费相同,列出方程,解方程即可;(3)算出A 、B 两个旅行社需要的费用进行对比即可.(1)解:A 旅行社:50.7a ax +,B 旅行社:()0.85x a +;(2)根据题意得:()50.70.85a ax x a +=+,解得:10x =,答:学生10人时,两家旅行社的收费相同;(3)当学生有20人时,A 旅行社的费用为:50.750.72019a ax a a a +=+´=,B 旅行社的费用为:()0.852020a a ´+=,∵0a >,∴2019a a >,∴选择A 旅行社的费用少.【点睛】本题主要考查了列代数式、一元一次方程的应用,方案选择问题,正确列出代数式,得到方程是解题的关键.12.(2022·湖北·武汉市黄陂区教育局七年级期末)用A 4纸在某誊(teng )印社复印文件,复印文件不超过20页时,每页收费0.15元,复印页数超过20页时,超过部分每页收费0.1元;在某图书馆复印同样的文件,不论复印多少页,每页收费0.12元.(1)根据题意,填写下表: 复印页数(页)1030……誊印社收费(元) 1.5……图书馆收费(元)……(2)复印张数为多少时,两处的收费相同?(3)某同学先后两次分别在誊印社、图书馆复印文件共花费12元(两处均有消费),该同学复印文件的最少页数可能为___________(直接写出结果).【答案】(1)见解析(2)50(3)95【分析】(1)根据两种复印方式的收费标准填表即可;(2)设复印x 张时,两处收费相同,根据题意列出方程求解即可;(3)使复印的页数最少,而超过20页后复印社的单价比图书馆的单价低,则复印社复印20页,剩下的都在图书馆复印即可保证复印的页数最少,由此求解即可.解:设复印x张时,两处收费相同,由题意得:()x x´+-=,200.150.1200.12解得50x=,答:复印张数为50张时,两处的收费相同;(3)解:∵要使复印的页数最少,而超过20页后复印社的单价比图书馆的单价低,∴复印社复印20页,剩下的都在图书馆复印即可保证复印的页数最少,∴在图书馆复印的花费=12-20×0.15=9元,∴在图书馆复印的页数=9÷0.12=75张,∴最少复印20+75=95页.【点睛】本题主要考查了一元一次方程的应用,有理数混合计算的应用,正确理解题意是解题的关键.◎类型四:运输方式方案决策13.(2020·江苏·滨海县第一初级中学七年级阶段练习)库尔勒某乡A、B两村盛产香梨,A村有香梨20吨,B村有香梨30吨,现将这些香梨运到C、D两个冷藏仓库.已知C仓库可储存24吨,D仓库可储存26吨,从A村运往C、D两处的费用分别为每吨40元和45元;从B村运往C、D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨.费用C DA40元/吨45元/吨B25元/吨32元/吨(1)从A村运往D仓库的香梨为 吨;从B村运往D仓库的香梨为 吨.(用含x的代数式表示)(2)A村运香梨往两仓库的总运输费用是多少?B村运香梨往两仓库的总运输费用是多少?请分别用含x的代数式表示.(3)请问怎样调运,才能使两村的运费之和为1716元?请求出x的值.【答案】(1)(20﹣x),(6+x)(2)A村:﹣5x+900;B村:7x+792(3)12【分析】(1)由题意可直接求解;(2)由运费=单价×吨数,可求解;(3)由两村的运费之和为1716元,列出方程可求解.(1)解:∵从A村运往C仓库的香梨为x吨,∴从A村运往D仓库的香梨为(20﹣x)吨,从B村运往D仓库的香梨=26﹣(20﹣x)=(6+x)吨,故答案为:(20﹣x),(6+x);(2)解:由题意得:A村:40x+45(20﹣x)=(﹣5x+900)元,B村:25(24﹣x)+32(6+x)=(7x+792)元;(3)由题意得,﹣5x+900+7x+792=1716,解得x=12,答:x的值为12.【点睛】本题考查了一元一次方程的应用,列代数式,找到正确的数量关系是解题的关键.14.(2022·江苏无锡·七年级期末)甲,乙两个仓库向A,B两地运送水泥,已知甲库可调出100t水泥,乙库可调出80t水泥,A地需70t水泥,B地需110t水泥,两库到A,B两地的路程和运费如下表:(表中运费栏“元/(t•km)”表示每t水泥运送1km所需人民币)路程(km)运费(元/t•km)运量(t)甲库乙库甲库乙库甲库乙库A15201212xB2025810设甲库运往A地水泥为x t,请填写好表.(1)设甲库运往A地水泥为x t,请填写好表.(2)根据这张表,甲库运往A地的总费用是 ,乙库运往B地的总费用是 ,所以全部费用是 .(3)若所拨全部费用是35600元,写出一种可行的运输方案.乙库运往B地的总费用是25×10×(10+x)=250x+2500,所以全部费用是15×12x+20×8×(100-x)+20×12×(70-x)+25×10×(10+x)=180x+16000-160x+16800-240x+2500+250x=30x+35300.故答案为:180x,(250x+2500),(30x+35300);(3)根据题意得:30x+35300=35600,解得x=10.100-x=90,70-x=60,10+x=20,故甲向A 地运10吨,向B 地运90吨,乙向A 地运60吨,向B 地运20吨时,总运费为35600元.【点睛】本题考查了列代数式以及一元一次方程的实际应用问题.解题的关键是理解题意,读懂表格求解.15.(2022·重庆涪陵·七年级期末)榨菜鲜嫩香脆、鲜香可口,是经独特的加工工艺制成的风味产品.A ,B 两地分别有榨菜50吨和40吨,需要全部运送到C ,D 两地去销售,其中C 地需要榨菜30吨,D 地需要榨菜60吨;已知从A ,B 两地到C ,D 两地的运价如下表:到C 地到D 地A 地每吨20元每吨16元B 地每吨15元每吨10元请选择相关数据解决下列问题:(1)若从A 地需要运到C 地的榨菜为10吨,则从A 地需运到D 地的榨菜为_______吨,从A 地需运到D 地这部分榨菜的运输费为_______元;(2)设从A 地需要运到C 地的榨菜为x 吨,若从B 地需运到D 地的这部分榨菜的运输费为300元,求x 的值.【答案】(1)40,640(2)x 的值是20【分析】(1)因为从A 地运到C 地的榨菜是10吨,剩下的都运往D 地,所以运往D 地的是50-10=40吨.运输费用=吨数×每吨的运费;(2)从A 地需要运到C 地的榨菜为x 吨,所以运往D 地的是(50-x )吨,则从B 地需运到D 地的这部分榨菜为[40-(50-x )]吨,根据运输费用=吨数×每吨的运费列方程求解即可.(1)解:∵从A 地运到C 地的榨菜是10吨,剩下的都运往D 地,所以运往D 地的是50-10=40吨,运输费用=40×16=640(元);故答案为:40,640;(2)解:设从A 地需要运到C 地的榨菜为x 吨,由题意,得:()403010300x éù--´=ëû,解得:20x =,答:x的值是20.【点睛】本题考查了一元一次方程的应用,读懂题意,找到所求的量的等量关系是解答此题的关键.16.(2022·河北·巨鹿县实验中学七年级阶段练习)现甲、乙两地分别需要蔬菜120吨和180吨,已知丙地、丁地分别有蔬菜160吨和140吨,现要把这些蔬菜全部运往甲、乙两地.若丙地每吨蔬菜运到甲地的费用为30元,运往乙地的费用为35元;丁地每吨蔬菜运到甲地的费用为20元,运往乙地的费用为28元,设丙地运往甲地的蔬菜为x吨.(1)请根据题意将下表补充完整:目的地甲乙出发地丙x______丁____________(2)用含x的式子表示总运输费.(3)总运输费能是9010元吗?若能,请求出x的值;若不能,请说明理由.(2)总运输费为:30x+35(160﹣x)+20(120﹣x)+28(x+20),化简得,3x+8560;(3)根据总运输费是9010元,列方程得,3x+8560=9010,解得,x=150,∵甲地需要蔬菜120吨,小于150吨,总运输费不能是9010元.【点睛】本题考查了一元一次方程的应用,解题关键是熟练把握题目中数量关系,列出代数式和方程.。
七年级数学一元一次方程(培优篇)(Word版 含解析)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。
(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。
(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。
七年级一元一次方程(培优篇)(Word版 含解析)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2 。
(2)解:①2x+1= x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得 m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出解方程组得出a,b的值,从而得出A,B两点表示的数;(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得m=3.5,当﹣3<m<2时,无解,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。
2.(公园门票价格规定如下表:购票张数1~50张51~100张100张以上每张票的价格13元11元9元1)班人数较少,不足50人,(2)班超过50人,但不足100人。
经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?【答案】(1)解:设七(1)班有x人,由题意可知:七(2)班的人数应不足64人,且多于54人则根据题意,列方程得:13x+11(104-x)=1240解得:x=48.即七(1)班48人,七(2)班56人;(2)解:1240-104×9=304,所以可省304元钱(3)解:要想省钱,由(1)可知七(1)班48人,只需多买3张票,51×11=561,48×13=624>561,∴ 48人买51人的票可以更省钱【解析】【分析】(1)设七(1)班有x人,根据条件:某校七(1)、(2)两个班共104人去游览该公园,其中七(1)班人数较少,不足50人,但超过40人,可得七(2)班的人数应不足64人,且多于54人,再根据1240元的门票钱可列方程解得答案;(2)如果两班联合起来作为一个团体购票,则每张票9元,可省1240-104×9元;(3)由(1)可得七(1)班48人,所以多买3张票,按照第二种售票方案买票.3.对于任意有理数,我们规定 =ad-bc.例如 =1×4-2×3=-2(1)按照这个规定,当a=3时,请你计算(2)按照这个规定,若 =1,求x的值。
【精选】七年级上册一元一次方程(培优篇)(Word版 含解析)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)﹣12(2)6或10;0(3)1.2或2(4)3.2或1.6【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。
七年级一元一次方程培优
七年级一元一次方程培优--------------------------------------------------------------------------作者: _____________--------------------------------------------------------------------------日期: _____________七年级上册《一元一次方程》培优专题一:一元一次方程概念的理解:例:若()2219203m x x m --+=+是关于x 的一元一次方程,则方程的解是 。
练习:1.()()221180m x m x --+-=是关于x 的一元一次方程,则代数式()()199231101m m m +-++的值为2.若方程()()321x k x -=+与62k x k -=的解互为相反数,则k= 。
3.若k 为整数,则使得方程()199920012000k x x -=-的解也是整数的k 值有( )A.4个B.8个C.12个D.16个 专题二:一元一次方程的解法(一)利用一元一次方程的巧解:例: (1)0.2•表示无限循环小数,你能运用方程的方法将0.2•化成分数吗?(2)0.23••表示无限循环小数,你能运用方程的方法将0.23••化成分数吗?(二)方程的解的分类讨论:当方程中的系数是用字母表示时,这样的方程叫含字母系数的方程,含字母系数的一元一次方程总可以华为ax=b 的形式,继续求解时,一般要对字母系数a 、b 进行讨论。
(1)当0a ≠时,方程有唯一解b x a=;(2)当0,0a b =≠时,方程无解;(3)当0,0a b ==时,方程有无数个解。
例:已知关于x 的方程()2132a x x -=-无解,试求a 的值。
练习:1.如果a ,b 为定值,关于x 的方程2236kx a x bk +-=+,无论k 为何值,它的根总是1,求a ,b 的值。
【精选】七年级数学一元一次方程(培优篇)(Word版 含解析)
(1)求 A、B 两点的对应的数 a、b;
(2)点 C 在数轴上对应的数为 x,且 x 是方程 2x+1= x﹣8 的解. ①求线段 BC 的长; ②在数轴上是否存在点 P,使 PA+PB=BC?求出点 P 对应的数;若不存在,说明理由. 【答案】 (1)解:∵ |a+3|+(b﹣2)2=0, ∴ a+3=0,b﹣2=0, 解得,a=﹣3,b=2, 即点 A 表示的数是﹣3,点 B 表示的数是 2 。
(2)解:设安排甲种货车 a 辆,根据题意得
解得:
∵ a 为正整数∴Fra bibliotek或或∴ 有三种方案:①甲种货车 2 辆,乙种货车 6 辆;
②甲种货车 3 辆,乙种货车 5 辆;
③甲种货车 4 辆,乙种货车 4 辆
(3)解:方案①:
(元)
方案②:
(元)
方案③:
(元)
∵ ∴ 选择方案①可使运费最少,最少运费是 元 【解析】【分析】(1) 设蔬菜有 x 件,根据题意列出方程,求出方程的解,即可求解; (2) 设安排甲种货车 a 辆,根据题意列出不等式组,求出不等式组的解集,由 a 为正整 数,得出 a 为 2 或 3 或 4,即可求出有三种方案; (3)分别求出三种方案的运费,即可求解.
零从而得出
解方程组得出 a,b 的值,从而得出 A,B 两点表示的数 ;
(2)①解方程 2x+1= x﹣8 ,得出 x 的值,从而得到 C 点的坐标,根据两点间的距离得 出 BC 的长度;②存在点 P,使 PA+PB=BC 理由如下:设点 P 的表示的数为 m,根据两点间 的距 离公式列出方 程 |m﹣( ﹣3)|+|m﹣2|=8,然后 分类讨论: 当 m>2 时,解 得 m=3.5,当﹣3<m<2 时,无解 ,当 x<﹣3 时,解得 m=﹣4.5,即点 P 对应的数是 3.5 或 ﹣4.5 。
最新七年级一元一次方程(提升篇)(Word版 含解析)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?【答案】(1)解:设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据题意得:3×(2x+3x)=15,解得:x=1,∴3x=3,2x=2,答:动点A的运动速度为3个单位长度/秒,动点B的运动速度为2个单位长度/秒;(2)解:3×3=9,2×3=6,∴运动到3秒钟时,点A表示的数为﹣9,点B表示的数为6;(3)解:设运动的时间为t秒,当A、B两点向数轴正方向运动时,有|3t﹣2t﹣15|=4,解得:t1=11,t2=19;当A、B两点相向而行时,有|15﹣3t﹣2t|=4,解得:t3= 或t4= ,答:经过、、11或19秒,A、B两点之间相距4个单位长度.【解析】【分析】(1)根据已知:动点A、B的运动速度比之是3∶2,因此设点B的速度为2x个单位长度/秒,则点A的速度为3x个单位长度/秒,根据两点相距15,列方程,求解即可。
(2)根据两点的运动速度,就快求出A、B两点运动到3秒时停止运动,就可得出它们的位置。
(3)设运动的时间为t秒,分两种情况:当A、B两点向数轴正方向运动时;当A、B两点相向而行时,分别根据A、B两点之间相距4个单位长度,列方程求出t的值。
2.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。
七年级数学上册 一元一次方程(培优篇)(Word版 含解析)
1.如图,已知数轴上点 A 表示的数为 8,B 是数轴上位于点 A 左侧一点,且 AB=20,
(1)写出数轴上点 B 表示的数________;
(2)|5-3|表示 5 与 3 之差的绝对值,实际上也可理解为 5 与 3 两数在数轴上所对的两点 之间的距离.如|x-3|的几何意义是数轴上表示有理数 3 的点与表示有理数 x 的点之间的 距离.试探索: ①:若|x-8|=2,则 x =________.②:|x+12|+|x-8|的最小值为________. (3)动点 P 从 O 点出发,以每秒 5 个单位长度的速度沿数轴向右匀速运动,设运动时间 为 t(t>0)秒.当 t=________,A,P 两点之间的距离为 2;
2.下列图表是 2017 年某校从参加中考体育测试的九年级学生中随机调查的 10 名男生跑 1000 米和 10 名女生跑 800 米的成绩.
(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,
男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分?
故女生得满分人数:
(人)
(2)解:不能; 假设经过 x 分钟后,1 号与 10 号在 1000 米跑中能首次相遇,根据题意得:
解得
又∵ ∴ 考生 1 号与 10 号不能相遇。 【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根 据题意表达出 1 号跟 10 号的速度,两位若相遇,相减的路程为 400 米,得出的时间为 4.8, 但是 4.8 分钟大于 3 分钟,所以两位在测试过程中不会相遇。
【答案】 (1)
七年级数学 一元一次方程培优
一元一次方程培优知识点1:等式及其性质 重点:等式的基本性质的理解 难点:性质的运用 等式及其性质 ⑴ 等式:用等号“=”来表示 关系的式子叫等式. ⑵ 性质:① 如果b a =,那么=±c a ;② 如果b a =,那么=ac ;如果b a =()0≠c ,那么=ca. 例:已知等式523+=b a ,则下列等式中不一定...成立的是( ) (A );253b a =- (B );6213+=+b a (C );523+=bc ac (D ).3532+=b a 知识点2:一元一次方程的概念 重点:一元一次方程的概念 难点:正确理解概念⑴ 方程:含有未知数的 叫做方程;使方程左右两边值相等的 ,叫做方程的解;求方程解的 叫做解方程. 方程的解与解方程不同.⑵ 一元一次方程:在整式方程中,只含有 个未知数,并且未知数的次数是 ,系数不等于0的方程叫做一元一次方程;它的一般形式为 ()0≠a .例1、下列各式:①3x+2y=1 ②m-3=6 ③x/2+2/3=0.5 ④x 2+1=2 ⑤z/3-6=5z ⑥(3x-3)/3=4 ⑦5/x+2=1⑧x+5中,一元一次方程的个数是( ) A、1 B、2 C、3 D、4分析:根据一元一次方程定义,化简后具备以下五个条件:①含有一个未知数②未知数的次数为一次③未知数的系数不为0④分母中不含有未知数⑤是等式,才是一元一次方程.这些条件缺一不可,所以根据上述要求可以确定答案为D.例2、 如果(m-1)x |m|+5=0是一元一次方程,那么m =___. 知识点3: 解一元一次方程 重点:解一元一次方程的步骤 例1、要解方程4.5(x+0.7)=9x ,最简便的方法应该首先( )A、去括号 B、移项 C、方程两边同时乘以10 D、方程两边同时除以4.5 例2、解方程(1)512(69)812()8323x x x ---=- (2)34113843242x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦难点:熟练解方程知识点4:一元一次方程实际应用重点:找等量关系列方程难点:审题找准等量关系,巧妙设未知量例1、某校初三年级学生参加社会实践活动,原计划租用30座客车若干辆,但还有15人无座位。
七年级一元一次方程培优专题一
一元一次方程培优专题一:一元一次方程概念的理解:例1:若()2219203m x x m --+=+是关于x 的一元一次方程,则方程的解是 。
练习:1.()()221180m x m x --+-=是关于x 的一元一次方程,则代数式()()199231101m m m +-++的值为 。
2.已知关于y 的方程4232y n y +=+和方程3261y n y +=-的解相同,求n 的值。
3.已知关于x 的方程23x m m x -=+与1322x x +=-的解互为倒数,则m 的值是 。
4.关于x 的方程1342m x +=的解是23111346x m x ---=-的解的5倍,则m= , 这两个方程的解分别是 。
5.若方程()()321x k x -=+与62k x k -=的解互为相反数,则k= 。
6.若11134220124x ⎛⎫++= ⎪⎝⎭,则1402420122012x ⎛⎫-+ ⎪⎝⎭= 。
7.已知方程1115420102x ⎛⎫+-= ⎪⎝⎭,则代数式131021005x ⎛⎫+- ⎪⎝⎭的值是 。
8.当m 取什么数时,关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭的解是正整数?9.若k 为整数,则使得方程()199920012000k x x -=-的解也是整数的k 值有( )A.4个B.8个C.12个D.16个 专题二:利用一元一次方程的巧解:例2:计算200612233420062007x x x x ++++=⨯⨯⨯⨯练习:10.计算1111112481632256+++++的值。
专题三、方程的解的讨论:(解析:一元一次方程最终都可化成ax=b 的形式,显然当a ≠0时,方程有唯一的根ab ;当a=0且b=0时,方程有无数根;当a=0且b ≠0时,方程无根)例1、当b=1时,关于x 的方程a (3x-2)+b (2x-3)=8x-7有无数多个解,求a 的值。
最新七年级一元一次方程(基础篇)(Word版 含解析)
一、初一数学一元一次方程解答题压轴题精选(难)
1.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉 你原 因和方法.
(1)阅读下列材料:
问题:利用一元一次方程将 化成分数.
设
.
由
,可知
,
即
.(请你体会将方程两边都乘以 10 起到的作用)
可解得
,即
.填空:将 写成分数形式为________ .
和
即可;(2)把
a+b 看作是一个整体,利用题目中方法求出 a+b 的值,即可得到
的值;(3)根据
都是整数结合
或 ,利用有理数乘法法则分析求解即可.
5.已知:如图所示,O 为数轴的原点,A,B 分别为数轴上的两点,A 点对应的数为﹣ 30,B 点对应的数为 100.
(1)A、B 的中点 C 对应的数是________; (2)若点 D 数轴上 A、B 之间的点,D 到 B 的距离是 D 到 A 的距离的 3 倍,求 D 对应的 数.(提示:数轴上右边的点对应的数减去左边对应的数等于这两点间的距离); (3)若 P 点和 Q 点是数轴上的两个动点,当 P 点从 B 点出发,以 6 个单位长度/秒的速度 向左运动时,Q 点也从 A 点出发,以 4 个单位长度/秒的速度向右运动,设两点在数轴上的 E 点处相遇,那么 E 点对应的数是多少? 【答案】 (1)35 (2)解:设点 D 对应的数是 x,则由题意, 得 100﹣x=3[x﹣(﹣30)] 解得,x=2.5 所以点 D 对应的数是 2.5.
4.根据绝对值定义,若有
,则
或 ,若
以根据这样的结论,解一些简单的绝对值方程,例如:
初一七年级一元一次方程(含答案解析)
初一七年级一元一次方程(含答案解析)一.解答题(共30小题)1.解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).解一元一次方程参考答案与试题解析一.解答题(共30小题)1.解方程:2x+1=7考点:解一元一次方程.1184454专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1 合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.1184454专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.1184454专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.1184454专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.1184454专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.1184454专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.1184454专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.1184454专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.。
七年级数学上册第三单元《一元一次方程》-解答题专项(培优专题)
一、解答题1.数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:记录天平左边天平右边状态记录一6个乒乓球,1个10克的砝码14个一次性纸杯平衡记录二8个乒乓球7个一次性纸杯,1个10克的砝码平衡请算一算,一个乒乓球的质量是多少克?一个这种一次性纸杯的质量是多少克?解:(1)设一个乒乓球的质量是x克,则一个这种一次性纸杯的质量是______克;(用含x的代数式表示)(2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量.解析:(1)61014x+或8107x-;(2)一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克.【分析】(1)根据题意即可得出答案;(2)弄清题意,找到合适的等量关系,列出方程,解方程即可.【详解】解:(1)61014x+或8107x-(2)根据题意得,610810 147x x+-=6101620 x x+=-6162010 x x-=--1030x-=-3x =.当3x =时,610631021414x +⨯+==(克). 答:一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克. 【点睛】本题考查了一元一次方程与实际问题,解题的关键是找到合适的等量关系,列出方程,解方程.2.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生? 解析:10个家长,5个学生 【分析】设小明他们一共去了x 个家长,则有(15﹣x )个学生,根据“大人门票购买费用+学生门票购买费用=1400”列式求解即可. 【详解】解:设小明他们一共去了x 个家长,(15﹣x )个学生, 根据题意得:100x +100×0.8(15﹣x )=1400, 解得:x =10, 15﹣x =5,答:小明他们一共去了10个家长,5个学生. 【点睛】本题考查了一元一次方程的应用. 3.利用等式的性质解下列方程: (1)x -2=5;(2)-23x =6; (3)3x =x +6.解析:(1)x =7;(2)x =-9;(3)x =3 【分析】(1)两边同时加上2即可求解; (2)两边同时乘-32即可求解; (3)两边同时减x ,然后同时除以2即可求解. 【详解】解:(1)等式两边加2,得x -2+2=5+2, 即x =7. (2)等式两边乘-32,得x =6×(-32), 即x =-9.(3)等式两边减x,得2x=6.两边除以2,得x=3.【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.4.解下列方程(1)-9x-4x+8x=-3-7;(2)3x+10x=25+0.5x.解析:(1)x=2;(2)x=2【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解.【详解】解:(1)合并同类项,得,-5x=-10系数化为1,得,x=2(2)移项,得3x+10x-0.5x=25合并同类项,得12.5x=25系数化为1,得,x=2【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.5.运用等式的性质解下列方程:(1)3x=2x-6;(2)2+x=2x+1;(3)35x-8=-25x+1.解析:(1)x=-6;(2)x=1;(3)x=9【分析】(1)根据等式的性质:方程两边都减2x,可得答案;(2)根据等式的性质:方程两边都减x,化简后方程的两边都减1,可得答案.(3)根据等式的性质:方程两边都加25x,化简后方程的两边都加8,可得答案.【详解】(1)两边减2x,得3x-2x=2x-6-2x.所以x=-6.(2)两边减x,得2+x-x=2x+1-x.化简,得2=x+1.两边减1,得2-1=x+1-1所以x=1.(3)两边加25x , 得35x -8+25x =-25x +1+25x . 化简,得x -8=1.两边加8,得x -8+8=1+8. 所以x =9. 【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 6.已知16y x =-,227y x =+,解析下列问题: (1)当122y y =时,求x 的值; (2)当x 取何值时,1y 比2y 小3-. 解析:(1)215x =;(2)18x 【分析】(1)根据题意列出等式,然后解一元一次方程即可;(2)根据题意得到213y y -=-,然后代入x ,解一元一次方程即可求解. 【详解】(1)由题意得:62(27)x x -=+ 解得215x =215x ∴=. (2)由题意得:27(6)3x x +--=- 解得18x18x ∴=.【点睛】本题考查了解一元一次方程,重点是熟练掌握移项、合并同类项、去括号、去分母的法则,细心求解即可.7.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 解析:(1)5;(2)138; 【分析】①方程去括号,移项合并,把x 系数化为1,即可求出解;②方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【详解】①去括号得:3x−7x+7=3−2x−6,移项合并得:−2x=−10,解得:x=5;②去分母,去括号得:10−2x−6=6x−9,移项合并得:8x=13,解得:x=13 8.【点睛】此题考查解一元一次方程,解题关键在于掌握方程的解法.8.a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(-2)=32+2×3×(-2)=-3(1)试求(-2)※3的值(2)若1※x=3,求x的值(3)若(-2)※x=-2+x,求x的值.解析:(1)-8;(2)1;(3)65.【分析】(1)根据规定的运算法则求解即可.(2)(3)将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.【详解】(1)(-2)※3=(-2)2+2×(-2)×3=4-12=-8;(2)∵1※x=3,∴12+2x=3,∴2x=3-1,∴x=1;(3)-2※x=-2+x,(-2)2+2×(-2)x=-2+x,4-4x=-2+x,-4x-x=-2-4,-5x=-6,x=65.【点睛】此题考查有理数的混合运算,解一元一次方程,解题关键在于掌握运算法则.9.关于x的方程357644m x mx+=-的解比方程4(37)1935x x-=-的解大1,求m的值.解析:623 m=-【分析】分别求出两方程的解,根据题意列出关于m 的方程,然后求解即可. 【详解】解:357644m x m x +=-, 整理得:2(310)321m x m x +=-313x m =-解得:331m x =-, 4(37)1935x x -=-4747x =1x =由题意得:31131m--= 解得:623m =- 【点睛】本题考查了一元二次方程的解和解方程,关键是能先用含有m 的式子表示x ,然后根据题意列出方程.10.如图,甲船逆水,静水速度为28海里/时;乙船顺水,静水速度为12海里/时,两船相距60海里.已知水流速度为3海里/时,两船同时相向而行. (1)两船同时航行1小时,求此时两船之间的距离;(2)再(1)的情况下,两船再继续航行1小时,求此时两船之间的距离; (3)求两船从开始航行到两船相距12海里,需要多长时间?解析:(1) 20海里;(2) 20海里;(3) 1.2小时或1.8小时. 【分析】(1)根据1h 后甲、乙间的距离=两船相距-(甲船行驶的路程+乙船行驶的路程)即可得; (2)根据2h 后甲、乙间的距离=甲船行驶的路程-乙船行驶的路程即可得; (3)可分相遇前与相遇后两种情况讨论即可解答. 【详解】解:根据题意可知甲船的行驶速度为28-3=25海里/时,乙船的行驶速度为12+3=15海里/时(1)1h 后甲、乙间的距离=60-25×1-15×1=20海里; (2)2h 后甲、乙间的距离=25×2-15×2=20海里;(3)相遇前,设两船从开始航行到两船相距12海里,需要t 小时则12=60-(25+15)t,求得t=1.2小时相遇后,设两船从开始航行到两船相距12海里,需要t1小时则12+60=(25+15)t1,求得t1=1.8小时故两船从开始航行到两船相距12海里,1.2小时或1.8小时.【点睛】本题主要考查列代数式与一元一次方程的实际应用,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.11.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为 a(如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于 2015,2020 吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)解析:(1)详见解析;(2)详见解析.【分析】(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a表示;(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.【详解】(1)设中间的数是a,则a的上一个数为a−18,下一个数为a+18,前一个数为a−2,后一个数为a+2;(2)设中间的数是a,依题意有5a=2015,a=403,符合题意,这5个数中最小的一个数是a−18=403−18=385,2n−1=385,解得n=193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a=2020,a=404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.【点睛】本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.12.某市百货商店元月1日搞促销活动,购物不超200元不予优惠;购物超过200元而不足500元的按全价的90%优惠;超过500元,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元.问:(1)列方程求出此人两次购物若其物品不打折共值多少钱? (2)若此人将这两次购物合为一次购买是否更节省?为什么?解析:(1)654元钱;(2)将这两次购物合为一次购买更节省,理由见解析. 【分析】(1)根据“超过200元而不足500元的按9折优惠”可得:200×90%=180元,由于第一次购物134元<180元,故不享受任何优惠;由“超过500元,其中500元按9折优惠,超过部分8折优惠”可知500×90%=450元,466>450元,故此人购物享受“超过500元,其中500元按9折优惠,超过部分8折优惠”,设他所购价值x 元的货物,首先享受500元钱时的9折优惠,再享受超过500元的8折优惠,把两次的花费加起来即可得出此人第二次购物不打折的花费,最后将两次购物不打折的花费相加即可;(2)计算出两次购物合为一次购买实际应付的费用,再与他两次购物所花的费用进行比较即可. 【详解】解:(1)①因为134元<200×90%=180元,所以该人此次购物不享受优惠; ②因为第二次付了466元>500×90%=450元,所以该人享受超过500元,其中500元按9折优惠,超过部分8折优惠. 设他所购货物价值x 元,则90%×500+(x ﹣500)×80%=466, 解得x =520, 520+134=654(元).答:此人两次购物若其物品不打折共值654元钱;(2)500×90%+(654﹣500)×80%=573.2(元),134+466=600(元), ∵573.2<600,∴此人将这两次购物合为一次购买更节省. 【点睛】此题主要考查了一元一次方程的应用,关键是分析清楚付款打折的情况,找出合适的等量关系列出方程.13.某同学在给方程21133x x a-+=-去分母时,方程右边的-1没有乘3,因而求得方程的解为2x =,试求a 的值,并正确地解方程. 解析:2a =,0x = 【分析】根据方程的定义,把2x =代入211x x a -=+-,求得a ,把a 代入原方程,去分母、去括号、移项、合并同类项得出议程的解. 【详解】把2x =代入211x x a -=+-, 得:2a = ∴原方程为:212133x x -+=- 去分母得:2123x x -=+- 移项得:2231x x -=-+ 合并同类项得:0x = 【点睛】本题考查了解分数系数的一元一次方程,熟练掌握解方程的一般步骤是解题的关键. 14.某班将买一些乒乓球和乒乓球拍.了解信息如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元;经洽谈:甲店每买一副球拍赠一盒乒乓球;乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)如果要购买15盒或30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?解析:(1) 购买乒乓球20盒时,两种优惠办法付款一样;(2)买30盒乒乓球时,在甲店买5副乒乓球拍,在乙店买25盒乒乓球省钱. 【分析】(1)设当购买乒乓球x 盒时,两种优惠办法付款一样,根据总价=单价×数量,分别求出在甲、乙两家商店购买需要的钱数是多少;然后根据在甲商店购买需要的钱数=在乙商店购买需要的钱数,列出方程,解方程,求出当购买乒乓球多少盒时,两种优惠办法付款一样即可;(2)首先根据总价=单价×数量,分别求出在甲、乙两家商店购买球拍5副、15盒乒乓球,球拍5副、30盒乒乓球需要的钱数各是多少;然后把它们比较大小,判断出去哪家商店购买比较合算即可. 【详解】(1)设当购买乒乓球x 盒时,两种优惠办法付款一样, 则30×5+5(x −5)=(30×5+5x )×90% 5x +125=135+4.5x 5x +125−4.5x =135+4.5x −4.5x 0.5x +125=135 0.5x +125−125=135−125 0.5x =10 0.5x ×2=10×2 x =20答:当购买乒乓球20盒时,两种优惠办法付款一样.(2)①在甲商店购买球拍5副、15盒乒乓球需要: 30×5+5×(15−5)=150+50=200(元)在乙商店购买球拍5副、15盒乒乓球需要: (30×5+5×15)×90%=225×90%=202.5(元) 因为200<202.5,所以我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算. 答:我去买球拍5副、15盒乒乓球时,打算去甲家商店购买,在甲家商店购买比较合算. ②在甲商店购买球拍5副、30盒乒乓球需要: 30×5+5×(30−5)=150+125=275(元)在乙商店购买球拍5副、30盒乒乓球需要: (30×5+5×30)×90%=300×90%=270(元) 因为270<275,所以我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算. 答:我去买球拍5副、30盒乒乓球时,打算去乙家商店购买,在乙家商店购买比较合算. 考点:1.一元一次方程的应用;2.方案型. 15.已知14y x =-+,222y x =-. (1)当x 为何值时,12y y =; (2)当x 为何值时,1y 的值比2y 的值的12大1; (3)先填表,后回答:根据所填表格,回答问题:随着x 值的增大,1y 的值逐渐 ;2y 的值逐渐 . 解析:(1)2x =;(2)2x =;(3)表格详见解析,减小,增大. 【分析】(1)由题意可得关于x 的方程,解方程即得答案; (2)根据1y =122y +1可得关于x 的方程,解方程即得答案; (3)把x 的值依次代入1y 和2y 的关系式进行计算,即可完成表格;根据所填表格中的数据即可判断1y 和2y 的变化趋势. 【详解】解:(1)由题意得:422x x -+=-,解得:2x =, 所以,当2x =时,12y y =;(2)由题意得: 1(422)21x x -+=-+,解得:2x =, 所以,当2x =时,1y 的值比2y 的值的12大1. (3)x3-2-1-0 1 2 3 4 1y 7 6543 2 1 0 2y8-6- 4- 2-246由表格中的数据可知:随着值的增大,1的值逐渐减小;2的值逐渐增大. 故答案为:减小,增大. 【点睛】本题考查了一元一次方程的解法、代数式求值和根据表格判断代数式的变化趋势,正确列出方程、熟练掌握一元一次方程的解法是解题的关键.16.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,一块小正方形以及另两块长方形的纸板,恰好拼成一个大正方形,求大正方形的面积.解析:大正方形的面积是36cm 2 【分析】设小正方形的边长为x ,然后表示出大正方形的边长,利用正方形的面积相等列出方程求得小正方形的边长,然后求得大正方形的边长即可求得面积. 【详解】设小正方形的边长为x ,则大正方形的边长为4+(5−x )cm 或(x +1+2)cm , 根据题意得:4+(5−x )=(x +1+2), 解得:x =3, ∴4+(5−x )=6, ∴大正方形的面积为36cm 2. 答:大正方形的面积为36cm 2. 【点睛】本题考查了一元一次方程的应用,解题的关键是设出小正方形的边长并表示出大正方形的边长.17.如图,在一条不完整的数轴上从左到右有点A ,B ,C ,其中AB =2BC ,设点A ,B ,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.解析:(1)﹣3,﹣1,﹣4;(2)﹣2;(3)8或-40.【分析】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【详解】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,AB+BC=AC,∴AB=4,BC=2,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40.【点睛】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.18.由于施工,需要拆除学校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少? 解析:6人 【分析】设先安排整理的人员有x 人,根据工作效率×工作时间×工作人数=工作总量结合题意,即可得出关于x 的一元一次方程,解之即可得出结论. 【详解】解:设先安排整理的人员有x 人, 根据题意得:()1126=13030x x +⨯+, 解得:x =6.答:先安排整理的人员有6人. 【点睛】本题考查了一元一次方程的应用,找准等量关系正确列出一元一次方程是解题的关键.19.对于任意四个有理数a b c d ,,,,可以组成两个有理数对(,)a b 与(,)c d . 我们规定:(,)(,)a b c d bc ad =-★. 例如:(1,2)(3,4)23142=⨯-⨯=★. 根据上述规定解决下列问题:(1)有理数对(2,3)(3,2)--=★ ;(2)若有理数对(2,31)(1,1)9x x -+-=★,则x = ;(3)当满足等式(3,21)(,)32x k x k k --+=+★的x 是整数时,求整数k 的值. 解析:(1)-5;(2)2;(3)k=0,-1,-2,-3. 【分析】(1)原式利用规定的运算方法计算即可求出值; (2)原式利用规定的运算方法列方程求解即可;(3)原式利用规定的运算方法列方程,表示出x ,然后根据k 是整数求解即可. 【详解】解:(1)根据题意得:原式=−3×3−2×(−2)=−9+4=−5; 故答案为:−5;(2)根据题意得:3x+1−(−2)×(x−1)=9, 整理得:5x =10, 解得:x =2, 故答案为:2;(3)∵等式(−3,2x−1)★(k ,x +k )=3+2k 的x 是整数, ∴(2x−1)k−(−3)(x +k )=3+2k , ∴(2k +3)x =3,∴323x k =+, ∵k 是整数,∴2k +3=±1或±3, ∴k =0,−1,−2,−3. 【点睛】此题考查了新运算以及解一元一次方程,正确理解新运算是解题的关键. 20.解下列方程(1)32(4)25x x --=-; (2) 212164y y -+-=-; (3)312423(1)32x x x -+-+=-; (4)4 1.550.8 1.20.50.20.1x x x----= ; (5) 315x x +-= ; (6)解下列关于x 的方程211423x m mx ---=. 解析:(1)4x =;(2)4y =-;(3)83x =;(4)117x =-;(5)2x =-或32x =;(6)2+364=-m x m . 【分析】(1)先两边同时乘以5去分母,然后去括号解方程即可; (2)先两边同时乘以12去分母,然后去括号解方程即可; (3)先两边同时乘以6去分母,然后去括号解方程即可; (4)先两边同时乘以1去分母,然后去括号解方程即可; (5)分①当x≤13时,②当x >13时,两种情况,分别求出x 即可; (6)把m 当成已知数,先两边同时乘以12去分母,然后去括号解方程即可. 【详解】解:(1)103(4)510--=-x x10312510-+=-x x 351022--=--x x 832-=-x4x =;(2)()()4216224--+=-y y8461224---=-y y 224+16=-y28y =- 4y =-;(3)()()2311232418(1)--++=-x x x62126121818--++=-x x x 1218182-=-+x x616-=-x83x =;(4)()()()24 1.5550.8101.2---=-x x x832541210--+=-x x x 1710121-+=-x x711-=x117x =-; (5)315x x +-= ①当x≤13时, ()315+-+=x x24x -=2x =-,-2<13,∴2x =-满足;②当x >13时,()315+-=x x46x =32x =3123>, ∴32x =满足, ∴2x =-或32x =; (6)()()32641--=-x m mx63644--=-x m mx 644+3+6-=-x mx m()642+3-=m x m2+364=-mx m . 【点睛】 本题是对解一元一次方程的考查,熟练掌握一元一次方程的解法是解决本题的关键. 21.某市水果批发欲将A 市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时,其它主要参考数据如下:(1) 如果汽车的总支出费用比火车费用多1100元,你知道本市与A 市之间的路程是多少千米吗?请你列方程解答.(总支出包含损耗、运费和装卸费用)(2) 如果A 市与B 市之间的距离为S 千米,你若是A 市水果批发部门的经理,要想将这种水果运往B 市销售,试分析以上两种运输工具中选择哪种运输方式比较合算呢?解析:(1) x =400;(2) 当s >200时,选择火车运输;当s <200时,选择汽车运输;当s =200时,两种方式都一样 【分析】(1)设路程为x 千米,题中等量关系是:汽车的总支出费用比火车费用多1100元,列出方程解答;(2)根据(1)中结论分别算出火车和汽车所需的运费,再进行比较即可求解. 【详解】(1) 设本市与A 市之间的路程是x 千米200•20015200011002090010080x x x x +++=++, 解得x =400(2) 火车的运输费用为•200152000172000100ss s ++=+ 汽车运输的费用为•2002090022.590080ss s ++=+ 当17s +2000=22.5s +900,解得s =200 当s >200时,选择火车运输 当s <200时,选择汽车运输 当s =200时,两种方式都一样 【点睛】本题主要考查了一元一次方程的应用,根据题意列出方程是解答本类问题的关键. 22.老师在黑板上写了一个等式(3)4(3)a x a +=+.王聪说4x =,刘敏说不一定,当4x ≠时,这个等式也可能成立.(1)你认为他们俩的说法正确吗?请说明理由; (2)你能求出当2a =时(3)4(3)a x a +=+中x 的值吗? 解析:(1)王聪的说法不正确,见解析;(2)4x = 【分析】(1)根据等式的性质进行判断即可. (2)利用代入法求解即可. 【详解】(1)王聪的说法不正确.理由:两边除以(3)a +不符合等式的性质2,因为当30a +=时,x 为任意实数. 刘敏的说法正确.理由:因为当30a +=时,x 为任意实数,所以当4x ≠时,这个等式也可能成立. (2)将2a =代入,得(23)4(23)x +=+,解得4x =. 【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的性质、等式的性质是解题的关键. 23.李老师准备购买一套小户型商品房,他去售楼处了解情况得知,该户型商品房的单价是5000元2/m ,如图所示(单位:m ,卫生间的宽未定,设宽为xm ),售楼处为李老师提供了以下两种优惠方案:方案一:整套房的单价为5000元2/m ,其中卫生间可免费赠送一半的面积; 方案二:整套房按原销售总金额的9.5折出售.(1)用含x 的代数式表示该户型商品房的面积及按方案一、方案二购买一套该户型商品房的总金额;(2)当2x =时,通过计算说明哪种方案更优惠,优惠多少元.解析:(1)该户型商品房的面积为2(482)x m +,按方案一购买一套该户型商品房的总金额为(2400005000)x +元,按方案二购买一套该户型商品房的总金额为(2280009500)x +元;(2)当2x =时,方案二更优惠,优惠3000元.【分析】(1)该户型商品房的面积=大长方形的面积-卫生间右侧的长方形,代入计算,也可以利用各间的面积和来求;方案一:(总面积-厨房的12)×单价5000;方案二:总价×0.95; (2)分别把数据代入计算即可; 【详解】解:(1)该户型商品房的面积为:2473(84)2(73)(842)(482)x x m ⨯+⨯-+⨯-+--=+按方案一购买一套该户型商品房的总金额为:147342425000(2400005000)2x x ⎛⎫⨯+⨯+⨯+⨯⨯=+ ⎪⎝⎭元;按方案二购买一套该户型商品房的总金额为:(4734242)500095%(2280009500)x x ⨯+⨯+⨯+⨯⨯=+元.(2)当2x =时,方案一总金额为2400005000250000x +=(元); 方案二总金额为2280009500247000x +=(元). 方案二比方案一优惠2500002470003000-=(元). 所以方案二更优惠,优惠3000元. 【点睛】本题是根据实际应用列代数式,是楼房销售问题,考查了图形面积与销售总额及银行利率的知识;解题的关键是熟练掌握利用代数式表示图形的面积. 24.解方程:(1)3(26)17x x +=--; (2)4(2)13(1)x x --=-; (3)4(1)5(3)11x x +--=; (4)14(1)(26)112x x --+=. 解析:(1)5x =-;(2)6x =;(3)8x =;(4)6x = 【分析】(1)去括号,移项及合并同类项,系数化为1即可求解. (2)去括号,移项及合并同类项,系数化为1即可求解. (3)去括号,移项及合并同类项,系数化为1即可求解. (4)去括号,移项及合并同类项,系数化为1即可求解. 【详解】(1)去括号,得61817x x +=--. 移项及合并同类项,得735x =-. 系数化为1,得5x =-.(2)去括号,得48133x x --=-. 移项,得43381x x -=-++. 合并同类项,得6x =.(3)去括号,得4451511x x +-+=. 移项,得4511415x x -=--. 合并同类项,得8x -=-. 系数化为1,得8x =.(4)去括号,得44311x x ---=.移项,得41143x x -=++. 合并同类项,得318x =. 系数化为1,得6x =. 【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键. 25.某圆柱形饮料瓶由铝片加工做成,现有若干张一样大小的铝片,若全部用来做瓶身可做900个,若全部用来做瓶底可做1200个.已知每一张这样的铝片全部做成瓶底比全部做成瓶身多20个.(1)问一张这样的铝片可做几个瓶底? (2)这些铝片一共有多少张?(3)若一个瓶身与两个瓶底配成一套,则从这些铝片中取多少张做瓶身,取多少张做瓶底可使配套做成的饮料瓶最多?解析:(1)80个(2)15张(3)6张;9张 【分析】(1)列方程求解即可得到结果; (2)用总量除以(1)的结果即可;(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多,代入值计算即可; 【详解】解:(1)设一张这样的铝片可做x 个瓶底. 根据题意,得9001200(20)x x =-. 解得80x =.2060x -=. 答:一张这样的铝片可做80个瓶底. (2)12001580=(张) 答:这些铝片一共有15张.(3)设从这15张铝片中取a 张做瓶身,取(15)a -张做瓶底可使配套做成的饮料瓶最多.根据题意,得26080(15)a a ⨯⋅=-. 解得6a =.则159a -=.答:从这些铝片中取6张做瓶身,取9张做瓶底可使配套做成的饮料瓶最多. 【点睛】本题主要考查了一元一次方程的应用,准确理解题意是解题的关键.26.甲、乙两人骑自行车分别从相距36km 的两地匀速同向而行,如果甲比乙先出发半小时,那么在乙出发后经3小时甲追上乙;如果乙比甲先出发1小时,那么在甲出发后经5小时甲才能追上乙.请问:甲、乙两人骑自行车每小时各行多少千米? 解析:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米 【分析】设甲骑自行车每小时行x 千米,先根据“甲比乙先出发半小时,那么在乙出发后经3小时甲追上乙”用含x 的代数式表示出乙的速度,然后根据甲5小时骑行的路程-乙6小时骑行的路程=36千米即可列出方程,解方程即可求出结果. 【详解】解:设甲骑自行车每小时行x 千米,则乙骑自行车每小时行133623x ⎛⎫+- ⎪⎝⎭千米,即7126x ⎛⎫- ⎪⎝⎭千米. 依题意,得()755112366x x ⎛⎫-+-=⎪⎝⎭,解得18x =. 712211296x -=-=. 答:甲骑自行车每小时行18千米,乙骑自行车每小时行9千米. 【点睛】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键. 27.解方程:(1)36156x x -=--;(2)45173x x +=-; (3) 2.57.5516y y y --=-;(4)11481.5533z z +=-. 解析:(1)1x =-;(2)66x =-;(3)56y =;(4)407z =- 【分析】(1)先移项,再合并同类项,最后系数化为1即可. (2)先移项,再合并同类项,最后系数化为1即可. (3)先移项,再合并同类项,最后系数化为1即可. (4)先移项,再合并同类项,最后系数化为1即可. 【详解】(1)移项,得36156x x +=-+. 合并同类项,得99x =-. 系数化为1,得1x =-.(2)移项,得41753x x -=--. 合并同类项,得1223x =-.系数化为1,得66x =-.(3)移项,得 2.57.5165y y y --+=.合并同类项,得65y =.系数化为1,得56y =. (4)移项,得11841.5533z z -=--. 合并同类项,得7410z =-. 系数化为1,得407z =-. 【点睛】本题考查了解一元一次方程的问题,掌握解一元一次方程的方法是解题的关键.28.我们知道13写成小数形式为0.3,反过来,无限循环小数0.3也可以转化成分数形式.方法如下: 设0.3x =,由0.30.333=,可知10 3.333x =,所以103x x -=.解方程,得13x =,所以10.33=. 例如:把无限循环小数0.32化为分数的方法如下: 设0.32x =,由0.320.323232=,可知10032.323232x =,所以10032x x -=,解方程,得3299x =,所以320.3299=.根据上述材料,解答下列问题: (1)把下列无限循环小数写成分数形式:①0.5=________;②2.58=________;③0.518=________.(2)借鉴材料中的方法,从第(1)题的①②③中任选一个,写出你的转化过程. 解析:(1)①59;②25699;③518999;(2)见解析 【分析】(1)根据题目中的转化方法进行转化即可.(2)根据题目中的转化方法进行转化,并写出过程.【详解】 (1)①59;②25699;③518999. (2)从①②③中任选一个转化即可. ①设0.5x =,则10 5.5555x =⋯,所以105x x -=,解方程,得59x =,所以50.59=. ②设0.58x =,则10058.5858x =⋯,所以10058x x -=,解方程,得5899x =,所以。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学一元一次方程解答题压轴题精选(难)1.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使 =b,点Q为PB的中点,请画出图形并求出线段AQ的长.【答案】(1)解:2(a-2)=a+4,2a-4=a+4a=8,∵x=a=8,把x=8代入方程2(x-3)-b=7,∴2(8-3)-b=7,b=3(2)解:①如图:点P在线段AB上,=3,AB=3PB,AB=AP+PB=3PB+PB=4PB=8,PB=2,Q是PB的中点,PQ=BQ=1,AQ=AB-BQ=8-1=7,②如图:点P在线段AB的延长线上,=3,PA=3PB,PA=AB+PB=3PB,AB=2PB=8,PB=4,Q是PB的中点,BQ=PQ=2,AQ=AB+BQ=8+2=10.所以线段AQ的长是7或10.【解析】【分析】(1)根据题意可得两个方程的解相同,所以根据第一个方程的解,可求出第二个方程中的b。
(2)分类讨论,P在线段AB上,根据,可求出PB的长,再根据中点的性质可得PQ的长,最后根据线段的和差可得AQ;P在线段AB的延长线上,根据,可求出PB的长,再根据中点的性质可得BQ的长,最后根据线段的和差可得AQ.2.综合题(1)如图,、、是一条公路上的三个村庄,、间的路程为,、间的路程为,现要在、之间建一个车站,若要使车站到三个村庄的路程之和最小,则车站应建在何处?______A.点处B.线段之间C.线段的中点D.线段之间(2)当整数 ________时,关于的方程的解是正整数.【答案】(1)A(2)或【解析】【解答】(1)故答案为:A;(2)或【分析】(1)根据图形要使车站到三个村庄的路程之和最小,得到车站应建在C处;(2)根据解一元一次方程的步骤去分母、去括号、移项、合并同类项、系数化为一;求出m的值.3.已知关于的方程的解也是关于的方程的解.(1)求、的值;(2)若线段,在直线AB上取一点P,恰好使,点Q是PB的中点,求线段AQ的长.【答案】(1)解:(m−14)=−2,m−14=−6m=8,∵关于m的方程的解也是关于x的方程的解.∴x=8,将x=8,代入方程得:解得:n=4,故m=8,n=4;(2)解:由(1)知:AB=8, =4,①当点P在线段AB上时,如图所示:∵AB=8, =4,∴AP= ,BP= ,∵点Q为PB的中点,∴PQ=BQ= BP= ,∴AQ=AP+PQ= + = ;②当点P在线段AB的延长线上时,如图所示:∵AB=8, =4,∴PB= ,∵点Q为PB的中点,∴PQ=BQ= ,∴AQ=AB+BQ=8+ =故AQ= 或 .【解析】【分析】(1)先解求得m的值,然后把m的值代入方程,即可求出n的值;(2)分两种情况讨论:①点P在线段AB上,②点P在线段AB的延长线上,画出图形,根据线段的和差定义即可求解;4.根据绝对值定义,若有,则或,若,则,我们可以根据这样的结论,解一些简单的绝对值方程,例如:解:方程可化为:或当时,则有:;所以 .当时,则有:;所以 .故,方程的解为或。
(1)解方程:(2)已知,求的值;(3)在(2)的条件下,若都是整数,则的最大值是________(直接写结果,不需要过程).【答案】(1)解:方程可化为:或,当时,则有,所以;当时,则有,所以,故方程的解为:或(2)解:方程可化为:或,当时,解得:,当时,解得:,∴或(3)100【解析】【解答】(3)∵或,且都是整数,∴根据有理数乘法法则可知,当a=-10,b=-10时,取最大值,最大值为100.【分析】(1)仿照题目中的方法,分别解方程和即可;(2)把a+b看作是一个整体,利用题目中方法求出a+b的值,即可得到的值;(3)根据都是整数结合或,利用有理数乘法法则分析求解即可.5.对于任意有理数,我们规定 =ad-bc.例如 =1×4-2×3=-2(1)按照这个规定,当a=3时,请你计算(2)按照这个规定,若 =1,求x的值。
【答案】(1)解:当a=3时,=2a×5a-3×4=10a2-12=10×32-12=90-12=78(2)解:∵ =1∴4(x+2)-3(2x-1)=1去括号,可得:4x+8-6x+3=1移项,合并同类项,可得:2x=10,解得x=5【解析】【分析】(1)根据规定先求出的表达式,再化简,然后把a=3代入求值即可;(2)根据新定义的规定把=1的右式化成整式,然后去括号、移项、合并同类项,x项系数化为1即可解出x.6.某城市平均每天产生垃圾700 t,由甲、乙两家垃圾处理厂处理.已知甲厂每小时可处理垃圾55 t,费用为550元;乙厂每小时可处理垃圾45 t,费用为495元.(1)如果甲、乙两厂同时处理该城市的垃圾,那么每天需几小时?(2)如果该城市规定每天用于处理垃圾的费用不得高于7370元,那么至少安排甲厂处理几小时?【答案】(1)解:设两厂同时处理每天需xh完成,根据题意,得(55+45)x=700,解得x=7.答:甲、乙两厂同时处理每天需7 h.(2)解:设安排甲厂处理y h,根据题意,得550y+495× ≤7370,解得y≥6.∴y的最小值为6.答:至少安排甲厂处理6 h.【解析】【分析】(1)设甲、乙两厂同时处理,每天需x小时,根据甲乙两厂同时处理垃圾每天需时=每天产生垃圾÷(甲厂每小时可处理垃圾量+乙厂每小时可处理垃圾量),列出方程,求出x的值即可;(2)设甲厂需要y小时,根据该市每天用于处理垃圾的费用=甲厂处理垃圾的费用+乙厂处理垃圾的费用,每厂处理垃圾的费用=每厂每小时处理垃圾的费用×每天处理垃圾的时间,列出不等式,求出y的取值范围,再求其中的最小值即可.7.仔细阅读下列材料.“分数均可化为有限小数或无限循环小数”,反之,“有限小数或无限小数均可化为分数”.例如: =1÷4=0.25; = =8÷5=1.6; =1÷3= ,反之,0.25= = ;1.6= = = .那么,怎么化成分数呢?解:∵ ×10=3+ ,∴不妨设 =x,则上式变为10x=3+x,解得x= ,即 = ;∵ = ,设 =x,则上式变为100x=2+x,解得x= ,∴ = =1+x=1+ =(1)将分数化为小数: =________, =________;(2)将小数化为分数:=________;=________。
(3)将小数化为分数,需要写出推理过程.【答案】(1)1.8;(2);(3)解:设 =x,则100x=95+x,解得:x= =1+ =【解析】【解答】(1)9÷5=1.8,22÷7= ;(2)设0. x,根据题意得:10x=5+x,解得:x ;设0. x,则10x=6+x,解得:x ..故答案为:.【分析】(1)由已学过的知识可知:分数均可化为有限小数或无限循环小数;是一个有限小数,是一个无限循环小数;(2)由阅读材料可求解;(3)由阅读材料可知,设循环节为x,即 =x,由材料可得方程 100x=95+x,解方程即可求解。
8.阅读理解:定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:的解为,的解集为,不难发现在的范围内,所以是的“子方程”.问题解决:(1)在方程① ,② ,③ 中,不等式组的“子方程”是________;(填序号)(2)若关于x的方程是不等式组的“子方程”,求k的取值范围;(3)若方程,都是关于x的不等式组的“子方程”,直接写出m的取值范围.【答案】(1)③(2)解:解不等式3x-6>4-x,得:>,解不等式x-1≥4x-10,得:x≤3,则不等式组的解集为<x≤3,解:2x-k=2,得:x= ,∴<≤3,<,解得:3<k≤4;(3)解:解方程:2x+4=0得,解方程:得:,解关于x的不等式组当<时,不等式组为:,此时不等式组的解集为:>,不符合题意,所以:>所以得不等式的解集为:m-5≤x<1,∵2x+4=0,都是关于x的不等式组的“子方程”,∴,解得:2<m≤3.【解析】【解答】解:(1)解方程:3x-1=0得:解方程:得:,解方程:得:x=3,解不等式组:得:2<x≤5,所以不等式组的“子方程”是③.故答案为:③;【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其解集,解方程求出x= ,根据“子方城”的定义列出关于k的不等式组,解之可得;(3)先求出方程的解和不等式组的解集,分<与>讨论,即可得出答案.9.在数轴上,把表示数1的点称为基准点,记为 .对于两个不同的点和 ,若点 ,点到点的距离相等,则称点与点互为基准变换点.例如:在图1中,点表示数 ,点表示数 ,它们与基准点都是2个单位长度, 点与点互为基准变换点.(1)已知点表示数 ,点表示数 ,点与点互为基准变换点.若 ,则 ________;若 ,则 ________;(2)对点进行如下操作:先把点表示的数乘以2,再把所得数表示的点沿数轴向左移动2个单位长度得到点 .若点与互为基准变换点,求点表示的数,并说明理由.(3)点在点的左边, 点与点之间的距离为8个单位长度.对点 , 两点做如下操作:点沿数轴向右移动k(k>0)个单位长度得到 , 为的基准变换点,点沿数轴向右移动k个单位长度得到 , 为的基准变换点,…,以此类推,得到 , ,…, . 为的基准变换点,将数轴沿原点对折后的落点为 , 为的基准变换点,将数轴沿原点对折后的落点为,…,以此类推,得到 , ,…, .若无论k的值, 与两点之间的距离都是4,则 ________.【答案】(1)0;4(2)解:点表示的数是,理由如下:设点表示的数是,则点表示的数是则由题意解得(3)或【解析】【解答】(1)∵由题意得a-1=1-b,∴当a=2, 则2-1=1-b, 解得b=0;当a=-2,则-2-1=1-b, 解得b=4.(3)解:设点表示的数是,则点表示的数是则由题意表示的数是,表示的数是,表示的数是,表示的数是,…又表示的数是,表示的数是,表示的数是,表示的数是=m+8-4×1 ,…,,即,解得【分析】(1)由题意得出互为基准点a、b的关系式,分别把a=2,a=-2, 代入关系式求解即可;(2)设点A表示的数为x, 根据题意得出点A表示的数经过乘以2,向左移动2个单位后得到的点B所表示的数,因为A、B为互为基准变换点,代入互为基准点关系式求出x即可;(3)根据点P n与点Q n的变化找出变化规律,“P4n=m、Q4n=m+8-4n”,再根据两点间的距离公式即可得出关于n的含绝对值符号的一元一次方程,解之即可得出结论.10.将从1开始的正整数按一定规律排列如下表:(1)数40排在第________行,第________列;数2018排在第________行,第________列;(2)探究如图“+”框中的5个数:①设这5个数中间的数为a,则最小的数为________,最大的数为________;②若这5个数的和是240,求出这5个数中间的数;________③这5个数的和可能是2025吗,若能,求出这5个数中间的数,若不能,请说明理由.________【答案】(1)5;4;225;2(2)a﹣9;a+9;解:根据题意可得:a﹣9+a﹣1+a+a+1+a+9=240∴a=48;根据题意可得:a﹣9+a﹣1+a+a+1+a+9=2025∴a=405∵405÷9=45∴405是第9列的数,∴这5个数的和不可能是2025.【解析】【解答】(1)解:∵40÷9=4 (4)∴数40排在第5行第4列∵2018÷9=224 (2)∴数2018排在第225行第2列故答案为5,4,225,2( 2 )①设中间的数为a,其他四个数分别为a﹣9,a﹣1,a+1,a+9则最小的数a﹣9,最大的数为a+9故答案为:a﹣9,a+9【分析】(1)由题意可求解;(2)①设中间的数为a,由数列的规律可得其他四个数分别为a−9,a−1,a+1,a+9,即可得最小的数和最大的数;②根据题意列出方程,求解即可;③根据题意列出方程,可求a为405,可得a是9的倍数,则a在第9列,则这5个数的和不可能是2025.11.在数轴上,点A表示数a,点B表示数b,在学习绝对值时,我们知道了绝对值的几何含义:数轴上A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.如:|a+6|表示数a和﹣6在数轴上对应的两点之间的距离.|a﹣1|表示数a和1在数轴上对应的两点之间的距离.(1)若a满足|a+6|+|a+4|+|a﹣1|的值最小,b与3a互为相反数,直接写出点A对应的数,点B对应的数.(2)在(1)的条件下,已知点E从点A出发以1单位/秒的速度向右运动,同时点F从点B出发以2单位/秒的速度向右运动,FO的中点为点P,则下列结论:①PO+AE的值不变;②PO﹣AE的值不变,其中有且只有一个是正确的,选出来并求其值.(3)在(1)的条件下,已知动点M从A点出发以1单位/秒的速度向左运动,动点N从B点出发以3单位/秒的速度向左运动,动点T从原点的位置出发以x单位/秒的速度向左运动,三个动点同时出发,若运动过程中正好先后出现两次TM=TN的情况,且两次间隔的时间为4秒,求满足条件的x的值.【答案】(1)解:a满足|a+6|+|a+4|+|a﹣1|的值最小,所以数a和﹣6,a和﹣4,a和1在数轴上对应的两点之间的距离之和最小,∴a=﹣4,b=12∴点A对应的数﹣4,点B对应的数12(2)解:PO﹣AE的值不变设运动时间为t秒,根据题意可得:BF=2t,AE=t,则OF=12+2t∵FO的中点为点P∴OP=6+t∴PO﹣AE=6+t﹣t=6PO﹣AE的值不变(3)解:设运动时间为t秒,则AM=t,OT=xt,BN=3t根据第一次TM=TN得:xt+12﹣3t=4+t﹣xt根据第二次TM=TN得:x(t+4)﹣{3(t+4)﹣12}=4+(4+t)﹣x(4+t)两式联立得:x=2∴满足条件的x的值为2【解析】【分析】(1)a满足|a+6|+|a+4|+|a﹣1|的值最小,所以数a和﹣6,a和﹣4,a 和1在数轴上对应的两点之间的距离之和最小,据此求出a、b的值即可.(2)设运动时间为t秒,从而可得BF=2t,AE=t,则OF=12+2t,利用线段的中点求出OP的长,求出PO-AE的值即可求出结论.(3)设运动时间为t秒,则AM=t,OT=xt,BN=3t,根据两次TM=TN,分别列出方程组,求出x的值即可.12.如图是一种数值转换机的运算程序(1)若输入的数x=1,y=-1,则输出的数为________;若输入的数x=-1,输出的数是3,则y=________;若输入的数y=-1,输出的数是-1,则x=________;(2)若输入的数x=n,y=-n,输出的数为m,试求出m、n的关系;(3)若输入的数x=n,y=2n,是否存在n的值,使输出的数为n?若存在,求出n的值;若不存在,请说明理由.【答案】(1);8;(2)解:由图可知:输出的数为:[2x-(y-4)]÷(-2),∵x=n,y=-n,输出的数为m,∴[2n-(-n-4)]÷(-2)=m,即2m+3n+4=0.(3)解:存在n的值,使输出的数为n,由图可知:输出的数为:[2x-(y-4)]÷(-2),∵x=n,y=2n,输出的数为n,∴[2n-(2n-4)]÷(-2)=n,解得:n=-2.【解析】【解答】解:(1)由图可知:输出的数为:[2x-(y-4)]÷(-2),∵x=1,y=-1,∴[2x-(y-4)]÷(-2),=[2×1-(-1-4)]÷(-2),=[2-(-5)]÷(-2),=-;∵x=-1,输出的数是3,∴[2×(-1)-(y-4)]÷(-2)=3,解得:y=8;∵y=-1,输出的数是-1,∴[2x-(-1-4)]÷(-2)=-1,解得:x=-;故答案为:-, 8,-.【分析】(1)由图可知:输出的数为:[2x-(y-4)]÷(-2),分别将值代入,即可求得答案.(2)由图可知:输出的数为:[2x-(y-4)]÷(-2),根据题意代入数值,计算即可得出m、n的关系.(3)存在n的值,使输出的数为n;由图可知:输出的数为:[2x-(y-4)]÷(-2),根据题意代入数值,计算即可求出n值.。